memnode.cpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "oops/objArrayKlass.hpp"
31#include "opto/addnode.hpp"
32#include "opto/arraycopynode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/compile.hpp"
35#include "opto/connode.hpp"
36#include "opto/convertnode.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/matcher.hpp"
40#include "opto/memnode.hpp"
41#include "opto/mulnode.hpp"
42#include "opto/narrowptrnode.hpp"
43#include "opto/phaseX.hpp"
44#include "opto/regmask.hpp"
45#include "utilities/align.hpp"
46#include "utilities/copy.hpp"
47#include "utilities/vmError.hpp"
48
49// Portions of code courtesy of Clifford Click
50
51// Optimization - Graph Style
52
53static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
54
55//=============================================================================
56uint MemNode::size_of() const { return sizeof(*this); }
57
58const TypePtr *MemNode::adr_type() const {
59  Node* adr = in(Address);
60  if (adr == NULL)  return NULL; // node is dead
61  const TypePtr* cross_check = NULL;
62  DEBUG_ONLY(cross_check = _adr_type);
63  return calculate_adr_type(adr->bottom_type(), cross_check);
64}
65
66bool MemNode::check_if_adr_maybe_raw(Node* adr) {
67  if (adr != NULL) {
68    if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
69      return true;
70    }
71  }
72  return false;
73}
74
75#ifndef PRODUCT
76void MemNode::dump_spec(outputStream *st) const {
77  if (in(Address) == NULL)  return; // node is dead
78#ifndef ASSERT
79  // fake the missing field
80  const TypePtr* _adr_type = NULL;
81  if (in(Address) != NULL)
82    _adr_type = in(Address)->bottom_type()->isa_ptr();
83#endif
84  dump_adr_type(this, _adr_type, st);
85
86  Compile* C = Compile::current();
87  if (C->alias_type(_adr_type)->is_volatile()) {
88    st->print(" Volatile!");
89  }
90  if (_unaligned_access) {
91    st->print(" unaligned");
92  }
93  if (_mismatched_access) {
94    st->print(" mismatched");
95  }
96}
97
98void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
99  st->print(" @");
100  if (adr_type == NULL) {
101    st->print("NULL");
102  } else {
103    adr_type->dump_on(st);
104    Compile* C = Compile::current();
105    Compile::AliasType* atp = NULL;
106    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
107    if (atp == NULL)
108      st->print(", idx=?\?;");
109    else if (atp->index() == Compile::AliasIdxBot)
110      st->print(", idx=Bot;");
111    else if (atp->index() == Compile::AliasIdxTop)
112      st->print(", idx=Top;");
113    else if (atp->index() == Compile::AliasIdxRaw)
114      st->print(", idx=Raw;");
115    else {
116      ciField* field = atp->field();
117      if (field) {
118        st->print(", name=");
119        field->print_name_on(st);
120      }
121      st->print(", idx=%d;", atp->index());
122    }
123  }
124}
125
126extern void print_alias_types();
127
128#endif
129
130Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
131  assert((t_oop != NULL), "sanity");
132  bool is_instance = t_oop->is_known_instance_field();
133  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
134                             (load != NULL) && load->is_Load() &&
135                             (phase->is_IterGVN() != NULL);
136  if (!(is_instance || is_boxed_value_load))
137    return mchain;  // don't try to optimize non-instance types
138  uint instance_id = t_oop->instance_id();
139  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
140  Node *prev = NULL;
141  Node *result = mchain;
142  while (prev != result) {
143    prev = result;
144    if (result == start_mem)
145      break;  // hit one of our sentinels
146    // skip over a call which does not affect this memory slice
147    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
148      Node *proj_in = result->in(0);
149      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
150        break;  // hit one of our sentinels
151      } else if (proj_in->is_Call()) {
152        // ArrayCopyNodes processed here as well
153        CallNode *call = proj_in->as_Call();
154        if (!call->may_modify(t_oop, phase)) { // returns false for instances
155          result = call->in(TypeFunc::Memory);
156        }
157      } else if (proj_in->is_Initialize()) {
158        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
159        // Stop if this is the initialization for the object instance which
160        // contains this memory slice, otherwise skip over it.
161        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
162          break;
163        }
164        if (is_instance) {
165          result = proj_in->in(TypeFunc::Memory);
166        } else if (is_boxed_value_load) {
167          Node* klass = alloc->in(AllocateNode::KlassNode);
168          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
169          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
170            result = proj_in->in(TypeFunc::Memory); // not related allocation
171          }
172        }
173      } else if (proj_in->is_MemBar()) {
174        ArrayCopyNode* ac = NULL;
175        if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
176          break;
177        }
178        result = proj_in->in(TypeFunc::Memory);
179      } else {
180        assert(false, "unexpected projection");
181      }
182    } else if (result->is_ClearArray()) {
183      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
184        // Can not bypass initialization of the instance
185        // we are looking for.
186        break;
187      }
188      // Otherwise skip it (the call updated 'result' value).
189    } else if (result->is_MergeMem()) {
190      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
191    }
192  }
193  return result;
194}
195
196Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
197  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
198  if (t_oop == NULL)
199    return mchain;  // don't try to optimize non-oop types
200  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
201  bool is_instance = t_oop->is_known_instance_field();
202  PhaseIterGVN *igvn = phase->is_IterGVN();
203  if (is_instance && igvn != NULL  && result->is_Phi()) {
204    PhiNode *mphi = result->as_Phi();
205    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
206    const TypePtr *t = mphi->adr_type();
207    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
208        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
209        t->is_oopptr()->cast_to_exactness(true)
210         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
211         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
212      // clone the Phi with our address type
213      result = mphi->split_out_instance(t_adr, igvn);
214    } else {
215      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
216    }
217  }
218  return result;
219}
220
221static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
222  uint alias_idx = phase->C->get_alias_index(tp);
223  Node *mem = mmem;
224#ifdef ASSERT
225  {
226    // Check that current type is consistent with the alias index used during graph construction
227    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
228    bool consistent =  adr_check == NULL || adr_check->empty() ||
229                       phase->C->must_alias(adr_check, alias_idx );
230    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
231    if( !consistent && adr_check != NULL && !adr_check->empty() &&
232               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
233        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
234        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
235          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
236          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
237      // don't assert if it is dead code.
238      consistent = true;
239    }
240    if( !consistent ) {
241      st->print("alias_idx==%d, adr_check==", alias_idx);
242      if( adr_check == NULL ) {
243        st->print("NULL");
244      } else {
245        adr_check->dump();
246      }
247      st->cr();
248      print_alias_types();
249      assert(consistent, "adr_check must match alias idx");
250    }
251  }
252#endif
253  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
254  // means an array I have not precisely typed yet.  Do not do any
255  // alias stuff with it any time soon.
256  const TypeOopPtr *toop = tp->isa_oopptr();
257  if( tp->base() != Type::AnyPtr &&
258      !(toop &&
259        toop->klass() != NULL &&
260        toop->klass()->is_java_lang_Object() &&
261        toop->offset() == Type::OffsetBot) ) {
262    // compress paths and change unreachable cycles to TOP
263    // If not, we can update the input infinitely along a MergeMem cycle
264    // Equivalent code in PhiNode::Ideal
265    Node* m  = phase->transform(mmem);
266    // If transformed to a MergeMem, get the desired slice
267    // Otherwise the returned node represents memory for every slice
268    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
269    // Update input if it is progress over what we have now
270  }
271  return mem;
272}
273
274//--------------------------Ideal_common---------------------------------------
275// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
276// Unhook non-raw memories from complete (macro-expanded) initializations.
277Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
278  // If our control input is a dead region, kill all below the region
279  Node *ctl = in(MemNode::Control);
280  if (ctl && remove_dead_region(phase, can_reshape))
281    return this;
282  ctl = in(MemNode::Control);
283  // Don't bother trying to transform a dead node
284  if (ctl && ctl->is_top())  return NodeSentinel;
285
286  PhaseIterGVN *igvn = phase->is_IterGVN();
287  // Wait if control on the worklist.
288  if (ctl && can_reshape && igvn != NULL) {
289    Node* bol = NULL;
290    Node* cmp = NULL;
291    if (ctl->in(0)->is_If()) {
292      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
293      bol = ctl->in(0)->in(1);
294      if (bol->is_Bool())
295        cmp = ctl->in(0)->in(1)->in(1);
296    }
297    if (igvn->_worklist.member(ctl) ||
298        (bol != NULL && igvn->_worklist.member(bol)) ||
299        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
300      // This control path may be dead.
301      // Delay this memory node transformation until the control is processed.
302      phase->is_IterGVN()->_worklist.push(this);
303      return NodeSentinel; // caller will return NULL
304    }
305  }
306  // Ignore if memory is dead, or self-loop
307  Node *mem = in(MemNode::Memory);
308  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
309  assert(mem != this, "dead loop in MemNode::Ideal");
310
311  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
312    // This memory slice may be dead.
313    // Delay this mem node transformation until the memory is processed.
314    phase->is_IterGVN()->_worklist.push(this);
315    return NodeSentinel; // caller will return NULL
316  }
317
318  Node *address = in(MemNode::Address);
319  const Type *t_adr = phase->type(address);
320  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
321
322  if (can_reshape && igvn != NULL &&
323      (igvn->_worklist.member(address) ||
324       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
325    // The address's base and type may change when the address is processed.
326    // Delay this mem node transformation until the address is processed.
327    phase->is_IterGVN()->_worklist.push(this);
328    return NodeSentinel; // caller will return NULL
329  }
330
331  // Do NOT remove or optimize the next lines: ensure a new alias index
332  // is allocated for an oop pointer type before Escape Analysis.
333  // Note: C++ will not remove it since the call has side effect.
334  if (t_adr->isa_oopptr()) {
335    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
336  }
337
338  Node* base = NULL;
339  if (address->is_AddP()) {
340    base = address->in(AddPNode::Base);
341  }
342  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
343      !t_adr->isa_rawptr()) {
344    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
345    // Skip this node optimization if its address has TOP base.
346    return NodeSentinel; // caller will return NULL
347  }
348
349  // Avoid independent memory operations
350  Node* old_mem = mem;
351
352  // The code which unhooks non-raw memories from complete (macro-expanded)
353  // initializations was removed. After macro-expansion all stores catched
354  // by Initialize node became raw stores and there is no information
355  // which memory slices they modify. So it is unsafe to move any memory
356  // operation above these stores. Also in most cases hooked non-raw memories
357  // were already unhooked by using information from detect_ptr_independence()
358  // and find_previous_store().
359
360  if (mem->is_MergeMem()) {
361    MergeMemNode* mmem = mem->as_MergeMem();
362    const TypePtr *tp = t_adr->is_ptr();
363
364    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
365  }
366
367  if (mem != old_mem) {
368    set_req(MemNode::Memory, mem);
369    if (can_reshape && old_mem->outcnt() == 0) {
370        igvn->_worklist.push(old_mem);
371    }
372    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
373    return this;
374  }
375
376  // let the subclass continue analyzing...
377  return NULL;
378}
379
380// Helper function for proving some simple control dominations.
381// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
382// Already assumes that 'dom' is available at 'sub', and that 'sub'
383// is not a constant (dominated by the method's StartNode).
384// Used by MemNode::find_previous_store to prove that the
385// control input of a memory operation predates (dominates)
386// an allocation it wants to look past.
387bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
388  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
389    return false; // Conservative answer for dead code
390
391  // Check 'dom'. Skip Proj and CatchProj nodes.
392  dom = dom->find_exact_control(dom);
393  if (dom == NULL || dom->is_top())
394    return false; // Conservative answer for dead code
395
396  if (dom == sub) {
397    // For the case when, for example, 'sub' is Initialize and the original
398    // 'dom' is Proj node of the 'sub'.
399    return false;
400  }
401
402  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
403    return true;
404
405  // 'dom' dominates 'sub' if its control edge and control edges
406  // of all its inputs dominate or equal to sub's control edge.
407
408  // Currently 'sub' is either Allocate, Initialize or Start nodes.
409  // Or Region for the check in LoadNode::Ideal();
410  // 'sub' should have sub->in(0) != NULL.
411  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
412         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
413
414  // Get control edge of 'sub'.
415  Node* orig_sub = sub;
416  sub = sub->find_exact_control(sub->in(0));
417  if (sub == NULL || sub->is_top())
418    return false; // Conservative answer for dead code
419
420  assert(sub->is_CFG(), "expecting control");
421
422  if (sub == dom)
423    return true;
424
425  if (sub->is_Start() || sub->is_Root())
426    return false;
427
428  {
429    // Check all control edges of 'dom'.
430
431    ResourceMark rm;
432    Arena* arena = Thread::current()->resource_area();
433    Node_List nlist(arena);
434    Unique_Node_List dom_list(arena);
435
436    dom_list.push(dom);
437    bool only_dominating_controls = false;
438
439    for (uint next = 0; next < dom_list.size(); next++) {
440      Node* n = dom_list.at(next);
441      if (n == orig_sub)
442        return false; // One of dom's inputs dominated by sub.
443      if (!n->is_CFG() && n->pinned()) {
444        // Check only own control edge for pinned non-control nodes.
445        n = n->find_exact_control(n->in(0));
446        if (n == NULL || n->is_top())
447          return false; // Conservative answer for dead code
448        assert(n->is_CFG(), "expecting control");
449        dom_list.push(n);
450      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
451        only_dominating_controls = true;
452      } else if (n->is_CFG()) {
453        if (n->dominates(sub, nlist))
454          only_dominating_controls = true;
455        else
456          return false;
457      } else {
458        // First, own control edge.
459        Node* m = n->find_exact_control(n->in(0));
460        if (m != NULL) {
461          if (m->is_top())
462            return false; // Conservative answer for dead code
463          dom_list.push(m);
464        }
465        // Now, the rest of edges.
466        uint cnt = n->req();
467        for (uint i = 1; i < cnt; i++) {
468          m = n->find_exact_control(n->in(i));
469          if (m == NULL || m->is_top())
470            continue;
471          dom_list.push(m);
472        }
473      }
474    }
475    return only_dominating_controls;
476  }
477}
478
479//---------------------detect_ptr_independence---------------------------------
480// Used by MemNode::find_previous_store to prove that two base
481// pointers are never equal.
482// The pointers are accompanied by their associated allocations,
483// if any, which have been previously discovered by the caller.
484bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
485                                      Node* p2, AllocateNode* a2,
486                                      PhaseTransform* phase) {
487  // Attempt to prove that these two pointers cannot be aliased.
488  // They may both manifestly be allocations, and they should differ.
489  // Or, if they are not both allocations, they can be distinct constants.
490  // Otherwise, one is an allocation and the other a pre-existing value.
491  if (a1 == NULL && a2 == NULL) {           // neither an allocation
492    return (p1 != p2) && p1->is_Con() && p2->is_Con();
493  } else if (a1 != NULL && a2 != NULL) {    // both allocations
494    return (a1 != a2);
495  } else if (a1 != NULL) {                  // one allocation a1
496    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
497    return all_controls_dominate(p2, a1);
498  } else { //(a2 != NULL)                   // one allocation a2
499    return all_controls_dominate(p1, a2);
500  }
501  return false;
502}
503
504
505// Find an arraycopy that must have set (can_see_stored_value=true) or
506// could have set (can_see_stored_value=false) the value for this load
507Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
508  if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
509                                               mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
510    Node* mb = mem->in(0);
511    if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
512        mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
513      ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
514      if (ac->is_clonebasic()) {
515        intptr_t offset;
516        AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
517        assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
518        if (alloc == ld_alloc) {
519          return ac;
520        }
521      }
522    }
523  } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
524    ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
525
526    if (ac->is_arraycopy_validated() ||
527        ac->is_copyof_validated() ||
528        ac->is_copyofrange_validated()) {
529      Node* ld_addp = in(MemNode::Address);
530      if (ld_addp->is_AddP()) {
531        Node* ld_base = ld_addp->in(AddPNode::Address);
532        Node* ld_offs = ld_addp->in(AddPNode::Offset);
533
534        Node* dest = ac->in(ArrayCopyNode::Dest);
535
536        if (dest == ld_base) {
537          const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
538          if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
539            return ac;
540          }
541          if (!can_see_stored_value) {
542            mem = ac->in(TypeFunc::Memory);
543          }
544        }
545      }
546    }
547  }
548  return NULL;
549}
550
551// The logic for reordering loads and stores uses four steps:
552// (a) Walk carefully past stores and initializations which we
553//     can prove are independent of this load.
554// (b) Observe that the next memory state makes an exact match
555//     with self (load or store), and locate the relevant store.
556// (c) Ensure that, if we were to wire self directly to the store,
557//     the optimizer would fold it up somehow.
558// (d) Do the rewiring, and return, depending on some other part of
559//     the optimizer to fold up the load.
560// This routine handles steps (a) and (b).  Steps (c) and (d) are
561// specific to loads and stores, so they are handled by the callers.
562// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
563//
564Node* MemNode::find_previous_store(PhaseTransform* phase) {
565  Node*         ctrl   = in(MemNode::Control);
566  Node*         adr    = in(MemNode::Address);
567  intptr_t      offset = 0;
568  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
569  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
570
571  if (offset == Type::OffsetBot)
572    return NULL;            // cannot unalias unless there are precise offsets
573
574  const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
575  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
576
577  intptr_t size_in_bytes = memory_size();
578
579  Node* mem = in(MemNode::Memory);   // start searching here...
580
581  int cnt = 50;             // Cycle limiter
582  for (;;) {                // While we can dance past unrelated stores...
583    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
584
585    Node* prev = mem;
586    if (mem->is_Store()) {
587      Node* st_adr = mem->in(MemNode::Address);
588      intptr_t st_offset = 0;
589      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
590      if (st_base == NULL)
591        break;              // inscrutable pointer
592
593      // For raw accesses it's not enough to prove that constant offsets don't intersect.
594      // We need the bases to be the equal in order for the offset check to make sense.
595      if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
596        break;
597      }
598
599      if (st_offset != offset && st_offset != Type::OffsetBot) {
600        const int MAX_STORE = BytesPerLong;
601        if (st_offset >= offset + size_in_bytes ||
602            st_offset <= offset - MAX_STORE ||
603            st_offset <= offset - mem->as_Store()->memory_size()) {
604          // Success:  The offsets are provably independent.
605          // (You may ask, why not just test st_offset != offset and be done?
606          // The answer is that stores of different sizes can co-exist
607          // in the same sequence of RawMem effects.  We sometimes initialize
608          // a whole 'tile' of array elements with a single jint or jlong.)
609          mem = mem->in(MemNode::Memory);
610          continue;           // (a) advance through independent store memory
611        }
612      }
613      if (st_base != base &&
614          detect_ptr_independence(base, alloc,
615                                  st_base,
616                                  AllocateNode::Ideal_allocation(st_base, phase),
617                                  phase)) {
618        // Success:  The bases are provably independent.
619        mem = mem->in(MemNode::Memory);
620        continue;           // (a) advance through independent store memory
621      }
622
623      // (b) At this point, if the bases or offsets do not agree, we lose,
624      // since we have not managed to prove 'this' and 'mem' independent.
625      if (st_base == base && st_offset == offset) {
626        return mem;         // let caller handle steps (c), (d)
627      }
628
629    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
630      InitializeNode* st_init = mem->in(0)->as_Initialize();
631      AllocateNode*  st_alloc = st_init->allocation();
632      if (st_alloc == NULL)
633        break;              // something degenerated
634      bool known_identical = false;
635      bool known_independent = false;
636      if (alloc == st_alloc)
637        known_identical = true;
638      else if (alloc != NULL)
639        known_independent = true;
640      else if (all_controls_dominate(this, st_alloc))
641        known_independent = true;
642
643      if (known_independent) {
644        // The bases are provably independent: Either they are
645        // manifestly distinct allocations, or else the control
646        // of this load dominates the store's allocation.
647        int alias_idx = phase->C->get_alias_index(adr_type());
648        if (alias_idx == Compile::AliasIdxRaw) {
649          mem = st_alloc->in(TypeFunc::Memory);
650        } else {
651          mem = st_init->memory(alias_idx);
652        }
653        continue;           // (a) advance through independent store memory
654      }
655
656      // (b) at this point, if we are not looking at a store initializing
657      // the same allocation we are loading from, we lose.
658      if (known_identical) {
659        // From caller, can_see_stored_value will consult find_captured_store.
660        return mem;         // let caller handle steps (c), (d)
661      }
662
663    } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
664      if (prev != mem) {
665        // Found an arraycopy but it doesn't affect that load
666        continue;
667      }
668      // Found an arraycopy that may affect that load
669      return mem;
670    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
671      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
672      if (mem->is_Proj() && mem->in(0)->is_Call()) {
673        // ArrayCopyNodes processed here as well.
674        CallNode *call = mem->in(0)->as_Call();
675        if (!call->may_modify(addr_t, phase)) {
676          mem = call->in(TypeFunc::Memory);
677          continue;         // (a) advance through independent call memory
678        }
679      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
680        ArrayCopyNode* ac = NULL;
681        if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
682          break;
683        }
684        mem = mem->in(0)->in(TypeFunc::Memory);
685        continue;           // (a) advance through independent MemBar memory
686      } else if (mem->is_ClearArray()) {
687        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
688          // (the call updated 'mem' value)
689          continue;         // (a) advance through independent allocation memory
690        } else {
691          // Can not bypass initialization of the instance
692          // we are looking for.
693          return mem;
694        }
695      } else if (mem->is_MergeMem()) {
696        int alias_idx = phase->C->get_alias_index(adr_type());
697        mem = mem->as_MergeMem()->memory_at(alias_idx);
698        continue;           // (a) advance through independent MergeMem memory
699      }
700    }
701
702    // Unless there is an explicit 'continue', we must bail out here,
703    // because 'mem' is an inscrutable memory state (e.g., a call).
704    break;
705  }
706
707  return NULL;              // bail out
708}
709
710//----------------------calculate_adr_type-------------------------------------
711// Helper function.  Notices when the given type of address hits top or bottom.
712// Also, asserts a cross-check of the type against the expected address type.
713const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
714  if (t == Type::TOP)  return NULL; // does not touch memory any more?
715  #ifdef PRODUCT
716  cross_check = NULL;
717  #else
718  if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
719  #endif
720  const TypePtr* tp = t->isa_ptr();
721  if (tp == NULL) {
722    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
723    return TypePtr::BOTTOM;           // touches lots of memory
724  } else {
725    #ifdef ASSERT
726    // %%%% [phh] We don't check the alias index if cross_check is
727    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
728    if (cross_check != NULL &&
729        cross_check != TypePtr::BOTTOM &&
730        cross_check != TypeRawPtr::BOTTOM) {
731      // Recheck the alias index, to see if it has changed (due to a bug).
732      Compile* C = Compile::current();
733      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
734             "must stay in the original alias category");
735      // The type of the address must be contained in the adr_type,
736      // disregarding "null"-ness.
737      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
738      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
739      assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
740             "real address must not escape from expected memory type");
741    }
742    #endif
743    return tp;
744  }
745}
746
747//=============================================================================
748// Should LoadNode::Ideal() attempt to remove control edges?
749bool LoadNode::can_remove_control() const {
750  return true;
751}
752uint LoadNode::size_of() const { return sizeof(*this); }
753uint LoadNode::cmp( const Node &n ) const
754{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
755const Type *LoadNode::bottom_type() const { return _type; }
756uint LoadNode::ideal_reg() const {
757  return _type->ideal_reg();
758}
759
760#ifndef PRODUCT
761void LoadNode::dump_spec(outputStream *st) const {
762  MemNode::dump_spec(st);
763  if( !Verbose && !WizardMode ) {
764    // standard dump does this in Verbose and WizardMode
765    st->print(" #"); _type->dump_on(st);
766  }
767  if (!depends_only_on_test()) {
768    st->print(" (does not depend only on test)");
769  }
770}
771#endif
772
773#ifdef ASSERT
774//----------------------------is_immutable_value-------------------------------
775// Helper function to allow a raw load without control edge for some cases
776bool LoadNode::is_immutable_value(Node* adr) {
777  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
778          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
779          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
780           in_bytes(JavaThread::osthread_offset())));
781}
782#endif
783
784//----------------------------LoadNode::make-----------------------------------
785// Polymorphic factory method:
786Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
787                     ControlDependency control_dependency, bool unaligned, bool mismatched) {
788  Compile* C = gvn.C;
789
790  // sanity check the alias category against the created node type
791  assert(!(adr_type->isa_oopptr() &&
792           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
793         "use LoadKlassNode instead");
794  assert(!(adr_type->isa_aryptr() &&
795           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
796         "use LoadRangeNode instead");
797  // Check control edge of raw loads
798  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
799          // oop will be recorded in oop map if load crosses safepoint
800          rt->isa_oopptr() || is_immutable_value(adr),
801          "raw memory operations should have control edge");
802  LoadNode* load = NULL;
803  switch (bt) {
804  case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
805  case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
806  case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
807  case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
808  case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
809  case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
810  case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
811  case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
812  case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
813  case T_OBJECT:
814#ifdef _LP64
815    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
816      load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
817    } else
818#endif
819    {
820      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
821      load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
822    }
823    break;
824  }
825  assert(load != NULL, "LoadNode should have been created");
826  if (unaligned) {
827    load->set_unaligned_access();
828  }
829  if (mismatched) {
830    load->set_mismatched_access();
831  }
832  if (load->Opcode() == Op_LoadN) {
833    Node* ld = gvn.transform(load);
834    return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
835  }
836
837  return load;
838}
839
840LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
841                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
842  bool require_atomic = true;
843  LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
844  if (unaligned) {
845    load->set_unaligned_access();
846  }
847  if (mismatched) {
848    load->set_mismatched_access();
849  }
850  return load;
851}
852
853LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
854                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
855  bool require_atomic = true;
856  LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
857  if (unaligned) {
858    load->set_unaligned_access();
859  }
860  if (mismatched) {
861    load->set_mismatched_access();
862  }
863  return load;
864}
865
866
867
868//------------------------------hash-------------------------------------------
869uint LoadNode::hash() const {
870  // unroll addition of interesting fields
871  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
872}
873
874static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
875  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
876    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
877    bool is_stable_ary = FoldStableValues &&
878                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
879                         tp->isa_aryptr()->is_stable();
880
881    return (eliminate_boxing && non_volatile) || is_stable_ary;
882  }
883
884  return false;
885}
886
887// Is the value loaded previously stored by an arraycopy? If so return
888// a load node that reads from the source array so we may be able to
889// optimize out the ArrayCopy node later.
890Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const {
891  Node* ld_adr = in(MemNode::Address);
892  intptr_t ld_off = 0;
893  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
894  Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
895  if (ac != NULL) {
896    assert(ac->is_ArrayCopy(), "what kind of node can this be?");
897
898    Node* ld = clone();
899    if (ac->as_ArrayCopy()->is_clonebasic()) {
900      assert(ld_alloc != NULL, "need an alloc");
901      Node* addp = in(MemNode::Address)->clone();
902      assert(addp->is_AddP(), "address must be addp");
903      assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
904      assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
905      addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base));
906      addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address));
907      ld->set_req(MemNode::Address, phase->transform(addp));
908      if (in(0) != NULL) {
909        assert(ld_alloc->in(0) != NULL, "alloc must have control");
910        ld->set_req(0, ld_alloc->in(0));
911      }
912    } else {
913      Node* src = ac->in(ArrayCopyNode::Src);
914      Node* addp = in(MemNode::Address)->clone();
915      assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
916      addp->set_req(AddPNode::Base, src);
917      addp->set_req(AddPNode::Address, src);
918
919      const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
920      BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
921      uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
922      uint shift  = exact_log2(type2aelembytes(ary_elem));
923
924      Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
925#ifdef _LP64
926      diff = phase->transform(new ConvI2LNode(diff));
927#endif
928      diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
929
930      Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
931      addp->set_req(AddPNode::Offset, offset);
932      ld->set_req(MemNode::Address, phase->transform(addp));
933
934      const TypeX *ld_offs_t = phase->type(offset)->isa_intptr_t();
935
936      if (!ac->as_ArrayCopy()->can_replace_dest_load_with_src_load(ld_offs_t->_lo, ld_offs_t->_hi, phase)) {
937        return NULL;
938      }
939
940      if (in(0) != NULL) {
941        assert(ac->in(0) != NULL, "alloc must have control");
942        ld->set_req(0, ac->in(0));
943      }
944    }
945    // load depends on the tests that validate the arraycopy
946    ld->as_Load()->_control_dependency = Pinned;
947    return ld;
948  }
949  return NULL;
950}
951
952
953//---------------------------can_see_stored_value------------------------------
954// This routine exists to make sure this set of tests is done the same
955// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
956// will change the graph shape in a way which makes memory alive twice at the
957// same time (uses the Oracle model of aliasing), then some
958// LoadXNode::Identity will fold things back to the equivalence-class model
959// of aliasing.
960Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
961  Node* ld_adr = in(MemNode::Address);
962  intptr_t ld_off = 0;
963  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
964  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
965  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
966  // This is more general than load from boxing objects.
967  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
968    uint alias_idx = atp->index();
969    bool final = !atp->is_rewritable();
970    Node* result = NULL;
971    Node* current = st;
972    // Skip through chains of MemBarNodes checking the MergeMems for
973    // new states for the slice of this load.  Stop once any other
974    // kind of node is encountered.  Loads from final memory can skip
975    // through any kind of MemBar but normal loads shouldn't skip
976    // through MemBarAcquire since the could allow them to move out of
977    // a synchronized region.
978    while (current->is_Proj()) {
979      int opc = current->in(0)->Opcode();
980      if ((final && (opc == Op_MemBarAcquire ||
981                     opc == Op_MemBarAcquireLock ||
982                     opc == Op_LoadFence)) ||
983          opc == Op_MemBarRelease ||
984          opc == Op_StoreFence ||
985          opc == Op_MemBarReleaseLock ||
986          opc == Op_MemBarStoreStore ||
987          opc == Op_MemBarCPUOrder) {
988        Node* mem = current->in(0)->in(TypeFunc::Memory);
989        if (mem->is_MergeMem()) {
990          MergeMemNode* merge = mem->as_MergeMem();
991          Node* new_st = merge->memory_at(alias_idx);
992          if (new_st == merge->base_memory()) {
993            // Keep searching
994            current = new_st;
995            continue;
996          }
997          // Save the new memory state for the slice and fall through
998          // to exit.
999          result = new_st;
1000        }
1001      }
1002      break;
1003    }
1004    if (result != NULL) {
1005      st = result;
1006    }
1007  }
1008
1009  // Loop around twice in the case Load -> Initialize -> Store.
1010  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1011  for (int trip = 0; trip <= 1; trip++) {
1012
1013    if (st->is_Store()) {
1014      Node* st_adr = st->in(MemNode::Address);
1015      if (!phase->eqv(st_adr, ld_adr)) {
1016        // Try harder before giving up...  Match raw and non-raw pointers.
1017        intptr_t st_off = 0;
1018        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1019        if (alloc == NULL)       return NULL;
1020        if (alloc != ld_alloc)   return NULL;
1021        if (ld_off != st_off)    return NULL;
1022        // At this point we have proven something like this setup:
1023        //  A = Allocate(...)
1024        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1025        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1026        // (Actually, we haven't yet proven the Q's are the same.)
1027        // In other words, we are loading from a casted version of
1028        // the same pointer-and-offset that we stored to.
1029        // Thus, we are able to replace L by V.
1030      }
1031      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1032      if (store_Opcode() != st->Opcode())
1033        return NULL;
1034      return st->in(MemNode::ValueIn);
1035    }
1036
1037    // A load from a freshly-created object always returns zero.
1038    // (This can happen after LoadNode::Ideal resets the load's memory input
1039    // to find_captured_store, which returned InitializeNode::zero_memory.)
1040    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1041        (st->in(0) == ld_alloc) &&
1042        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1043      // return a zero value for the load's basic type
1044      // (This is one of the few places where a generic PhaseTransform
1045      // can create new nodes.  Think of it as lazily manifesting
1046      // virtually pre-existing constants.)
1047      return phase->zerocon(memory_type());
1048    }
1049
1050    // A load from an initialization barrier can match a captured store.
1051    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1052      InitializeNode* init = st->in(0)->as_Initialize();
1053      AllocateNode* alloc = init->allocation();
1054      if ((alloc != NULL) && (alloc == ld_alloc)) {
1055        // examine a captured store value
1056        st = init->find_captured_store(ld_off, memory_size(), phase);
1057        if (st != NULL) {
1058          continue;             // take one more trip around
1059        }
1060      }
1061    }
1062
1063    // Load boxed value from result of valueOf() call is input parameter.
1064    if (this->is_Load() && ld_adr->is_AddP() &&
1065        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1066      intptr_t ignore = 0;
1067      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1068      if (base != NULL && base->is_Proj() &&
1069          base->as_Proj()->_con == TypeFunc::Parms &&
1070          base->in(0)->is_CallStaticJava() &&
1071          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1072        return base->in(0)->in(TypeFunc::Parms);
1073      }
1074    }
1075
1076    break;
1077  }
1078
1079  return NULL;
1080}
1081
1082//----------------------is_instance_field_load_with_local_phi------------------
1083bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1084  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1085      in(Address)->is_AddP() ) {
1086    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1087    // Only instances and boxed values.
1088    if( t_oop != NULL &&
1089        (t_oop->is_ptr_to_boxed_value() ||
1090         t_oop->is_known_instance_field()) &&
1091        t_oop->offset() != Type::OffsetBot &&
1092        t_oop->offset() != Type::OffsetTop) {
1093      return true;
1094    }
1095  }
1096  return false;
1097}
1098
1099//------------------------------Identity---------------------------------------
1100// Loads are identity if previous store is to same address
1101Node* LoadNode::Identity(PhaseGVN* phase) {
1102  // If the previous store-maker is the right kind of Store, and the store is
1103  // to the same address, then we are equal to the value stored.
1104  Node* mem = in(Memory);
1105  Node* value = can_see_stored_value(mem, phase);
1106  if( value ) {
1107    // byte, short & char stores truncate naturally.
1108    // A load has to load the truncated value which requires
1109    // some sort of masking operation and that requires an
1110    // Ideal call instead of an Identity call.
1111    if (memory_size() < BytesPerInt) {
1112      // If the input to the store does not fit with the load's result type,
1113      // it must be truncated via an Ideal call.
1114      if (!phase->type(value)->higher_equal(phase->type(this)))
1115        return this;
1116    }
1117    // (This works even when value is a Con, but LoadNode::Value
1118    // usually runs first, producing the singleton type of the Con.)
1119    return value;
1120  }
1121
1122  // Search for an existing data phi which was generated before for the same
1123  // instance's field to avoid infinite generation of phis in a loop.
1124  Node *region = mem->in(0);
1125  if (is_instance_field_load_with_local_phi(region)) {
1126    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1127    int this_index  = phase->C->get_alias_index(addr_t);
1128    int this_offset = addr_t->offset();
1129    int this_iid    = addr_t->instance_id();
1130    if (!addr_t->is_known_instance() &&
1131         addr_t->is_ptr_to_boxed_value()) {
1132      // Use _idx of address base (could be Phi node) for boxed values.
1133      intptr_t   ignore = 0;
1134      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1135      if (base == NULL) {
1136        return this;
1137      }
1138      this_iid = base->_idx;
1139    }
1140    const Type* this_type = bottom_type();
1141    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1142      Node* phi = region->fast_out(i);
1143      if (phi->is_Phi() && phi != mem &&
1144          phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1145        return phi;
1146      }
1147    }
1148  }
1149
1150  return this;
1151}
1152
1153// Construct an equivalent unsigned load.
1154Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1155  BasicType bt = T_ILLEGAL;
1156  const Type* rt = NULL;
1157  switch (Opcode()) {
1158    case Op_LoadUB: return this;
1159    case Op_LoadUS: return this;
1160    case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1161    case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1162    default:
1163      assert(false, "no unsigned variant: %s", Name());
1164      return NULL;
1165  }
1166  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1167                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1168                        is_unaligned_access(), is_mismatched_access());
1169}
1170
1171// Construct an equivalent signed load.
1172Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1173  BasicType bt = T_ILLEGAL;
1174  const Type* rt = NULL;
1175  switch (Opcode()) {
1176    case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1177    case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1178    case Op_LoadB: // fall through
1179    case Op_LoadS: // fall through
1180    case Op_LoadI: // fall through
1181    case Op_LoadL: return this;
1182    default:
1183      assert(false, "no signed variant: %s", Name());
1184      return NULL;
1185  }
1186  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1187                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1188                        is_unaligned_access(), is_mismatched_access());
1189}
1190
1191// We're loading from an object which has autobox behaviour.
1192// If this object is result of a valueOf call we'll have a phi
1193// merging a newly allocated object and a load from the cache.
1194// We want to replace this load with the original incoming
1195// argument to the valueOf call.
1196Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1197  assert(phase->C->eliminate_boxing(), "sanity");
1198  intptr_t ignore = 0;
1199  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1200  if ((base == NULL) || base->is_Phi()) {
1201    // Push the loads from the phi that comes from valueOf up
1202    // through it to allow elimination of the loads and the recovery
1203    // of the original value. It is done in split_through_phi().
1204    return NULL;
1205  } else if (base->is_Load() ||
1206             base->is_DecodeN() && base->in(1)->is_Load()) {
1207    // Eliminate the load of boxed value for integer types from the cache
1208    // array by deriving the value from the index into the array.
1209    // Capture the offset of the load and then reverse the computation.
1210
1211    // Get LoadN node which loads a boxing object from 'cache' array.
1212    if (base->is_DecodeN()) {
1213      base = base->in(1);
1214    }
1215    if (!base->in(Address)->is_AddP()) {
1216      return NULL; // Complex address
1217    }
1218    AddPNode* address = base->in(Address)->as_AddP();
1219    Node* cache_base = address->in(AddPNode::Base);
1220    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1221      // Get ConP node which is static 'cache' field.
1222      cache_base = cache_base->in(1);
1223    }
1224    if ((cache_base != NULL) && cache_base->is_Con()) {
1225      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1226      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1227        Node* elements[4];
1228        int shift = exact_log2(type2aelembytes(T_OBJECT));
1229        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1230        if ((count >  0) && elements[0]->is_Con() &&
1231            ((count == 1) ||
1232             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1233                             elements[1]->in(2) == phase->intcon(shift))) {
1234          ciObjArray* array = base_type->const_oop()->as_obj_array();
1235          // Fetch the box object cache[0] at the base of the array and get its value
1236          ciInstance* box = array->obj_at(0)->as_instance();
1237          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1238          assert(ik->is_box_klass(), "sanity");
1239          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1240          if (ik->nof_nonstatic_fields() == 1) {
1241            // This should be true nonstatic_field_at requires calling
1242            // nof_nonstatic_fields so check it anyway
1243            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1244            BasicType bt = c.basic_type();
1245            // Only integer types have boxing cache.
1246            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1247                   bt == T_BYTE    || bt == T_SHORT ||
1248                   bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1249            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1250            if (cache_low != (int)cache_low) {
1251              return NULL; // should not happen since cache is array indexed by value
1252            }
1253            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1254            if (offset != (int)offset) {
1255              return NULL; // should not happen since cache is array indexed by value
1256            }
1257           // Add up all the offsets making of the address of the load
1258            Node* result = elements[0];
1259            for (int i = 1; i < count; i++) {
1260              result = phase->transform(new AddXNode(result, elements[i]));
1261            }
1262            // Remove the constant offset from the address and then
1263            result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1264            // remove the scaling of the offset to recover the original index.
1265            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1266              // Peel the shift off directly but wrap it in a dummy node
1267              // since Ideal can't return existing nodes
1268              result = new RShiftXNode(result->in(1), phase->intcon(0));
1269            } else if (result->is_Add() && result->in(2)->is_Con() &&
1270                       result->in(1)->Opcode() == Op_LShiftX &&
1271                       result->in(1)->in(2) == phase->intcon(shift)) {
1272              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1273              // but for boxing cache access we know that X<<Z will not overflow
1274              // (there is range check) so we do this optimizatrion by hand here.
1275              Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1276              result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1277            } else {
1278              result = new RShiftXNode(result, phase->intcon(shift));
1279            }
1280#ifdef _LP64
1281            if (bt != T_LONG) {
1282              result = new ConvL2INode(phase->transform(result));
1283            }
1284#else
1285            if (bt == T_LONG) {
1286              result = new ConvI2LNode(phase->transform(result));
1287            }
1288#endif
1289            // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1290            // Need to preserve unboxing load type if it is unsigned.
1291            switch(this->Opcode()) {
1292              case Op_LoadUB:
1293                result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1294                break;
1295              case Op_LoadUS:
1296                result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1297                break;
1298            }
1299            return result;
1300          }
1301        }
1302      }
1303    }
1304  }
1305  return NULL;
1306}
1307
1308static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1309  Node* region = phi->in(0);
1310  if (region == NULL) {
1311    return false; // Wait stable graph
1312  }
1313  uint cnt = phi->req();
1314  for (uint i = 1; i < cnt; i++) {
1315    Node* rc = region->in(i);
1316    if (rc == NULL || phase->type(rc) == Type::TOP)
1317      return false; // Wait stable graph
1318    Node* in = phi->in(i);
1319    if (in == NULL || phase->type(in) == Type::TOP)
1320      return false; // Wait stable graph
1321  }
1322  return true;
1323}
1324//------------------------------split_through_phi------------------------------
1325// Split instance or boxed field load through Phi.
1326Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1327  Node* mem     = in(Memory);
1328  Node* address = in(Address);
1329  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1330
1331  assert((t_oop != NULL) &&
1332         (t_oop->is_known_instance_field() ||
1333          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1334
1335  Compile* C = phase->C;
1336  intptr_t ignore = 0;
1337  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1338  bool base_is_phi = (base != NULL) && base->is_Phi();
1339  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1340                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1341                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1342
1343  if (!((mem->is_Phi() || base_is_phi) &&
1344        (load_boxed_values || t_oop->is_known_instance_field()))) {
1345    return NULL; // memory is not Phi
1346  }
1347
1348  if (mem->is_Phi()) {
1349    if (!stable_phi(mem->as_Phi(), phase)) {
1350      return NULL; // Wait stable graph
1351    }
1352    uint cnt = mem->req();
1353    // Check for loop invariant memory.
1354    if (cnt == 3) {
1355      for (uint i = 1; i < cnt; i++) {
1356        Node* in = mem->in(i);
1357        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1358        if (m == mem) {
1359          set_req(Memory, mem->in(cnt - i));
1360          return this; // made change
1361        }
1362      }
1363    }
1364  }
1365  if (base_is_phi) {
1366    if (!stable_phi(base->as_Phi(), phase)) {
1367      return NULL; // Wait stable graph
1368    }
1369    uint cnt = base->req();
1370    // Check for loop invariant memory.
1371    if (cnt == 3) {
1372      for (uint i = 1; i < cnt; i++) {
1373        if (base->in(i) == base) {
1374          return NULL; // Wait stable graph
1375        }
1376      }
1377    }
1378  }
1379
1380  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1381
1382  // Split through Phi (see original code in loopopts.cpp).
1383  assert(C->have_alias_type(t_oop), "instance should have alias type");
1384
1385  // Do nothing here if Identity will find a value
1386  // (to avoid infinite chain of value phis generation).
1387  if (!phase->eqv(this, this->Identity(phase)))
1388    return NULL;
1389
1390  // Select Region to split through.
1391  Node* region;
1392  if (!base_is_phi) {
1393    assert(mem->is_Phi(), "sanity");
1394    region = mem->in(0);
1395    // Skip if the region dominates some control edge of the address.
1396    if (!MemNode::all_controls_dominate(address, region))
1397      return NULL;
1398  } else if (!mem->is_Phi()) {
1399    assert(base_is_phi, "sanity");
1400    region = base->in(0);
1401    // Skip if the region dominates some control edge of the memory.
1402    if (!MemNode::all_controls_dominate(mem, region))
1403      return NULL;
1404  } else if (base->in(0) != mem->in(0)) {
1405    assert(base_is_phi && mem->is_Phi(), "sanity");
1406    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1407      region = base->in(0);
1408    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1409      region = mem->in(0);
1410    } else {
1411      return NULL; // complex graph
1412    }
1413  } else {
1414    assert(base->in(0) == mem->in(0), "sanity");
1415    region = mem->in(0);
1416  }
1417
1418  const Type* this_type = this->bottom_type();
1419  int this_index  = C->get_alias_index(t_oop);
1420  int this_offset = t_oop->offset();
1421  int this_iid    = t_oop->instance_id();
1422  if (!t_oop->is_known_instance() && load_boxed_values) {
1423    // Use _idx of address base for boxed values.
1424    this_iid = base->_idx;
1425  }
1426  PhaseIterGVN* igvn = phase->is_IterGVN();
1427  Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1428  for (uint i = 1; i < region->req(); i++) {
1429    Node* x;
1430    Node* the_clone = NULL;
1431    if (region->in(i) == C->top()) {
1432      x = C->top();      // Dead path?  Use a dead data op
1433    } else {
1434      x = this->clone();        // Else clone up the data op
1435      the_clone = x;            // Remember for possible deletion.
1436      // Alter data node to use pre-phi inputs
1437      if (this->in(0) == region) {
1438        x->set_req(0, region->in(i));
1439      } else {
1440        x->set_req(0, NULL);
1441      }
1442      if (mem->is_Phi() && (mem->in(0) == region)) {
1443        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1444      }
1445      if (address->is_Phi() && address->in(0) == region) {
1446        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1447      }
1448      if (base_is_phi && (base->in(0) == region)) {
1449        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1450        Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1451        x->set_req(Address, adr_x);
1452      }
1453    }
1454    // Check for a 'win' on some paths
1455    const Type *t = x->Value(igvn);
1456
1457    bool singleton = t->singleton();
1458
1459    // See comments in PhaseIdealLoop::split_thru_phi().
1460    if (singleton && t == Type::TOP) {
1461      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1462    }
1463
1464    if (singleton) {
1465      x = igvn->makecon(t);
1466    } else {
1467      // We now call Identity to try to simplify the cloned node.
1468      // Note that some Identity methods call phase->type(this).
1469      // Make sure that the type array is big enough for
1470      // our new node, even though we may throw the node away.
1471      // (This tweaking with igvn only works because x is a new node.)
1472      igvn->set_type(x, t);
1473      // If x is a TypeNode, capture any more-precise type permanently into Node
1474      // otherwise it will be not updated during igvn->transform since
1475      // igvn->type(x) is set to x->Value() already.
1476      x->raise_bottom_type(t);
1477      Node *y = x->Identity(igvn);
1478      if (y != x) {
1479        x = y;
1480      } else {
1481        y = igvn->hash_find_insert(x);
1482        if (y) {
1483          x = y;
1484        } else {
1485          // Else x is a new node we are keeping
1486          // We do not need register_new_node_with_optimizer
1487          // because set_type has already been called.
1488          igvn->_worklist.push(x);
1489        }
1490      }
1491    }
1492    if (x != the_clone && the_clone != NULL) {
1493      igvn->remove_dead_node(the_clone);
1494    }
1495    phi->set_req(i, x);
1496  }
1497  // Record Phi
1498  igvn->register_new_node_with_optimizer(phi);
1499  return phi;
1500}
1501
1502//------------------------------Ideal------------------------------------------
1503// If the load is from Field memory and the pointer is non-null, it might be possible to
1504// zero out the control input.
1505// If the offset is constant and the base is an object allocation,
1506// try to hook me up to the exact initializing store.
1507Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1508  Node* p = MemNode::Ideal_common(phase, can_reshape);
1509  if (p)  return (p == NodeSentinel) ? NULL : p;
1510
1511  Node* ctrl    = in(MemNode::Control);
1512  Node* address = in(MemNode::Address);
1513  bool progress = false;
1514
1515  // Skip up past a SafePoint control.  Cannot do this for Stores because
1516  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1517  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1518      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1519    ctrl = ctrl->in(0);
1520    set_req(MemNode::Control,ctrl);
1521    progress = true;
1522  }
1523
1524  intptr_t ignore = 0;
1525  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1526  if (base != NULL
1527      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1528    // Check for useless control edge in some common special cases
1529    if (in(MemNode::Control) != NULL
1530        && can_remove_control()
1531        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1532        && all_controls_dominate(base, phase->C->start())) {
1533      // A method-invariant, non-null address (constant or 'this' argument).
1534      set_req(MemNode::Control, NULL);
1535      progress = true;
1536    }
1537  }
1538
1539  Node* mem = in(MemNode::Memory);
1540  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1541
1542  if (can_reshape && (addr_t != NULL)) {
1543    // try to optimize our memory input
1544    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1545    if (opt_mem != mem) {
1546      set_req(MemNode::Memory, opt_mem);
1547      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1548      return this;
1549    }
1550    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1551    if ((t_oop != NULL) &&
1552        (t_oop->is_known_instance_field() ||
1553         t_oop->is_ptr_to_boxed_value())) {
1554      PhaseIterGVN *igvn = phase->is_IterGVN();
1555      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1556        // Delay this transformation until memory Phi is processed.
1557        phase->is_IterGVN()->_worklist.push(this);
1558        return NULL;
1559      }
1560      // Split instance field load through Phi.
1561      Node* result = split_through_phi(phase);
1562      if (result != NULL) return result;
1563
1564      if (t_oop->is_ptr_to_boxed_value()) {
1565        Node* result = eliminate_autobox(phase);
1566        if (result != NULL) return result;
1567      }
1568    }
1569  }
1570
1571  // Is there a dominating load that loads the same value?  Leave
1572  // anything that is not a load of a field/array element (like
1573  // barriers etc.) alone
1574  if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1575    for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1576      Node *use = mem->fast_out(i);
1577      if (use != this &&
1578          use->Opcode() == Opcode() &&
1579          use->in(0) != NULL &&
1580          use->in(0) != in(0) &&
1581          use->in(Address) == in(Address)) {
1582        Node* ctl = in(0);
1583        for (int i = 0; i < 10 && ctl != NULL; i++) {
1584          ctl = IfNode::up_one_dom(ctl);
1585          if (ctl == use->in(0)) {
1586            set_req(0, use->in(0));
1587            return this;
1588          }
1589        }
1590      }
1591    }
1592  }
1593
1594  // Check for prior store with a different base or offset; make Load
1595  // independent.  Skip through any number of them.  Bail out if the stores
1596  // are in an endless dead cycle and report no progress.  This is a key
1597  // transform for Reflection.  However, if after skipping through the Stores
1598  // we can't then fold up against a prior store do NOT do the transform as
1599  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1600  // array memory alive twice: once for the hoisted Load and again after the
1601  // bypassed Store.  This situation only works if EVERYBODY who does
1602  // anti-dependence work knows how to bypass.  I.e. we need all
1603  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1604  // the alias index stuff.  So instead, peek through Stores and IFF we can
1605  // fold up, do so.
1606  Node* prev_mem = find_previous_store(phase);
1607  if (prev_mem != NULL) {
1608    Node* value = can_see_arraycopy_value(prev_mem, phase);
1609    if (value != NULL) {
1610      return value;
1611    }
1612  }
1613  // Steps (a), (b):  Walk past independent stores to find an exact match.
1614  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1615    // (c) See if we can fold up on the spot, but don't fold up here.
1616    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1617    // just return a prior value, which is done by Identity calls.
1618    if (can_see_stored_value(prev_mem, phase)) {
1619      // Make ready for step (d):
1620      set_req(MemNode::Memory, prev_mem);
1621      return this;
1622    }
1623  }
1624
1625  return progress ? this : NULL;
1626}
1627
1628// Helper to recognize certain Klass fields which are invariant across
1629// some group of array types (e.g., int[] or all T[] where T < Object).
1630const Type*
1631LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1632                                 ciKlass* klass) const {
1633  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1634    // The field is Klass::_modifier_flags.  Return its (constant) value.
1635    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1636    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1637    return TypeInt::make(klass->modifier_flags());
1638  }
1639  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1640    // The field is Klass::_access_flags.  Return its (constant) value.
1641    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1642    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1643    return TypeInt::make(klass->access_flags());
1644  }
1645  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1646    // The field is Klass::_layout_helper.  Return its constant value if known.
1647    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1648    return TypeInt::make(klass->layout_helper());
1649  }
1650
1651  // No match.
1652  return NULL;
1653}
1654
1655//------------------------------Value-----------------------------------------
1656const Type* LoadNode::Value(PhaseGVN* phase) const {
1657  // Either input is TOP ==> the result is TOP
1658  Node* mem = in(MemNode::Memory);
1659  const Type *t1 = phase->type(mem);
1660  if (t1 == Type::TOP)  return Type::TOP;
1661  Node* adr = in(MemNode::Address);
1662  const TypePtr* tp = phase->type(adr)->isa_ptr();
1663  if (tp == NULL || tp->empty())  return Type::TOP;
1664  int off = tp->offset();
1665  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1666  Compile* C = phase->C;
1667
1668  // Try to guess loaded type from pointer type
1669  if (tp->isa_aryptr()) {
1670    const TypeAryPtr* ary = tp->is_aryptr();
1671    const Type* t = ary->elem();
1672
1673    // Determine whether the reference is beyond the header or not, by comparing
1674    // the offset against the offset of the start of the array's data.
1675    // Different array types begin at slightly different offsets (12 vs. 16).
1676    // We choose T_BYTE as an example base type that is least restrictive
1677    // as to alignment, which will therefore produce the smallest
1678    // possible base offset.
1679    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1680    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1681
1682    // Try to constant-fold a stable array element.
1683    if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1684      // Make sure the reference is not into the header and the offset is constant
1685      ciObject* aobj = ary->const_oop();
1686      if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1687        int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1688        const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1689                                                                      stable_dimension,
1690                                                                      memory_type(), is_unsigned());
1691        if (con_type != NULL) {
1692          return con_type;
1693        }
1694      }
1695    }
1696
1697    // Don't do this for integer types. There is only potential profit if
1698    // the element type t is lower than _type; that is, for int types, if _type is
1699    // more restrictive than t.  This only happens here if one is short and the other
1700    // char (both 16 bits), and in those cases we've made an intentional decision
1701    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1702    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1703    //
1704    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1705    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1706    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1707    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1708    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1709    // In fact, that could have been the original type of p1, and p1 could have
1710    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1711    // expression (LShiftL quux 3) independently optimized to the constant 8.
1712    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1713        && (_type->isa_vect() == NULL)
1714        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1715      // t might actually be lower than _type, if _type is a unique
1716      // concrete subclass of abstract class t.
1717      if (off_beyond_header) {  // is the offset beyond the header?
1718        const Type* jt = t->join_speculative(_type);
1719        // In any case, do not allow the join, per se, to empty out the type.
1720        if (jt->empty() && !t->empty()) {
1721          // This can happen if a interface-typed array narrows to a class type.
1722          jt = _type;
1723        }
1724#ifdef ASSERT
1725        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1726          // The pointers in the autobox arrays are always non-null
1727          Node* base = adr->in(AddPNode::Base);
1728          if ((base != NULL) && base->is_DecodeN()) {
1729            // Get LoadN node which loads IntegerCache.cache field
1730            base = base->in(1);
1731          }
1732          if ((base != NULL) && base->is_Con()) {
1733            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1734            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1735              // It could be narrow oop
1736              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1737            }
1738          }
1739        }
1740#endif
1741        return jt;
1742      }
1743    }
1744  } else if (tp->base() == Type::InstPtr) {
1745    assert( off != Type::OffsetBot ||
1746            // arrays can be cast to Objects
1747            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1748            // unsafe field access may not have a constant offset
1749            C->has_unsafe_access(),
1750            "Field accesses must be precise" );
1751    // For oop loads, we expect the _type to be precise.
1752
1753    // Optimize loads from constant fields.
1754    const TypeInstPtr* tinst = tp->is_instptr();
1755    ciObject* const_oop = tinst->const_oop();
1756    if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1757      const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1758      if (con_type != NULL) {
1759        return con_type;
1760      }
1761    }
1762  } else if (tp->base() == Type::KlassPtr) {
1763    assert( off != Type::OffsetBot ||
1764            // arrays can be cast to Objects
1765            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1766            // also allow array-loading from the primary supertype
1767            // array during subtype checks
1768            Opcode() == Op_LoadKlass,
1769            "Field accesses must be precise" );
1770    // For klass/static loads, we expect the _type to be precise
1771  }
1772
1773  const TypeKlassPtr *tkls = tp->isa_klassptr();
1774  if (tkls != NULL && !StressReflectiveCode) {
1775    ciKlass* klass = tkls->klass();
1776    if (klass->is_loaded() && tkls->klass_is_exact()) {
1777      // We are loading a field from a Klass metaobject whose identity
1778      // is known at compile time (the type is "exact" or "precise").
1779      // Check for fields we know are maintained as constants by the VM.
1780      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1781        // The field is Klass::_super_check_offset.  Return its (constant) value.
1782        // (Folds up type checking code.)
1783        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1784        return TypeInt::make(klass->super_check_offset());
1785      }
1786      // Compute index into primary_supers array
1787      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1788      // Check for overflowing; use unsigned compare to handle the negative case.
1789      if( depth < ciKlass::primary_super_limit() ) {
1790        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1791        // (Folds up type checking code.)
1792        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1793        ciKlass *ss = klass->super_of_depth(depth);
1794        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1795      }
1796      const Type* aift = load_array_final_field(tkls, klass);
1797      if (aift != NULL)  return aift;
1798      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1799        // The field is Klass::_java_mirror.  Return its (constant) value.
1800        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1801        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1802        return TypeInstPtr::make(klass->java_mirror());
1803      }
1804    }
1805
1806    // We can still check if we are loading from the primary_supers array at a
1807    // shallow enough depth.  Even though the klass is not exact, entries less
1808    // than or equal to its super depth are correct.
1809    if (klass->is_loaded() ) {
1810      ciType *inner = klass;
1811      while( inner->is_obj_array_klass() )
1812        inner = inner->as_obj_array_klass()->base_element_type();
1813      if( inner->is_instance_klass() &&
1814          !inner->as_instance_klass()->flags().is_interface() ) {
1815        // Compute index into primary_supers array
1816        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1817        // Check for overflowing; use unsigned compare to handle the negative case.
1818        if( depth < ciKlass::primary_super_limit() &&
1819            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1820          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1821          // (Folds up type checking code.)
1822          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1823          ciKlass *ss = klass->super_of_depth(depth);
1824          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1825        }
1826      }
1827    }
1828
1829    // If the type is enough to determine that the thing is not an array,
1830    // we can give the layout_helper a positive interval type.
1831    // This will help short-circuit some reflective code.
1832    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1833        && !klass->is_array_klass() // not directly typed as an array
1834        && !klass->is_interface()  // specifically not Serializable & Cloneable
1835        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1836        ) {
1837      // Note:  When interfaces are reliable, we can narrow the interface
1838      // test to (klass != Serializable && klass != Cloneable).
1839      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1840      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1841      // The key property of this type is that it folds up tests
1842      // for array-ness, since it proves that the layout_helper is positive.
1843      // Thus, a generic value like the basic object layout helper works fine.
1844      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1845    }
1846  }
1847
1848  // If we are loading from a freshly-allocated object, produce a zero,
1849  // if the load is provably beyond the header of the object.
1850  // (Also allow a variable load from a fresh array to produce zero.)
1851  const TypeOopPtr *tinst = tp->isa_oopptr();
1852  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1853  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1854  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1855    Node* value = can_see_stored_value(mem,phase);
1856    if (value != NULL && value->is_Con()) {
1857      assert(value->bottom_type()->higher_equal(_type),"sanity");
1858      return value->bottom_type();
1859    }
1860  }
1861
1862  if (is_instance) {
1863    // If we have an instance type and our memory input is the
1864    // programs's initial memory state, there is no matching store,
1865    // so just return a zero of the appropriate type
1866    Node *mem = in(MemNode::Memory);
1867    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1868      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1869      return Type::get_zero_type(_type->basic_type());
1870    }
1871  }
1872  return _type;
1873}
1874
1875//------------------------------match_edge-------------------------------------
1876// Do we Match on this edge index or not?  Match only the address.
1877uint LoadNode::match_edge(uint idx) const {
1878  return idx == MemNode::Address;
1879}
1880
1881//--------------------------LoadBNode::Ideal--------------------------------------
1882//
1883//  If the previous store is to the same address as this load,
1884//  and the value stored was larger than a byte, replace this load
1885//  with the value stored truncated to a byte.  If no truncation is
1886//  needed, the replacement is done in LoadNode::Identity().
1887//
1888Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1889  Node* mem = in(MemNode::Memory);
1890  Node* value = can_see_stored_value(mem,phase);
1891  if( value && !phase->type(value)->higher_equal( _type ) ) {
1892    Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1893    return new RShiftINode(result, phase->intcon(24));
1894  }
1895  // Identity call will handle the case where truncation is not needed.
1896  return LoadNode::Ideal(phase, can_reshape);
1897}
1898
1899const Type* LoadBNode::Value(PhaseGVN* phase) const {
1900  Node* mem = in(MemNode::Memory);
1901  Node* value = can_see_stored_value(mem,phase);
1902  if (value != NULL && value->is_Con() &&
1903      !value->bottom_type()->higher_equal(_type)) {
1904    // If the input to the store does not fit with the load's result type,
1905    // it must be truncated. We can't delay until Ideal call since
1906    // a singleton Value is needed for split_thru_phi optimization.
1907    int con = value->get_int();
1908    return TypeInt::make((con << 24) >> 24);
1909  }
1910  return LoadNode::Value(phase);
1911}
1912
1913//--------------------------LoadUBNode::Ideal-------------------------------------
1914//
1915//  If the previous store is to the same address as this load,
1916//  and the value stored was larger than a byte, replace this load
1917//  with the value stored truncated to a byte.  If no truncation is
1918//  needed, the replacement is done in LoadNode::Identity().
1919//
1920Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1921  Node* mem = in(MemNode::Memory);
1922  Node* value = can_see_stored_value(mem, phase);
1923  if (value && !phase->type(value)->higher_equal(_type))
1924    return new AndINode(value, phase->intcon(0xFF));
1925  // Identity call will handle the case where truncation is not needed.
1926  return LoadNode::Ideal(phase, can_reshape);
1927}
1928
1929const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1930  Node* mem = in(MemNode::Memory);
1931  Node* value = can_see_stored_value(mem,phase);
1932  if (value != NULL && value->is_Con() &&
1933      !value->bottom_type()->higher_equal(_type)) {
1934    // If the input to the store does not fit with the load's result type,
1935    // it must be truncated. We can't delay until Ideal call since
1936    // a singleton Value is needed for split_thru_phi optimization.
1937    int con = value->get_int();
1938    return TypeInt::make(con & 0xFF);
1939  }
1940  return LoadNode::Value(phase);
1941}
1942
1943//--------------------------LoadUSNode::Ideal-------------------------------------
1944//
1945//  If the previous store is to the same address as this load,
1946//  and the value stored was larger than a char, replace this load
1947//  with the value stored truncated to a char.  If no truncation is
1948//  needed, the replacement is done in LoadNode::Identity().
1949//
1950Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1951  Node* mem = in(MemNode::Memory);
1952  Node* value = can_see_stored_value(mem,phase);
1953  if( value && !phase->type(value)->higher_equal( _type ) )
1954    return new AndINode(value,phase->intcon(0xFFFF));
1955  // Identity call will handle the case where truncation is not needed.
1956  return LoadNode::Ideal(phase, can_reshape);
1957}
1958
1959const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1960  Node* mem = in(MemNode::Memory);
1961  Node* value = can_see_stored_value(mem,phase);
1962  if (value != NULL && value->is_Con() &&
1963      !value->bottom_type()->higher_equal(_type)) {
1964    // If the input to the store does not fit with the load's result type,
1965    // it must be truncated. We can't delay until Ideal call since
1966    // a singleton Value is needed for split_thru_phi optimization.
1967    int con = value->get_int();
1968    return TypeInt::make(con & 0xFFFF);
1969  }
1970  return LoadNode::Value(phase);
1971}
1972
1973//--------------------------LoadSNode::Ideal--------------------------------------
1974//
1975//  If the previous store is to the same address as this load,
1976//  and the value stored was larger than a short, replace this load
1977//  with the value stored truncated to a short.  If no truncation is
1978//  needed, the replacement is done in LoadNode::Identity().
1979//
1980Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1981  Node* mem = in(MemNode::Memory);
1982  Node* value = can_see_stored_value(mem,phase);
1983  if( value && !phase->type(value)->higher_equal( _type ) ) {
1984    Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1985    return new RShiftINode(result, phase->intcon(16));
1986  }
1987  // Identity call will handle the case where truncation is not needed.
1988  return LoadNode::Ideal(phase, can_reshape);
1989}
1990
1991const Type* LoadSNode::Value(PhaseGVN* phase) const {
1992  Node* mem = in(MemNode::Memory);
1993  Node* value = can_see_stored_value(mem,phase);
1994  if (value != NULL && value->is_Con() &&
1995      !value->bottom_type()->higher_equal(_type)) {
1996    // If the input to the store does not fit with the load's result type,
1997    // it must be truncated. We can't delay until Ideal call since
1998    // a singleton Value is needed for split_thru_phi optimization.
1999    int con = value->get_int();
2000    return TypeInt::make((con << 16) >> 16);
2001  }
2002  return LoadNode::Value(phase);
2003}
2004
2005//=============================================================================
2006//----------------------------LoadKlassNode::make------------------------------
2007// Polymorphic factory method:
2008Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2009  // sanity check the alias category against the created node type
2010  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2011  assert(adr_type != NULL, "expecting TypeKlassPtr");
2012#ifdef _LP64
2013  if (adr_type->is_ptr_to_narrowklass()) {
2014    assert(UseCompressedClassPointers, "no compressed klasses");
2015    Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2016    return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2017  }
2018#endif
2019  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2020  return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2021}
2022
2023//------------------------------Value------------------------------------------
2024const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2025  return klass_value_common(phase);
2026}
2027
2028// In most cases, LoadKlassNode does not have the control input set. If the control
2029// input is set, it must not be removed (by LoadNode::Ideal()).
2030bool LoadKlassNode::can_remove_control() const {
2031  return false;
2032}
2033
2034const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2035  // Either input is TOP ==> the result is TOP
2036  const Type *t1 = phase->type( in(MemNode::Memory) );
2037  if (t1 == Type::TOP)  return Type::TOP;
2038  Node *adr = in(MemNode::Address);
2039  const Type *t2 = phase->type( adr );
2040  if (t2 == Type::TOP)  return Type::TOP;
2041  const TypePtr *tp = t2->is_ptr();
2042  if (TypePtr::above_centerline(tp->ptr()) ||
2043      tp->ptr() == TypePtr::Null)  return Type::TOP;
2044
2045  // Return a more precise klass, if possible
2046  const TypeInstPtr *tinst = tp->isa_instptr();
2047  if (tinst != NULL) {
2048    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2049    int offset = tinst->offset();
2050    if (ik == phase->C->env()->Class_klass()
2051        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2052            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2053      // We are loading a special hidden field from a Class mirror object,
2054      // the field which points to the VM's Klass metaobject.
2055      ciType* t = tinst->java_mirror_type();
2056      // java_mirror_type returns non-null for compile-time Class constants.
2057      if (t != NULL) {
2058        // constant oop => constant klass
2059        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2060          if (t->is_void()) {
2061            // We cannot create a void array.  Since void is a primitive type return null
2062            // klass.  Users of this result need to do a null check on the returned klass.
2063            return TypePtr::NULL_PTR;
2064          }
2065          return TypeKlassPtr::make(ciArrayKlass::make(t));
2066        }
2067        if (!t->is_klass()) {
2068          // a primitive Class (e.g., int.class) has NULL for a klass field
2069          return TypePtr::NULL_PTR;
2070        }
2071        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2072        return TypeKlassPtr::make(t->as_klass());
2073      }
2074      // non-constant mirror, so we can't tell what's going on
2075    }
2076    if( !ik->is_loaded() )
2077      return _type;             // Bail out if not loaded
2078    if (offset == oopDesc::klass_offset_in_bytes()) {
2079      if (tinst->klass_is_exact()) {
2080        return TypeKlassPtr::make(ik);
2081      }
2082      // See if we can become precise: no subklasses and no interface
2083      // (Note:  We need to support verified interfaces.)
2084      if (!ik->is_interface() && !ik->has_subklass()) {
2085        //assert(!UseExactTypes, "this code should be useless with exact types");
2086        // Add a dependence; if any subclass added we need to recompile
2087        if (!ik->is_final()) {
2088          // %%% should use stronger assert_unique_concrete_subtype instead
2089          phase->C->dependencies()->assert_leaf_type(ik);
2090        }
2091        // Return precise klass
2092        return TypeKlassPtr::make(ik);
2093      }
2094
2095      // Return root of possible klass
2096      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2097    }
2098  }
2099
2100  // Check for loading klass from an array
2101  const TypeAryPtr *tary = tp->isa_aryptr();
2102  if( tary != NULL ) {
2103    ciKlass *tary_klass = tary->klass();
2104    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2105        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2106      if (tary->klass_is_exact()) {
2107        return TypeKlassPtr::make(tary_klass);
2108      }
2109      ciArrayKlass *ak = tary->klass()->as_array_klass();
2110      // If the klass is an object array, we defer the question to the
2111      // array component klass.
2112      if( ak->is_obj_array_klass() ) {
2113        assert( ak->is_loaded(), "" );
2114        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2115        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2116          ciInstanceKlass* ik = base_k->as_instance_klass();
2117          // See if we can become precise: no subklasses and no interface
2118          if (!ik->is_interface() && !ik->has_subklass()) {
2119            //assert(!UseExactTypes, "this code should be useless with exact types");
2120            // Add a dependence; if any subclass added we need to recompile
2121            if (!ik->is_final()) {
2122              phase->C->dependencies()->assert_leaf_type(ik);
2123            }
2124            // Return precise array klass
2125            return TypeKlassPtr::make(ak);
2126          }
2127        }
2128        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2129      } else {                  // Found a type-array?
2130        //assert(!UseExactTypes, "this code should be useless with exact types");
2131        assert( ak->is_type_array_klass(), "" );
2132        return TypeKlassPtr::make(ak); // These are always precise
2133      }
2134    }
2135  }
2136
2137  // Check for loading klass from an array klass
2138  const TypeKlassPtr *tkls = tp->isa_klassptr();
2139  if (tkls != NULL && !StressReflectiveCode) {
2140    ciKlass* klass = tkls->klass();
2141    if( !klass->is_loaded() )
2142      return _type;             // Bail out if not loaded
2143    if( klass->is_obj_array_klass() &&
2144        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2145      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2146      // // Always returning precise element type is incorrect,
2147      // // e.g., element type could be object and array may contain strings
2148      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2149
2150      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2151      // according to the element type's subclassing.
2152      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2153    }
2154    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2155        tkls->offset() == in_bytes(Klass::super_offset())) {
2156      ciKlass* sup = klass->as_instance_klass()->super();
2157      // The field is Klass::_super.  Return its (constant) value.
2158      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2159      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2160    }
2161  }
2162
2163  // Bailout case
2164  return LoadNode::Value(phase);
2165}
2166
2167//------------------------------Identity---------------------------------------
2168// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2169// Also feed through the klass in Allocate(...klass...)._klass.
2170Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2171  return klass_identity_common(phase);
2172}
2173
2174Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2175  Node* x = LoadNode::Identity(phase);
2176  if (x != this)  return x;
2177
2178  // Take apart the address into an oop and and offset.
2179  // Return 'this' if we cannot.
2180  Node*    adr    = in(MemNode::Address);
2181  intptr_t offset = 0;
2182  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2183  if (base == NULL)     return this;
2184  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2185  if (toop == NULL)     return this;
2186
2187  // We can fetch the klass directly through an AllocateNode.
2188  // This works even if the klass is not constant (clone or newArray).
2189  if (offset == oopDesc::klass_offset_in_bytes()) {
2190    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2191    if (allocated_klass != NULL) {
2192      return allocated_klass;
2193    }
2194  }
2195
2196  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2197  // See inline_native_Class_query for occurrences of these patterns.
2198  // Java Example:  x.getClass().isAssignableFrom(y)
2199  //
2200  // This improves reflective code, often making the Class
2201  // mirror go completely dead.  (Current exception:  Class
2202  // mirrors may appear in debug info, but we could clean them out by
2203  // introducing a new debug info operator for Klass*.java_mirror).
2204  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2205      && offset == java_lang_Class::klass_offset_in_bytes()) {
2206    // We are loading a special hidden field from a Class mirror,
2207    // the field which points to its Klass or ArrayKlass metaobject.
2208    if (base->is_Load()) {
2209      Node* adr2 = base->in(MemNode::Address);
2210      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2211      if (tkls != NULL && !tkls->empty()
2212          && (tkls->klass()->is_instance_klass() ||
2213              tkls->klass()->is_array_klass())
2214          && adr2->is_AddP()
2215          ) {
2216        int mirror_field = in_bytes(Klass::java_mirror_offset());
2217        if (tkls->offset() == mirror_field) {
2218          return adr2->in(AddPNode::Base);
2219        }
2220      }
2221    }
2222  }
2223
2224  return this;
2225}
2226
2227
2228//------------------------------Value------------------------------------------
2229const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2230  const Type *t = klass_value_common(phase);
2231  if (t == Type::TOP)
2232    return t;
2233
2234  return t->make_narrowklass();
2235}
2236
2237//------------------------------Identity---------------------------------------
2238// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2239// Also feed through the klass in Allocate(...klass...)._klass.
2240Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2241  Node *x = klass_identity_common(phase);
2242
2243  const Type *t = phase->type( x );
2244  if( t == Type::TOP ) return x;
2245  if( t->isa_narrowklass()) return x;
2246  assert (!t->isa_narrowoop(), "no narrow oop here");
2247
2248  return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2249}
2250
2251//------------------------------Value-----------------------------------------
2252const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2253  // Either input is TOP ==> the result is TOP
2254  const Type *t1 = phase->type( in(MemNode::Memory) );
2255  if( t1 == Type::TOP ) return Type::TOP;
2256  Node *adr = in(MemNode::Address);
2257  const Type *t2 = phase->type( adr );
2258  if( t2 == Type::TOP ) return Type::TOP;
2259  const TypePtr *tp = t2->is_ptr();
2260  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2261  const TypeAryPtr *tap = tp->isa_aryptr();
2262  if( !tap ) return _type;
2263  return tap->size();
2264}
2265
2266//-------------------------------Ideal---------------------------------------
2267// Feed through the length in AllocateArray(...length...)._length.
2268Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2269  Node* p = MemNode::Ideal_common(phase, can_reshape);
2270  if (p)  return (p == NodeSentinel) ? NULL : p;
2271
2272  // Take apart the address into an oop and and offset.
2273  // Return 'this' if we cannot.
2274  Node*    adr    = in(MemNode::Address);
2275  intptr_t offset = 0;
2276  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2277  if (base == NULL)     return NULL;
2278  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2279  if (tary == NULL)     return NULL;
2280
2281  // We can fetch the length directly through an AllocateArrayNode.
2282  // This works even if the length is not constant (clone or newArray).
2283  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2284    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2285    if (alloc != NULL) {
2286      Node* allocated_length = alloc->Ideal_length();
2287      Node* len = alloc->make_ideal_length(tary, phase);
2288      if (allocated_length != len) {
2289        // New CastII improves on this.
2290        return len;
2291      }
2292    }
2293  }
2294
2295  return NULL;
2296}
2297
2298//------------------------------Identity---------------------------------------
2299// Feed through the length in AllocateArray(...length...)._length.
2300Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2301  Node* x = LoadINode::Identity(phase);
2302  if (x != this)  return x;
2303
2304  // Take apart the address into an oop and and offset.
2305  // Return 'this' if we cannot.
2306  Node*    adr    = in(MemNode::Address);
2307  intptr_t offset = 0;
2308  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2309  if (base == NULL)     return this;
2310  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2311  if (tary == NULL)     return this;
2312
2313  // We can fetch the length directly through an AllocateArrayNode.
2314  // This works even if the length is not constant (clone or newArray).
2315  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2316    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2317    if (alloc != NULL) {
2318      Node* allocated_length = alloc->Ideal_length();
2319      // Do not allow make_ideal_length to allocate a CastII node.
2320      Node* len = alloc->make_ideal_length(tary, phase, false);
2321      if (allocated_length == len) {
2322        // Return allocated_length only if it would not be improved by a CastII.
2323        return allocated_length;
2324      }
2325    }
2326  }
2327
2328  return this;
2329
2330}
2331
2332//=============================================================================
2333//---------------------------StoreNode::make-----------------------------------
2334// Polymorphic factory method:
2335StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2336  assert((mo == unordered || mo == release), "unexpected");
2337  Compile* C = gvn.C;
2338  assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2339         ctl != NULL, "raw memory operations should have control edge");
2340
2341  switch (bt) {
2342  case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2343  case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2344  case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2345  case T_CHAR:
2346  case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2347  case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2348  case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2349  case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2350  case T_METADATA:
2351  case T_ADDRESS:
2352  case T_OBJECT:
2353#ifdef _LP64
2354    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2355      val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2356      return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2357    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2358               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2359                adr->bottom_type()->isa_rawptr())) {
2360      val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2361      return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2362    }
2363#endif
2364    {
2365      return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2366    }
2367  }
2368  ShouldNotReachHere();
2369  return (StoreNode*)NULL;
2370}
2371
2372StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2373  bool require_atomic = true;
2374  return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2375}
2376
2377StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2378  bool require_atomic = true;
2379  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2380}
2381
2382
2383//--------------------------bottom_type----------------------------------------
2384const Type *StoreNode::bottom_type() const {
2385  return Type::MEMORY;
2386}
2387
2388//------------------------------hash-------------------------------------------
2389uint StoreNode::hash() const {
2390  // unroll addition of interesting fields
2391  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2392
2393  // Since they are not commoned, do not hash them:
2394  return NO_HASH;
2395}
2396
2397//------------------------------Ideal------------------------------------------
2398// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2399// When a store immediately follows a relevant allocation/initialization,
2400// try to capture it into the initialization, or hoist it above.
2401Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2402  Node* p = MemNode::Ideal_common(phase, can_reshape);
2403  if (p)  return (p == NodeSentinel) ? NULL : p;
2404
2405  Node* mem     = in(MemNode::Memory);
2406  Node* address = in(MemNode::Address);
2407  // Back-to-back stores to same address?  Fold em up.  Generally
2408  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2409  // since they must follow each StoreP operation.  Redundant StoreCMs
2410  // are eliminated just before matching in final_graph_reshape.
2411  {
2412    Node* st = mem;
2413    // If Store 'st' has more than one use, we cannot fold 'st' away.
2414    // For example, 'st' might be the final state at a conditional
2415    // return.  Or, 'st' might be used by some node which is live at
2416    // the same time 'st' is live, which might be unschedulable.  So,
2417    // require exactly ONE user until such time as we clone 'mem' for
2418    // each of 'mem's uses (thus making the exactly-1-user-rule hold
2419    // true).
2420    while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2421      // Looking at a dead closed cycle of memory?
2422      assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2423      assert(Opcode() == st->Opcode() ||
2424             st->Opcode() == Op_StoreVector ||
2425             Opcode() == Op_StoreVector ||
2426             phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2427             (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2428             (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2429             "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2430
2431      if (st->in(MemNode::Address)->eqv_uncast(address) &&
2432          st->as_Store()->memory_size() <= this->memory_size()) {
2433        Node* use = st->raw_out(0);
2434        phase->igvn_rehash_node_delayed(use);
2435        if (can_reshape) {
2436          use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2437        } else {
2438          // It's OK to do this in the parser, since DU info is always accurate,
2439          // and the parser always refers to nodes via SafePointNode maps.
2440          use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2441        }
2442        return this;
2443      }
2444      st = st->in(MemNode::Memory);
2445    }
2446  }
2447
2448
2449  // Capture an unaliased, unconditional, simple store into an initializer.
2450  // Or, if it is independent of the allocation, hoist it above the allocation.
2451  if (ReduceFieldZeroing && /*can_reshape &&*/
2452      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2453    InitializeNode* init = mem->in(0)->as_Initialize();
2454    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2455    if (offset > 0) {
2456      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2457      // If the InitializeNode captured me, it made a raw copy of me,
2458      // and I need to disappear.
2459      if (moved != NULL) {
2460        // %%% hack to ensure that Ideal returns a new node:
2461        mem = MergeMemNode::make(mem);
2462        return mem;             // fold me away
2463      }
2464    }
2465  }
2466
2467  return NULL;                  // No further progress
2468}
2469
2470//------------------------------Value-----------------------------------------
2471const Type* StoreNode::Value(PhaseGVN* phase) const {
2472  // Either input is TOP ==> the result is TOP
2473  const Type *t1 = phase->type( in(MemNode::Memory) );
2474  if( t1 == Type::TOP ) return Type::TOP;
2475  const Type *t2 = phase->type( in(MemNode::Address) );
2476  if( t2 == Type::TOP ) return Type::TOP;
2477  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2478  if( t3 == Type::TOP ) return Type::TOP;
2479  return Type::MEMORY;
2480}
2481
2482//------------------------------Identity---------------------------------------
2483// Remove redundant stores:
2484//   Store(m, p, Load(m, p)) changes to m.
2485//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2486Node* StoreNode::Identity(PhaseGVN* phase) {
2487  Node* mem = in(MemNode::Memory);
2488  Node* adr = in(MemNode::Address);
2489  Node* val = in(MemNode::ValueIn);
2490
2491  // Load then Store?  Then the Store is useless
2492  if (val->is_Load() &&
2493      val->in(MemNode::Address)->eqv_uncast(adr) &&
2494      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2495      val->as_Load()->store_Opcode() == Opcode()) {
2496    return mem;
2497  }
2498
2499  // Two stores in a row of the same value?
2500  if (mem->is_Store() &&
2501      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2502      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2503      mem->Opcode() == Opcode()) {
2504    return mem;
2505  }
2506
2507  // Store of zero anywhere into a freshly-allocated object?
2508  // Then the store is useless.
2509  // (It must already have been captured by the InitializeNode.)
2510  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2511    // a newly allocated object is already all-zeroes everywhere
2512    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2513      return mem;
2514    }
2515
2516    // the store may also apply to zero-bits in an earlier object
2517    Node* prev_mem = find_previous_store(phase);
2518    // Steps (a), (b):  Walk past independent stores to find an exact match.
2519    if (prev_mem != NULL) {
2520      Node* prev_val = can_see_stored_value(prev_mem, phase);
2521      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2522        // prev_val and val might differ by a cast; it would be good
2523        // to keep the more informative of the two.
2524        return mem;
2525      }
2526    }
2527  }
2528
2529  return this;
2530}
2531
2532//------------------------------match_edge-------------------------------------
2533// Do we Match on this edge index or not?  Match only memory & value
2534uint StoreNode::match_edge(uint idx) const {
2535  return idx == MemNode::Address || idx == MemNode::ValueIn;
2536}
2537
2538//------------------------------cmp--------------------------------------------
2539// Do not common stores up together.  They generally have to be split
2540// back up anyways, so do not bother.
2541uint StoreNode::cmp( const Node &n ) const {
2542  return (&n == this);          // Always fail except on self
2543}
2544
2545//------------------------------Ideal_masked_input-----------------------------
2546// Check for a useless mask before a partial-word store
2547// (StoreB ... (AndI valIn conIa) )
2548// If (conIa & mask == mask) this simplifies to
2549// (StoreB ... (valIn) )
2550Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2551  Node *val = in(MemNode::ValueIn);
2552  if( val->Opcode() == Op_AndI ) {
2553    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2554    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2555      set_req(MemNode::ValueIn, val->in(1));
2556      return this;
2557    }
2558  }
2559  return NULL;
2560}
2561
2562
2563//------------------------------Ideal_sign_extended_input----------------------
2564// Check for useless sign-extension before a partial-word store
2565// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2566// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2567// (StoreB ... (valIn) )
2568Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2569  Node *val = in(MemNode::ValueIn);
2570  if( val->Opcode() == Op_RShiftI ) {
2571    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2572    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2573      Node *shl = val->in(1);
2574      if( shl->Opcode() == Op_LShiftI ) {
2575        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2576        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2577          set_req(MemNode::ValueIn, shl->in(1));
2578          return this;
2579        }
2580      }
2581    }
2582  }
2583  return NULL;
2584}
2585
2586//------------------------------value_never_loaded-----------------------------------
2587// Determine whether there are any possible loads of the value stored.
2588// For simplicity, we actually check if there are any loads from the
2589// address stored to, not just for loads of the value stored by this node.
2590//
2591bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2592  Node *adr = in(Address);
2593  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2594  if (adr_oop == NULL)
2595    return false;
2596  if (!adr_oop->is_known_instance_field())
2597    return false; // if not a distinct instance, there may be aliases of the address
2598  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2599    Node *use = adr->fast_out(i);
2600    if (use->is_Load() || use->is_LoadStore()) {
2601      return false;
2602    }
2603  }
2604  return true;
2605}
2606
2607//=============================================================================
2608//------------------------------Ideal------------------------------------------
2609// If the store is from an AND mask that leaves the low bits untouched, then
2610// we can skip the AND operation.  If the store is from a sign-extension
2611// (a left shift, then right shift) we can skip both.
2612Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2613  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2614  if( progress != NULL ) return progress;
2615
2616  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2617  if( progress != NULL ) return progress;
2618
2619  // Finally check the default case
2620  return StoreNode::Ideal(phase, can_reshape);
2621}
2622
2623//=============================================================================
2624//------------------------------Ideal------------------------------------------
2625// If the store is from an AND mask that leaves the low bits untouched, then
2626// we can skip the AND operation
2627Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2628  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2629  if( progress != NULL ) return progress;
2630
2631  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2632  if( progress != NULL ) return progress;
2633
2634  // Finally check the default case
2635  return StoreNode::Ideal(phase, can_reshape);
2636}
2637
2638//=============================================================================
2639//------------------------------Identity---------------------------------------
2640Node* StoreCMNode::Identity(PhaseGVN* phase) {
2641  // No need to card mark when storing a null ptr
2642  Node* my_store = in(MemNode::OopStore);
2643  if (my_store->is_Store()) {
2644    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2645    if( t1 == TypePtr::NULL_PTR ) {
2646      return in(MemNode::Memory);
2647    }
2648  }
2649  return this;
2650}
2651
2652//=============================================================================
2653//------------------------------Ideal---------------------------------------
2654Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2655  Node* progress = StoreNode::Ideal(phase, can_reshape);
2656  if (progress != NULL) return progress;
2657
2658  Node* my_store = in(MemNode::OopStore);
2659  if (my_store->is_MergeMem()) {
2660    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2661    set_req(MemNode::OopStore, mem);
2662    return this;
2663  }
2664
2665  return NULL;
2666}
2667
2668//------------------------------Value-----------------------------------------
2669const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2670  // Either input is TOP ==> the result is TOP
2671  const Type *t = phase->type( in(MemNode::Memory) );
2672  if( t == Type::TOP ) return Type::TOP;
2673  t = phase->type( in(MemNode::Address) );
2674  if( t == Type::TOP ) return Type::TOP;
2675  t = phase->type( in(MemNode::ValueIn) );
2676  if( t == Type::TOP ) return Type::TOP;
2677  // If extra input is TOP ==> the result is TOP
2678  t = phase->type( in(MemNode::OopStore) );
2679  if( t == Type::TOP ) return Type::TOP;
2680
2681  return StoreNode::Value( phase );
2682}
2683
2684
2685//=============================================================================
2686//----------------------------------SCMemProjNode------------------------------
2687const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2688{
2689  return bottom_type();
2690}
2691
2692//=============================================================================
2693//----------------------------------LoadStoreNode------------------------------
2694LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2695  : Node(required),
2696    _type(rt),
2697    _adr_type(at)
2698{
2699  init_req(MemNode::Control, c  );
2700  init_req(MemNode::Memory , mem);
2701  init_req(MemNode::Address, adr);
2702  init_req(MemNode::ValueIn, val);
2703  init_class_id(Class_LoadStore);
2704}
2705
2706uint LoadStoreNode::ideal_reg() const {
2707  return _type->ideal_reg();
2708}
2709
2710bool LoadStoreNode::result_not_used() const {
2711  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2712    Node *x = fast_out(i);
2713    if (x->Opcode() == Op_SCMemProj) continue;
2714    return false;
2715  }
2716  return true;
2717}
2718
2719uint LoadStoreNode::size_of() const { return sizeof(*this); }
2720
2721//=============================================================================
2722//----------------------------------LoadStoreConditionalNode--------------------
2723LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2724  init_req(ExpectedIn, ex );
2725}
2726
2727//=============================================================================
2728//-------------------------------adr_type--------------------------------------
2729const TypePtr* ClearArrayNode::adr_type() const {
2730  Node *adr = in(3);
2731  if (adr == NULL)  return NULL; // node is dead
2732  return MemNode::calculate_adr_type(adr->bottom_type());
2733}
2734
2735//------------------------------match_edge-------------------------------------
2736// Do we Match on this edge index or not?  Do not match memory
2737uint ClearArrayNode::match_edge(uint idx) const {
2738  return idx > 1;
2739}
2740
2741//------------------------------Identity---------------------------------------
2742// Clearing a zero length array does nothing
2743Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2744  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2745}
2746
2747//------------------------------Idealize---------------------------------------
2748// Clearing a short array is faster with stores
2749Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2750  // Already know this is a large node, do not try to ideal it
2751  if (!IdealizeClearArrayNode || _is_large) return NULL;
2752
2753  const int unit = BytesPerLong;
2754  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2755  if (!t)  return NULL;
2756  if (!t->is_con())  return NULL;
2757  intptr_t raw_count = t->get_con();
2758  intptr_t size = raw_count;
2759  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2760  // Clearing nothing uses the Identity call.
2761  // Negative clears are possible on dead ClearArrays
2762  // (see jck test stmt114.stmt11402.val).
2763  if (size <= 0 || size % unit != 0)  return NULL;
2764  intptr_t count = size / unit;
2765  // Length too long; communicate this to matchers and assemblers.
2766  // Assemblers are responsible to produce fast hardware clears for it.
2767  if (size > InitArrayShortSize) {
2768    return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2769  }
2770  Node *mem = in(1);
2771  if( phase->type(mem)==Type::TOP ) return NULL;
2772  Node *adr = in(3);
2773  const Type* at = phase->type(adr);
2774  if( at==Type::TOP ) return NULL;
2775  const TypePtr* atp = at->isa_ptr();
2776  // adjust atp to be the correct array element address type
2777  if (atp == NULL)  atp = TypePtr::BOTTOM;
2778  else              atp = atp->add_offset(Type::OffsetBot);
2779  // Get base for derived pointer purposes
2780  if( adr->Opcode() != Op_AddP ) Unimplemented();
2781  Node *base = adr->in(1);
2782
2783  Node *zero = phase->makecon(TypeLong::ZERO);
2784  Node *off  = phase->MakeConX(BytesPerLong);
2785  mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2786  count--;
2787  while( count-- ) {
2788    mem = phase->transform(mem);
2789    adr = phase->transform(new AddPNode(base,adr,off));
2790    mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2791  }
2792  return mem;
2793}
2794
2795//----------------------------step_through----------------------------------
2796// Return allocation input memory edge if it is different instance
2797// or itself if it is the one we are looking for.
2798bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2799  Node* n = *np;
2800  assert(n->is_ClearArray(), "sanity");
2801  intptr_t offset;
2802  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2803  // This method is called only before Allocate nodes are expanded
2804  // during macro nodes expansion. Before that ClearArray nodes are
2805  // only generated in PhaseMacroExpand::generate_arraycopy() (before
2806  // Allocate nodes are expanded) which follows allocations.
2807  assert(alloc != NULL, "should have allocation");
2808  if (alloc->_idx == instance_id) {
2809    // Can not bypass initialization of the instance we are looking for.
2810    return false;
2811  }
2812  // Otherwise skip it.
2813  InitializeNode* init = alloc->initialization();
2814  if (init != NULL)
2815    *np = init->in(TypeFunc::Memory);
2816  else
2817    *np = alloc->in(TypeFunc::Memory);
2818  return true;
2819}
2820
2821//----------------------------clear_memory-------------------------------------
2822// Generate code to initialize object storage to zero.
2823Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2824                                   intptr_t start_offset,
2825                                   Node* end_offset,
2826                                   PhaseGVN* phase) {
2827  intptr_t offset = start_offset;
2828
2829  int unit = BytesPerLong;
2830  if ((offset % unit) != 0) {
2831    Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2832    adr = phase->transform(adr);
2833    const TypePtr* atp = TypeRawPtr::BOTTOM;
2834    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2835    mem = phase->transform(mem);
2836    offset += BytesPerInt;
2837  }
2838  assert((offset % unit) == 0, "");
2839
2840  // Initialize the remaining stuff, if any, with a ClearArray.
2841  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2842}
2843
2844Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2845                                   Node* start_offset,
2846                                   Node* end_offset,
2847                                   PhaseGVN* phase) {
2848  if (start_offset == end_offset) {
2849    // nothing to do
2850    return mem;
2851  }
2852
2853  int unit = BytesPerLong;
2854  Node* zbase = start_offset;
2855  Node* zend  = end_offset;
2856
2857  // Scale to the unit required by the CPU:
2858  if (!Matcher::init_array_count_is_in_bytes) {
2859    Node* shift = phase->intcon(exact_log2(unit));
2860    zbase = phase->transform(new URShiftXNode(zbase, shift) );
2861    zend  = phase->transform(new URShiftXNode(zend,  shift) );
2862  }
2863
2864  // Bulk clear double-words
2865  Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2866  Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2867  mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2868  return phase->transform(mem);
2869}
2870
2871Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2872                                   intptr_t start_offset,
2873                                   intptr_t end_offset,
2874                                   PhaseGVN* phase) {
2875  if (start_offset == end_offset) {
2876    // nothing to do
2877    return mem;
2878  }
2879
2880  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2881  intptr_t done_offset = end_offset;
2882  if ((done_offset % BytesPerLong) != 0) {
2883    done_offset -= BytesPerInt;
2884  }
2885  if (done_offset > start_offset) {
2886    mem = clear_memory(ctl, mem, dest,
2887                       start_offset, phase->MakeConX(done_offset), phase);
2888  }
2889  if (done_offset < end_offset) { // emit the final 32-bit store
2890    Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2891    adr = phase->transform(adr);
2892    const TypePtr* atp = TypeRawPtr::BOTTOM;
2893    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2894    mem = phase->transform(mem);
2895    done_offset += BytesPerInt;
2896  }
2897  assert(done_offset == end_offset, "");
2898  return mem;
2899}
2900
2901//=============================================================================
2902MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2903  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2904    _adr_type(C->get_adr_type(alias_idx))
2905{
2906  init_class_id(Class_MemBar);
2907  Node* top = C->top();
2908  init_req(TypeFunc::I_O,top);
2909  init_req(TypeFunc::FramePtr,top);
2910  init_req(TypeFunc::ReturnAdr,top);
2911  if (precedent != NULL)
2912    init_req(TypeFunc::Parms, precedent);
2913}
2914
2915//------------------------------cmp--------------------------------------------
2916uint MemBarNode::hash() const { return NO_HASH; }
2917uint MemBarNode::cmp( const Node &n ) const {
2918  return (&n == this);          // Always fail except on self
2919}
2920
2921//------------------------------make-------------------------------------------
2922MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2923  switch (opcode) {
2924  case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2925  case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2926  case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2927  case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2928  case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2929  case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2930  case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2931  case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2932  case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2933  case Op_Initialize:        return new InitializeNode(C, atp, pn);
2934  case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2935  default: ShouldNotReachHere(); return NULL;
2936  }
2937}
2938
2939//------------------------------Ideal------------------------------------------
2940// Return a node which is more "ideal" than the current node.  Strip out
2941// control copies
2942Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2943  if (remove_dead_region(phase, can_reshape)) return this;
2944  // Don't bother trying to transform a dead node
2945  if (in(0) && in(0)->is_top()) {
2946    return NULL;
2947  }
2948
2949  bool progress = false;
2950  // Eliminate volatile MemBars for scalar replaced objects.
2951  if (can_reshape && req() == (Precedent+1)) {
2952    bool eliminate = false;
2953    int opc = Opcode();
2954    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2955      // Volatile field loads and stores.
2956      Node* my_mem = in(MemBarNode::Precedent);
2957      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2958      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2959        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2960        // replace this Precedent (decodeN) with the Load instead.
2961        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2962          Node* load_node = my_mem->in(1);
2963          set_req(MemBarNode::Precedent, load_node);
2964          phase->is_IterGVN()->_worklist.push(my_mem);
2965          my_mem = load_node;
2966        } else {
2967          assert(my_mem->unique_out() == this, "sanity");
2968          del_req(Precedent);
2969          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2970          my_mem = NULL;
2971        }
2972        progress = true;
2973      }
2974      if (my_mem != NULL && my_mem->is_Mem()) {
2975        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2976        // Check for scalar replaced object reference.
2977        if( t_oop != NULL && t_oop->is_known_instance_field() &&
2978            t_oop->offset() != Type::OffsetBot &&
2979            t_oop->offset() != Type::OffsetTop) {
2980          eliminate = true;
2981        }
2982      }
2983    } else if (opc == Op_MemBarRelease) {
2984      // Final field stores.
2985      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2986      if ((alloc != NULL) && alloc->is_Allocate() &&
2987          alloc->as_Allocate()->does_not_escape_thread()) {
2988        // The allocated object does not escape.
2989        eliminate = true;
2990      }
2991    }
2992    if (eliminate) {
2993      // Replace MemBar projections by its inputs.
2994      PhaseIterGVN* igvn = phase->is_IterGVN();
2995      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2996      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2997      // Must return either the original node (now dead) or a new node
2998      // (Do not return a top here, since that would break the uniqueness of top.)
2999      return new ConINode(TypeInt::ZERO);
3000    }
3001  }
3002  return progress ? this : NULL;
3003}
3004
3005//------------------------------Value------------------------------------------
3006const Type* MemBarNode::Value(PhaseGVN* phase) const {
3007  if( !in(0) ) return Type::TOP;
3008  if( phase->type(in(0)) == Type::TOP )
3009    return Type::TOP;
3010  return TypeTuple::MEMBAR;
3011}
3012
3013//------------------------------match------------------------------------------
3014// Construct projections for memory.
3015Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3016  switch (proj->_con) {
3017  case TypeFunc::Control:
3018  case TypeFunc::Memory:
3019    return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3020  }
3021  ShouldNotReachHere();
3022  return NULL;
3023}
3024
3025//===========================InitializeNode====================================
3026// SUMMARY:
3027// This node acts as a memory barrier on raw memory, after some raw stores.
3028// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3029// The Initialize can 'capture' suitably constrained stores as raw inits.
3030// It can coalesce related raw stores into larger units (called 'tiles').
3031// It can avoid zeroing new storage for memory units which have raw inits.
3032// At macro-expansion, it is marked 'complete', and does not optimize further.
3033//
3034// EXAMPLE:
3035// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3036//   ctl = incoming control; mem* = incoming memory
3037// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3038// First allocate uninitialized memory and fill in the header:
3039//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3040//   ctl := alloc.Control; mem* := alloc.Memory*
3041//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3042// Then initialize to zero the non-header parts of the raw memory block:
3043//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3044//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3045// After the initialize node executes, the object is ready for service:
3046//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3047// Suppose its body is immediately initialized as {1,2}:
3048//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3049//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3050//   mem.SLICE(#short[*]) := store2
3051//
3052// DETAILS:
3053// An InitializeNode collects and isolates object initialization after
3054// an AllocateNode and before the next possible safepoint.  As a
3055// memory barrier (MemBarNode), it keeps critical stores from drifting
3056// down past any safepoint or any publication of the allocation.
3057// Before this barrier, a newly-allocated object may have uninitialized bits.
3058// After this barrier, it may be treated as a real oop, and GC is allowed.
3059//
3060// The semantics of the InitializeNode include an implicit zeroing of
3061// the new object from object header to the end of the object.
3062// (The object header and end are determined by the AllocateNode.)
3063//
3064// Certain stores may be added as direct inputs to the InitializeNode.
3065// These stores must update raw memory, and they must be to addresses
3066// derived from the raw address produced by AllocateNode, and with
3067// a constant offset.  They must be ordered by increasing offset.
3068// The first one is at in(RawStores), the last at in(req()-1).
3069// Unlike most memory operations, they are not linked in a chain,
3070// but are displayed in parallel as users of the rawmem output of
3071// the allocation.
3072//
3073// (See comments in InitializeNode::capture_store, which continue
3074// the example given above.)
3075//
3076// When the associated Allocate is macro-expanded, the InitializeNode
3077// may be rewritten to optimize collected stores.  A ClearArrayNode
3078// may also be created at that point to represent any required zeroing.
3079// The InitializeNode is then marked 'complete', prohibiting further
3080// capturing of nearby memory operations.
3081//
3082// During macro-expansion, all captured initializations which store
3083// constant values of 32 bits or smaller are coalesced (if advantageous)
3084// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3085// initialized in fewer memory operations.  Memory words which are
3086// covered by neither tiles nor non-constant stores are pre-zeroed
3087// by explicit stores of zero.  (The code shape happens to do all
3088// zeroing first, then all other stores, with both sequences occurring
3089// in order of ascending offsets.)
3090//
3091// Alternatively, code may be inserted between an AllocateNode and its
3092// InitializeNode, to perform arbitrary initialization of the new object.
3093// E.g., the object copying intrinsics insert complex data transfers here.
3094// The initialization must then be marked as 'complete' disable the
3095// built-in zeroing semantics and the collection of initializing stores.
3096//
3097// While an InitializeNode is incomplete, reads from the memory state
3098// produced by it are optimizable if they match the control edge and
3099// new oop address associated with the allocation/initialization.
3100// They return a stored value (if the offset matches) or else zero.
3101// A write to the memory state, if it matches control and address,
3102// and if it is to a constant offset, may be 'captured' by the
3103// InitializeNode.  It is cloned as a raw memory operation and rewired
3104// inside the initialization, to the raw oop produced by the allocation.
3105// Operations on addresses which are provably distinct (e.g., to
3106// other AllocateNodes) are allowed to bypass the initialization.
3107//
3108// The effect of all this is to consolidate object initialization
3109// (both arrays and non-arrays, both piecewise and bulk) into a
3110// single location, where it can be optimized as a unit.
3111//
3112// Only stores with an offset less than TrackedInitializationLimit words
3113// will be considered for capture by an InitializeNode.  This puts a
3114// reasonable limit on the complexity of optimized initializations.
3115
3116//---------------------------InitializeNode------------------------------------
3117InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3118  : _is_complete(Incomplete), _does_not_escape(false),
3119    MemBarNode(C, adr_type, rawoop)
3120{
3121  init_class_id(Class_Initialize);
3122
3123  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3124  assert(in(RawAddress) == rawoop, "proper init");
3125  // Note:  allocation() can be NULL, for secondary initialization barriers
3126}
3127
3128// Since this node is not matched, it will be processed by the
3129// register allocator.  Declare that there are no constraints
3130// on the allocation of the RawAddress edge.
3131const RegMask &InitializeNode::in_RegMask(uint idx) const {
3132  // This edge should be set to top, by the set_complete.  But be conservative.
3133  if (idx == InitializeNode::RawAddress)
3134    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3135  return RegMask::Empty;
3136}
3137
3138Node* InitializeNode::memory(uint alias_idx) {
3139  Node* mem = in(Memory);
3140  if (mem->is_MergeMem()) {
3141    return mem->as_MergeMem()->memory_at(alias_idx);
3142  } else {
3143    // incoming raw memory is not split
3144    return mem;
3145  }
3146}
3147
3148bool InitializeNode::is_non_zero() {
3149  if (is_complete())  return false;
3150  remove_extra_zeroes();
3151  return (req() > RawStores);
3152}
3153
3154void InitializeNode::set_complete(PhaseGVN* phase) {
3155  assert(!is_complete(), "caller responsibility");
3156  _is_complete = Complete;
3157
3158  // After this node is complete, it contains a bunch of
3159  // raw-memory initializations.  There is no need for
3160  // it to have anything to do with non-raw memory effects.
3161  // Therefore, tell all non-raw users to re-optimize themselves,
3162  // after skipping the memory effects of this initialization.
3163  PhaseIterGVN* igvn = phase->is_IterGVN();
3164  if (igvn)  igvn->add_users_to_worklist(this);
3165}
3166
3167// convenience function
3168// return false if the init contains any stores already
3169bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3170  InitializeNode* init = initialization();
3171  if (init == NULL || init->is_complete())  return false;
3172  init->remove_extra_zeroes();
3173  // for now, if this allocation has already collected any inits, bail:
3174  if (init->is_non_zero())  return false;
3175  init->set_complete(phase);
3176  return true;
3177}
3178
3179void InitializeNode::remove_extra_zeroes() {
3180  if (req() == RawStores)  return;
3181  Node* zmem = zero_memory();
3182  uint fill = RawStores;
3183  for (uint i = fill; i < req(); i++) {
3184    Node* n = in(i);
3185    if (n->is_top() || n == zmem)  continue;  // skip
3186    if (fill < i)  set_req(fill, n);          // compact
3187    ++fill;
3188  }
3189  // delete any empty spaces created:
3190  while (fill < req()) {
3191    del_req(fill);
3192  }
3193}
3194
3195// Helper for remembering which stores go with which offsets.
3196intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3197  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3198  intptr_t offset = -1;
3199  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3200                                               phase, offset);
3201  if (base == NULL)     return -1;  // something is dead,
3202  if (offset < 0)       return -1;  //        dead, dead
3203  return offset;
3204}
3205
3206// Helper for proving that an initialization expression is
3207// "simple enough" to be folded into an object initialization.
3208// Attempts to prove that a store's initial value 'n' can be captured
3209// within the initialization without creating a vicious cycle, such as:
3210//     { Foo p = new Foo(); p.next = p; }
3211// True for constants and parameters and small combinations thereof.
3212bool InitializeNode::detect_init_independence(Node* n, int& count) {
3213  if (n == NULL)      return true;   // (can this really happen?)
3214  if (n->is_Proj())   n = n->in(0);
3215  if (n == this)      return false;  // found a cycle
3216  if (n->is_Con())    return true;
3217  if (n->is_Start())  return true;   // params, etc., are OK
3218  if (n->is_Root())   return true;   // even better
3219
3220  Node* ctl = n->in(0);
3221  if (ctl != NULL && !ctl->is_top()) {
3222    if (ctl->is_Proj())  ctl = ctl->in(0);
3223    if (ctl == this)  return false;
3224
3225    // If we already know that the enclosing memory op is pinned right after
3226    // the init, then any control flow that the store has picked up
3227    // must have preceded the init, or else be equal to the init.
3228    // Even after loop optimizations (which might change control edges)
3229    // a store is never pinned *before* the availability of its inputs.
3230    if (!MemNode::all_controls_dominate(n, this))
3231      return false;                  // failed to prove a good control
3232  }
3233
3234  // Check data edges for possible dependencies on 'this'.
3235  if ((count += 1) > 20)  return false;  // complexity limit
3236  for (uint i = 1; i < n->req(); i++) {
3237    Node* m = n->in(i);
3238    if (m == NULL || m == n || m->is_top())  continue;
3239    uint first_i = n->find_edge(m);
3240    if (i != first_i)  continue;  // process duplicate edge just once
3241    if (!detect_init_independence(m, count)) {
3242      return false;
3243    }
3244  }
3245
3246  return true;
3247}
3248
3249// Here are all the checks a Store must pass before it can be moved into
3250// an initialization.  Returns zero if a check fails.
3251// On success, returns the (constant) offset to which the store applies,
3252// within the initialized memory.
3253intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3254  const int FAIL = 0;
3255  if (st->is_unaligned_access()) {
3256    return FAIL;
3257  }
3258  if (st->req() != MemNode::ValueIn + 1)
3259    return FAIL;                // an inscrutable StoreNode (card mark?)
3260  Node* ctl = st->in(MemNode::Control);
3261  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3262    return FAIL;                // must be unconditional after the initialization
3263  Node* mem = st->in(MemNode::Memory);
3264  if (!(mem->is_Proj() && mem->in(0) == this))
3265    return FAIL;                // must not be preceded by other stores
3266  Node* adr = st->in(MemNode::Address);
3267  intptr_t offset;
3268  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3269  if (alloc == NULL)
3270    return FAIL;                // inscrutable address
3271  if (alloc != allocation())
3272    return FAIL;                // wrong allocation!  (store needs to float up)
3273  Node* val = st->in(MemNode::ValueIn);
3274  int complexity_count = 0;
3275  if (!detect_init_independence(val, complexity_count))
3276    return FAIL;                // stored value must be 'simple enough'
3277
3278  // The Store can be captured only if nothing after the allocation
3279  // and before the Store is using the memory location that the store
3280  // overwrites.
3281  bool failed = false;
3282  // If is_complete_with_arraycopy() is true the shape of the graph is
3283  // well defined and is safe so no need for extra checks.
3284  if (!is_complete_with_arraycopy()) {
3285    // We are going to look at each use of the memory state following
3286    // the allocation to make sure nothing reads the memory that the
3287    // Store writes.
3288    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3289    int alias_idx = phase->C->get_alias_index(t_adr);
3290    ResourceMark rm;
3291    Unique_Node_List mems;
3292    mems.push(mem);
3293    Node* unique_merge = NULL;
3294    for (uint next = 0; next < mems.size(); ++next) {
3295      Node *m  = mems.at(next);
3296      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3297        Node *n = m->fast_out(j);
3298        if (n->outcnt() == 0) {
3299          continue;
3300        }
3301        if (n == st) {
3302          continue;
3303        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3304          // If the control of this use is different from the control
3305          // of the Store which is right after the InitializeNode then
3306          // this node cannot be between the InitializeNode and the
3307          // Store.
3308          continue;
3309        } else if (n->is_MergeMem()) {
3310          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3311            // We can hit a MergeMemNode (that will likely go away
3312            // later) that is a direct use of the memory state
3313            // following the InitializeNode on the same slice as the
3314            // store node that we'd like to capture. We need to check
3315            // the uses of the MergeMemNode.
3316            mems.push(n);
3317          }
3318        } else if (n->is_Mem()) {
3319          Node* other_adr = n->in(MemNode::Address);
3320          if (other_adr == adr) {
3321            failed = true;
3322            break;
3323          } else {
3324            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3325            if (other_t_adr != NULL) {
3326              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3327              if (other_alias_idx == alias_idx) {
3328                // A load from the same memory slice as the store right
3329                // after the InitializeNode. We check the control of the
3330                // object/array that is loaded from. If it's the same as
3331                // the store control then we cannot capture the store.
3332                assert(!n->is_Store(), "2 stores to same slice on same control?");
3333                Node* base = other_adr;
3334                assert(base->is_AddP(), "should be addp but is %s", base->Name());
3335                base = base->in(AddPNode::Base);
3336                if (base != NULL) {
3337                  base = base->uncast();
3338                  if (base->is_Proj() && base->in(0) == alloc) {
3339                    failed = true;
3340                    break;
3341                  }
3342                }
3343              }
3344            }
3345          }
3346        } else {
3347          failed = true;
3348          break;
3349        }
3350      }
3351    }
3352  }
3353  if (failed) {
3354    if (!can_reshape) {
3355      // We decided we couldn't capture the store during parsing. We
3356      // should try again during the next IGVN once the graph is
3357      // cleaner.
3358      phase->C->record_for_igvn(st);
3359    }
3360    return FAIL;
3361  }
3362
3363  return offset;                // success
3364}
3365
3366// Find the captured store in(i) which corresponds to the range
3367// [start..start+size) in the initialized object.
3368// If there is one, return its index i.  If there isn't, return the
3369// negative of the index where it should be inserted.
3370// Return 0 if the queried range overlaps an initialization boundary
3371// or if dead code is encountered.
3372// If size_in_bytes is zero, do not bother with overlap checks.
3373int InitializeNode::captured_store_insertion_point(intptr_t start,
3374                                                   int size_in_bytes,
3375                                                   PhaseTransform* phase) {
3376  const int FAIL = 0, MAX_STORE = BytesPerLong;
3377
3378  if (is_complete())
3379    return FAIL;                // arraycopy got here first; punt
3380
3381  assert(allocation() != NULL, "must be present");
3382
3383  // no negatives, no header fields:
3384  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3385
3386  // after a certain size, we bail out on tracking all the stores:
3387  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3388  if (start >= ti_limit)  return FAIL;
3389
3390  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3391    if (i >= limit)  return -(int)i; // not found; here is where to put it
3392
3393    Node*    st     = in(i);
3394    intptr_t st_off = get_store_offset(st, phase);
3395    if (st_off < 0) {
3396      if (st != zero_memory()) {
3397        return FAIL;            // bail out if there is dead garbage
3398      }
3399    } else if (st_off > start) {
3400      // ...we are done, since stores are ordered
3401      if (st_off < start + size_in_bytes) {
3402        return FAIL;            // the next store overlaps
3403      }
3404      return -(int)i;           // not found; here is where to put it
3405    } else if (st_off < start) {
3406      if (size_in_bytes != 0 &&
3407          start < st_off + MAX_STORE &&
3408          start < st_off + st->as_Store()->memory_size()) {
3409        return FAIL;            // the previous store overlaps
3410      }
3411    } else {
3412      if (size_in_bytes != 0 &&
3413          st->as_Store()->memory_size() != size_in_bytes) {
3414        return FAIL;            // mismatched store size
3415      }
3416      return i;
3417    }
3418
3419    ++i;
3420  }
3421}
3422
3423// Look for a captured store which initializes at the offset 'start'
3424// with the given size.  If there is no such store, and no other
3425// initialization interferes, then return zero_memory (the memory
3426// projection of the AllocateNode).
3427Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3428                                          PhaseTransform* phase) {
3429  assert(stores_are_sane(phase), "");
3430  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3431  if (i == 0) {
3432    return NULL;                // something is dead
3433  } else if (i < 0) {
3434    return zero_memory();       // just primordial zero bits here
3435  } else {
3436    Node* st = in(i);           // here is the store at this position
3437    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3438    return st;
3439  }
3440}
3441
3442// Create, as a raw pointer, an address within my new object at 'offset'.
3443Node* InitializeNode::make_raw_address(intptr_t offset,
3444                                       PhaseTransform* phase) {
3445  Node* addr = in(RawAddress);
3446  if (offset != 0) {
3447    Compile* C = phase->C;
3448    addr = phase->transform( new AddPNode(C->top(), addr,
3449                                                 phase->MakeConX(offset)) );
3450  }
3451  return addr;
3452}
3453
3454// Clone the given store, converting it into a raw store
3455// initializing a field or element of my new object.
3456// Caller is responsible for retiring the original store,
3457// with subsume_node or the like.
3458//
3459// From the example above InitializeNode::InitializeNode,
3460// here are the old stores to be captured:
3461//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3462//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3463//
3464// Here is the changed code; note the extra edges on init:
3465//   alloc = (Allocate ...)
3466//   rawoop = alloc.RawAddress
3467//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3468//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3469//   init = (Initialize alloc.Control alloc.Memory rawoop
3470//                      rawstore1 rawstore2)
3471//
3472Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3473                                    PhaseTransform* phase, bool can_reshape) {
3474  assert(stores_are_sane(phase), "");
3475
3476  if (start < 0)  return NULL;
3477  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3478
3479  Compile* C = phase->C;
3480  int size_in_bytes = st->memory_size();
3481  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3482  if (i == 0)  return NULL;     // bail out
3483  Node* prev_mem = NULL;        // raw memory for the captured store
3484  if (i > 0) {
3485    prev_mem = in(i);           // there is a pre-existing store under this one
3486    set_req(i, C->top());       // temporarily disconnect it
3487    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3488  } else {
3489    i = -i;                     // no pre-existing store
3490    prev_mem = zero_memory();   // a slice of the newly allocated object
3491    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3492      set_req(--i, C->top());   // reuse this edge; it has been folded away
3493    else
3494      ins_req(i, C->top());     // build a new edge
3495  }
3496  Node* new_st = st->clone();
3497  new_st->set_req(MemNode::Control, in(Control));
3498  new_st->set_req(MemNode::Memory,  prev_mem);
3499  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3500  new_st = phase->transform(new_st);
3501
3502  // At this point, new_st might have swallowed a pre-existing store
3503  // at the same offset, or perhaps new_st might have disappeared,
3504  // if it redundantly stored the same value (or zero to fresh memory).
3505
3506  // In any case, wire it in:
3507  phase->igvn_rehash_node_delayed(this);
3508  set_req(i, new_st);
3509
3510  // The caller may now kill the old guy.
3511  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3512  assert(check_st == new_st || check_st == NULL, "must be findable");
3513  assert(!is_complete(), "");
3514  return new_st;
3515}
3516
3517static bool store_constant(jlong* tiles, int num_tiles,
3518                           intptr_t st_off, int st_size,
3519                           jlong con) {
3520  if ((st_off & (st_size-1)) != 0)
3521    return false;               // strange store offset (assume size==2**N)
3522  address addr = (address)tiles + st_off;
3523  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3524  switch (st_size) {
3525  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3526  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3527  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3528  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3529  default: return false;        // strange store size (detect size!=2**N here)
3530  }
3531  return true;                  // return success to caller
3532}
3533
3534// Coalesce subword constants into int constants and possibly
3535// into long constants.  The goal, if the CPU permits,
3536// is to initialize the object with a small number of 64-bit tiles.
3537// Also, convert floating-point constants to bit patterns.
3538// Non-constants are not relevant to this pass.
3539//
3540// In terms of the running example on InitializeNode::InitializeNode
3541// and InitializeNode::capture_store, here is the transformation
3542// of rawstore1 and rawstore2 into rawstore12:
3543//   alloc = (Allocate ...)
3544//   rawoop = alloc.RawAddress
3545//   tile12 = 0x00010002
3546//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3547//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3548//
3549void
3550InitializeNode::coalesce_subword_stores(intptr_t header_size,
3551                                        Node* size_in_bytes,
3552                                        PhaseGVN* phase) {
3553  Compile* C = phase->C;
3554
3555  assert(stores_are_sane(phase), "");
3556  // Note:  After this pass, they are not completely sane,
3557  // since there may be some overlaps.
3558
3559  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3560
3561  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3562  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3563  size_limit = MIN2(size_limit, ti_limit);
3564  size_limit = align_up(size_limit, BytesPerLong);
3565  int num_tiles = size_limit / BytesPerLong;
3566
3567  // allocate space for the tile map:
3568  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3569  jlong  tiles_buf[small_len];
3570  Node*  nodes_buf[small_len];
3571  jlong  inits_buf[small_len];
3572  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3573                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3574  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3575                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3576  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3577                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3578  // tiles: exact bitwise model of all primitive constants
3579  // nodes: last constant-storing node subsumed into the tiles model
3580  // inits: which bytes (in each tile) are touched by any initializations
3581
3582  //// Pass A: Fill in the tile model with any relevant stores.
3583
3584  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3585  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3586  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3587  Node* zmem = zero_memory(); // initially zero memory state
3588  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3589    Node* st = in(i);
3590    intptr_t st_off = get_store_offset(st, phase);
3591
3592    // Figure out the store's offset and constant value:
3593    if (st_off < header_size)             continue; //skip (ignore header)
3594    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3595    int st_size = st->as_Store()->memory_size();
3596    if (st_off + st_size > size_limit)    break;
3597
3598    // Record which bytes are touched, whether by constant or not.
3599    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3600      continue;                 // skip (strange store size)
3601
3602    const Type* val = phase->type(st->in(MemNode::ValueIn));
3603    if (!val->singleton())                continue; //skip (non-con store)
3604    BasicType type = val->basic_type();
3605
3606    jlong con = 0;
3607    switch (type) {
3608    case T_INT:    con = val->is_int()->get_con();  break;
3609    case T_LONG:   con = val->is_long()->get_con(); break;
3610    case T_FLOAT:  con = jint_cast(val->getf());    break;
3611    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3612    default:                              continue; //skip (odd store type)
3613    }
3614
3615    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3616        st->Opcode() == Op_StoreL) {
3617      continue;                 // This StoreL is already optimal.
3618    }
3619
3620    // Store down the constant.
3621    store_constant(tiles, num_tiles, st_off, st_size, con);
3622
3623    intptr_t j = st_off >> LogBytesPerLong;
3624
3625    if (type == T_INT && st_size == BytesPerInt
3626        && (st_off & BytesPerInt) == BytesPerInt) {
3627      jlong lcon = tiles[j];
3628      if (!Matcher::isSimpleConstant64(lcon) &&
3629          st->Opcode() == Op_StoreI) {
3630        // This StoreI is already optimal by itself.
3631        jint* intcon = (jint*) &tiles[j];
3632        intcon[1] = 0;  // undo the store_constant()
3633
3634        // If the previous store is also optimal by itself, back up and
3635        // undo the action of the previous loop iteration... if we can.
3636        // But if we can't, just let the previous half take care of itself.
3637        st = nodes[j];
3638        st_off -= BytesPerInt;
3639        con = intcon[0];
3640        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3641          assert(st_off >= header_size, "still ignoring header");
3642          assert(get_store_offset(st, phase) == st_off, "must be");
3643          assert(in(i-1) == zmem, "must be");
3644          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3645          assert(con == tcon->is_int()->get_con(), "must be");
3646          // Undo the effects of the previous loop trip, which swallowed st:
3647          intcon[0] = 0;        // undo store_constant()
3648          set_req(i-1, st);     // undo set_req(i, zmem)
3649          nodes[j] = NULL;      // undo nodes[j] = st
3650          --old_subword;        // undo ++old_subword
3651        }
3652        continue;               // This StoreI is already optimal.
3653      }
3654    }
3655
3656    // This store is not needed.
3657    set_req(i, zmem);
3658    nodes[j] = st;              // record for the moment
3659    if (st_size < BytesPerLong) // something has changed
3660          ++old_subword;        // includes int/float, but who's counting...
3661    else  ++old_long;
3662  }
3663
3664  if ((old_subword + old_long) == 0)
3665    return;                     // nothing more to do
3666
3667  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3668  // Be sure to insert them before overlapping non-constant stores.
3669  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3670  for (int j = 0; j < num_tiles; j++) {
3671    jlong con  = tiles[j];
3672    jlong init = inits[j];
3673    if (con == 0)  continue;
3674    jint con0,  con1;           // split the constant, address-wise
3675    jint init0, init1;          // split the init map, address-wise
3676    { union { jlong con; jint intcon[2]; } u;
3677      u.con = con;
3678      con0  = u.intcon[0];
3679      con1  = u.intcon[1];
3680      u.con = init;
3681      init0 = u.intcon[0];
3682      init1 = u.intcon[1];
3683    }
3684
3685    Node* old = nodes[j];
3686    assert(old != NULL, "need the prior store");
3687    intptr_t offset = (j * BytesPerLong);
3688
3689    bool split = !Matcher::isSimpleConstant64(con);
3690
3691    if (offset < header_size) {
3692      assert(offset + BytesPerInt >= header_size, "second int counts");
3693      assert(*(jint*)&tiles[j] == 0, "junk in header");
3694      split = true;             // only the second word counts
3695      // Example:  int a[] = { 42 ... }
3696    } else if (con0 == 0 && init0 == -1) {
3697      split = true;             // first word is covered by full inits
3698      // Example:  int a[] = { ... foo(), 42 ... }
3699    } else if (con1 == 0 && init1 == -1) {
3700      split = true;             // second word is covered by full inits
3701      // Example:  int a[] = { ... 42, foo() ... }
3702    }
3703
3704    // Here's a case where init0 is neither 0 nor -1:
3705    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3706    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3707    // In this case the tile is not split; it is (jlong)42.
3708    // The big tile is stored down, and then the foo() value is inserted.
3709    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3710
3711    Node* ctl = old->in(MemNode::Control);
3712    Node* adr = make_raw_address(offset, phase);
3713    const TypePtr* atp = TypeRawPtr::BOTTOM;
3714
3715    // One or two coalesced stores to plop down.
3716    Node*    st[2];
3717    intptr_t off[2];
3718    int  nst = 0;
3719    if (!split) {
3720      ++new_long;
3721      off[nst] = offset;
3722      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3723                                  phase->longcon(con), T_LONG, MemNode::unordered);
3724    } else {
3725      // Omit either if it is a zero.
3726      if (con0 != 0) {
3727        ++new_int;
3728        off[nst]  = offset;
3729        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3730                                    phase->intcon(con0), T_INT, MemNode::unordered);
3731      }
3732      if (con1 != 0) {
3733        ++new_int;
3734        offset += BytesPerInt;
3735        adr = make_raw_address(offset, phase);
3736        off[nst]  = offset;
3737        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3738                                    phase->intcon(con1), T_INT, MemNode::unordered);
3739      }
3740    }
3741
3742    // Insert second store first, then the first before the second.
3743    // Insert each one just before any overlapping non-constant stores.
3744    while (nst > 0) {
3745      Node* st1 = st[--nst];
3746      C->copy_node_notes_to(st1, old);
3747      st1 = phase->transform(st1);
3748      offset = off[nst];
3749      assert(offset >= header_size, "do not smash header");
3750      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3751      guarantee(ins_idx != 0, "must re-insert constant store");
3752      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3753      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3754        set_req(--ins_idx, st1);
3755      else
3756        ins_req(ins_idx, st1);
3757    }
3758  }
3759
3760  if (PrintCompilation && WizardMode)
3761    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3762                  old_subword, old_long, new_int, new_long);
3763  if (C->log() != NULL)
3764    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3765                   old_subword, old_long, new_int, new_long);
3766
3767  // Clean up any remaining occurrences of zmem:
3768  remove_extra_zeroes();
3769}
3770
3771// Explore forward from in(start) to find the first fully initialized
3772// word, and return its offset.  Skip groups of subword stores which
3773// together initialize full words.  If in(start) is itself part of a
3774// fully initialized word, return the offset of in(start).  If there
3775// are no following full-word stores, or if something is fishy, return
3776// a negative value.
3777intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3778  int       int_map = 0;
3779  intptr_t  int_map_off = 0;
3780  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3781
3782  for (uint i = start, limit = req(); i < limit; i++) {
3783    Node* st = in(i);
3784
3785    intptr_t st_off = get_store_offset(st, phase);
3786    if (st_off < 0)  break;  // return conservative answer
3787
3788    int st_size = st->as_Store()->memory_size();
3789    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3790      return st_off;            // we found a complete word init
3791    }
3792
3793    // update the map:
3794
3795    intptr_t this_int_off = align_down(st_off, BytesPerInt);
3796    if (this_int_off != int_map_off) {
3797      // reset the map:
3798      int_map = 0;
3799      int_map_off = this_int_off;
3800    }
3801
3802    int subword_off = st_off - this_int_off;
3803    int_map |= right_n_bits(st_size) << subword_off;
3804    if ((int_map & FULL_MAP) == FULL_MAP) {
3805      return this_int_off;      // we found a complete word init
3806    }
3807
3808    // Did this store hit or cross the word boundary?
3809    intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
3810    if (next_int_off == this_int_off + BytesPerInt) {
3811      // We passed the current int, without fully initializing it.
3812      int_map_off = next_int_off;
3813      int_map >>= BytesPerInt;
3814    } else if (next_int_off > this_int_off + BytesPerInt) {
3815      // We passed the current and next int.
3816      return this_int_off + BytesPerInt;
3817    }
3818  }
3819
3820  return -1;
3821}
3822
3823
3824// Called when the associated AllocateNode is expanded into CFG.
3825// At this point, we may perform additional optimizations.
3826// Linearize the stores by ascending offset, to make memory
3827// activity as coherent as possible.
3828Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3829                                      intptr_t header_size,
3830                                      Node* size_in_bytes,
3831                                      PhaseGVN* phase) {
3832  assert(!is_complete(), "not already complete");
3833  assert(stores_are_sane(phase), "");
3834  assert(allocation() != NULL, "must be present");
3835
3836  remove_extra_zeroes();
3837
3838  if (ReduceFieldZeroing || ReduceBulkZeroing)
3839    // reduce instruction count for common initialization patterns
3840    coalesce_subword_stores(header_size, size_in_bytes, phase);
3841
3842  Node* zmem = zero_memory();   // initially zero memory state
3843  Node* inits = zmem;           // accumulating a linearized chain of inits
3844  #ifdef ASSERT
3845  intptr_t first_offset = allocation()->minimum_header_size();
3846  intptr_t last_init_off = first_offset;  // previous init offset
3847  intptr_t last_init_end = first_offset;  // previous init offset+size
3848  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3849  #endif
3850  intptr_t zeroes_done = header_size;
3851
3852  bool do_zeroing = true;       // we might give up if inits are very sparse
3853  int  big_init_gaps = 0;       // how many large gaps have we seen?
3854
3855  if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3856  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3857
3858  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3859    Node* st = in(i);
3860    intptr_t st_off = get_store_offset(st, phase);
3861    if (st_off < 0)
3862      break;                    // unknown junk in the inits
3863    if (st->in(MemNode::Memory) != zmem)
3864      break;                    // complicated store chains somehow in list
3865
3866    int st_size = st->as_Store()->memory_size();
3867    intptr_t next_init_off = st_off + st_size;
3868
3869    if (do_zeroing && zeroes_done < next_init_off) {
3870      // See if this store needs a zero before it or under it.
3871      intptr_t zeroes_needed = st_off;
3872
3873      if (st_size < BytesPerInt) {
3874        // Look for subword stores which only partially initialize words.
3875        // If we find some, we must lay down some word-level zeroes first,
3876        // underneath the subword stores.
3877        //
3878        // Examples:
3879        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3880        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3881        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3882        //
3883        // Note:  coalesce_subword_stores may have already done this,
3884        // if it was prompted by constant non-zero subword initializers.
3885        // But this case can still arise with non-constant stores.
3886
3887        intptr_t next_full_store = find_next_fullword_store(i, phase);
3888
3889        // In the examples above:
3890        //   in(i)          p   q   r   s     x   y     z
3891        //   st_off        12  13  14  15    12  13    14
3892        //   st_size        1   1   1   1     1   1     1
3893        //   next_full_s.  12  16  16  16    16  16    16
3894        //   z's_done      12  16  16  16    12  16    12
3895        //   z's_needed    12  16  16  16    16  16    16
3896        //   zsize          0   0   0   0     4   0     4
3897        if (next_full_store < 0) {
3898          // Conservative tack:  Zero to end of current word.
3899          zeroes_needed = align_up(zeroes_needed, BytesPerInt);
3900        } else {
3901          // Zero to beginning of next fully initialized word.
3902          // Or, don't zero at all, if we are already in that word.
3903          assert(next_full_store >= zeroes_needed, "must go forward");
3904          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3905          zeroes_needed = next_full_store;
3906        }
3907      }
3908
3909      if (zeroes_needed > zeroes_done) {
3910        intptr_t zsize = zeroes_needed - zeroes_done;
3911        // Do some incremental zeroing on rawmem, in parallel with inits.
3912        zeroes_done = align_down(zeroes_done, BytesPerInt);
3913        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3914                                              zeroes_done, zeroes_needed,
3915                                              phase);
3916        zeroes_done = zeroes_needed;
3917        if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3918          do_zeroing = false;   // leave the hole, next time
3919      }
3920    }
3921
3922    // Collect the store and move on:
3923    st->set_req(MemNode::Memory, inits);
3924    inits = st;                 // put it on the linearized chain
3925    set_req(i, zmem);           // unhook from previous position
3926
3927    if (zeroes_done == st_off)
3928      zeroes_done = next_init_off;
3929
3930    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3931
3932    #ifdef ASSERT
3933    // Various order invariants.  Weaker than stores_are_sane because
3934    // a large constant tile can be filled in by smaller non-constant stores.
3935    assert(st_off >= last_init_off, "inits do not reverse");
3936    last_init_off = st_off;
3937    const Type* val = NULL;
3938    if (st_size >= BytesPerInt &&
3939        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3940        (int)val->basic_type() < (int)T_OBJECT) {
3941      assert(st_off >= last_tile_end, "tiles do not overlap");
3942      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3943      last_tile_end = MAX2(last_tile_end, next_init_off);
3944    } else {
3945      intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
3946      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3947      assert(st_off      >= last_init_end, "inits do not overlap");
3948      last_init_end = next_init_off;  // it's a non-tile
3949    }
3950    #endif //ASSERT
3951  }
3952
3953  remove_extra_zeroes();        // clear out all the zmems left over
3954  add_req(inits);
3955
3956  if (!(UseTLAB && ZeroTLAB)) {
3957    // If anything remains to be zeroed, zero it all now.
3958    zeroes_done = align_down(zeroes_done, BytesPerInt);
3959    // if it is the last unused 4 bytes of an instance, forget about it
3960    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3961    if (zeroes_done + BytesPerLong >= size_limit) {
3962      AllocateNode* alloc = allocation();
3963      assert(alloc != NULL, "must be present");
3964      if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
3965        Node* klass_node = alloc->in(AllocateNode::KlassNode);
3966        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3967        if (zeroes_done == k->layout_helper())
3968          zeroes_done = size_limit;
3969      }
3970    }
3971    if (zeroes_done < size_limit) {
3972      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3973                                            zeroes_done, size_in_bytes, phase);
3974    }
3975  }
3976
3977  set_complete(phase);
3978  return rawmem;
3979}
3980
3981
3982#ifdef ASSERT
3983bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3984  if (is_complete())
3985    return true;                // stores could be anything at this point
3986  assert(allocation() != NULL, "must be present");
3987  intptr_t last_off = allocation()->minimum_header_size();
3988  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3989    Node* st = in(i);
3990    intptr_t st_off = get_store_offset(st, phase);
3991    if (st_off < 0)  continue;  // ignore dead garbage
3992    if (last_off > st_off) {
3993      tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3994      this->dump(2);
3995      assert(false, "ascending store offsets");
3996      return false;
3997    }
3998    last_off = st_off + st->as_Store()->memory_size();
3999  }
4000  return true;
4001}
4002#endif //ASSERT
4003
4004
4005
4006
4007//============================MergeMemNode=====================================
4008//
4009// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4010// contributing store or call operations.  Each contributor provides the memory
4011// state for a particular "alias type" (see Compile::alias_type).  For example,
4012// if a MergeMem has an input X for alias category #6, then any memory reference
4013// to alias category #6 may use X as its memory state input, as an exact equivalent
4014// to using the MergeMem as a whole.
4015//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4016//
4017// (Here, the <N> notation gives the index of the relevant adr_type.)
4018//
4019// In one special case (and more cases in the future), alias categories overlap.
4020// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4021// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4022// it is exactly equivalent to that state W:
4023//   MergeMem(<Bot>: W) <==> W
4024//
4025// Usually, the merge has more than one input.  In that case, where inputs
4026// overlap (i.e., one is Bot), the narrower alias type determines the memory
4027// state for that type, and the wider alias type (Bot) fills in everywhere else:
4028//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4029//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4030//
4031// A merge can take a "wide" memory state as one of its narrow inputs.
4032// This simply means that the merge observes out only the relevant parts of
4033// the wide input.  That is, wide memory states arriving at narrow merge inputs
4034// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4035//
4036// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4037// and that memory slices "leak through":
4038//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4039//
4040// But, in such a cascade, repeated memory slices can "block the leak":
4041//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4042//
4043// In the last example, Y is not part of the combined memory state of the
4044// outermost MergeMem.  The system must, of course, prevent unschedulable
4045// memory states from arising, so you can be sure that the state Y is somehow
4046// a precursor to state Y'.
4047//
4048//
4049// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4050// of each MergeMemNode array are exactly the numerical alias indexes, including
4051// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4052// Compile::alias_type (and kin) produce and manage these indexes.
4053//
4054// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4055// (Note that this provides quick access to the top node inside MergeMem methods,
4056// without the need to reach out via TLS to Compile::current.)
4057//
4058// As a consequence of what was just described, a MergeMem that represents a full
4059// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4060// containing all alias categories.
4061//
4062// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4063//
4064// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4065// a memory state for the alias type <N>, or else the top node, meaning that
4066// there is no particular input for that alias type.  Note that the length of
4067// a MergeMem is variable, and may be extended at any time to accommodate new
4068// memory states at larger alias indexes.  When merges grow, they are of course
4069// filled with "top" in the unused in() positions.
4070//
4071// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4072// (Top was chosen because it works smoothly with passes like GCM.)
4073//
4074// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4075// the type of random VM bits like TLS references.)  Since it is always the
4076// first non-Bot memory slice, some low-level loops use it to initialize an
4077// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4078//
4079//
4080// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4081// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4082// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4083// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4084// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4085// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4086//
4087// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4088// really that different from the other memory inputs.  An abbreviation called
4089// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4090//
4091//
4092// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4093// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4094// that "emerges though" the base memory will be marked as excluding the alias types
4095// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4096//
4097//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4098//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4099//
4100// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4101// (It is currently unimplemented.)  As you can see, the resulting merge is
4102// actually a disjoint union of memory states, rather than an overlay.
4103//
4104
4105//------------------------------MergeMemNode-----------------------------------
4106Node* MergeMemNode::make_empty_memory() {
4107  Node* empty_memory = (Node*) Compile::current()->top();
4108  assert(empty_memory->is_top(), "correct sentinel identity");
4109  return empty_memory;
4110}
4111
4112MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4113  init_class_id(Class_MergeMem);
4114  // all inputs are nullified in Node::Node(int)
4115  // set_input(0, NULL);  // no control input
4116
4117  // Initialize the edges uniformly to top, for starters.
4118  Node* empty_mem = make_empty_memory();
4119  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4120    init_req(i,empty_mem);
4121  }
4122  assert(empty_memory() == empty_mem, "");
4123
4124  if( new_base != NULL && new_base->is_MergeMem() ) {
4125    MergeMemNode* mdef = new_base->as_MergeMem();
4126    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4127    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4128      mms.set_memory(mms.memory2());
4129    }
4130    assert(base_memory() == mdef->base_memory(), "");
4131  } else {
4132    set_base_memory(new_base);
4133  }
4134}
4135
4136// Make a new, untransformed MergeMem with the same base as 'mem'.
4137// If mem is itself a MergeMem, populate the result with the same edges.
4138MergeMemNode* MergeMemNode::make(Node* mem) {
4139  return new MergeMemNode(mem);
4140}
4141
4142//------------------------------cmp--------------------------------------------
4143uint MergeMemNode::hash() const { return NO_HASH; }
4144uint MergeMemNode::cmp( const Node &n ) const {
4145  return (&n == this);          // Always fail except on self
4146}
4147
4148//------------------------------Identity---------------------------------------
4149Node* MergeMemNode::Identity(PhaseGVN* phase) {
4150  // Identity if this merge point does not record any interesting memory
4151  // disambiguations.
4152  Node* base_mem = base_memory();
4153  Node* empty_mem = empty_memory();
4154  if (base_mem != empty_mem) {  // Memory path is not dead?
4155    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4156      Node* mem = in(i);
4157      if (mem != empty_mem && mem != base_mem) {
4158        return this;            // Many memory splits; no change
4159      }
4160    }
4161  }
4162  return base_mem;              // No memory splits; ID on the one true input
4163}
4164
4165//------------------------------Ideal------------------------------------------
4166// This method is invoked recursively on chains of MergeMem nodes
4167Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4168  // Remove chain'd MergeMems
4169  //
4170  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4171  // relative to the "in(Bot)".  Since we are patching both at the same time,
4172  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4173  // but rewrite each "in(i)" relative to the new "in(Bot)".
4174  Node *progress = NULL;
4175
4176
4177  Node* old_base = base_memory();
4178  Node* empty_mem = empty_memory();
4179  if (old_base == empty_mem)
4180    return NULL; // Dead memory path.
4181
4182  MergeMemNode* old_mbase;
4183  if (old_base != NULL && old_base->is_MergeMem())
4184    old_mbase = old_base->as_MergeMem();
4185  else
4186    old_mbase = NULL;
4187  Node* new_base = old_base;
4188
4189  // simplify stacked MergeMems in base memory
4190  if (old_mbase)  new_base = old_mbase->base_memory();
4191
4192  // the base memory might contribute new slices beyond my req()
4193  if (old_mbase)  grow_to_match(old_mbase);
4194
4195  // Look carefully at the base node if it is a phi.
4196  PhiNode* phi_base;
4197  if (new_base != NULL && new_base->is_Phi())
4198    phi_base = new_base->as_Phi();
4199  else
4200    phi_base = NULL;
4201
4202  Node*    phi_reg = NULL;
4203  uint     phi_len = (uint)-1;
4204  if (phi_base != NULL && !phi_base->is_copy()) {
4205    // do not examine phi if degraded to a copy
4206    phi_reg = phi_base->region();
4207    phi_len = phi_base->req();
4208    // see if the phi is unfinished
4209    for (uint i = 1; i < phi_len; i++) {
4210      if (phi_base->in(i) == NULL) {
4211        // incomplete phi; do not look at it yet!
4212        phi_reg = NULL;
4213        phi_len = (uint)-1;
4214        break;
4215      }
4216    }
4217  }
4218
4219  // Note:  We do not call verify_sparse on entry, because inputs
4220  // can normalize to the base_memory via subsume_node or similar
4221  // mechanisms.  This method repairs that damage.
4222
4223  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4224
4225  // Look at each slice.
4226  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4227    Node* old_in = in(i);
4228    // calculate the old memory value
4229    Node* old_mem = old_in;
4230    if (old_mem == empty_mem)  old_mem = old_base;
4231    assert(old_mem == memory_at(i), "");
4232
4233    // maybe update (reslice) the old memory value
4234
4235    // simplify stacked MergeMems
4236    Node* new_mem = old_mem;
4237    MergeMemNode* old_mmem;
4238    if (old_mem != NULL && old_mem->is_MergeMem())
4239      old_mmem = old_mem->as_MergeMem();
4240    else
4241      old_mmem = NULL;
4242    if (old_mmem == this) {
4243      // This can happen if loops break up and safepoints disappear.
4244      // A merge of BotPtr (default) with a RawPtr memory derived from a
4245      // safepoint can be rewritten to a merge of the same BotPtr with
4246      // the BotPtr phi coming into the loop.  If that phi disappears
4247      // also, we can end up with a self-loop of the mergemem.
4248      // In general, if loops degenerate and memory effects disappear,
4249      // a mergemem can be left looking at itself.  This simply means
4250      // that the mergemem's default should be used, since there is
4251      // no longer any apparent effect on this slice.
4252      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4253      //       from start.  Update the input to TOP.
4254      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4255    }
4256    else if (old_mmem != NULL) {
4257      new_mem = old_mmem->memory_at(i);
4258    }
4259    // else preceding memory was not a MergeMem
4260
4261    // replace equivalent phis (unfortunately, they do not GVN together)
4262    if (new_mem != NULL && new_mem != new_base &&
4263        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4264      if (new_mem->is_Phi()) {
4265        PhiNode* phi_mem = new_mem->as_Phi();
4266        for (uint i = 1; i < phi_len; i++) {
4267          if (phi_base->in(i) != phi_mem->in(i)) {
4268            phi_mem = NULL;
4269            break;
4270          }
4271        }
4272        if (phi_mem != NULL) {
4273          // equivalent phi nodes; revert to the def
4274          new_mem = new_base;
4275        }
4276      }
4277    }
4278
4279    // maybe store down a new value
4280    Node* new_in = new_mem;
4281    if (new_in == new_base)  new_in = empty_mem;
4282
4283    if (new_in != old_in) {
4284      // Warning:  Do not combine this "if" with the previous "if"
4285      // A memory slice might have be be rewritten even if it is semantically
4286      // unchanged, if the base_memory value has changed.
4287      set_req(i, new_in);
4288      progress = this;          // Report progress
4289    }
4290  }
4291
4292  if (new_base != old_base) {
4293    set_req(Compile::AliasIdxBot, new_base);
4294    // Don't use set_base_memory(new_base), because we need to update du.
4295    assert(base_memory() == new_base, "");
4296    progress = this;
4297  }
4298
4299  if( base_memory() == this ) {
4300    // a self cycle indicates this memory path is dead
4301    set_req(Compile::AliasIdxBot, empty_mem);
4302  }
4303
4304  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4305  // Recursion must occur after the self cycle check above
4306  if( base_memory()->is_MergeMem() ) {
4307    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4308    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4309    if( m != NULL && (m->is_top() ||
4310        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4311      // propagate rollup of dead cycle to self
4312      set_req(Compile::AliasIdxBot, empty_mem);
4313    }
4314  }
4315
4316  if( base_memory() == empty_mem ) {
4317    progress = this;
4318    // Cut inputs during Parse phase only.
4319    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4320    if( !can_reshape ) {
4321      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4322        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4323      }
4324    }
4325  }
4326
4327  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4328    // Check if PhiNode::Ideal's "Split phis through memory merges"
4329    // transform should be attempted. Look for this->phi->this cycle.
4330    uint merge_width = req();
4331    if (merge_width > Compile::AliasIdxRaw) {
4332      PhiNode* phi = base_memory()->as_Phi();
4333      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4334        if (phi->in(i) == this) {
4335          phase->is_IterGVN()->_worklist.push(phi);
4336          break;
4337        }
4338      }
4339    }
4340  }
4341
4342  assert(progress || verify_sparse(), "please, no dups of base");
4343  return progress;
4344}
4345
4346//-------------------------set_base_memory-------------------------------------
4347void MergeMemNode::set_base_memory(Node *new_base) {
4348  Node* empty_mem = empty_memory();
4349  set_req(Compile::AliasIdxBot, new_base);
4350  assert(memory_at(req()) == new_base, "must set default memory");
4351  // Clear out other occurrences of new_base:
4352  if (new_base != empty_mem) {
4353    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4354      if (in(i) == new_base)  set_req(i, empty_mem);
4355    }
4356  }
4357}
4358
4359//------------------------------out_RegMask------------------------------------
4360const RegMask &MergeMemNode::out_RegMask() const {
4361  return RegMask::Empty;
4362}
4363
4364//------------------------------dump_spec--------------------------------------
4365#ifndef PRODUCT
4366void MergeMemNode::dump_spec(outputStream *st) const {
4367  st->print(" {");
4368  Node* base_mem = base_memory();
4369  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4370    Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4371    if (mem == base_mem) { st->print(" -"); continue; }
4372    st->print( " N%d:", mem->_idx );
4373    Compile::current()->get_adr_type(i)->dump_on(st);
4374  }
4375  st->print(" }");
4376}
4377#endif // !PRODUCT
4378
4379
4380#ifdef ASSERT
4381static bool might_be_same(Node* a, Node* b) {
4382  if (a == b)  return true;
4383  if (!(a->is_Phi() || b->is_Phi()))  return false;
4384  // phis shift around during optimization
4385  return true;  // pretty stupid...
4386}
4387
4388// verify a narrow slice (either incoming or outgoing)
4389static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4390  if (!VerifyAliases)                return;  // don't bother to verify unless requested
4391  if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4392  if (Node::in_dump())               return;  // muzzle asserts when printing
4393  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4394  assert(n != NULL, "");
4395  // Elide intervening MergeMem's
4396  while (n->is_MergeMem()) {
4397    n = n->as_MergeMem()->memory_at(alias_idx);
4398  }
4399  Compile* C = Compile::current();
4400  const TypePtr* n_adr_type = n->adr_type();
4401  if (n == m->empty_memory()) {
4402    // Implicit copy of base_memory()
4403  } else if (n_adr_type != TypePtr::BOTTOM) {
4404    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4405    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4406  } else {
4407    // A few places like make_runtime_call "know" that VM calls are narrow,
4408    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4409    bool expected_wide_mem = false;
4410    if (n == m->base_memory()) {
4411      expected_wide_mem = true;
4412    } else if (alias_idx == Compile::AliasIdxRaw ||
4413               n == m->memory_at(Compile::AliasIdxRaw)) {
4414      expected_wide_mem = true;
4415    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4416      // memory can "leak through" calls on channels that
4417      // are write-once.  Allow this also.
4418      expected_wide_mem = true;
4419    }
4420    assert(expected_wide_mem, "expected narrow slice replacement");
4421  }
4422}
4423#else // !ASSERT
4424#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4425#endif
4426
4427
4428//-----------------------------memory_at---------------------------------------
4429Node* MergeMemNode::memory_at(uint alias_idx) const {
4430  assert(alias_idx >= Compile::AliasIdxRaw ||
4431         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4432         "must avoid base_memory and AliasIdxTop");
4433
4434  // Otherwise, it is a narrow slice.
4435  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4436  Compile *C = Compile::current();
4437  if (is_empty_memory(n)) {
4438    // the array is sparse; empty slots are the "top" node
4439    n = base_memory();
4440    assert(Node::in_dump()
4441           || n == NULL || n->bottom_type() == Type::TOP
4442           || n->adr_type() == NULL // address is TOP
4443           || n->adr_type() == TypePtr::BOTTOM
4444           || n->adr_type() == TypeRawPtr::BOTTOM
4445           || Compile::current()->AliasLevel() == 0,
4446           "must be a wide memory");
4447    // AliasLevel == 0 if we are organizing the memory states manually.
4448    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4449  } else {
4450    // make sure the stored slice is sane
4451    #ifdef ASSERT
4452    if (VMError::is_error_reported() || Node::in_dump()) {
4453    } else if (might_be_same(n, base_memory())) {
4454      // Give it a pass:  It is a mostly harmless repetition of the base.
4455      // This can arise normally from node subsumption during optimization.
4456    } else {
4457      verify_memory_slice(this, alias_idx, n);
4458    }
4459    #endif
4460  }
4461  return n;
4462}
4463
4464//---------------------------set_memory_at-------------------------------------
4465void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4466  verify_memory_slice(this, alias_idx, n);
4467  Node* empty_mem = empty_memory();
4468  if (n == base_memory())  n = empty_mem;  // collapse default
4469  uint need_req = alias_idx+1;
4470  if (req() < need_req) {
4471    if (n == empty_mem)  return;  // already the default, so do not grow me
4472    // grow the sparse array
4473    do {
4474      add_req(empty_mem);
4475    } while (req() < need_req);
4476  }
4477  set_req( alias_idx, n );
4478}
4479
4480
4481
4482//--------------------------iteration_setup------------------------------------
4483void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4484  if (other != NULL) {
4485    grow_to_match(other);
4486    // invariant:  the finite support of mm2 is within mm->req()
4487    #ifdef ASSERT
4488    for (uint i = req(); i < other->req(); i++) {
4489      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4490    }
4491    #endif
4492  }
4493  // Replace spurious copies of base_memory by top.
4494  Node* base_mem = base_memory();
4495  if (base_mem != NULL && !base_mem->is_top()) {
4496    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4497      if (in(i) == base_mem)
4498        set_req(i, empty_memory());
4499    }
4500  }
4501}
4502
4503//---------------------------grow_to_match-------------------------------------
4504void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4505  Node* empty_mem = empty_memory();
4506  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4507  // look for the finite support of the other memory
4508  for (uint i = other->req(); --i >= req(); ) {
4509    if (other->in(i) != empty_mem) {
4510      uint new_len = i+1;
4511      while (req() < new_len)  add_req(empty_mem);
4512      break;
4513    }
4514  }
4515}
4516
4517//---------------------------verify_sparse-------------------------------------
4518#ifndef PRODUCT
4519bool MergeMemNode::verify_sparse() const {
4520  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4521  Node* base_mem = base_memory();
4522  // The following can happen in degenerate cases, since empty==top.
4523  if (is_empty_memory(base_mem))  return true;
4524  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4525    assert(in(i) != NULL, "sane slice");
4526    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4527  }
4528  return true;
4529}
4530
4531bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4532  Node* n;
4533  n = mm->in(idx);
4534  if (mem == n)  return true;  // might be empty_memory()
4535  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4536  if (mem == n)  return true;
4537  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4538    if (mem == n)  return true;
4539    if (n == NULL)  break;
4540  }
4541  return false;
4542}
4543#endif // !PRODUCT
4544