memnode.cpp revision 13243:7235bc30c0d7
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "compiler/compileLog.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "oops/objArrayKlass.hpp"
31#include "opto/addnode.hpp"
32#include "opto/arraycopynode.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/compile.hpp"
35#include "opto/connode.hpp"
36#include "opto/convertnode.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/machnode.hpp"
39#include "opto/matcher.hpp"
40#include "opto/memnode.hpp"
41#include "opto/mulnode.hpp"
42#include "opto/narrowptrnode.hpp"
43#include "opto/phaseX.hpp"
44#include "opto/regmask.hpp"
45#include "utilities/copy.hpp"
46#include "utilities/vmError.hpp"
47
48// Portions of code courtesy of Clifford Click
49
50// Optimization - Graph Style
51
52static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
53
54//=============================================================================
55uint MemNode::size_of() const { return sizeof(*this); }
56
57const TypePtr *MemNode::adr_type() const {
58  Node* adr = in(Address);
59  if (adr == NULL)  return NULL; // node is dead
60  const TypePtr* cross_check = NULL;
61  DEBUG_ONLY(cross_check = _adr_type);
62  return calculate_adr_type(adr->bottom_type(), cross_check);
63}
64
65bool MemNode::check_if_adr_maybe_raw(Node* adr) {
66  if (adr != NULL) {
67    if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
68      return true;
69    }
70  }
71  return false;
72}
73
74#ifndef PRODUCT
75void MemNode::dump_spec(outputStream *st) const {
76  if (in(Address) == NULL)  return; // node is dead
77#ifndef ASSERT
78  // fake the missing field
79  const TypePtr* _adr_type = NULL;
80  if (in(Address) != NULL)
81    _adr_type = in(Address)->bottom_type()->isa_ptr();
82#endif
83  dump_adr_type(this, _adr_type, st);
84
85  Compile* C = Compile::current();
86  if (C->alias_type(_adr_type)->is_volatile()) {
87    st->print(" Volatile!");
88  }
89  if (_unaligned_access) {
90    st->print(" unaligned");
91  }
92  if (_mismatched_access) {
93    st->print(" mismatched");
94  }
95}
96
97void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
98  st->print(" @");
99  if (adr_type == NULL) {
100    st->print("NULL");
101  } else {
102    adr_type->dump_on(st);
103    Compile* C = Compile::current();
104    Compile::AliasType* atp = NULL;
105    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
106    if (atp == NULL)
107      st->print(", idx=?\?;");
108    else if (atp->index() == Compile::AliasIdxBot)
109      st->print(", idx=Bot;");
110    else if (atp->index() == Compile::AliasIdxTop)
111      st->print(", idx=Top;");
112    else if (atp->index() == Compile::AliasIdxRaw)
113      st->print(", idx=Raw;");
114    else {
115      ciField* field = atp->field();
116      if (field) {
117        st->print(", name=");
118        field->print_name_on(st);
119      }
120      st->print(", idx=%d;", atp->index());
121    }
122  }
123}
124
125extern void print_alias_types();
126
127#endif
128
129Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
130  assert((t_oop != NULL), "sanity");
131  bool is_instance = t_oop->is_known_instance_field();
132  bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
133                             (load != NULL) && load->is_Load() &&
134                             (phase->is_IterGVN() != NULL);
135  if (!(is_instance || is_boxed_value_load))
136    return mchain;  // don't try to optimize non-instance types
137  uint instance_id = t_oop->instance_id();
138  Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
139  Node *prev = NULL;
140  Node *result = mchain;
141  while (prev != result) {
142    prev = result;
143    if (result == start_mem)
144      break;  // hit one of our sentinels
145    // skip over a call which does not affect this memory slice
146    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
147      Node *proj_in = result->in(0);
148      if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
149        break;  // hit one of our sentinels
150      } else if (proj_in->is_Call()) {
151        // ArrayCopyNodes processed here as well
152        CallNode *call = proj_in->as_Call();
153        if (!call->may_modify(t_oop, phase)) { // returns false for instances
154          result = call->in(TypeFunc::Memory);
155        }
156      } else if (proj_in->is_Initialize()) {
157        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
158        // Stop if this is the initialization for the object instance which
159        // contains this memory slice, otherwise skip over it.
160        if ((alloc == NULL) || (alloc->_idx == instance_id)) {
161          break;
162        }
163        if (is_instance) {
164          result = proj_in->in(TypeFunc::Memory);
165        } else if (is_boxed_value_load) {
166          Node* klass = alloc->in(AllocateNode::KlassNode);
167          const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
168          if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
169            result = proj_in->in(TypeFunc::Memory); // not related allocation
170          }
171        }
172      } else if (proj_in->is_MemBar()) {
173        ArrayCopyNode* ac = NULL;
174        if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
175          break;
176        }
177        result = proj_in->in(TypeFunc::Memory);
178      } else {
179        assert(false, "unexpected projection");
180      }
181    } else if (result->is_ClearArray()) {
182      if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
183        // Can not bypass initialization of the instance
184        // we are looking for.
185        break;
186      }
187      // Otherwise skip it (the call updated 'result' value).
188    } else if (result->is_MergeMem()) {
189      result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
190    }
191  }
192  return result;
193}
194
195Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
196  const TypeOopPtr* t_oop = t_adr->isa_oopptr();
197  if (t_oop == NULL)
198    return mchain;  // don't try to optimize non-oop types
199  Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
200  bool is_instance = t_oop->is_known_instance_field();
201  PhaseIterGVN *igvn = phase->is_IterGVN();
202  if (is_instance && igvn != NULL  && result->is_Phi()) {
203    PhiNode *mphi = result->as_Phi();
204    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
205    const TypePtr *t = mphi->adr_type();
206    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
207        t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
208        t->is_oopptr()->cast_to_exactness(true)
209         ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
210         ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
211      // clone the Phi with our address type
212      result = mphi->split_out_instance(t_adr, igvn);
213    } else {
214      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
215    }
216  }
217  return result;
218}
219
220static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
221  uint alias_idx = phase->C->get_alias_index(tp);
222  Node *mem = mmem;
223#ifdef ASSERT
224  {
225    // Check that current type is consistent with the alias index used during graph construction
226    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
227    bool consistent =  adr_check == NULL || adr_check->empty() ||
228                       phase->C->must_alias(adr_check, alias_idx );
229    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
230    if( !consistent && adr_check != NULL && !adr_check->empty() &&
231               tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
232        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
233        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
234          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
235          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
236      // don't assert if it is dead code.
237      consistent = true;
238    }
239    if( !consistent ) {
240      st->print("alias_idx==%d, adr_check==", alias_idx);
241      if( adr_check == NULL ) {
242        st->print("NULL");
243      } else {
244        adr_check->dump();
245      }
246      st->cr();
247      print_alias_types();
248      assert(consistent, "adr_check must match alias idx");
249    }
250  }
251#endif
252  // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
253  // means an array I have not precisely typed yet.  Do not do any
254  // alias stuff with it any time soon.
255  const TypeOopPtr *toop = tp->isa_oopptr();
256  if( tp->base() != Type::AnyPtr &&
257      !(toop &&
258        toop->klass() != NULL &&
259        toop->klass()->is_java_lang_Object() &&
260        toop->offset() == Type::OffsetBot) ) {
261    // compress paths and change unreachable cycles to TOP
262    // If not, we can update the input infinitely along a MergeMem cycle
263    // Equivalent code in PhiNode::Ideal
264    Node* m  = phase->transform(mmem);
265    // If transformed to a MergeMem, get the desired slice
266    // Otherwise the returned node represents memory for every slice
267    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
268    // Update input if it is progress over what we have now
269  }
270  return mem;
271}
272
273//--------------------------Ideal_common---------------------------------------
274// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
275// Unhook non-raw memories from complete (macro-expanded) initializations.
276Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
277  // If our control input is a dead region, kill all below the region
278  Node *ctl = in(MemNode::Control);
279  if (ctl && remove_dead_region(phase, can_reshape))
280    return this;
281  ctl = in(MemNode::Control);
282  // Don't bother trying to transform a dead node
283  if (ctl && ctl->is_top())  return NodeSentinel;
284
285  PhaseIterGVN *igvn = phase->is_IterGVN();
286  // Wait if control on the worklist.
287  if (ctl && can_reshape && igvn != NULL) {
288    Node* bol = NULL;
289    Node* cmp = NULL;
290    if (ctl->in(0)->is_If()) {
291      assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
292      bol = ctl->in(0)->in(1);
293      if (bol->is_Bool())
294        cmp = ctl->in(0)->in(1)->in(1);
295    }
296    if (igvn->_worklist.member(ctl) ||
297        (bol != NULL && igvn->_worklist.member(bol)) ||
298        (cmp != NULL && igvn->_worklist.member(cmp)) ) {
299      // This control path may be dead.
300      // Delay this memory node transformation until the control is processed.
301      phase->is_IterGVN()->_worklist.push(this);
302      return NodeSentinel; // caller will return NULL
303    }
304  }
305  // Ignore if memory is dead, or self-loop
306  Node *mem = in(MemNode::Memory);
307  if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
308  assert(mem != this, "dead loop in MemNode::Ideal");
309
310  if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
311    // This memory slice may be dead.
312    // Delay this mem node transformation until the memory is processed.
313    phase->is_IterGVN()->_worklist.push(this);
314    return NodeSentinel; // caller will return NULL
315  }
316
317  Node *address = in(MemNode::Address);
318  const Type *t_adr = phase->type(address);
319  if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
320
321  if (can_reshape && igvn != NULL &&
322      (igvn->_worklist.member(address) ||
323       igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
324    // The address's base and type may change when the address is processed.
325    // Delay this mem node transformation until the address is processed.
326    phase->is_IterGVN()->_worklist.push(this);
327    return NodeSentinel; // caller will return NULL
328  }
329
330  // Do NOT remove or optimize the next lines: ensure a new alias index
331  // is allocated for an oop pointer type before Escape Analysis.
332  // Note: C++ will not remove it since the call has side effect.
333  if (t_adr->isa_oopptr()) {
334    int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
335  }
336
337  Node* base = NULL;
338  if (address->is_AddP()) {
339    base = address->in(AddPNode::Base);
340  }
341  if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
342      !t_adr->isa_rawptr()) {
343    // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
344    // Skip this node optimization if its address has TOP base.
345    return NodeSentinel; // caller will return NULL
346  }
347
348  // Avoid independent memory operations
349  Node* old_mem = mem;
350
351  // The code which unhooks non-raw memories from complete (macro-expanded)
352  // initializations was removed. After macro-expansion all stores catched
353  // by Initialize node became raw stores and there is no information
354  // which memory slices they modify. So it is unsafe to move any memory
355  // operation above these stores. Also in most cases hooked non-raw memories
356  // were already unhooked by using information from detect_ptr_independence()
357  // and find_previous_store().
358
359  if (mem->is_MergeMem()) {
360    MergeMemNode* mmem = mem->as_MergeMem();
361    const TypePtr *tp = t_adr->is_ptr();
362
363    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
364  }
365
366  if (mem != old_mem) {
367    set_req(MemNode::Memory, mem);
368    if (can_reshape && old_mem->outcnt() == 0) {
369        igvn->_worklist.push(old_mem);
370    }
371    if (phase->type( mem ) == Type::TOP) return NodeSentinel;
372    return this;
373  }
374
375  // let the subclass continue analyzing...
376  return NULL;
377}
378
379// Helper function for proving some simple control dominations.
380// Attempt to prove that all control inputs of 'dom' dominate 'sub'.
381// Already assumes that 'dom' is available at 'sub', and that 'sub'
382// is not a constant (dominated by the method's StartNode).
383// Used by MemNode::find_previous_store to prove that the
384// control input of a memory operation predates (dominates)
385// an allocation it wants to look past.
386bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
387  if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
388    return false; // Conservative answer for dead code
389
390  // Check 'dom'. Skip Proj and CatchProj nodes.
391  dom = dom->find_exact_control(dom);
392  if (dom == NULL || dom->is_top())
393    return false; // Conservative answer for dead code
394
395  if (dom == sub) {
396    // For the case when, for example, 'sub' is Initialize and the original
397    // 'dom' is Proj node of the 'sub'.
398    return false;
399  }
400
401  if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
402    return true;
403
404  // 'dom' dominates 'sub' if its control edge and control edges
405  // of all its inputs dominate or equal to sub's control edge.
406
407  // Currently 'sub' is either Allocate, Initialize or Start nodes.
408  // Or Region for the check in LoadNode::Ideal();
409  // 'sub' should have sub->in(0) != NULL.
410  assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
411         sub->is_Region() || sub->is_Call(), "expecting only these nodes");
412
413  // Get control edge of 'sub'.
414  Node* orig_sub = sub;
415  sub = sub->find_exact_control(sub->in(0));
416  if (sub == NULL || sub->is_top())
417    return false; // Conservative answer for dead code
418
419  assert(sub->is_CFG(), "expecting control");
420
421  if (sub == dom)
422    return true;
423
424  if (sub->is_Start() || sub->is_Root())
425    return false;
426
427  {
428    // Check all control edges of 'dom'.
429
430    ResourceMark rm;
431    Arena* arena = Thread::current()->resource_area();
432    Node_List nlist(arena);
433    Unique_Node_List dom_list(arena);
434
435    dom_list.push(dom);
436    bool only_dominating_controls = false;
437
438    for (uint next = 0; next < dom_list.size(); next++) {
439      Node* n = dom_list.at(next);
440      if (n == orig_sub)
441        return false; // One of dom's inputs dominated by sub.
442      if (!n->is_CFG() && n->pinned()) {
443        // Check only own control edge for pinned non-control nodes.
444        n = n->find_exact_control(n->in(0));
445        if (n == NULL || n->is_top())
446          return false; // Conservative answer for dead code
447        assert(n->is_CFG(), "expecting control");
448        dom_list.push(n);
449      } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
450        only_dominating_controls = true;
451      } else if (n->is_CFG()) {
452        if (n->dominates(sub, nlist))
453          only_dominating_controls = true;
454        else
455          return false;
456      } else {
457        // First, own control edge.
458        Node* m = n->find_exact_control(n->in(0));
459        if (m != NULL) {
460          if (m->is_top())
461            return false; // Conservative answer for dead code
462          dom_list.push(m);
463        }
464        // Now, the rest of edges.
465        uint cnt = n->req();
466        for (uint i = 1; i < cnt; i++) {
467          m = n->find_exact_control(n->in(i));
468          if (m == NULL || m->is_top())
469            continue;
470          dom_list.push(m);
471        }
472      }
473    }
474    return only_dominating_controls;
475  }
476}
477
478//---------------------detect_ptr_independence---------------------------------
479// Used by MemNode::find_previous_store to prove that two base
480// pointers are never equal.
481// The pointers are accompanied by their associated allocations,
482// if any, which have been previously discovered by the caller.
483bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
484                                      Node* p2, AllocateNode* a2,
485                                      PhaseTransform* phase) {
486  // Attempt to prove that these two pointers cannot be aliased.
487  // They may both manifestly be allocations, and they should differ.
488  // Or, if they are not both allocations, they can be distinct constants.
489  // Otherwise, one is an allocation and the other a pre-existing value.
490  if (a1 == NULL && a2 == NULL) {           // neither an allocation
491    return (p1 != p2) && p1->is_Con() && p2->is_Con();
492  } else if (a1 != NULL && a2 != NULL) {    // both allocations
493    return (a1 != a2);
494  } else if (a1 != NULL) {                  // one allocation a1
495    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
496    return all_controls_dominate(p2, a1);
497  } else { //(a2 != NULL)                   // one allocation a2
498    return all_controls_dominate(p1, a2);
499  }
500  return false;
501}
502
503
504// Find an arraycopy that must have set (can_see_stored_value=true) or
505// could have set (can_see_stored_value=false) the value for this load
506Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
507  if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
508                                               mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
509    Node* mb = mem->in(0);
510    if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
511        mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
512      ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
513      if (ac->is_clonebasic()) {
514        intptr_t offset;
515        AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
516        assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
517        if (alloc == ld_alloc) {
518          return ac;
519        }
520      }
521    }
522  } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
523    ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
524
525    if (ac->is_arraycopy_validated() ||
526        ac->is_copyof_validated() ||
527        ac->is_copyofrange_validated()) {
528      Node* ld_addp = in(MemNode::Address);
529      if (ld_addp->is_AddP()) {
530        Node* ld_base = ld_addp->in(AddPNode::Address);
531        Node* ld_offs = ld_addp->in(AddPNode::Offset);
532
533        Node* dest = ac->in(ArrayCopyNode::Dest);
534
535        if (dest == ld_base) {
536          const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
537          if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
538            return ac;
539          }
540          if (!can_see_stored_value) {
541            mem = ac->in(TypeFunc::Memory);
542          }
543        }
544      }
545    }
546  }
547  return NULL;
548}
549
550// The logic for reordering loads and stores uses four steps:
551// (a) Walk carefully past stores and initializations which we
552//     can prove are independent of this load.
553// (b) Observe that the next memory state makes an exact match
554//     with self (load or store), and locate the relevant store.
555// (c) Ensure that, if we were to wire self directly to the store,
556//     the optimizer would fold it up somehow.
557// (d) Do the rewiring, and return, depending on some other part of
558//     the optimizer to fold up the load.
559// This routine handles steps (a) and (b).  Steps (c) and (d) are
560// specific to loads and stores, so they are handled by the callers.
561// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
562//
563Node* MemNode::find_previous_store(PhaseTransform* phase) {
564  Node*         ctrl   = in(MemNode::Control);
565  Node*         adr    = in(MemNode::Address);
566  intptr_t      offset = 0;
567  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
568  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
569
570  if (offset == Type::OffsetBot)
571    return NULL;            // cannot unalias unless there are precise offsets
572
573  const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
574  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
575
576  intptr_t size_in_bytes = memory_size();
577
578  Node* mem = in(MemNode::Memory);   // start searching here...
579
580  int cnt = 50;             // Cycle limiter
581  for (;;) {                // While we can dance past unrelated stores...
582    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
583
584    Node* prev = mem;
585    if (mem->is_Store()) {
586      Node* st_adr = mem->in(MemNode::Address);
587      intptr_t st_offset = 0;
588      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
589      if (st_base == NULL)
590        break;              // inscrutable pointer
591
592      // For raw accesses it's not enough to prove that constant offsets don't intersect.
593      // We need the bases to be the equal in order for the offset check to make sense.
594      if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
595        break;
596      }
597
598      if (st_offset != offset && st_offset != Type::OffsetBot) {
599        const int MAX_STORE = BytesPerLong;
600        if (st_offset >= offset + size_in_bytes ||
601            st_offset <= offset - MAX_STORE ||
602            st_offset <= offset - mem->as_Store()->memory_size()) {
603          // Success:  The offsets are provably independent.
604          // (You may ask, why not just test st_offset != offset and be done?
605          // The answer is that stores of different sizes can co-exist
606          // in the same sequence of RawMem effects.  We sometimes initialize
607          // a whole 'tile' of array elements with a single jint or jlong.)
608          mem = mem->in(MemNode::Memory);
609          continue;           // (a) advance through independent store memory
610        }
611      }
612      if (st_base != base &&
613          detect_ptr_independence(base, alloc,
614                                  st_base,
615                                  AllocateNode::Ideal_allocation(st_base, phase),
616                                  phase)) {
617        // Success:  The bases are provably independent.
618        mem = mem->in(MemNode::Memory);
619        continue;           // (a) advance through independent store memory
620      }
621
622      // (b) At this point, if the bases or offsets do not agree, we lose,
623      // since we have not managed to prove 'this' and 'mem' independent.
624      if (st_base == base && st_offset == offset) {
625        return mem;         // let caller handle steps (c), (d)
626      }
627
628    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
629      InitializeNode* st_init = mem->in(0)->as_Initialize();
630      AllocateNode*  st_alloc = st_init->allocation();
631      if (st_alloc == NULL)
632        break;              // something degenerated
633      bool known_identical = false;
634      bool known_independent = false;
635      if (alloc == st_alloc)
636        known_identical = true;
637      else if (alloc != NULL)
638        known_independent = true;
639      else if (all_controls_dominate(this, st_alloc))
640        known_independent = true;
641
642      if (known_independent) {
643        // The bases are provably independent: Either they are
644        // manifestly distinct allocations, or else the control
645        // of this load dominates the store's allocation.
646        int alias_idx = phase->C->get_alias_index(adr_type());
647        if (alias_idx == Compile::AliasIdxRaw) {
648          mem = st_alloc->in(TypeFunc::Memory);
649        } else {
650          mem = st_init->memory(alias_idx);
651        }
652        continue;           // (a) advance through independent store memory
653      }
654
655      // (b) at this point, if we are not looking at a store initializing
656      // the same allocation we are loading from, we lose.
657      if (known_identical) {
658        // From caller, can_see_stored_value will consult find_captured_store.
659        return mem;         // let caller handle steps (c), (d)
660      }
661
662    } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
663      if (prev != mem) {
664        // Found an arraycopy but it doesn't affect that load
665        continue;
666      }
667      // Found an arraycopy that may affect that load
668      return mem;
669    } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
670      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
671      if (mem->is_Proj() && mem->in(0)->is_Call()) {
672        // ArrayCopyNodes processed here as well.
673        CallNode *call = mem->in(0)->as_Call();
674        if (!call->may_modify(addr_t, phase)) {
675          mem = call->in(TypeFunc::Memory);
676          continue;         // (a) advance through independent call memory
677        }
678      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
679        ArrayCopyNode* ac = NULL;
680        if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
681          break;
682        }
683        mem = mem->in(0)->in(TypeFunc::Memory);
684        continue;           // (a) advance through independent MemBar memory
685      } else if (mem->is_ClearArray()) {
686        if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
687          // (the call updated 'mem' value)
688          continue;         // (a) advance through independent allocation memory
689        } else {
690          // Can not bypass initialization of the instance
691          // we are looking for.
692          return mem;
693        }
694      } else if (mem->is_MergeMem()) {
695        int alias_idx = phase->C->get_alias_index(adr_type());
696        mem = mem->as_MergeMem()->memory_at(alias_idx);
697        continue;           // (a) advance through independent MergeMem memory
698      }
699    }
700
701    // Unless there is an explicit 'continue', we must bail out here,
702    // because 'mem' is an inscrutable memory state (e.g., a call).
703    break;
704  }
705
706  return NULL;              // bail out
707}
708
709//----------------------calculate_adr_type-------------------------------------
710// Helper function.  Notices when the given type of address hits top or bottom.
711// Also, asserts a cross-check of the type against the expected address type.
712const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
713  if (t == Type::TOP)  return NULL; // does not touch memory any more?
714  #ifdef PRODUCT
715  cross_check = NULL;
716  #else
717  if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump())  cross_check = NULL;
718  #endif
719  const TypePtr* tp = t->isa_ptr();
720  if (tp == NULL) {
721    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
722    return TypePtr::BOTTOM;           // touches lots of memory
723  } else {
724    #ifdef ASSERT
725    // %%%% [phh] We don't check the alias index if cross_check is
726    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
727    if (cross_check != NULL &&
728        cross_check != TypePtr::BOTTOM &&
729        cross_check != TypeRawPtr::BOTTOM) {
730      // Recheck the alias index, to see if it has changed (due to a bug).
731      Compile* C = Compile::current();
732      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
733             "must stay in the original alias category");
734      // The type of the address must be contained in the adr_type,
735      // disregarding "null"-ness.
736      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
737      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
738      assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
739             "real address must not escape from expected memory type");
740    }
741    #endif
742    return tp;
743  }
744}
745
746//=============================================================================
747// Should LoadNode::Ideal() attempt to remove control edges?
748bool LoadNode::can_remove_control() const {
749  return true;
750}
751uint LoadNode::size_of() const { return sizeof(*this); }
752uint LoadNode::cmp( const Node &n ) const
753{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
754const Type *LoadNode::bottom_type() const { return _type; }
755uint LoadNode::ideal_reg() const {
756  return _type->ideal_reg();
757}
758
759#ifndef PRODUCT
760void LoadNode::dump_spec(outputStream *st) const {
761  MemNode::dump_spec(st);
762  if( !Verbose && !WizardMode ) {
763    // standard dump does this in Verbose and WizardMode
764    st->print(" #"); _type->dump_on(st);
765  }
766  if (!depends_only_on_test()) {
767    st->print(" (does not depend only on test)");
768  }
769}
770#endif
771
772#ifdef ASSERT
773//----------------------------is_immutable_value-------------------------------
774// Helper function to allow a raw load without control edge for some cases
775bool LoadNode::is_immutable_value(Node* adr) {
776  return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
777          adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
778          (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
779           in_bytes(JavaThread::osthread_offset())));
780}
781#endif
782
783//----------------------------LoadNode::make-----------------------------------
784// Polymorphic factory method:
785Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
786                     ControlDependency control_dependency, bool unaligned, bool mismatched) {
787  Compile* C = gvn.C;
788
789  // sanity check the alias category against the created node type
790  assert(!(adr_type->isa_oopptr() &&
791           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
792         "use LoadKlassNode instead");
793  assert(!(adr_type->isa_aryptr() &&
794           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
795         "use LoadRangeNode instead");
796  // Check control edge of raw loads
797  assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
798          // oop will be recorded in oop map if load crosses safepoint
799          rt->isa_oopptr() || is_immutable_value(adr),
800          "raw memory operations should have control edge");
801  LoadNode* load = NULL;
802  switch (bt) {
803  case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
804  case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
805  case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
806  case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
807  case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
808  case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
809  case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
810  case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
811  case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
812  case T_OBJECT:
813#ifdef _LP64
814    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
815      load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
816    } else
817#endif
818    {
819      assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
820      load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
821    }
822    break;
823  }
824  assert(load != NULL, "LoadNode should have been created");
825  if (unaligned) {
826    load->set_unaligned_access();
827  }
828  if (mismatched) {
829    load->set_mismatched_access();
830  }
831  if (load->Opcode() == Op_LoadN) {
832    Node* ld = gvn.transform(load);
833    return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
834  }
835
836  return load;
837}
838
839LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
840                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
841  bool require_atomic = true;
842  LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
843  if (unaligned) {
844    load->set_unaligned_access();
845  }
846  if (mismatched) {
847    load->set_mismatched_access();
848  }
849  return load;
850}
851
852LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
853                                  ControlDependency control_dependency, bool unaligned, bool mismatched) {
854  bool require_atomic = true;
855  LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
856  if (unaligned) {
857    load->set_unaligned_access();
858  }
859  if (mismatched) {
860    load->set_mismatched_access();
861  }
862  return load;
863}
864
865
866
867//------------------------------hash-------------------------------------------
868uint LoadNode::hash() const {
869  // unroll addition of interesting fields
870  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
871}
872
873static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
874  if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
875    bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
876    bool is_stable_ary = FoldStableValues &&
877                         (tp != NULL) && (tp->isa_aryptr() != NULL) &&
878                         tp->isa_aryptr()->is_stable();
879
880    return (eliminate_boxing && non_volatile) || is_stable_ary;
881  }
882
883  return false;
884}
885
886// Is the value loaded previously stored by an arraycopy? If so return
887// a load node that reads from the source array so we may be able to
888// optimize out the ArrayCopy node later.
889Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const {
890  Node* ld_adr = in(MemNode::Address);
891  intptr_t ld_off = 0;
892  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
893  Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
894  if (ac != NULL) {
895    assert(ac->is_ArrayCopy(), "what kind of node can this be?");
896
897    Node* ld = clone();
898    if (ac->as_ArrayCopy()->is_clonebasic()) {
899      assert(ld_alloc != NULL, "need an alloc");
900      Node* addp = in(MemNode::Address)->clone();
901      assert(addp->is_AddP(), "address must be addp");
902      assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
903      assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
904      addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base));
905      addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address));
906      ld->set_req(MemNode::Address, phase->transform(addp));
907      if (in(0) != NULL) {
908        assert(ld_alloc->in(0) != NULL, "alloc must have control");
909        ld->set_req(0, ld_alloc->in(0));
910      }
911    } else {
912      Node* src = ac->in(ArrayCopyNode::Src);
913      Node* addp = in(MemNode::Address)->clone();
914      assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
915      addp->set_req(AddPNode::Base, src);
916      addp->set_req(AddPNode::Address, src);
917
918      const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
919      BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
920      uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
921      uint shift  = exact_log2(type2aelembytes(ary_elem));
922
923      Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
924#ifdef _LP64
925      diff = phase->transform(new ConvI2LNode(diff));
926#endif
927      diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
928
929      Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
930      addp->set_req(AddPNode::Offset, offset);
931      ld->set_req(MemNode::Address, phase->transform(addp));
932
933      const TypeX *ld_offs_t = phase->type(offset)->isa_intptr_t();
934
935      if (!ac->as_ArrayCopy()->can_replace_dest_load_with_src_load(ld_offs_t->_lo, ld_offs_t->_hi, phase)) {
936        return NULL;
937      }
938
939      if (in(0) != NULL) {
940        assert(ac->in(0) != NULL, "alloc must have control");
941        ld->set_req(0, ac->in(0));
942      }
943    }
944    // load depends on the tests that validate the arraycopy
945    ld->as_Load()->_control_dependency = Pinned;
946    return ld;
947  }
948  return NULL;
949}
950
951
952//---------------------------can_see_stored_value------------------------------
953// This routine exists to make sure this set of tests is done the same
954// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
955// will change the graph shape in a way which makes memory alive twice at the
956// same time (uses the Oracle model of aliasing), then some
957// LoadXNode::Identity will fold things back to the equivalence-class model
958// of aliasing.
959Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
960  Node* ld_adr = in(MemNode::Address);
961  intptr_t ld_off = 0;
962  AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
963  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
964  Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
965  // This is more general than load from boxing objects.
966  if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
967    uint alias_idx = atp->index();
968    bool final = !atp->is_rewritable();
969    Node* result = NULL;
970    Node* current = st;
971    // Skip through chains of MemBarNodes checking the MergeMems for
972    // new states for the slice of this load.  Stop once any other
973    // kind of node is encountered.  Loads from final memory can skip
974    // through any kind of MemBar but normal loads shouldn't skip
975    // through MemBarAcquire since the could allow them to move out of
976    // a synchronized region.
977    while (current->is_Proj()) {
978      int opc = current->in(0)->Opcode();
979      if ((final && (opc == Op_MemBarAcquire ||
980                     opc == Op_MemBarAcquireLock ||
981                     opc == Op_LoadFence)) ||
982          opc == Op_MemBarRelease ||
983          opc == Op_StoreFence ||
984          opc == Op_MemBarReleaseLock ||
985          opc == Op_MemBarStoreStore ||
986          opc == Op_MemBarCPUOrder) {
987        Node* mem = current->in(0)->in(TypeFunc::Memory);
988        if (mem->is_MergeMem()) {
989          MergeMemNode* merge = mem->as_MergeMem();
990          Node* new_st = merge->memory_at(alias_idx);
991          if (new_st == merge->base_memory()) {
992            // Keep searching
993            current = new_st;
994            continue;
995          }
996          // Save the new memory state for the slice and fall through
997          // to exit.
998          result = new_st;
999        }
1000      }
1001      break;
1002    }
1003    if (result != NULL) {
1004      st = result;
1005    }
1006  }
1007
1008  // Loop around twice in the case Load -> Initialize -> Store.
1009  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1010  for (int trip = 0; trip <= 1; trip++) {
1011
1012    if (st->is_Store()) {
1013      Node* st_adr = st->in(MemNode::Address);
1014      if (!phase->eqv(st_adr, ld_adr)) {
1015        // Try harder before giving up...  Match raw and non-raw pointers.
1016        intptr_t st_off = 0;
1017        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1018        if (alloc == NULL)       return NULL;
1019        if (alloc != ld_alloc)   return NULL;
1020        if (ld_off != st_off)    return NULL;
1021        // At this point we have proven something like this setup:
1022        //  A = Allocate(...)
1023        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1024        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1025        // (Actually, we haven't yet proven the Q's are the same.)
1026        // In other words, we are loading from a casted version of
1027        // the same pointer-and-offset that we stored to.
1028        // Thus, we are able to replace L by V.
1029      }
1030      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1031      if (store_Opcode() != st->Opcode())
1032        return NULL;
1033      return st->in(MemNode::ValueIn);
1034    }
1035
1036    // A load from a freshly-created object always returns zero.
1037    // (This can happen after LoadNode::Ideal resets the load's memory input
1038    // to find_captured_store, which returned InitializeNode::zero_memory.)
1039    if (st->is_Proj() && st->in(0)->is_Allocate() &&
1040        (st->in(0) == ld_alloc) &&
1041        (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1042      // return a zero value for the load's basic type
1043      // (This is one of the few places where a generic PhaseTransform
1044      // can create new nodes.  Think of it as lazily manifesting
1045      // virtually pre-existing constants.)
1046      return phase->zerocon(memory_type());
1047    }
1048
1049    // A load from an initialization barrier can match a captured store.
1050    if (st->is_Proj() && st->in(0)->is_Initialize()) {
1051      InitializeNode* init = st->in(0)->as_Initialize();
1052      AllocateNode* alloc = init->allocation();
1053      if ((alloc != NULL) && (alloc == ld_alloc)) {
1054        // examine a captured store value
1055        st = init->find_captured_store(ld_off, memory_size(), phase);
1056        if (st != NULL) {
1057          continue;             // take one more trip around
1058        }
1059      }
1060    }
1061
1062    // Load boxed value from result of valueOf() call is input parameter.
1063    if (this->is_Load() && ld_adr->is_AddP() &&
1064        (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1065      intptr_t ignore = 0;
1066      Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1067      if (base != NULL && base->is_Proj() &&
1068          base->as_Proj()->_con == TypeFunc::Parms &&
1069          base->in(0)->is_CallStaticJava() &&
1070          base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1071        return base->in(0)->in(TypeFunc::Parms);
1072      }
1073    }
1074
1075    break;
1076  }
1077
1078  return NULL;
1079}
1080
1081//----------------------is_instance_field_load_with_local_phi------------------
1082bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1083  if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1084      in(Address)->is_AddP() ) {
1085    const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1086    // Only instances and boxed values.
1087    if( t_oop != NULL &&
1088        (t_oop->is_ptr_to_boxed_value() ||
1089         t_oop->is_known_instance_field()) &&
1090        t_oop->offset() != Type::OffsetBot &&
1091        t_oop->offset() != Type::OffsetTop) {
1092      return true;
1093    }
1094  }
1095  return false;
1096}
1097
1098//------------------------------Identity---------------------------------------
1099// Loads are identity if previous store is to same address
1100Node* LoadNode::Identity(PhaseGVN* phase) {
1101  // If the previous store-maker is the right kind of Store, and the store is
1102  // to the same address, then we are equal to the value stored.
1103  Node* mem = in(Memory);
1104  Node* value = can_see_stored_value(mem, phase);
1105  if( value ) {
1106    // byte, short & char stores truncate naturally.
1107    // A load has to load the truncated value which requires
1108    // some sort of masking operation and that requires an
1109    // Ideal call instead of an Identity call.
1110    if (memory_size() < BytesPerInt) {
1111      // If the input to the store does not fit with the load's result type,
1112      // it must be truncated via an Ideal call.
1113      if (!phase->type(value)->higher_equal(phase->type(this)))
1114        return this;
1115    }
1116    // (This works even when value is a Con, but LoadNode::Value
1117    // usually runs first, producing the singleton type of the Con.)
1118    return value;
1119  }
1120
1121  // Search for an existing data phi which was generated before for the same
1122  // instance's field to avoid infinite generation of phis in a loop.
1123  Node *region = mem->in(0);
1124  if (is_instance_field_load_with_local_phi(region)) {
1125    const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1126    int this_index  = phase->C->get_alias_index(addr_t);
1127    int this_offset = addr_t->offset();
1128    int this_iid    = addr_t->instance_id();
1129    if (!addr_t->is_known_instance() &&
1130         addr_t->is_ptr_to_boxed_value()) {
1131      // Use _idx of address base (could be Phi node) for boxed values.
1132      intptr_t   ignore = 0;
1133      Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1134      if (base == NULL) {
1135        return this;
1136      }
1137      this_iid = base->_idx;
1138    }
1139    const Type* this_type = bottom_type();
1140    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1141      Node* phi = region->fast_out(i);
1142      if (phi->is_Phi() && phi != mem &&
1143          phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1144        return phi;
1145      }
1146    }
1147  }
1148
1149  return this;
1150}
1151
1152// Construct an equivalent unsigned load.
1153Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1154  BasicType bt = T_ILLEGAL;
1155  const Type* rt = NULL;
1156  switch (Opcode()) {
1157    case Op_LoadUB: return this;
1158    case Op_LoadUS: return this;
1159    case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1160    case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1161    default:
1162      assert(false, "no unsigned variant: %s", Name());
1163      return NULL;
1164  }
1165  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1166                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1167                        is_unaligned_access(), is_mismatched_access());
1168}
1169
1170// Construct an equivalent signed load.
1171Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1172  BasicType bt = T_ILLEGAL;
1173  const Type* rt = NULL;
1174  switch (Opcode()) {
1175    case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1176    case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1177    case Op_LoadB: // fall through
1178    case Op_LoadS: // fall through
1179    case Op_LoadI: // fall through
1180    case Op_LoadL: return this;
1181    default:
1182      assert(false, "no signed variant: %s", Name());
1183      return NULL;
1184  }
1185  return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1186                        raw_adr_type(), rt, bt, _mo, _control_dependency,
1187                        is_unaligned_access(), is_mismatched_access());
1188}
1189
1190// We're loading from an object which has autobox behaviour.
1191// If this object is result of a valueOf call we'll have a phi
1192// merging a newly allocated object and a load from the cache.
1193// We want to replace this load with the original incoming
1194// argument to the valueOf call.
1195Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1196  assert(phase->C->eliminate_boxing(), "sanity");
1197  intptr_t ignore = 0;
1198  Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1199  if ((base == NULL) || base->is_Phi()) {
1200    // Push the loads from the phi that comes from valueOf up
1201    // through it to allow elimination of the loads and the recovery
1202    // of the original value. It is done in split_through_phi().
1203    return NULL;
1204  } else if (base->is_Load() ||
1205             base->is_DecodeN() && base->in(1)->is_Load()) {
1206    // Eliminate the load of boxed value for integer types from the cache
1207    // array by deriving the value from the index into the array.
1208    // Capture the offset of the load and then reverse the computation.
1209
1210    // Get LoadN node which loads a boxing object from 'cache' array.
1211    if (base->is_DecodeN()) {
1212      base = base->in(1);
1213    }
1214    if (!base->in(Address)->is_AddP()) {
1215      return NULL; // Complex address
1216    }
1217    AddPNode* address = base->in(Address)->as_AddP();
1218    Node* cache_base = address->in(AddPNode::Base);
1219    if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1220      // Get ConP node which is static 'cache' field.
1221      cache_base = cache_base->in(1);
1222    }
1223    if ((cache_base != NULL) && cache_base->is_Con()) {
1224      const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1225      if ((base_type != NULL) && base_type->is_autobox_cache()) {
1226        Node* elements[4];
1227        int shift = exact_log2(type2aelembytes(T_OBJECT));
1228        int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1229        if ((count >  0) && elements[0]->is_Con() &&
1230            ((count == 1) ||
1231             (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1232                             elements[1]->in(2) == phase->intcon(shift))) {
1233          ciObjArray* array = base_type->const_oop()->as_obj_array();
1234          // Fetch the box object cache[0] at the base of the array and get its value
1235          ciInstance* box = array->obj_at(0)->as_instance();
1236          ciInstanceKlass* ik = box->klass()->as_instance_klass();
1237          assert(ik->is_box_klass(), "sanity");
1238          assert(ik->nof_nonstatic_fields() == 1, "change following code");
1239          if (ik->nof_nonstatic_fields() == 1) {
1240            // This should be true nonstatic_field_at requires calling
1241            // nof_nonstatic_fields so check it anyway
1242            ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1243            BasicType bt = c.basic_type();
1244            // Only integer types have boxing cache.
1245            assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1246                   bt == T_BYTE    || bt == T_SHORT ||
1247                   bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1248            jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1249            if (cache_low != (int)cache_low) {
1250              return NULL; // should not happen since cache is array indexed by value
1251            }
1252            jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1253            if (offset != (int)offset) {
1254              return NULL; // should not happen since cache is array indexed by value
1255            }
1256           // Add up all the offsets making of the address of the load
1257            Node* result = elements[0];
1258            for (int i = 1; i < count; i++) {
1259              result = phase->transform(new AddXNode(result, elements[i]));
1260            }
1261            // Remove the constant offset from the address and then
1262            result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1263            // remove the scaling of the offset to recover the original index.
1264            if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1265              // Peel the shift off directly but wrap it in a dummy node
1266              // since Ideal can't return existing nodes
1267              result = new RShiftXNode(result->in(1), phase->intcon(0));
1268            } else if (result->is_Add() && result->in(2)->is_Con() &&
1269                       result->in(1)->Opcode() == Op_LShiftX &&
1270                       result->in(1)->in(2) == phase->intcon(shift)) {
1271              // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1272              // but for boxing cache access we know that X<<Z will not overflow
1273              // (there is range check) so we do this optimizatrion by hand here.
1274              Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1275              result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1276            } else {
1277              result = new RShiftXNode(result, phase->intcon(shift));
1278            }
1279#ifdef _LP64
1280            if (bt != T_LONG) {
1281              result = new ConvL2INode(phase->transform(result));
1282            }
1283#else
1284            if (bt == T_LONG) {
1285              result = new ConvI2LNode(phase->transform(result));
1286            }
1287#endif
1288            // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1289            // Need to preserve unboxing load type if it is unsigned.
1290            switch(this->Opcode()) {
1291              case Op_LoadUB:
1292                result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1293                break;
1294              case Op_LoadUS:
1295                result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1296                break;
1297            }
1298            return result;
1299          }
1300        }
1301      }
1302    }
1303  }
1304  return NULL;
1305}
1306
1307static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1308  Node* region = phi->in(0);
1309  if (region == NULL) {
1310    return false; // Wait stable graph
1311  }
1312  uint cnt = phi->req();
1313  for (uint i = 1; i < cnt; i++) {
1314    Node* rc = region->in(i);
1315    if (rc == NULL || phase->type(rc) == Type::TOP)
1316      return false; // Wait stable graph
1317    Node* in = phi->in(i);
1318    if (in == NULL || phase->type(in) == Type::TOP)
1319      return false; // Wait stable graph
1320  }
1321  return true;
1322}
1323//------------------------------split_through_phi------------------------------
1324// Split instance or boxed field load through Phi.
1325Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1326  Node* mem     = in(Memory);
1327  Node* address = in(Address);
1328  const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1329
1330  assert((t_oop != NULL) &&
1331         (t_oop->is_known_instance_field() ||
1332          t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1333
1334  Compile* C = phase->C;
1335  intptr_t ignore = 0;
1336  Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1337  bool base_is_phi = (base != NULL) && base->is_Phi();
1338  bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1339                           (base != NULL) && (base == address->in(AddPNode::Base)) &&
1340                           phase->type(base)->higher_equal(TypePtr::NOTNULL);
1341
1342  if (!((mem->is_Phi() || base_is_phi) &&
1343        (load_boxed_values || t_oop->is_known_instance_field()))) {
1344    return NULL; // memory is not Phi
1345  }
1346
1347  if (mem->is_Phi()) {
1348    if (!stable_phi(mem->as_Phi(), phase)) {
1349      return NULL; // Wait stable graph
1350    }
1351    uint cnt = mem->req();
1352    // Check for loop invariant memory.
1353    if (cnt == 3) {
1354      for (uint i = 1; i < cnt; i++) {
1355        Node* in = mem->in(i);
1356        Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1357        if (m == mem) {
1358          set_req(Memory, mem->in(cnt - i));
1359          return this; // made change
1360        }
1361      }
1362    }
1363  }
1364  if (base_is_phi) {
1365    if (!stable_phi(base->as_Phi(), phase)) {
1366      return NULL; // Wait stable graph
1367    }
1368    uint cnt = base->req();
1369    // Check for loop invariant memory.
1370    if (cnt == 3) {
1371      for (uint i = 1; i < cnt; i++) {
1372        if (base->in(i) == base) {
1373          return NULL; // Wait stable graph
1374        }
1375      }
1376    }
1377  }
1378
1379  bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1380
1381  // Split through Phi (see original code in loopopts.cpp).
1382  assert(C->have_alias_type(t_oop), "instance should have alias type");
1383
1384  // Do nothing here if Identity will find a value
1385  // (to avoid infinite chain of value phis generation).
1386  if (!phase->eqv(this, this->Identity(phase)))
1387    return NULL;
1388
1389  // Select Region to split through.
1390  Node* region;
1391  if (!base_is_phi) {
1392    assert(mem->is_Phi(), "sanity");
1393    region = mem->in(0);
1394    // Skip if the region dominates some control edge of the address.
1395    if (!MemNode::all_controls_dominate(address, region))
1396      return NULL;
1397  } else if (!mem->is_Phi()) {
1398    assert(base_is_phi, "sanity");
1399    region = base->in(0);
1400    // Skip if the region dominates some control edge of the memory.
1401    if (!MemNode::all_controls_dominate(mem, region))
1402      return NULL;
1403  } else if (base->in(0) != mem->in(0)) {
1404    assert(base_is_phi && mem->is_Phi(), "sanity");
1405    if (MemNode::all_controls_dominate(mem, base->in(0))) {
1406      region = base->in(0);
1407    } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1408      region = mem->in(0);
1409    } else {
1410      return NULL; // complex graph
1411    }
1412  } else {
1413    assert(base->in(0) == mem->in(0), "sanity");
1414    region = mem->in(0);
1415  }
1416
1417  const Type* this_type = this->bottom_type();
1418  int this_index  = C->get_alias_index(t_oop);
1419  int this_offset = t_oop->offset();
1420  int this_iid    = t_oop->instance_id();
1421  if (!t_oop->is_known_instance() && load_boxed_values) {
1422    // Use _idx of address base for boxed values.
1423    this_iid = base->_idx;
1424  }
1425  PhaseIterGVN* igvn = phase->is_IterGVN();
1426  Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1427  for (uint i = 1; i < region->req(); i++) {
1428    Node* x;
1429    Node* the_clone = NULL;
1430    if (region->in(i) == C->top()) {
1431      x = C->top();      // Dead path?  Use a dead data op
1432    } else {
1433      x = this->clone();        // Else clone up the data op
1434      the_clone = x;            // Remember for possible deletion.
1435      // Alter data node to use pre-phi inputs
1436      if (this->in(0) == region) {
1437        x->set_req(0, region->in(i));
1438      } else {
1439        x->set_req(0, NULL);
1440      }
1441      if (mem->is_Phi() && (mem->in(0) == region)) {
1442        x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1443      }
1444      if (address->is_Phi() && address->in(0) == region) {
1445        x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1446      }
1447      if (base_is_phi && (base->in(0) == region)) {
1448        Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1449        Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1450        x->set_req(Address, adr_x);
1451      }
1452    }
1453    // Check for a 'win' on some paths
1454    const Type *t = x->Value(igvn);
1455
1456    bool singleton = t->singleton();
1457
1458    // See comments in PhaseIdealLoop::split_thru_phi().
1459    if (singleton && t == Type::TOP) {
1460      singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1461    }
1462
1463    if (singleton) {
1464      x = igvn->makecon(t);
1465    } else {
1466      // We now call Identity to try to simplify the cloned node.
1467      // Note that some Identity methods call phase->type(this).
1468      // Make sure that the type array is big enough for
1469      // our new node, even though we may throw the node away.
1470      // (This tweaking with igvn only works because x is a new node.)
1471      igvn->set_type(x, t);
1472      // If x is a TypeNode, capture any more-precise type permanently into Node
1473      // otherwise it will be not updated during igvn->transform since
1474      // igvn->type(x) is set to x->Value() already.
1475      x->raise_bottom_type(t);
1476      Node *y = x->Identity(igvn);
1477      if (y != x) {
1478        x = y;
1479      } else {
1480        y = igvn->hash_find_insert(x);
1481        if (y) {
1482          x = y;
1483        } else {
1484          // Else x is a new node we are keeping
1485          // We do not need register_new_node_with_optimizer
1486          // because set_type has already been called.
1487          igvn->_worklist.push(x);
1488        }
1489      }
1490    }
1491    if (x != the_clone && the_clone != NULL) {
1492      igvn->remove_dead_node(the_clone);
1493    }
1494    phi->set_req(i, x);
1495  }
1496  // Record Phi
1497  igvn->register_new_node_with_optimizer(phi);
1498  return phi;
1499}
1500
1501//------------------------------Ideal------------------------------------------
1502// If the load is from Field memory and the pointer is non-null, it might be possible to
1503// zero out the control input.
1504// If the offset is constant and the base is an object allocation,
1505// try to hook me up to the exact initializing store.
1506Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1507  Node* p = MemNode::Ideal_common(phase, can_reshape);
1508  if (p)  return (p == NodeSentinel) ? NULL : p;
1509
1510  Node* ctrl    = in(MemNode::Control);
1511  Node* address = in(MemNode::Address);
1512  bool progress = false;
1513
1514  // Skip up past a SafePoint control.  Cannot do this for Stores because
1515  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1516  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1517      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1518    ctrl = ctrl->in(0);
1519    set_req(MemNode::Control,ctrl);
1520    progress = true;
1521  }
1522
1523  intptr_t ignore = 0;
1524  Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1525  if (base != NULL
1526      && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1527    // Check for useless control edge in some common special cases
1528    if (in(MemNode::Control) != NULL
1529        && can_remove_control()
1530        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1531        && all_controls_dominate(base, phase->C->start())) {
1532      // A method-invariant, non-null address (constant or 'this' argument).
1533      set_req(MemNode::Control, NULL);
1534      progress = true;
1535    }
1536  }
1537
1538  Node* mem = in(MemNode::Memory);
1539  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1540
1541  if (can_reshape && (addr_t != NULL)) {
1542    // try to optimize our memory input
1543    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1544    if (opt_mem != mem) {
1545      set_req(MemNode::Memory, opt_mem);
1546      if (phase->type( opt_mem ) == Type::TOP) return NULL;
1547      return this;
1548    }
1549    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1550    if ((t_oop != NULL) &&
1551        (t_oop->is_known_instance_field() ||
1552         t_oop->is_ptr_to_boxed_value())) {
1553      PhaseIterGVN *igvn = phase->is_IterGVN();
1554      if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1555        // Delay this transformation until memory Phi is processed.
1556        phase->is_IterGVN()->_worklist.push(this);
1557        return NULL;
1558      }
1559      // Split instance field load through Phi.
1560      Node* result = split_through_phi(phase);
1561      if (result != NULL) return result;
1562
1563      if (t_oop->is_ptr_to_boxed_value()) {
1564        Node* result = eliminate_autobox(phase);
1565        if (result != NULL) return result;
1566      }
1567    }
1568  }
1569
1570  // Is there a dominating load that loads the same value?  Leave
1571  // anything that is not a load of a field/array element (like
1572  // barriers etc.) alone
1573  if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1574    for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1575      Node *use = mem->fast_out(i);
1576      if (use != this &&
1577          use->Opcode() == Opcode() &&
1578          use->in(0) != NULL &&
1579          use->in(0) != in(0) &&
1580          use->in(Address) == in(Address)) {
1581        Node* ctl = in(0);
1582        for (int i = 0; i < 10 && ctl != NULL; i++) {
1583          ctl = IfNode::up_one_dom(ctl);
1584          if (ctl == use->in(0)) {
1585            set_req(0, use->in(0));
1586            return this;
1587          }
1588        }
1589      }
1590    }
1591  }
1592
1593  // Check for prior store with a different base or offset; make Load
1594  // independent.  Skip through any number of them.  Bail out if the stores
1595  // are in an endless dead cycle and report no progress.  This is a key
1596  // transform for Reflection.  However, if after skipping through the Stores
1597  // we can't then fold up against a prior store do NOT do the transform as
1598  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1599  // array memory alive twice: once for the hoisted Load and again after the
1600  // bypassed Store.  This situation only works if EVERYBODY who does
1601  // anti-dependence work knows how to bypass.  I.e. we need all
1602  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1603  // the alias index stuff.  So instead, peek through Stores and IFF we can
1604  // fold up, do so.
1605  Node* prev_mem = find_previous_store(phase);
1606  if (prev_mem != NULL) {
1607    Node* value = can_see_arraycopy_value(prev_mem, phase);
1608    if (value != NULL) {
1609      return value;
1610    }
1611  }
1612  // Steps (a), (b):  Walk past independent stores to find an exact match.
1613  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1614    // (c) See if we can fold up on the spot, but don't fold up here.
1615    // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1616    // just return a prior value, which is done by Identity calls.
1617    if (can_see_stored_value(prev_mem, phase)) {
1618      // Make ready for step (d):
1619      set_req(MemNode::Memory, prev_mem);
1620      return this;
1621    }
1622  }
1623
1624  return progress ? this : NULL;
1625}
1626
1627// Helper to recognize certain Klass fields which are invariant across
1628// some group of array types (e.g., int[] or all T[] where T < Object).
1629const Type*
1630LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1631                                 ciKlass* klass) const {
1632  if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1633    // The field is Klass::_modifier_flags.  Return its (constant) value.
1634    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1635    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1636    return TypeInt::make(klass->modifier_flags());
1637  }
1638  if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1639    // The field is Klass::_access_flags.  Return its (constant) value.
1640    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1641    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1642    return TypeInt::make(klass->access_flags());
1643  }
1644  if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1645    // The field is Klass::_layout_helper.  Return its constant value if known.
1646    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1647    return TypeInt::make(klass->layout_helper());
1648  }
1649
1650  // No match.
1651  return NULL;
1652}
1653
1654//------------------------------Value-----------------------------------------
1655const Type* LoadNode::Value(PhaseGVN* phase) const {
1656  // Either input is TOP ==> the result is TOP
1657  Node* mem = in(MemNode::Memory);
1658  const Type *t1 = phase->type(mem);
1659  if (t1 == Type::TOP)  return Type::TOP;
1660  Node* adr = in(MemNode::Address);
1661  const TypePtr* tp = phase->type(adr)->isa_ptr();
1662  if (tp == NULL || tp->empty())  return Type::TOP;
1663  int off = tp->offset();
1664  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1665  Compile* C = phase->C;
1666
1667  // Try to guess loaded type from pointer type
1668  if (tp->isa_aryptr()) {
1669    const TypeAryPtr* ary = tp->is_aryptr();
1670    const Type* t = ary->elem();
1671
1672    // Determine whether the reference is beyond the header or not, by comparing
1673    // the offset against the offset of the start of the array's data.
1674    // Different array types begin at slightly different offsets (12 vs. 16).
1675    // We choose T_BYTE as an example base type that is least restrictive
1676    // as to alignment, which will therefore produce the smallest
1677    // possible base offset.
1678    const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1679    const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1680
1681    // Try to constant-fold a stable array element.
1682    if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1683      // Make sure the reference is not into the header and the offset is constant
1684      ciObject* aobj = ary->const_oop();
1685      if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1686        int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1687        const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1688                                                                      stable_dimension,
1689                                                                      memory_type(), is_unsigned());
1690        if (con_type != NULL) {
1691          return con_type;
1692        }
1693      }
1694    }
1695
1696    // Don't do this for integer types. There is only potential profit if
1697    // the element type t is lower than _type; that is, for int types, if _type is
1698    // more restrictive than t.  This only happens here if one is short and the other
1699    // char (both 16 bits), and in those cases we've made an intentional decision
1700    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1701    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1702    //
1703    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1704    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1705    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1706    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1707    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1708    // In fact, that could have been the original type of p1, and p1 could have
1709    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1710    // expression (LShiftL quux 3) independently optimized to the constant 8.
1711    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1712        && (_type->isa_vect() == NULL)
1713        && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1714      // t might actually be lower than _type, if _type is a unique
1715      // concrete subclass of abstract class t.
1716      if (off_beyond_header) {  // is the offset beyond the header?
1717        const Type* jt = t->join_speculative(_type);
1718        // In any case, do not allow the join, per se, to empty out the type.
1719        if (jt->empty() && !t->empty()) {
1720          // This can happen if a interface-typed array narrows to a class type.
1721          jt = _type;
1722        }
1723#ifdef ASSERT
1724        if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1725          // The pointers in the autobox arrays are always non-null
1726          Node* base = adr->in(AddPNode::Base);
1727          if ((base != NULL) && base->is_DecodeN()) {
1728            // Get LoadN node which loads IntegerCache.cache field
1729            base = base->in(1);
1730          }
1731          if ((base != NULL) && base->is_Con()) {
1732            const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1733            if ((base_type != NULL) && base_type->is_autobox_cache()) {
1734              // It could be narrow oop
1735              assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1736            }
1737          }
1738        }
1739#endif
1740        return jt;
1741      }
1742    }
1743  } else if (tp->base() == Type::InstPtr) {
1744    assert( off != Type::OffsetBot ||
1745            // arrays can be cast to Objects
1746            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1747            // unsafe field access may not have a constant offset
1748            C->has_unsafe_access(),
1749            "Field accesses must be precise" );
1750    // For oop loads, we expect the _type to be precise.
1751
1752    // Optimize loads from constant fields.
1753    const TypeInstPtr* tinst = tp->is_instptr();
1754    ciObject* const_oop = tinst->const_oop();
1755    if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1756      const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1757      if (con_type != NULL) {
1758        return con_type;
1759      }
1760    }
1761  } else if (tp->base() == Type::KlassPtr) {
1762    assert( off != Type::OffsetBot ||
1763            // arrays can be cast to Objects
1764            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1765            // also allow array-loading from the primary supertype
1766            // array during subtype checks
1767            Opcode() == Op_LoadKlass,
1768            "Field accesses must be precise" );
1769    // For klass/static loads, we expect the _type to be precise
1770  }
1771
1772  const TypeKlassPtr *tkls = tp->isa_klassptr();
1773  if (tkls != NULL && !StressReflectiveCode) {
1774    ciKlass* klass = tkls->klass();
1775    if (klass->is_loaded() && tkls->klass_is_exact()) {
1776      // We are loading a field from a Klass metaobject whose identity
1777      // is known at compile time (the type is "exact" or "precise").
1778      // Check for fields we know are maintained as constants by the VM.
1779      if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1780        // The field is Klass::_super_check_offset.  Return its (constant) value.
1781        // (Folds up type checking code.)
1782        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1783        return TypeInt::make(klass->super_check_offset());
1784      }
1785      // Compute index into primary_supers array
1786      juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1787      // Check for overflowing; use unsigned compare to handle the negative case.
1788      if( depth < ciKlass::primary_super_limit() ) {
1789        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1790        // (Folds up type checking code.)
1791        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1792        ciKlass *ss = klass->super_of_depth(depth);
1793        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1794      }
1795      const Type* aift = load_array_final_field(tkls, klass);
1796      if (aift != NULL)  return aift;
1797      if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1798        // The field is Klass::_java_mirror.  Return its (constant) value.
1799        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1800        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1801        return TypeInstPtr::make(klass->java_mirror());
1802      }
1803    }
1804
1805    // We can still check if we are loading from the primary_supers array at a
1806    // shallow enough depth.  Even though the klass is not exact, entries less
1807    // than or equal to its super depth are correct.
1808    if (klass->is_loaded() ) {
1809      ciType *inner = klass;
1810      while( inner->is_obj_array_klass() )
1811        inner = inner->as_obj_array_klass()->base_element_type();
1812      if( inner->is_instance_klass() &&
1813          !inner->as_instance_klass()->flags().is_interface() ) {
1814        // Compute index into primary_supers array
1815        juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1816        // Check for overflowing; use unsigned compare to handle the negative case.
1817        if( depth < ciKlass::primary_super_limit() &&
1818            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1819          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1820          // (Folds up type checking code.)
1821          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1822          ciKlass *ss = klass->super_of_depth(depth);
1823          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1824        }
1825      }
1826    }
1827
1828    // If the type is enough to determine that the thing is not an array,
1829    // we can give the layout_helper a positive interval type.
1830    // This will help short-circuit some reflective code.
1831    if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1832        && !klass->is_array_klass() // not directly typed as an array
1833        && !klass->is_interface()  // specifically not Serializable & Cloneable
1834        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1835        ) {
1836      // Note:  When interfaces are reliable, we can narrow the interface
1837      // test to (klass != Serializable && klass != Cloneable).
1838      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1839      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1840      // The key property of this type is that it folds up tests
1841      // for array-ness, since it proves that the layout_helper is positive.
1842      // Thus, a generic value like the basic object layout helper works fine.
1843      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1844    }
1845  }
1846
1847  // If we are loading from a freshly-allocated object, produce a zero,
1848  // if the load is provably beyond the header of the object.
1849  // (Also allow a variable load from a fresh array to produce zero.)
1850  const TypeOopPtr *tinst = tp->isa_oopptr();
1851  bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1852  bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1853  if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1854    Node* value = can_see_stored_value(mem,phase);
1855    if (value != NULL && value->is_Con()) {
1856      assert(value->bottom_type()->higher_equal(_type),"sanity");
1857      return value->bottom_type();
1858    }
1859  }
1860
1861  if (is_instance) {
1862    // If we have an instance type and our memory input is the
1863    // programs's initial memory state, there is no matching store,
1864    // so just return a zero of the appropriate type
1865    Node *mem = in(MemNode::Memory);
1866    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1867      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1868      return Type::get_zero_type(_type->basic_type());
1869    }
1870  }
1871  return _type;
1872}
1873
1874//------------------------------match_edge-------------------------------------
1875// Do we Match on this edge index or not?  Match only the address.
1876uint LoadNode::match_edge(uint idx) const {
1877  return idx == MemNode::Address;
1878}
1879
1880//--------------------------LoadBNode::Ideal--------------------------------------
1881//
1882//  If the previous store is to the same address as this load,
1883//  and the value stored was larger than a byte, replace this load
1884//  with the value stored truncated to a byte.  If no truncation is
1885//  needed, the replacement is done in LoadNode::Identity().
1886//
1887Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1888  Node* mem = in(MemNode::Memory);
1889  Node* value = can_see_stored_value(mem,phase);
1890  if( value && !phase->type(value)->higher_equal( _type ) ) {
1891    Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1892    return new RShiftINode(result, phase->intcon(24));
1893  }
1894  // Identity call will handle the case where truncation is not needed.
1895  return LoadNode::Ideal(phase, can_reshape);
1896}
1897
1898const Type* LoadBNode::Value(PhaseGVN* phase) const {
1899  Node* mem = in(MemNode::Memory);
1900  Node* value = can_see_stored_value(mem,phase);
1901  if (value != NULL && value->is_Con() &&
1902      !value->bottom_type()->higher_equal(_type)) {
1903    // If the input to the store does not fit with the load's result type,
1904    // it must be truncated. We can't delay until Ideal call since
1905    // a singleton Value is needed for split_thru_phi optimization.
1906    int con = value->get_int();
1907    return TypeInt::make((con << 24) >> 24);
1908  }
1909  return LoadNode::Value(phase);
1910}
1911
1912//--------------------------LoadUBNode::Ideal-------------------------------------
1913//
1914//  If the previous store is to the same address as this load,
1915//  and the value stored was larger than a byte, replace this load
1916//  with the value stored truncated to a byte.  If no truncation is
1917//  needed, the replacement is done in LoadNode::Identity().
1918//
1919Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1920  Node* mem = in(MemNode::Memory);
1921  Node* value = can_see_stored_value(mem, phase);
1922  if (value && !phase->type(value)->higher_equal(_type))
1923    return new AndINode(value, phase->intcon(0xFF));
1924  // Identity call will handle the case where truncation is not needed.
1925  return LoadNode::Ideal(phase, can_reshape);
1926}
1927
1928const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1929  Node* mem = in(MemNode::Memory);
1930  Node* value = can_see_stored_value(mem,phase);
1931  if (value != NULL && value->is_Con() &&
1932      !value->bottom_type()->higher_equal(_type)) {
1933    // If the input to the store does not fit with the load's result type,
1934    // it must be truncated. We can't delay until Ideal call since
1935    // a singleton Value is needed for split_thru_phi optimization.
1936    int con = value->get_int();
1937    return TypeInt::make(con & 0xFF);
1938  }
1939  return LoadNode::Value(phase);
1940}
1941
1942//--------------------------LoadUSNode::Ideal-------------------------------------
1943//
1944//  If the previous store is to the same address as this load,
1945//  and the value stored was larger than a char, replace this load
1946//  with the value stored truncated to a char.  If no truncation is
1947//  needed, the replacement is done in LoadNode::Identity().
1948//
1949Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1950  Node* mem = in(MemNode::Memory);
1951  Node* value = can_see_stored_value(mem,phase);
1952  if( value && !phase->type(value)->higher_equal( _type ) )
1953    return new AndINode(value,phase->intcon(0xFFFF));
1954  // Identity call will handle the case where truncation is not needed.
1955  return LoadNode::Ideal(phase, can_reshape);
1956}
1957
1958const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1959  Node* mem = in(MemNode::Memory);
1960  Node* value = can_see_stored_value(mem,phase);
1961  if (value != NULL && value->is_Con() &&
1962      !value->bottom_type()->higher_equal(_type)) {
1963    // If the input to the store does not fit with the load's result type,
1964    // it must be truncated. We can't delay until Ideal call since
1965    // a singleton Value is needed for split_thru_phi optimization.
1966    int con = value->get_int();
1967    return TypeInt::make(con & 0xFFFF);
1968  }
1969  return LoadNode::Value(phase);
1970}
1971
1972//--------------------------LoadSNode::Ideal--------------------------------------
1973//
1974//  If the previous store is to the same address as this load,
1975//  and the value stored was larger than a short, replace this load
1976//  with the value stored truncated to a short.  If no truncation is
1977//  needed, the replacement is done in LoadNode::Identity().
1978//
1979Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1980  Node* mem = in(MemNode::Memory);
1981  Node* value = can_see_stored_value(mem,phase);
1982  if( value && !phase->type(value)->higher_equal( _type ) ) {
1983    Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1984    return new RShiftINode(result, phase->intcon(16));
1985  }
1986  // Identity call will handle the case where truncation is not needed.
1987  return LoadNode::Ideal(phase, can_reshape);
1988}
1989
1990const Type* LoadSNode::Value(PhaseGVN* phase) const {
1991  Node* mem = in(MemNode::Memory);
1992  Node* value = can_see_stored_value(mem,phase);
1993  if (value != NULL && value->is_Con() &&
1994      !value->bottom_type()->higher_equal(_type)) {
1995    // If the input to the store does not fit with the load's result type,
1996    // it must be truncated. We can't delay until Ideal call since
1997    // a singleton Value is needed for split_thru_phi optimization.
1998    int con = value->get_int();
1999    return TypeInt::make((con << 16) >> 16);
2000  }
2001  return LoadNode::Value(phase);
2002}
2003
2004//=============================================================================
2005//----------------------------LoadKlassNode::make------------------------------
2006// Polymorphic factory method:
2007Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2008  // sanity check the alias category against the created node type
2009  const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2010  assert(adr_type != NULL, "expecting TypeKlassPtr");
2011#ifdef _LP64
2012  if (adr_type->is_ptr_to_narrowklass()) {
2013    assert(UseCompressedClassPointers, "no compressed klasses");
2014    Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2015    return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2016  }
2017#endif
2018  assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2019  return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2020}
2021
2022//------------------------------Value------------------------------------------
2023const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2024  return klass_value_common(phase);
2025}
2026
2027// In most cases, LoadKlassNode does not have the control input set. If the control
2028// input is set, it must not be removed (by LoadNode::Ideal()).
2029bool LoadKlassNode::can_remove_control() const {
2030  return false;
2031}
2032
2033const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2034  // Either input is TOP ==> the result is TOP
2035  const Type *t1 = phase->type( in(MemNode::Memory) );
2036  if (t1 == Type::TOP)  return Type::TOP;
2037  Node *adr = in(MemNode::Address);
2038  const Type *t2 = phase->type( adr );
2039  if (t2 == Type::TOP)  return Type::TOP;
2040  const TypePtr *tp = t2->is_ptr();
2041  if (TypePtr::above_centerline(tp->ptr()) ||
2042      tp->ptr() == TypePtr::Null)  return Type::TOP;
2043
2044  // Return a more precise klass, if possible
2045  const TypeInstPtr *tinst = tp->isa_instptr();
2046  if (tinst != NULL) {
2047    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2048    int offset = tinst->offset();
2049    if (ik == phase->C->env()->Class_klass()
2050        && (offset == java_lang_Class::klass_offset_in_bytes() ||
2051            offset == java_lang_Class::array_klass_offset_in_bytes())) {
2052      // We are loading a special hidden field from a Class mirror object,
2053      // the field which points to the VM's Klass metaobject.
2054      ciType* t = tinst->java_mirror_type();
2055      // java_mirror_type returns non-null for compile-time Class constants.
2056      if (t != NULL) {
2057        // constant oop => constant klass
2058        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2059          if (t->is_void()) {
2060            // We cannot create a void array.  Since void is a primitive type return null
2061            // klass.  Users of this result need to do a null check on the returned klass.
2062            return TypePtr::NULL_PTR;
2063          }
2064          return TypeKlassPtr::make(ciArrayKlass::make(t));
2065        }
2066        if (!t->is_klass()) {
2067          // a primitive Class (e.g., int.class) has NULL for a klass field
2068          return TypePtr::NULL_PTR;
2069        }
2070        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2071        return TypeKlassPtr::make(t->as_klass());
2072      }
2073      // non-constant mirror, so we can't tell what's going on
2074    }
2075    if( !ik->is_loaded() )
2076      return _type;             // Bail out if not loaded
2077    if (offset == oopDesc::klass_offset_in_bytes()) {
2078      if (tinst->klass_is_exact()) {
2079        return TypeKlassPtr::make(ik);
2080      }
2081      // See if we can become precise: no subklasses and no interface
2082      // (Note:  We need to support verified interfaces.)
2083      if (!ik->is_interface() && !ik->has_subklass()) {
2084        //assert(!UseExactTypes, "this code should be useless with exact types");
2085        // Add a dependence; if any subclass added we need to recompile
2086        if (!ik->is_final()) {
2087          // %%% should use stronger assert_unique_concrete_subtype instead
2088          phase->C->dependencies()->assert_leaf_type(ik);
2089        }
2090        // Return precise klass
2091        return TypeKlassPtr::make(ik);
2092      }
2093
2094      // Return root of possible klass
2095      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2096    }
2097  }
2098
2099  // Check for loading klass from an array
2100  const TypeAryPtr *tary = tp->isa_aryptr();
2101  if( tary != NULL ) {
2102    ciKlass *tary_klass = tary->klass();
2103    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2104        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2105      if (tary->klass_is_exact()) {
2106        return TypeKlassPtr::make(tary_klass);
2107      }
2108      ciArrayKlass *ak = tary->klass()->as_array_klass();
2109      // If the klass is an object array, we defer the question to the
2110      // array component klass.
2111      if( ak->is_obj_array_klass() ) {
2112        assert( ak->is_loaded(), "" );
2113        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2114        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2115          ciInstanceKlass* ik = base_k->as_instance_klass();
2116          // See if we can become precise: no subklasses and no interface
2117          if (!ik->is_interface() && !ik->has_subklass()) {
2118            //assert(!UseExactTypes, "this code should be useless with exact types");
2119            // Add a dependence; if any subclass added we need to recompile
2120            if (!ik->is_final()) {
2121              phase->C->dependencies()->assert_leaf_type(ik);
2122            }
2123            // Return precise array klass
2124            return TypeKlassPtr::make(ak);
2125          }
2126        }
2127        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2128      } else {                  // Found a type-array?
2129        //assert(!UseExactTypes, "this code should be useless with exact types");
2130        assert( ak->is_type_array_klass(), "" );
2131        return TypeKlassPtr::make(ak); // These are always precise
2132      }
2133    }
2134  }
2135
2136  // Check for loading klass from an array klass
2137  const TypeKlassPtr *tkls = tp->isa_klassptr();
2138  if (tkls != NULL && !StressReflectiveCode) {
2139    ciKlass* klass = tkls->klass();
2140    if( !klass->is_loaded() )
2141      return _type;             // Bail out if not loaded
2142    if( klass->is_obj_array_klass() &&
2143        tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2144      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2145      // // Always returning precise element type is incorrect,
2146      // // e.g., element type could be object and array may contain strings
2147      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2148
2149      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2150      // according to the element type's subclassing.
2151      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2152    }
2153    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2154        tkls->offset() == in_bytes(Klass::super_offset())) {
2155      ciKlass* sup = klass->as_instance_klass()->super();
2156      // The field is Klass::_super.  Return its (constant) value.
2157      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2158      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2159    }
2160  }
2161
2162  // Bailout case
2163  return LoadNode::Value(phase);
2164}
2165
2166//------------------------------Identity---------------------------------------
2167// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2168// Also feed through the klass in Allocate(...klass...)._klass.
2169Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2170  return klass_identity_common(phase);
2171}
2172
2173Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2174  Node* x = LoadNode::Identity(phase);
2175  if (x != this)  return x;
2176
2177  // Take apart the address into an oop and and offset.
2178  // Return 'this' if we cannot.
2179  Node*    adr    = in(MemNode::Address);
2180  intptr_t offset = 0;
2181  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2182  if (base == NULL)     return this;
2183  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2184  if (toop == NULL)     return this;
2185
2186  // We can fetch the klass directly through an AllocateNode.
2187  // This works even if the klass is not constant (clone or newArray).
2188  if (offset == oopDesc::klass_offset_in_bytes()) {
2189    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2190    if (allocated_klass != NULL) {
2191      return allocated_klass;
2192    }
2193  }
2194
2195  // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2196  // See inline_native_Class_query for occurrences of these patterns.
2197  // Java Example:  x.getClass().isAssignableFrom(y)
2198  //
2199  // This improves reflective code, often making the Class
2200  // mirror go completely dead.  (Current exception:  Class
2201  // mirrors may appear in debug info, but we could clean them out by
2202  // introducing a new debug info operator for Klass*.java_mirror).
2203  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2204      && offset == java_lang_Class::klass_offset_in_bytes()) {
2205    // We are loading a special hidden field from a Class mirror,
2206    // the field which points to its Klass or ArrayKlass metaobject.
2207    if (base->is_Load()) {
2208      Node* adr2 = base->in(MemNode::Address);
2209      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2210      if (tkls != NULL && !tkls->empty()
2211          && (tkls->klass()->is_instance_klass() ||
2212              tkls->klass()->is_array_klass())
2213          && adr2->is_AddP()
2214          ) {
2215        int mirror_field = in_bytes(Klass::java_mirror_offset());
2216        if (tkls->offset() == mirror_field) {
2217          return adr2->in(AddPNode::Base);
2218        }
2219      }
2220    }
2221  }
2222
2223  return this;
2224}
2225
2226
2227//------------------------------Value------------------------------------------
2228const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2229  const Type *t = klass_value_common(phase);
2230  if (t == Type::TOP)
2231    return t;
2232
2233  return t->make_narrowklass();
2234}
2235
2236//------------------------------Identity---------------------------------------
2237// To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2238// Also feed through the klass in Allocate(...klass...)._klass.
2239Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2240  Node *x = klass_identity_common(phase);
2241
2242  const Type *t = phase->type( x );
2243  if( t == Type::TOP ) return x;
2244  if( t->isa_narrowklass()) return x;
2245  assert (!t->isa_narrowoop(), "no narrow oop here");
2246
2247  return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2248}
2249
2250//------------------------------Value-----------------------------------------
2251const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2252  // Either input is TOP ==> the result is TOP
2253  const Type *t1 = phase->type( in(MemNode::Memory) );
2254  if( t1 == Type::TOP ) return Type::TOP;
2255  Node *adr = in(MemNode::Address);
2256  const Type *t2 = phase->type( adr );
2257  if( t2 == Type::TOP ) return Type::TOP;
2258  const TypePtr *tp = t2->is_ptr();
2259  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2260  const TypeAryPtr *tap = tp->isa_aryptr();
2261  if( !tap ) return _type;
2262  return tap->size();
2263}
2264
2265//-------------------------------Ideal---------------------------------------
2266// Feed through the length in AllocateArray(...length...)._length.
2267Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2268  Node* p = MemNode::Ideal_common(phase, can_reshape);
2269  if (p)  return (p == NodeSentinel) ? NULL : p;
2270
2271  // Take apart the address into an oop and and offset.
2272  // Return 'this' if we cannot.
2273  Node*    adr    = in(MemNode::Address);
2274  intptr_t offset = 0;
2275  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2276  if (base == NULL)     return NULL;
2277  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2278  if (tary == NULL)     return NULL;
2279
2280  // We can fetch the length directly through an AllocateArrayNode.
2281  // This works even if the length is not constant (clone or newArray).
2282  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2283    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2284    if (alloc != NULL) {
2285      Node* allocated_length = alloc->Ideal_length();
2286      Node* len = alloc->make_ideal_length(tary, phase);
2287      if (allocated_length != len) {
2288        // New CastII improves on this.
2289        return len;
2290      }
2291    }
2292  }
2293
2294  return NULL;
2295}
2296
2297//------------------------------Identity---------------------------------------
2298// Feed through the length in AllocateArray(...length...)._length.
2299Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2300  Node* x = LoadINode::Identity(phase);
2301  if (x != this)  return x;
2302
2303  // Take apart the address into an oop and and offset.
2304  // Return 'this' if we cannot.
2305  Node*    adr    = in(MemNode::Address);
2306  intptr_t offset = 0;
2307  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2308  if (base == NULL)     return this;
2309  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2310  if (tary == NULL)     return this;
2311
2312  // We can fetch the length directly through an AllocateArrayNode.
2313  // This works even if the length is not constant (clone or newArray).
2314  if (offset == arrayOopDesc::length_offset_in_bytes()) {
2315    AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2316    if (alloc != NULL) {
2317      Node* allocated_length = alloc->Ideal_length();
2318      // Do not allow make_ideal_length to allocate a CastII node.
2319      Node* len = alloc->make_ideal_length(tary, phase, false);
2320      if (allocated_length == len) {
2321        // Return allocated_length only if it would not be improved by a CastII.
2322        return allocated_length;
2323      }
2324    }
2325  }
2326
2327  return this;
2328
2329}
2330
2331//=============================================================================
2332//---------------------------StoreNode::make-----------------------------------
2333// Polymorphic factory method:
2334StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2335  assert((mo == unordered || mo == release), "unexpected");
2336  Compile* C = gvn.C;
2337  assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2338         ctl != NULL, "raw memory operations should have control edge");
2339
2340  switch (bt) {
2341  case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2342  case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2343  case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2344  case T_CHAR:
2345  case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2346  case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2347  case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2348  case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2349  case T_METADATA:
2350  case T_ADDRESS:
2351  case T_OBJECT:
2352#ifdef _LP64
2353    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2354      val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2355      return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2356    } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2357               (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2358                adr->bottom_type()->isa_rawptr())) {
2359      val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2360      return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2361    }
2362#endif
2363    {
2364      return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2365    }
2366  }
2367  ShouldNotReachHere();
2368  return (StoreNode*)NULL;
2369}
2370
2371StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2372  bool require_atomic = true;
2373  return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2374}
2375
2376StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2377  bool require_atomic = true;
2378  return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2379}
2380
2381
2382//--------------------------bottom_type----------------------------------------
2383const Type *StoreNode::bottom_type() const {
2384  return Type::MEMORY;
2385}
2386
2387//------------------------------hash-------------------------------------------
2388uint StoreNode::hash() const {
2389  // unroll addition of interesting fields
2390  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2391
2392  // Since they are not commoned, do not hash them:
2393  return NO_HASH;
2394}
2395
2396//------------------------------Ideal------------------------------------------
2397// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2398// When a store immediately follows a relevant allocation/initialization,
2399// try to capture it into the initialization, or hoist it above.
2400Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2401  Node* p = MemNode::Ideal_common(phase, can_reshape);
2402  if (p)  return (p == NodeSentinel) ? NULL : p;
2403
2404  Node* mem     = in(MemNode::Memory);
2405  Node* address = in(MemNode::Address);
2406  // Back-to-back stores to same address?  Fold em up.  Generally
2407  // unsafe if I have intervening uses...  Also disallowed for StoreCM
2408  // since they must follow each StoreP operation.  Redundant StoreCMs
2409  // are eliminated just before matching in final_graph_reshape.
2410  {
2411    Node* st = mem;
2412    // If Store 'st' has more than one use, we cannot fold 'st' away.
2413    // For example, 'st' might be the final state at a conditional
2414    // return.  Or, 'st' might be used by some node which is live at
2415    // the same time 'st' is live, which might be unschedulable.  So,
2416    // require exactly ONE user until such time as we clone 'mem' for
2417    // each of 'mem's uses (thus making the exactly-1-user-rule hold
2418    // true).
2419    while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2420      // Looking at a dead closed cycle of memory?
2421      assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2422      assert(Opcode() == st->Opcode() ||
2423             st->Opcode() == Op_StoreVector ||
2424             Opcode() == Op_StoreVector ||
2425             phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2426             (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2427             (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2428             "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2429
2430      if (st->in(MemNode::Address)->eqv_uncast(address) &&
2431          st->as_Store()->memory_size() <= this->memory_size()) {
2432        Node* use = st->raw_out(0);
2433        phase->igvn_rehash_node_delayed(use);
2434        if (can_reshape) {
2435          use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2436        } else {
2437          // It's OK to do this in the parser, since DU info is always accurate,
2438          // and the parser always refers to nodes via SafePointNode maps.
2439          use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2440        }
2441        return this;
2442      }
2443      st = st->in(MemNode::Memory);
2444    }
2445  }
2446
2447
2448  // Capture an unaliased, unconditional, simple store into an initializer.
2449  // Or, if it is independent of the allocation, hoist it above the allocation.
2450  if (ReduceFieldZeroing && /*can_reshape &&*/
2451      mem->is_Proj() && mem->in(0)->is_Initialize()) {
2452    InitializeNode* init = mem->in(0)->as_Initialize();
2453    intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2454    if (offset > 0) {
2455      Node* moved = init->capture_store(this, offset, phase, can_reshape);
2456      // If the InitializeNode captured me, it made a raw copy of me,
2457      // and I need to disappear.
2458      if (moved != NULL) {
2459        // %%% hack to ensure that Ideal returns a new node:
2460        mem = MergeMemNode::make(mem);
2461        return mem;             // fold me away
2462      }
2463    }
2464  }
2465
2466  return NULL;                  // No further progress
2467}
2468
2469//------------------------------Value-----------------------------------------
2470const Type* StoreNode::Value(PhaseGVN* phase) const {
2471  // Either input is TOP ==> the result is TOP
2472  const Type *t1 = phase->type( in(MemNode::Memory) );
2473  if( t1 == Type::TOP ) return Type::TOP;
2474  const Type *t2 = phase->type( in(MemNode::Address) );
2475  if( t2 == Type::TOP ) return Type::TOP;
2476  const Type *t3 = phase->type( in(MemNode::ValueIn) );
2477  if( t3 == Type::TOP ) return Type::TOP;
2478  return Type::MEMORY;
2479}
2480
2481//------------------------------Identity---------------------------------------
2482// Remove redundant stores:
2483//   Store(m, p, Load(m, p)) changes to m.
2484//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2485Node* StoreNode::Identity(PhaseGVN* phase) {
2486  Node* mem = in(MemNode::Memory);
2487  Node* adr = in(MemNode::Address);
2488  Node* val = in(MemNode::ValueIn);
2489
2490  // Load then Store?  Then the Store is useless
2491  if (val->is_Load() &&
2492      val->in(MemNode::Address)->eqv_uncast(adr) &&
2493      val->in(MemNode::Memory )->eqv_uncast(mem) &&
2494      val->as_Load()->store_Opcode() == Opcode()) {
2495    return mem;
2496  }
2497
2498  // Two stores in a row of the same value?
2499  if (mem->is_Store() &&
2500      mem->in(MemNode::Address)->eqv_uncast(adr) &&
2501      mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2502      mem->Opcode() == Opcode()) {
2503    return mem;
2504  }
2505
2506  // Store of zero anywhere into a freshly-allocated object?
2507  // Then the store is useless.
2508  // (It must already have been captured by the InitializeNode.)
2509  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2510    // a newly allocated object is already all-zeroes everywhere
2511    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2512      return mem;
2513    }
2514
2515    // the store may also apply to zero-bits in an earlier object
2516    Node* prev_mem = find_previous_store(phase);
2517    // Steps (a), (b):  Walk past independent stores to find an exact match.
2518    if (prev_mem != NULL) {
2519      Node* prev_val = can_see_stored_value(prev_mem, phase);
2520      if (prev_val != NULL && phase->eqv(prev_val, val)) {
2521        // prev_val and val might differ by a cast; it would be good
2522        // to keep the more informative of the two.
2523        return mem;
2524      }
2525    }
2526  }
2527
2528  return this;
2529}
2530
2531//------------------------------match_edge-------------------------------------
2532// Do we Match on this edge index or not?  Match only memory & value
2533uint StoreNode::match_edge(uint idx) const {
2534  return idx == MemNode::Address || idx == MemNode::ValueIn;
2535}
2536
2537//------------------------------cmp--------------------------------------------
2538// Do not common stores up together.  They generally have to be split
2539// back up anyways, so do not bother.
2540uint StoreNode::cmp( const Node &n ) const {
2541  return (&n == this);          // Always fail except on self
2542}
2543
2544//------------------------------Ideal_masked_input-----------------------------
2545// Check for a useless mask before a partial-word store
2546// (StoreB ... (AndI valIn conIa) )
2547// If (conIa & mask == mask) this simplifies to
2548// (StoreB ... (valIn) )
2549Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2550  Node *val = in(MemNode::ValueIn);
2551  if( val->Opcode() == Op_AndI ) {
2552    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2553    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2554      set_req(MemNode::ValueIn, val->in(1));
2555      return this;
2556    }
2557  }
2558  return NULL;
2559}
2560
2561
2562//------------------------------Ideal_sign_extended_input----------------------
2563// Check for useless sign-extension before a partial-word store
2564// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2565// If (conIL == conIR && conIR <= num_bits)  this simplifies to
2566// (StoreB ... (valIn) )
2567Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2568  Node *val = in(MemNode::ValueIn);
2569  if( val->Opcode() == Op_RShiftI ) {
2570    const TypeInt *t = phase->type( val->in(2) )->isa_int();
2571    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2572      Node *shl = val->in(1);
2573      if( shl->Opcode() == Op_LShiftI ) {
2574        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2575        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2576          set_req(MemNode::ValueIn, shl->in(1));
2577          return this;
2578        }
2579      }
2580    }
2581  }
2582  return NULL;
2583}
2584
2585//------------------------------value_never_loaded-----------------------------------
2586// Determine whether there are any possible loads of the value stored.
2587// For simplicity, we actually check if there are any loads from the
2588// address stored to, not just for loads of the value stored by this node.
2589//
2590bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2591  Node *adr = in(Address);
2592  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2593  if (adr_oop == NULL)
2594    return false;
2595  if (!adr_oop->is_known_instance_field())
2596    return false; // if not a distinct instance, there may be aliases of the address
2597  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2598    Node *use = adr->fast_out(i);
2599    if (use->is_Load() || use->is_LoadStore()) {
2600      return false;
2601    }
2602  }
2603  return true;
2604}
2605
2606//=============================================================================
2607//------------------------------Ideal------------------------------------------
2608// If the store is from an AND mask that leaves the low bits untouched, then
2609// we can skip the AND operation.  If the store is from a sign-extension
2610// (a left shift, then right shift) we can skip both.
2611Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2612  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2613  if( progress != NULL ) return progress;
2614
2615  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2616  if( progress != NULL ) return progress;
2617
2618  // Finally check the default case
2619  return StoreNode::Ideal(phase, can_reshape);
2620}
2621
2622//=============================================================================
2623//------------------------------Ideal------------------------------------------
2624// If the store is from an AND mask that leaves the low bits untouched, then
2625// we can skip the AND operation
2626Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2627  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2628  if( progress != NULL ) return progress;
2629
2630  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2631  if( progress != NULL ) return progress;
2632
2633  // Finally check the default case
2634  return StoreNode::Ideal(phase, can_reshape);
2635}
2636
2637//=============================================================================
2638//------------------------------Identity---------------------------------------
2639Node* StoreCMNode::Identity(PhaseGVN* phase) {
2640  // No need to card mark when storing a null ptr
2641  Node* my_store = in(MemNode::OopStore);
2642  if (my_store->is_Store()) {
2643    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2644    if( t1 == TypePtr::NULL_PTR ) {
2645      return in(MemNode::Memory);
2646    }
2647  }
2648  return this;
2649}
2650
2651//=============================================================================
2652//------------------------------Ideal---------------------------------------
2653Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2654  Node* progress = StoreNode::Ideal(phase, can_reshape);
2655  if (progress != NULL) return progress;
2656
2657  Node* my_store = in(MemNode::OopStore);
2658  if (my_store->is_MergeMem()) {
2659    Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2660    set_req(MemNode::OopStore, mem);
2661    return this;
2662  }
2663
2664  return NULL;
2665}
2666
2667//------------------------------Value-----------------------------------------
2668const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2669  // Either input is TOP ==> the result is TOP
2670  const Type *t = phase->type( in(MemNode::Memory) );
2671  if( t == Type::TOP ) return Type::TOP;
2672  t = phase->type( in(MemNode::Address) );
2673  if( t == Type::TOP ) return Type::TOP;
2674  t = phase->type( in(MemNode::ValueIn) );
2675  if( t == Type::TOP ) return Type::TOP;
2676  // If extra input is TOP ==> the result is TOP
2677  t = phase->type( in(MemNode::OopStore) );
2678  if( t == Type::TOP ) return Type::TOP;
2679
2680  return StoreNode::Value( phase );
2681}
2682
2683
2684//=============================================================================
2685//----------------------------------SCMemProjNode------------------------------
2686const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2687{
2688  return bottom_type();
2689}
2690
2691//=============================================================================
2692//----------------------------------LoadStoreNode------------------------------
2693LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2694  : Node(required),
2695    _type(rt),
2696    _adr_type(at)
2697{
2698  init_req(MemNode::Control, c  );
2699  init_req(MemNode::Memory , mem);
2700  init_req(MemNode::Address, adr);
2701  init_req(MemNode::ValueIn, val);
2702  init_class_id(Class_LoadStore);
2703}
2704
2705uint LoadStoreNode::ideal_reg() const {
2706  return _type->ideal_reg();
2707}
2708
2709bool LoadStoreNode::result_not_used() const {
2710  for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2711    Node *x = fast_out(i);
2712    if (x->Opcode() == Op_SCMemProj) continue;
2713    return false;
2714  }
2715  return true;
2716}
2717
2718uint LoadStoreNode::size_of() const { return sizeof(*this); }
2719
2720//=============================================================================
2721//----------------------------------LoadStoreConditionalNode--------------------
2722LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2723  init_req(ExpectedIn, ex );
2724}
2725
2726//=============================================================================
2727//-------------------------------adr_type--------------------------------------
2728const TypePtr* ClearArrayNode::adr_type() const {
2729  Node *adr = in(3);
2730  if (adr == NULL)  return NULL; // node is dead
2731  return MemNode::calculate_adr_type(adr->bottom_type());
2732}
2733
2734//------------------------------match_edge-------------------------------------
2735// Do we Match on this edge index or not?  Do not match memory
2736uint ClearArrayNode::match_edge(uint idx) const {
2737  return idx > 1;
2738}
2739
2740//------------------------------Identity---------------------------------------
2741// Clearing a zero length array does nothing
2742Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2743  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2744}
2745
2746//------------------------------Idealize---------------------------------------
2747// Clearing a short array is faster with stores
2748Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2749  // Already know this is a large node, do not try to ideal it
2750  if (!IdealizeClearArrayNode || _is_large) return NULL;
2751
2752  const int unit = BytesPerLong;
2753  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2754  if (!t)  return NULL;
2755  if (!t->is_con())  return NULL;
2756  intptr_t raw_count = t->get_con();
2757  intptr_t size = raw_count;
2758  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2759  // Clearing nothing uses the Identity call.
2760  // Negative clears are possible on dead ClearArrays
2761  // (see jck test stmt114.stmt11402.val).
2762  if (size <= 0 || size % unit != 0)  return NULL;
2763  intptr_t count = size / unit;
2764  // Length too long; communicate this to matchers and assemblers.
2765  // Assemblers are responsible to produce fast hardware clears for it.
2766  if (size > InitArrayShortSize) {
2767    return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2768  }
2769  Node *mem = in(1);
2770  if( phase->type(mem)==Type::TOP ) return NULL;
2771  Node *adr = in(3);
2772  const Type* at = phase->type(adr);
2773  if( at==Type::TOP ) return NULL;
2774  const TypePtr* atp = at->isa_ptr();
2775  // adjust atp to be the correct array element address type
2776  if (atp == NULL)  atp = TypePtr::BOTTOM;
2777  else              atp = atp->add_offset(Type::OffsetBot);
2778  // Get base for derived pointer purposes
2779  if( adr->Opcode() != Op_AddP ) Unimplemented();
2780  Node *base = adr->in(1);
2781
2782  Node *zero = phase->makecon(TypeLong::ZERO);
2783  Node *off  = phase->MakeConX(BytesPerLong);
2784  mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2785  count--;
2786  while( count-- ) {
2787    mem = phase->transform(mem);
2788    adr = phase->transform(new AddPNode(base,adr,off));
2789    mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2790  }
2791  return mem;
2792}
2793
2794//----------------------------step_through----------------------------------
2795// Return allocation input memory edge if it is different instance
2796// or itself if it is the one we are looking for.
2797bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2798  Node* n = *np;
2799  assert(n->is_ClearArray(), "sanity");
2800  intptr_t offset;
2801  AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2802  // This method is called only before Allocate nodes are expanded
2803  // during macro nodes expansion. Before that ClearArray nodes are
2804  // only generated in PhaseMacroExpand::generate_arraycopy() (before
2805  // Allocate nodes are expanded) which follows allocations.
2806  assert(alloc != NULL, "should have allocation");
2807  if (alloc->_idx == instance_id) {
2808    // Can not bypass initialization of the instance we are looking for.
2809    return false;
2810  }
2811  // Otherwise skip it.
2812  InitializeNode* init = alloc->initialization();
2813  if (init != NULL)
2814    *np = init->in(TypeFunc::Memory);
2815  else
2816    *np = alloc->in(TypeFunc::Memory);
2817  return true;
2818}
2819
2820//----------------------------clear_memory-------------------------------------
2821// Generate code to initialize object storage to zero.
2822Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2823                                   intptr_t start_offset,
2824                                   Node* end_offset,
2825                                   PhaseGVN* phase) {
2826  intptr_t offset = start_offset;
2827
2828  int unit = BytesPerLong;
2829  if ((offset % unit) != 0) {
2830    Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2831    adr = phase->transform(adr);
2832    const TypePtr* atp = TypeRawPtr::BOTTOM;
2833    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2834    mem = phase->transform(mem);
2835    offset += BytesPerInt;
2836  }
2837  assert((offset % unit) == 0, "");
2838
2839  // Initialize the remaining stuff, if any, with a ClearArray.
2840  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2841}
2842
2843Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2844                                   Node* start_offset,
2845                                   Node* end_offset,
2846                                   PhaseGVN* phase) {
2847  if (start_offset == end_offset) {
2848    // nothing to do
2849    return mem;
2850  }
2851
2852  int unit = BytesPerLong;
2853  Node* zbase = start_offset;
2854  Node* zend  = end_offset;
2855
2856  // Scale to the unit required by the CPU:
2857  if (!Matcher::init_array_count_is_in_bytes) {
2858    Node* shift = phase->intcon(exact_log2(unit));
2859    zbase = phase->transform(new URShiftXNode(zbase, shift) );
2860    zend  = phase->transform(new URShiftXNode(zend,  shift) );
2861  }
2862
2863  // Bulk clear double-words
2864  Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2865  Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2866  mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2867  return phase->transform(mem);
2868}
2869
2870Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2871                                   intptr_t start_offset,
2872                                   intptr_t end_offset,
2873                                   PhaseGVN* phase) {
2874  if (start_offset == end_offset) {
2875    // nothing to do
2876    return mem;
2877  }
2878
2879  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2880  intptr_t done_offset = end_offset;
2881  if ((done_offset % BytesPerLong) != 0) {
2882    done_offset -= BytesPerInt;
2883  }
2884  if (done_offset > start_offset) {
2885    mem = clear_memory(ctl, mem, dest,
2886                       start_offset, phase->MakeConX(done_offset), phase);
2887  }
2888  if (done_offset < end_offset) { // emit the final 32-bit store
2889    Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2890    adr = phase->transform(adr);
2891    const TypePtr* atp = TypeRawPtr::BOTTOM;
2892    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2893    mem = phase->transform(mem);
2894    done_offset += BytesPerInt;
2895  }
2896  assert(done_offset == end_offset, "");
2897  return mem;
2898}
2899
2900//=============================================================================
2901MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2902  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2903    _adr_type(C->get_adr_type(alias_idx))
2904{
2905  init_class_id(Class_MemBar);
2906  Node* top = C->top();
2907  init_req(TypeFunc::I_O,top);
2908  init_req(TypeFunc::FramePtr,top);
2909  init_req(TypeFunc::ReturnAdr,top);
2910  if (precedent != NULL)
2911    init_req(TypeFunc::Parms, precedent);
2912}
2913
2914//------------------------------cmp--------------------------------------------
2915uint MemBarNode::hash() const { return NO_HASH; }
2916uint MemBarNode::cmp( const Node &n ) const {
2917  return (&n == this);          // Always fail except on self
2918}
2919
2920//------------------------------make-------------------------------------------
2921MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2922  switch (opcode) {
2923  case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2924  case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2925  case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2926  case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2927  case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2928  case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2929  case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2930  case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2931  case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2932  case Op_Initialize:        return new InitializeNode(C, atp, pn);
2933  case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2934  default: ShouldNotReachHere(); return NULL;
2935  }
2936}
2937
2938//------------------------------Ideal------------------------------------------
2939// Return a node which is more "ideal" than the current node.  Strip out
2940// control copies
2941Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2942  if (remove_dead_region(phase, can_reshape)) return this;
2943  // Don't bother trying to transform a dead node
2944  if (in(0) && in(0)->is_top()) {
2945    return NULL;
2946  }
2947
2948  bool progress = false;
2949  // Eliminate volatile MemBars for scalar replaced objects.
2950  if (can_reshape && req() == (Precedent+1)) {
2951    bool eliminate = false;
2952    int opc = Opcode();
2953    if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2954      // Volatile field loads and stores.
2955      Node* my_mem = in(MemBarNode::Precedent);
2956      // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2957      if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2958        // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2959        // replace this Precedent (decodeN) with the Load instead.
2960        if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2961          Node* load_node = my_mem->in(1);
2962          set_req(MemBarNode::Precedent, load_node);
2963          phase->is_IterGVN()->_worklist.push(my_mem);
2964          my_mem = load_node;
2965        } else {
2966          assert(my_mem->unique_out() == this, "sanity");
2967          del_req(Precedent);
2968          phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2969          my_mem = NULL;
2970        }
2971        progress = true;
2972      }
2973      if (my_mem != NULL && my_mem->is_Mem()) {
2974        const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2975        // Check for scalar replaced object reference.
2976        if( t_oop != NULL && t_oop->is_known_instance_field() &&
2977            t_oop->offset() != Type::OffsetBot &&
2978            t_oop->offset() != Type::OffsetTop) {
2979          eliminate = true;
2980        }
2981      }
2982    } else if (opc == Op_MemBarRelease) {
2983      // Final field stores.
2984      Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2985      if ((alloc != NULL) && alloc->is_Allocate() &&
2986          alloc->as_Allocate()->does_not_escape_thread()) {
2987        // The allocated object does not escape.
2988        eliminate = true;
2989      }
2990    }
2991    if (eliminate) {
2992      // Replace MemBar projections by its inputs.
2993      PhaseIterGVN* igvn = phase->is_IterGVN();
2994      igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2995      igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2996      // Must return either the original node (now dead) or a new node
2997      // (Do not return a top here, since that would break the uniqueness of top.)
2998      return new ConINode(TypeInt::ZERO);
2999    }
3000  }
3001  return progress ? this : NULL;
3002}
3003
3004//------------------------------Value------------------------------------------
3005const Type* MemBarNode::Value(PhaseGVN* phase) const {
3006  if( !in(0) ) return Type::TOP;
3007  if( phase->type(in(0)) == Type::TOP )
3008    return Type::TOP;
3009  return TypeTuple::MEMBAR;
3010}
3011
3012//------------------------------match------------------------------------------
3013// Construct projections for memory.
3014Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3015  switch (proj->_con) {
3016  case TypeFunc::Control:
3017  case TypeFunc::Memory:
3018    return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3019  }
3020  ShouldNotReachHere();
3021  return NULL;
3022}
3023
3024//===========================InitializeNode====================================
3025// SUMMARY:
3026// This node acts as a memory barrier on raw memory, after some raw stores.
3027// The 'cooked' oop value feeds from the Initialize, not the Allocation.
3028// The Initialize can 'capture' suitably constrained stores as raw inits.
3029// It can coalesce related raw stores into larger units (called 'tiles').
3030// It can avoid zeroing new storage for memory units which have raw inits.
3031// At macro-expansion, it is marked 'complete', and does not optimize further.
3032//
3033// EXAMPLE:
3034// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3035//   ctl = incoming control; mem* = incoming memory
3036// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3037// First allocate uninitialized memory and fill in the header:
3038//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3039//   ctl := alloc.Control; mem* := alloc.Memory*
3040//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3041// Then initialize to zero the non-header parts of the raw memory block:
3042//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3043//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3044// After the initialize node executes, the object is ready for service:
3045//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3046// Suppose its body is immediately initialized as {1,2}:
3047//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3048//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3049//   mem.SLICE(#short[*]) := store2
3050//
3051// DETAILS:
3052// An InitializeNode collects and isolates object initialization after
3053// an AllocateNode and before the next possible safepoint.  As a
3054// memory barrier (MemBarNode), it keeps critical stores from drifting
3055// down past any safepoint or any publication of the allocation.
3056// Before this barrier, a newly-allocated object may have uninitialized bits.
3057// After this barrier, it may be treated as a real oop, and GC is allowed.
3058//
3059// The semantics of the InitializeNode include an implicit zeroing of
3060// the new object from object header to the end of the object.
3061// (The object header and end are determined by the AllocateNode.)
3062//
3063// Certain stores may be added as direct inputs to the InitializeNode.
3064// These stores must update raw memory, and they must be to addresses
3065// derived from the raw address produced by AllocateNode, and with
3066// a constant offset.  They must be ordered by increasing offset.
3067// The first one is at in(RawStores), the last at in(req()-1).
3068// Unlike most memory operations, they are not linked in a chain,
3069// but are displayed in parallel as users of the rawmem output of
3070// the allocation.
3071//
3072// (See comments in InitializeNode::capture_store, which continue
3073// the example given above.)
3074//
3075// When the associated Allocate is macro-expanded, the InitializeNode
3076// may be rewritten to optimize collected stores.  A ClearArrayNode
3077// may also be created at that point to represent any required zeroing.
3078// The InitializeNode is then marked 'complete', prohibiting further
3079// capturing of nearby memory operations.
3080//
3081// During macro-expansion, all captured initializations which store
3082// constant values of 32 bits or smaller are coalesced (if advantageous)
3083// into larger 'tiles' 32 or 64 bits.  This allows an object to be
3084// initialized in fewer memory operations.  Memory words which are
3085// covered by neither tiles nor non-constant stores are pre-zeroed
3086// by explicit stores of zero.  (The code shape happens to do all
3087// zeroing first, then all other stores, with both sequences occurring
3088// in order of ascending offsets.)
3089//
3090// Alternatively, code may be inserted between an AllocateNode and its
3091// InitializeNode, to perform arbitrary initialization of the new object.
3092// E.g., the object copying intrinsics insert complex data transfers here.
3093// The initialization must then be marked as 'complete' disable the
3094// built-in zeroing semantics and the collection of initializing stores.
3095//
3096// While an InitializeNode is incomplete, reads from the memory state
3097// produced by it are optimizable if they match the control edge and
3098// new oop address associated with the allocation/initialization.
3099// They return a stored value (if the offset matches) or else zero.
3100// A write to the memory state, if it matches control and address,
3101// and if it is to a constant offset, may be 'captured' by the
3102// InitializeNode.  It is cloned as a raw memory operation and rewired
3103// inside the initialization, to the raw oop produced by the allocation.
3104// Operations on addresses which are provably distinct (e.g., to
3105// other AllocateNodes) are allowed to bypass the initialization.
3106//
3107// The effect of all this is to consolidate object initialization
3108// (both arrays and non-arrays, both piecewise and bulk) into a
3109// single location, where it can be optimized as a unit.
3110//
3111// Only stores with an offset less than TrackedInitializationLimit words
3112// will be considered for capture by an InitializeNode.  This puts a
3113// reasonable limit on the complexity of optimized initializations.
3114
3115//---------------------------InitializeNode------------------------------------
3116InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3117  : _is_complete(Incomplete), _does_not_escape(false),
3118    MemBarNode(C, adr_type, rawoop)
3119{
3120  init_class_id(Class_Initialize);
3121
3122  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3123  assert(in(RawAddress) == rawoop, "proper init");
3124  // Note:  allocation() can be NULL, for secondary initialization barriers
3125}
3126
3127// Since this node is not matched, it will be processed by the
3128// register allocator.  Declare that there are no constraints
3129// on the allocation of the RawAddress edge.
3130const RegMask &InitializeNode::in_RegMask(uint idx) const {
3131  // This edge should be set to top, by the set_complete.  But be conservative.
3132  if (idx == InitializeNode::RawAddress)
3133    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3134  return RegMask::Empty;
3135}
3136
3137Node* InitializeNode::memory(uint alias_idx) {
3138  Node* mem = in(Memory);
3139  if (mem->is_MergeMem()) {
3140    return mem->as_MergeMem()->memory_at(alias_idx);
3141  } else {
3142    // incoming raw memory is not split
3143    return mem;
3144  }
3145}
3146
3147bool InitializeNode::is_non_zero() {
3148  if (is_complete())  return false;
3149  remove_extra_zeroes();
3150  return (req() > RawStores);
3151}
3152
3153void InitializeNode::set_complete(PhaseGVN* phase) {
3154  assert(!is_complete(), "caller responsibility");
3155  _is_complete = Complete;
3156
3157  // After this node is complete, it contains a bunch of
3158  // raw-memory initializations.  There is no need for
3159  // it to have anything to do with non-raw memory effects.
3160  // Therefore, tell all non-raw users to re-optimize themselves,
3161  // after skipping the memory effects of this initialization.
3162  PhaseIterGVN* igvn = phase->is_IterGVN();
3163  if (igvn)  igvn->add_users_to_worklist(this);
3164}
3165
3166// convenience function
3167// return false if the init contains any stores already
3168bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3169  InitializeNode* init = initialization();
3170  if (init == NULL || init->is_complete())  return false;
3171  init->remove_extra_zeroes();
3172  // for now, if this allocation has already collected any inits, bail:
3173  if (init->is_non_zero())  return false;
3174  init->set_complete(phase);
3175  return true;
3176}
3177
3178void InitializeNode::remove_extra_zeroes() {
3179  if (req() == RawStores)  return;
3180  Node* zmem = zero_memory();
3181  uint fill = RawStores;
3182  for (uint i = fill; i < req(); i++) {
3183    Node* n = in(i);
3184    if (n->is_top() || n == zmem)  continue;  // skip
3185    if (fill < i)  set_req(fill, n);          // compact
3186    ++fill;
3187  }
3188  // delete any empty spaces created:
3189  while (fill < req()) {
3190    del_req(fill);
3191  }
3192}
3193
3194// Helper for remembering which stores go with which offsets.
3195intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3196  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3197  intptr_t offset = -1;
3198  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3199                                               phase, offset);
3200  if (base == NULL)     return -1;  // something is dead,
3201  if (offset < 0)       return -1;  //        dead, dead
3202  return offset;
3203}
3204
3205// Helper for proving that an initialization expression is
3206// "simple enough" to be folded into an object initialization.
3207// Attempts to prove that a store's initial value 'n' can be captured
3208// within the initialization without creating a vicious cycle, such as:
3209//     { Foo p = new Foo(); p.next = p; }
3210// True for constants and parameters and small combinations thereof.
3211bool InitializeNode::detect_init_independence(Node* n, int& count) {
3212  if (n == NULL)      return true;   // (can this really happen?)
3213  if (n->is_Proj())   n = n->in(0);
3214  if (n == this)      return false;  // found a cycle
3215  if (n->is_Con())    return true;
3216  if (n->is_Start())  return true;   // params, etc., are OK
3217  if (n->is_Root())   return true;   // even better
3218
3219  Node* ctl = n->in(0);
3220  if (ctl != NULL && !ctl->is_top()) {
3221    if (ctl->is_Proj())  ctl = ctl->in(0);
3222    if (ctl == this)  return false;
3223
3224    // If we already know that the enclosing memory op is pinned right after
3225    // the init, then any control flow that the store has picked up
3226    // must have preceded the init, or else be equal to the init.
3227    // Even after loop optimizations (which might change control edges)
3228    // a store is never pinned *before* the availability of its inputs.
3229    if (!MemNode::all_controls_dominate(n, this))
3230      return false;                  // failed to prove a good control
3231  }
3232
3233  // Check data edges for possible dependencies on 'this'.
3234  if ((count += 1) > 20)  return false;  // complexity limit
3235  for (uint i = 1; i < n->req(); i++) {
3236    Node* m = n->in(i);
3237    if (m == NULL || m == n || m->is_top())  continue;
3238    uint first_i = n->find_edge(m);
3239    if (i != first_i)  continue;  // process duplicate edge just once
3240    if (!detect_init_independence(m, count)) {
3241      return false;
3242    }
3243  }
3244
3245  return true;
3246}
3247
3248// Here are all the checks a Store must pass before it can be moved into
3249// an initialization.  Returns zero if a check fails.
3250// On success, returns the (constant) offset to which the store applies,
3251// within the initialized memory.
3252intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3253  const int FAIL = 0;
3254  if (st->is_unaligned_access()) {
3255    return FAIL;
3256  }
3257  if (st->req() != MemNode::ValueIn + 1)
3258    return FAIL;                // an inscrutable StoreNode (card mark?)
3259  Node* ctl = st->in(MemNode::Control);
3260  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3261    return FAIL;                // must be unconditional after the initialization
3262  Node* mem = st->in(MemNode::Memory);
3263  if (!(mem->is_Proj() && mem->in(0) == this))
3264    return FAIL;                // must not be preceded by other stores
3265  Node* adr = st->in(MemNode::Address);
3266  intptr_t offset;
3267  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3268  if (alloc == NULL)
3269    return FAIL;                // inscrutable address
3270  if (alloc != allocation())
3271    return FAIL;                // wrong allocation!  (store needs to float up)
3272  Node* val = st->in(MemNode::ValueIn);
3273  int complexity_count = 0;
3274  if (!detect_init_independence(val, complexity_count))
3275    return FAIL;                // stored value must be 'simple enough'
3276
3277  // The Store can be captured only if nothing after the allocation
3278  // and before the Store is using the memory location that the store
3279  // overwrites.
3280  bool failed = false;
3281  // If is_complete_with_arraycopy() is true the shape of the graph is
3282  // well defined and is safe so no need for extra checks.
3283  if (!is_complete_with_arraycopy()) {
3284    // We are going to look at each use of the memory state following
3285    // the allocation to make sure nothing reads the memory that the
3286    // Store writes.
3287    const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3288    int alias_idx = phase->C->get_alias_index(t_adr);
3289    ResourceMark rm;
3290    Unique_Node_List mems;
3291    mems.push(mem);
3292    Node* unique_merge = NULL;
3293    for (uint next = 0; next < mems.size(); ++next) {
3294      Node *m  = mems.at(next);
3295      for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3296        Node *n = m->fast_out(j);
3297        if (n->outcnt() == 0) {
3298          continue;
3299        }
3300        if (n == st) {
3301          continue;
3302        } else if (n->in(0) != NULL && n->in(0) != ctl) {
3303          // If the control of this use is different from the control
3304          // of the Store which is right after the InitializeNode then
3305          // this node cannot be between the InitializeNode and the
3306          // Store.
3307          continue;
3308        } else if (n->is_MergeMem()) {
3309          if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3310            // We can hit a MergeMemNode (that will likely go away
3311            // later) that is a direct use of the memory state
3312            // following the InitializeNode on the same slice as the
3313            // store node that we'd like to capture. We need to check
3314            // the uses of the MergeMemNode.
3315            mems.push(n);
3316          }
3317        } else if (n->is_Mem()) {
3318          Node* other_adr = n->in(MemNode::Address);
3319          if (other_adr == adr) {
3320            failed = true;
3321            break;
3322          } else {
3323            const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3324            if (other_t_adr != NULL) {
3325              int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3326              if (other_alias_idx == alias_idx) {
3327                // A load from the same memory slice as the store right
3328                // after the InitializeNode. We check the control of the
3329                // object/array that is loaded from. If it's the same as
3330                // the store control then we cannot capture the store.
3331                assert(!n->is_Store(), "2 stores to same slice on same control?");
3332                Node* base = other_adr;
3333                assert(base->is_AddP(), "should be addp but is %s", base->Name());
3334                base = base->in(AddPNode::Base);
3335                if (base != NULL) {
3336                  base = base->uncast();
3337                  if (base->is_Proj() && base->in(0) == alloc) {
3338                    failed = true;
3339                    break;
3340                  }
3341                }
3342              }
3343            }
3344          }
3345        } else {
3346          failed = true;
3347          break;
3348        }
3349      }
3350    }
3351  }
3352  if (failed) {
3353    if (!can_reshape) {
3354      // We decided we couldn't capture the store during parsing. We
3355      // should try again during the next IGVN once the graph is
3356      // cleaner.
3357      phase->C->record_for_igvn(st);
3358    }
3359    return FAIL;
3360  }
3361
3362  return offset;                // success
3363}
3364
3365// Find the captured store in(i) which corresponds to the range
3366// [start..start+size) in the initialized object.
3367// If there is one, return its index i.  If there isn't, return the
3368// negative of the index where it should be inserted.
3369// Return 0 if the queried range overlaps an initialization boundary
3370// or if dead code is encountered.
3371// If size_in_bytes is zero, do not bother with overlap checks.
3372int InitializeNode::captured_store_insertion_point(intptr_t start,
3373                                                   int size_in_bytes,
3374                                                   PhaseTransform* phase) {
3375  const int FAIL = 0, MAX_STORE = BytesPerLong;
3376
3377  if (is_complete())
3378    return FAIL;                // arraycopy got here first; punt
3379
3380  assert(allocation() != NULL, "must be present");
3381
3382  // no negatives, no header fields:
3383  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3384
3385  // after a certain size, we bail out on tracking all the stores:
3386  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3387  if (start >= ti_limit)  return FAIL;
3388
3389  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3390    if (i >= limit)  return -(int)i; // not found; here is where to put it
3391
3392    Node*    st     = in(i);
3393    intptr_t st_off = get_store_offset(st, phase);
3394    if (st_off < 0) {
3395      if (st != zero_memory()) {
3396        return FAIL;            // bail out if there is dead garbage
3397      }
3398    } else if (st_off > start) {
3399      // ...we are done, since stores are ordered
3400      if (st_off < start + size_in_bytes) {
3401        return FAIL;            // the next store overlaps
3402      }
3403      return -(int)i;           // not found; here is where to put it
3404    } else if (st_off < start) {
3405      if (size_in_bytes != 0 &&
3406          start < st_off + MAX_STORE &&
3407          start < st_off + st->as_Store()->memory_size()) {
3408        return FAIL;            // the previous store overlaps
3409      }
3410    } else {
3411      if (size_in_bytes != 0 &&
3412          st->as_Store()->memory_size() != size_in_bytes) {
3413        return FAIL;            // mismatched store size
3414      }
3415      return i;
3416    }
3417
3418    ++i;
3419  }
3420}
3421
3422// Look for a captured store which initializes at the offset 'start'
3423// with the given size.  If there is no such store, and no other
3424// initialization interferes, then return zero_memory (the memory
3425// projection of the AllocateNode).
3426Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3427                                          PhaseTransform* phase) {
3428  assert(stores_are_sane(phase), "");
3429  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3430  if (i == 0) {
3431    return NULL;                // something is dead
3432  } else if (i < 0) {
3433    return zero_memory();       // just primordial zero bits here
3434  } else {
3435    Node* st = in(i);           // here is the store at this position
3436    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3437    return st;
3438  }
3439}
3440
3441// Create, as a raw pointer, an address within my new object at 'offset'.
3442Node* InitializeNode::make_raw_address(intptr_t offset,
3443                                       PhaseTransform* phase) {
3444  Node* addr = in(RawAddress);
3445  if (offset != 0) {
3446    Compile* C = phase->C;
3447    addr = phase->transform( new AddPNode(C->top(), addr,
3448                                                 phase->MakeConX(offset)) );
3449  }
3450  return addr;
3451}
3452
3453// Clone the given store, converting it into a raw store
3454// initializing a field or element of my new object.
3455// Caller is responsible for retiring the original store,
3456// with subsume_node or the like.
3457//
3458// From the example above InitializeNode::InitializeNode,
3459// here are the old stores to be captured:
3460//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3461//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3462//
3463// Here is the changed code; note the extra edges on init:
3464//   alloc = (Allocate ...)
3465//   rawoop = alloc.RawAddress
3466//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3467//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3468//   init = (Initialize alloc.Control alloc.Memory rawoop
3469//                      rawstore1 rawstore2)
3470//
3471Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3472                                    PhaseTransform* phase, bool can_reshape) {
3473  assert(stores_are_sane(phase), "");
3474
3475  if (start < 0)  return NULL;
3476  assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3477
3478  Compile* C = phase->C;
3479  int size_in_bytes = st->memory_size();
3480  int i = captured_store_insertion_point(start, size_in_bytes, phase);
3481  if (i == 0)  return NULL;     // bail out
3482  Node* prev_mem = NULL;        // raw memory for the captured store
3483  if (i > 0) {
3484    prev_mem = in(i);           // there is a pre-existing store under this one
3485    set_req(i, C->top());       // temporarily disconnect it
3486    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3487  } else {
3488    i = -i;                     // no pre-existing store
3489    prev_mem = zero_memory();   // a slice of the newly allocated object
3490    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3491      set_req(--i, C->top());   // reuse this edge; it has been folded away
3492    else
3493      ins_req(i, C->top());     // build a new edge
3494  }
3495  Node* new_st = st->clone();
3496  new_st->set_req(MemNode::Control, in(Control));
3497  new_st->set_req(MemNode::Memory,  prev_mem);
3498  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3499  new_st = phase->transform(new_st);
3500
3501  // At this point, new_st might have swallowed a pre-existing store
3502  // at the same offset, or perhaps new_st might have disappeared,
3503  // if it redundantly stored the same value (or zero to fresh memory).
3504
3505  // In any case, wire it in:
3506  phase->igvn_rehash_node_delayed(this);
3507  set_req(i, new_st);
3508
3509  // The caller may now kill the old guy.
3510  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3511  assert(check_st == new_st || check_st == NULL, "must be findable");
3512  assert(!is_complete(), "");
3513  return new_st;
3514}
3515
3516static bool store_constant(jlong* tiles, int num_tiles,
3517                           intptr_t st_off, int st_size,
3518                           jlong con) {
3519  if ((st_off & (st_size-1)) != 0)
3520    return false;               // strange store offset (assume size==2**N)
3521  address addr = (address)tiles + st_off;
3522  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3523  switch (st_size) {
3524  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3525  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3526  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3527  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3528  default: return false;        // strange store size (detect size!=2**N here)
3529  }
3530  return true;                  // return success to caller
3531}
3532
3533// Coalesce subword constants into int constants and possibly
3534// into long constants.  The goal, if the CPU permits,
3535// is to initialize the object with a small number of 64-bit tiles.
3536// Also, convert floating-point constants to bit patterns.
3537// Non-constants are not relevant to this pass.
3538//
3539// In terms of the running example on InitializeNode::InitializeNode
3540// and InitializeNode::capture_store, here is the transformation
3541// of rawstore1 and rawstore2 into rawstore12:
3542//   alloc = (Allocate ...)
3543//   rawoop = alloc.RawAddress
3544//   tile12 = 0x00010002
3545//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3546//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3547//
3548void
3549InitializeNode::coalesce_subword_stores(intptr_t header_size,
3550                                        Node* size_in_bytes,
3551                                        PhaseGVN* phase) {
3552  Compile* C = phase->C;
3553
3554  assert(stores_are_sane(phase), "");
3555  // Note:  After this pass, they are not completely sane,
3556  // since there may be some overlaps.
3557
3558  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3559
3560  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3561  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3562  size_limit = MIN2(size_limit, ti_limit);
3563  size_limit = align_up(size_limit, BytesPerLong);
3564  int num_tiles = size_limit / BytesPerLong;
3565
3566  // allocate space for the tile map:
3567  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3568  jlong  tiles_buf[small_len];
3569  Node*  nodes_buf[small_len];
3570  jlong  inits_buf[small_len];
3571  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3572                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3573  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3574                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3575  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3576                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3577  // tiles: exact bitwise model of all primitive constants
3578  // nodes: last constant-storing node subsumed into the tiles model
3579  // inits: which bytes (in each tile) are touched by any initializations
3580
3581  //// Pass A: Fill in the tile model with any relevant stores.
3582
3583  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3584  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3585  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3586  Node* zmem = zero_memory(); // initially zero memory state
3587  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3588    Node* st = in(i);
3589    intptr_t st_off = get_store_offset(st, phase);
3590
3591    // Figure out the store's offset and constant value:
3592    if (st_off < header_size)             continue; //skip (ignore header)
3593    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3594    int st_size = st->as_Store()->memory_size();
3595    if (st_off + st_size > size_limit)    break;
3596
3597    // Record which bytes are touched, whether by constant or not.
3598    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3599      continue;                 // skip (strange store size)
3600
3601    const Type* val = phase->type(st->in(MemNode::ValueIn));
3602    if (!val->singleton())                continue; //skip (non-con store)
3603    BasicType type = val->basic_type();
3604
3605    jlong con = 0;
3606    switch (type) {
3607    case T_INT:    con = val->is_int()->get_con();  break;
3608    case T_LONG:   con = val->is_long()->get_con(); break;
3609    case T_FLOAT:  con = jint_cast(val->getf());    break;
3610    case T_DOUBLE: con = jlong_cast(val->getd());   break;
3611    default:                              continue; //skip (odd store type)
3612    }
3613
3614    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3615        st->Opcode() == Op_StoreL) {
3616      continue;                 // This StoreL is already optimal.
3617    }
3618
3619    // Store down the constant.
3620    store_constant(tiles, num_tiles, st_off, st_size, con);
3621
3622    intptr_t j = st_off >> LogBytesPerLong;
3623
3624    if (type == T_INT && st_size == BytesPerInt
3625        && (st_off & BytesPerInt) == BytesPerInt) {
3626      jlong lcon = tiles[j];
3627      if (!Matcher::isSimpleConstant64(lcon) &&
3628          st->Opcode() == Op_StoreI) {
3629        // This StoreI is already optimal by itself.
3630        jint* intcon = (jint*) &tiles[j];
3631        intcon[1] = 0;  // undo the store_constant()
3632
3633        // If the previous store is also optimal by itself, back up and
3634        // undo the action of the previous loop iteration... if we can.
3635        // But if we can't, just let the previous half take care of itself.
3636        st = nodes[j];
3637        st_off -= BytesPerInt;
3638        con = intcon[0];
3639        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3640          assert(st_off >= header_size, "still ignoring header");
3641          assert(get_store_offset(st, phase) == st_off, "must be");
3642          assert(in(i-1) == zmem, "must be");
3643          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3644          assert(con == tcon->is_int()->get_con(), "must be");
3645          // Undo the effects of the previous loop trip, which swallowed st:
3646          intcon[0] = 0;        // undo store_constant()
3647          set_req(i-1, st);     // undo set_req(i, zmem)
3648          nodes[j] = NULL;      // undo nodes[j] = st
3649          --old_subword;        // undo ++old_subword
3650        }
3651        continue;               // This StoreI is already optimal.
3652      }
3653    }
3654
3655    // This store is not needed.
3656    set_req(i, zmem);
3657    nodes[j] = st;              // record for the moment
3658    if (st_size < BytesPerLong) // something has changed
3659          ++old_subword;        // includes int/float, but who's counting...
3660    else  ++old_long;
3661  }
3662
3663  if ((old_subword + old_long) == 0)
3664    return;                     // nothing more to do
3665
3666  //// Pass B: Convert any non-zero tiles into optimal constant stores.
3667  // Be sure to insert them before overlapping non-constant stores.
3668  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3669  for (int j = 0; j < num_tiles; j++) {
3670    jlong con  = tiles[j];
3671    jlong init = inits[j];
3672    if (con == 0)  continue;
3673    jint con0,  con1;           // split the constant, address-wise
3674    jint init0, init1;          // split the init map, address-wise
3675    { union { jlong con; jint intcon[2]; } u;
3676      u.con = con;
3677      con0  = u.intcon[0];
3678      con1  = u.intcon[1];
3679      u.con = init;
3680      init0 = u.intcon[0];
3681      init1 = u.intcon[1];
3682    }
3683
3684    Node* old = nodes[j];
3685    assert(old != NULL, "need the prior store");
3686    intptr_t offset = (j * BytesPerLong);
3687
3688    bool split = !Matcher::isSimpleConstant64(con);
3689
3690    if (offset < header_size) {
3691      assert(offset + BytesPerInt >= header_size, "second int counts");
3692      assert(*(jint*)&tiles[j] == 0, "junk in header");
3693      split = true;             // only the second word counts
3694      // Example:  int a[] = { 42 ... }
3695    } else if (con0 == 0 && init0 == -1) {
3696      split = true;             // first word is covered by full inits
3697      // Example:  int a[] = { ... foo(), 42 ... }
3698    } else if (con1 == 0 && init1 == -1) {
3699      split = true;             // second word is covered by full inits
3700      // Example:  int a[] = { ... 42, foo() ... }
3701    }
3702
3703    // Here's a case where init0 is neither 0 nor -1:
3704    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3705    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3706    // In this case the tile is not split; it is (jlong)42.
3707    // The big tile is stored down, and then the foo() value is inserted.
3708    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3709
3710    Node* ctl = old->in(MemNode::Control);
3711    Node* adr = make_raw_address(offset, phase);
3712    const TypePtr* atp = TypeRawPtr::BOTTOM;
3713
3714    // One or two coalesced stores to plop down.
3715    Node*    st[2];
3716    intptr_t off[2];
3717    int  nst = 0;
3718    if (!split) {
3719      ++new_long;
3720      off[nst] = offset;
3721      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3722                                  phase->longcon(con), T_LONG, MemNode::unordered);
3723    } else {
3724      // Omit either if it is a zero.
3725      if (con0 != 0) {
3726        ++new_int;
3727        off[nst]  = offset;
3728        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3729                                    phase->intcon(con0), T_INT, MemNode::unordered);
3730      }
3731      if (con1 != 0) {
3732        ++new_int;
3733        offset += BytesPerInt;
3734        adr = make_raw_address(offset, phase);
3735        off[nst]  = offset;
3736        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3737                                    phase->intcon(con1), T_INT, MemNode::unordered);
3738      }
3739    }
3740
3741    // Insert second store first, then the first before the second.
3742    // Insert each one just before any overlapping non-constant stores.
3743    while (nst > 0) {
3744      Node* st1 = st[--nst];
3745      C->copy_node_notes_to(st1, old);
3746      st1 = phase->transform(st1);
3747      offset = off[nst];
3748      assert(offset >= header_size, "do not smash header");
3749      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3750      guarantee(ins_idx != 0, "must re-insert constant store");
3751      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3752      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3753        set_req(--ins_idx, st1);
3754      else
3755        ins_req(ins_idx, st1);
3756    }
3757  }
3758
3759  if (PrintCompilation && WizardMode)
3760    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3761                  old_subword, old_long, new_int, new_long);
3762  if (C->log() != NULL)
3763    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3764                   old_subword, old_long, new_int, new_long);
3765
3766  // Clean up any remaining occurrences of zmem:
3767  remove_extra_zeroes();
3768}
3769
3770// Explore forward from in(start) to find the first fully initialized
3771// word, and return its offset.  Skip groups of subword stores which
3772// together initialize full words.  If in(start) is itself part of a
3773// fully initialized word, return the offset of in(start).  If there
3774// are no following full-word stores, or if something is fishy, return
3775// a negative value.
3776intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3777  int       int_map = 0;
3778  intptr_t  int_map_off = 0;
3779  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3780
3781  for (uint i = start, limit = req(); i < limit; i++) {
3782    Node* st = in(i);
3783
3784    intptr_t st_off = get_store_offset(st, phase);
3785    if (st_off < 0)  break;  // return conservative answer
3786
3787    int st_size = st->as_Store()->memory_size();
3788    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3789      return st_off;            // we found a complete word init
3790    }
3791
3792    // update the map:
3793
3794    intptr_t this_int_off = align_down(st_off, BytesPerInt);
3795    if (this_int_off != int_map_off) {
3796      // reset the map:
3797      int_map = 0;
3798      int_map_off = this_int_off;
3799    }
3800
3801    int subword_off = st_off - this_int_off;
3802    int_map |= right_n_bits(st_size) << subword_off;
3803    if ((int_map & FULL_MAP) == FULL_MAP) {
3804      return this_int_off;      // we found a complete word init
3805    }
3806
3807    // Did this store hit or cross the word boundary?
3808    intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt);
3809    if (next_int_off == this_int_off + BytesPerInt) {
3810      // We passed the current int, without fully initializing it.
3811      int_map_off = next_int_off;
3812      int_map >>= BytesPerInt;
3813    } else if (next_int_off > this_int_off + BytesPerInt) {
3814      // We passed the current and next int.
3815      return this_int_off + BytesPerInt;
3816    }
3817  }
3818
3819  return -1;
3820}
3821
3822
3823// Called when the associated AllocateNode is expanded into CFG.
3824// At this point, we may perform additional optimizations.
3825// Linearize the stores by ascending offset, to make memory
3826// activity as coherent as possible.
3827Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3828                                      intptr_t header_size,
3829                                      Node* size_in_bytes,
3830                                      PhaseGVN* phase) {
3831  assert(!is_complete(), "not already complete");
3832  assert(stores_are_sane(phase), "");
3833  assert(allocation() != NULL, "must be present");
3834
3835  remove_extra_zeroes();
3836
3837  if (ReduceFieldZeroing || ReduceBulkZeroing)
3838    // reduce instruction count for common initialization patterns
3839    coalesce_subword_stores(header_size, size_in_bytes, phase);
3840
3841  Node* zmem = zero_memory();   // initially zero memory state
3842  Node* inits = zmem;           // accumulating a linearized chain of inits
3843  #ifdef ASSERT
3844  intptr_t first_offset = allocation()->minimum_header_size();
3845  intptr_t last_init_off = first_offset;  // previous init offset
3846  intptr_t last_init_end = first_offset;  // previous init offset+size
3847  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3848  #endif
3849  intptr_t zeroes_done = header_size;
3850
3851  bool do_zeroing = true;       // we might give up if inits are very sparse
3852  int  big_init_gaps = 0;       // how many large gaps have we seen?
3853
3854  if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3855  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3856
3857  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3858    Node* st = in(i);
3859    intptr_t st_off = get_store_offset(st, phase);
3860    if (st_off < 0)
3861      break;                    // unknown junk in the inits
3862    if (st->in(MemNode::Memory) != zmem)
3863      break;                    // complicated store chains somehow in list
3864
3865    int st_size = st->as_Store()->memory_size();
3866    intptr_t next_init_off = st_off + st_size;
3867
3868    if (do_zeroing && zeroes_done < next_init_off) {
3869      // See if this store needs a zero before it or under it.
3870      intptr_t zeroes_needed = st_off;
3871
3872      if (st_size < BytesPerInt) {
3873        // Look for subword stores which only partially initialize words.
3874        // If we find some, we must lay down some word-level zeroes first,
3875        // underneath the subword stores.
3876        //
3877        // Examples:
3878        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3879        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3880        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3881        //
3882        // Note:  coalesce_subword_stores may have already done this,
3883        // if it was prompted by constant non-zero subword initializers.
3884        // But this case can still arise with non-constant stores.
3885
3886        intptr_t next_full_store = find_next_fullword_store(i, phase);
3887
3888        // In the examples above:
3889        //   in(i)          p   q   r   s     x   y     z
3890        //   st_off        12  13  14  15    12  13    14
3891        //   st_size        1   1   1   1     1   1     1
3892        //   next_full_s.  12  16  16  16    16  16    16
3893        //   z's_done      12  16  16  16    12  16    12
3894        //   z's_needed    12  16  16  16    16  16    16
3895        //   zsize          0   0   0   0     4   0     4
3896        if (next_full_store < 0) {
3897          // Conservative tack:  Zero to end of current word.
3898          zeroes_needed = align_up(zeroes_needed, BytesPerInt);
3899        } else {
3900          // Zero to beginning of next fully initialized word.
3901          // Or, don't zero at all, if we are already in that word.
3902          assert(next_full_store >= zeroes_needed, "must go forward");
3903          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3904          zeroes_needed = next_full_store;
3905        }
3906      }
3907
3908      if (zeroes_needed > zeroes_done) {
3909        intptr_t zsize = zeroes_needed - zeroes_done;
3910        // Do some incremental zeroing on rawmem, in parallel with inits.
3911        zeroes_done = align_down(zeroes_done, BytesPerInt);
3912        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3913                                              zeroes_done, zeroes_needed,
3914                                              phase);
3915        zeroes_done = zeroes_needed;
3916        if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3917          do_zeroing = false;   // leave the hole, next time
3918      }
3919    }
3920
3921    // Collect the store and move on:
3922    st->set_req(MemNode::Memory, inits);
3923    inits = st;                 // put it on the linearized chain
3924    set_req(i, zmem);           // unhook from previous position
3925
3926    if (zeroes_done == st_off)
3927      zeroes_done = next_init_off;
3928
3929    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3930
3931    #ifdef ASSERT
3932    // Various order invariants.  Weaker than stores_are_sane because
3933    // a large constant tile can be filled in by smaller non-constant stores.
3934    assert(st_off >= last_init_off, "inits do not reverse");
3935    last_init_off = st_off;
3936    const Type* val = NULL;
3937    if (st_size >= BytesPerInt &&
3938        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3939        (int)val->basic_type() < (int)T_OBJECT) {
3940      assert(st_off >= last_tile_end, "tiles do not overlap");
3941      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3942      last_tile_end = MAX2(last_tile_end, next_init_off);
3943    } else {
3944      intptr_t st_tile_end = align_up(next_init_off, BytesPerLong);
3945      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3946      assert(st_off      >= last_init_end, "inits do not overlap");
3947      last_init_end = next_init_off;  // it's a non-tile
3948    }
3949    #endif //ASSERT
3950  }
3951
3952  remove_extra_zeroes();        // clear out all the zmems left over
3953  add_req(inits);
3954
3955  if (!(UseTLAB && ZeroTLAB)) {
3956    // If anything remains to be zeroed, zero it all now.
3957    zeroes_done = align_down(zeroes_done, BytesPerInt);
3958    // if it is the last unused 4 bytes of an instance, forget about it
3959    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3960    if (zeroes_done + BytesPerLong >= size_limit) {
3961      AllocateNode* alloc = allocation();
3962      assert(alloc != NULL, "must be present");
3963      if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
3964        Node* klass_node = alloc->in(AllocateNode::KlassNode);
3965        ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3966        if (zeroes_done == k->layout_helper())
3967          zeroes_done = size_limit;
3968      }
3969    }
3970    if (zeroes_done < size_limit) {
3971      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3972                                            zeroes_done, size_in_bytes, phase);
3973    }
3974  }
3975
3976  set_complete(phase);
3977  return rawmem;
3978}
3979
3980
3981#ifdef ASSERT
3982bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3983  if (is_complete())
3984    return true;                // stores could be anything at this point
3985  assert(allocation() != NULL, "must be present");
3986  intptr_t last_off = allocation()->minimum_header_size();
3987  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3988    Node* st = in(i);
3989    intptr_t st_off = get_store_offset(st, phase);
3990    if (st_off < 0)  continue;  // ignore dead garbage
3991    if (last_off > st_off) {
3992      tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3993      this->dump(2);
3994      assert(false, "ascending store offsets");
3995      return false;
3996    }
3997    last_off = st_off + st->as_Store()->memory_size();
3998  }
3999  return true;
4000}
4001#endif //ASSERT
4002
4003
4004
4005
4006//============================MergeMemNode=====================================
4007//
4008// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4009// contributing store or call operations.  Each contributor provides the memory
4010// state for a particular "alias type" (see Compile::alias_type).  For example,
4011// if a MergeMem has an input X for alias category #6, then any memory reference
4012// to alias category #6 may use X as its memory state input, as an exact equivalent
4013// to using the MergeMem as a whole.
4014//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4015//
4016// (Here, the <N> notation gives the index of the relevant adr_type.)
4017//
4018// In one special case (and more cases in the future), alias categories overlap.
4019// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4020// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4021// it is exactly equivalent to that state W:
4022//   MergeMem(<Bot>: W) <==> W
4023//
4024// Usually, the merge has more than one input.  In that case, where inputs
4025// overlap (i.e., one is Bot), the narrower alias type determines the memory
4026// state for that type, and the wider alias type (Bot) fills in everywhere else:
4027//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4028//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4029//
4030// A merge can take a "wide" memory state as one of its narrow inputs.
4031// This simply means that the merge observes out only the relevant parts of
4032// the wide input.  That is, wide memory states arriving at narrow merge inputs
4033// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4034//
4035// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4036// and that memory slices "leak through":
4037//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4038//
4039// But, in such a cascade, repeated memory slices can "block the leak":
4040//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4041//
4042// In the last example, Y is not part of the combined memory state of the
4043// outermost MergeMem.  The system must, of course, prevent unschedulable
4044// memory states from arising, so you can be sure that the state Y is somehow
4045// a precursor to state Y'.
4046//
4047//
4048// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4049// of each MergeMemNode array are exactly the numerical alias indexes, including
4050// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4051// Compile::alias_type (and kin) produce and manage these indexes.
4052//
4053// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4054// (Note that this provides quick access to the top node inside MergeMem methods,
4055// without the need to reach out via TLS to Compile::current.)
4056//
4057// As a consequence of what was just described, a MergeMem that represents a full
4058// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4059// containing all alias categories.
4060//
4061// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4062//
4063// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4064// a memory state for the alias type <N>, or else the top node, meaning that
4065// there is no particular input for that alias type.  Note that the length of
4066// a MergeMem is variable, and may be extended at any time to accommodate new
4067// memory states at larger alias indexes.  When merges grow, they are of course
4068// filled with "top" in the unused in() positions.
4069//
4070// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4071// (Top was chosen because it works smoothly with passes like GCM.)
4072//
4073// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4074// the type of random VM bits like TLS references.)  Since it is always the
4075// first non-Bot memory slice, some low-level loops use it to initialize an
4076// index variable:  for (i = AliasIdxRaw; i < req(); i++).
4077//
4078//
4079// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4080// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4081// the memory state for alias type <N>, or (if there is no particular slice at <N>,
4082// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4083// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4084// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4085//
4086// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4087// really that different from the other memory inputs.  An abbreviation called
4088// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4089//
4090//
4091// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4092// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4093// that "emerges though" the base memory will be marked as excluding the alias types
4094// of the other (narrow-memory) copies which "emerged through" the narrow edges:
4095//
4096//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4097//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4098//
4099// This strange "subtraction" effect is necessary to ensure IGVN convergence.
4100// (It is currently unimplemented.)  As you can see, the resulting merge is
4101// actually a disjoint union of memory states, rather than an overlay.
4102//
4103
4104//------------------------------MergeMemNode-----------------------------------
4105Node* MergeMemNode::make_empty_memory() {
4106  Node* empty_memory = (Node*) Compile::current()->top();
4107  assert(empty_memory->is_top(), "correct sentinel identity");
4108  return empty_memory;
4109}
4110
4111MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4112  init_class_id(Class_MergeMem);
4113  // all inputs are nullified in Node::Node(int)
4114  // set_input(0, NULL);  // no control input
4115
4116  // Initialize the edges uniformly to top, for starters.
4117  Node* empty_mem = make_empty_memory();
4118  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4119    init_req(i,empty_mem);
4120  }
4121  assert(empty_memory() == empty_mem, "");
4122
4123  if( new_base != NULL && new_base->is_MergeMem() ) {
4124    MergeMemNode* mdef = new_base->as_MergeMem();
4125    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4126    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4127      mms.set_memory(mms.memory2());
4128    }
4129    assert(base_memory() == mdef->base_memory(), "");
4130  } else {
4131    set_base_memory(new_base);
4132  }
4133}
4134
4135// Make a new, untransformed MergeMem with the same base as 'mem'.
4136// If mem is itself a MergeMem, populate the result with the same edges.
4137MergeMemNode* MergeMemNode::make(Node* mem) {
4138  return new MergeMemNode(mem);
4139}
4140
4141//------------------------------cmp--------------------------------------------
4142uint MergeMemNode::hash() const { return NO_HASH; }
4143uint MergeMemNode::cmp( const Node &n ) const {
4144  return (&n == this);          // Always fail except on self
4145}
4146
4147//------------------------------Identity---------------------------------------
4148Node* MergeMemNode::Identity(PhaseGVN* phase) {
4149  // Identity if this merge point does not record any interesting memory
4150  // disambiguations.
4151  Node* base_mem = base_memory();
4152  Node* empty_mem = empty_memory();
4153  if (base_mem != empty_mem) {  // Memory path is not dead?
4154    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4155      Node* mem = in(i);
4156      if (mem != empty_mem && mem != base_mem) {
4157        return this;            // Many memory splits; no change
4158      }
4159    }
4160  }
4161  return base_mem;              // No memory splits; ID on the one true input
4162}
4163
4164//------------------------------Ideal------------------------------------------
4165// This method is invoked recursively on chains of MergeMem nodes
4166Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4167  // Remove chain'd MergeMems
4168  //
4169  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4170  // relative to the "in(Bot)".  Since we are patching both at the same time,
4171  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4172  // but rewrite each "in(i)" relative to the new "in(Bot)".
4173  Node *progress = NULL;
4174
4175
4176  Node* old_base = base_memory();
4177  Node* empty_mem = empty_memory();
4178  if (old_base == empty_mem)
4179    return NULL; // Dead memory path.
4180
4181  MergeMemNode* old_mbase;
4182  if (old_base != NULL && old_base->is_MergeMem())
4183    old_mbase = old_base->as_MergeMem();
4184  else
4185    old_mbase = NULL;
4186  Node* new_base = old_base;
4187
4188  // simplify stacked MergeMems in base memory
4189  if (old_mbase)  new_base = old_mbase->base_memory();
4190
4191  // the base memory might contribute new slices beyond my req()
4192  if (old_mbase)  grow_to_match(old_mbase);
4193
4194  // Look carefully at the base node if it is a phi.
4195  PhiNode* phi_base;
4196  if (new_base != NULL && new_base->is_Phi())
4197    phi_base = new_base->as_Phi();
4198  else
4199    phi_base = NULL;
4200
4201  Node*    phi_reg = NULL;
4202  uint     phi_len = (uint)-1;
4203  if (phi_base != NULL && !phi_base->is_copy()) {
4204    // do not examine phi if degraded to a copy
4205    phi_reg = phi_base->region();
4206    phi_len = phi_base->req();
4207    // see if the phi is unfinished
4208    for (uint i = 1; i < phi_len; i++) {
4209      if (phi_base->in(i) == NULL) {
4210        // incomplete phi; do not look at it yet!
4211        phi_reg = NULL;
4212        phi_len = (uint)-1;
4213        break;
4214      }
4215    }
4216  }
4217
4218  // Note:  We do not call verify_sparse on entry, because inputs
4219  // can normalize to the base_memory via subsume_node or similar
4220  // mechanisms.  This method repairs that damage.
4221
4222  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4223
4224  // Look at each slice.
4225  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4226    Node* old_in = in(i);
4227    // calculate the old memory value
4228    Node* old_mem = old_in;
4229    if (old_mem == empty_mem)  old_mem = old_base;
4230    assert(old_mem == memory_at(i), "");
4231
4232    // maybe update (reslice) the old memory value
4233
4234    // simplify stacked MergeMems
4235    Node* new_mem = old_mem;
4236    MergeMemNode* old_mmem;
4237    if (old_mem != NULL && old_mem->is_MergeMem())
4238      old_mmem = old_mem->as_MergeMem();
4239    else
4240      old_mmem = NULL;
4241    if (old_mmem == this) {
4242      // This can happen if loops break up and safepoints disappear.
4243      // A merge of BotPtr (default) with a RawPtr memory derived from a
4244      // safepoint can be rewritten to a merge of the same BotPtr with
4245      // the BotPtr phi coming into the loop.  If that phi disappears
4246      // also, we can end up with a self-loop of the mergemem.
4247      // In general, if loops degenerate and memory effects disappear,
4248      // a mergemem can be left looking at itself.  This simply means
4249      // that the mergemem's default should be used, since there is
4250      // no longer any apparent effect on this slice.
4251      // Note: If a memory slice is a MergeMem cycle, it is unreachable
4252      //       from start.  Update the input to TOP.
4253      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4254    }
4255    else if (old_mmem != NULL) {
4256      new_mem = old_mmem->memory_at(i);
4257    }
4258    // else preceding memory was not a MergeMem
4259
4260    // replace equivalent phis (unfortunately, they do not GVN together)
4261    if (new_mem != NULL && new_mem != new_base &&
4262        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4263      if (new_mem->is_Phi()) {
4264        PhiNode* phi_mem = new_mem->as_Phi();
4265        for (uint i = 1; i < phi_len; i++) {
4266          if (phi_base->in(i) != phi_mem->in(i)) {
4267            phi_mem = NULL;
4268            break;
4269          }
4270        }
4271        if (phi_mem != NULL) {
4272          // equivalent phi nodes; revert to the def
4273          new_mem = new_base;
4274        }
4275      }
4276    }
4277
4278    // maybe store down a new value
4279    Node* new_in = new_mem;
4280    if (new_in == new_base)  new_in = empty_mem;
4281
4282    if (new_in != old_in) {
4283      // Warning:  Do not combine this "if" with the previous "if"
4284      // A memory slice might have be be rewritten even if it is semantically
4285      // unchanged, if the base_memory value has changed.
4286      set_req(i, new_in);
4287      progress = this;          // Report progress
4288    }
4289  }
4290
4291  if (new_base != old_base) {
4292    set_req(Compile::AliasIdxBot, new_base);
4293    // Don't use set_base_memory(new_base), because we need to update du.
4294    assert(base_memory() == new_base, "");
4295    progress = this;
4296  }
4297
4298  if( base_memory() == this ) {
4299    // a self cycle indicates this memory path is dead
4300    set_req(Compile::AliasIdxBot, empty_mem);
4301  }
4302
4303  // Resolve external cycles by calling Ideal on a MergeMem base_memory
4304  // Recursion must occur after the self cycle check above
4305  if( base_memory()->is_MergeMem() ) {
4306    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4307    Node *m = phase->transform(new_mbase);  // Rollup any cycles
4308    if( m != NULL && (m->is_top() ||
4309        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4310      // propagate rollup of dead cycle to self
4311      set_req(Compile::AliasIdxBot, empty_mem);
4312    }
4313  }
4314
4315  if( base_memory() == empty_mem ) {
4316    progress = this;
4317    // Cut inputs during Parse phase only.
4318    // During Optimize phase a dead MergeMem node will be subsumed by Top.
4319    if( !can_reshape ) {
4320      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4321        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4322      }
4323    }
4324  }
4325
4326  if( !progress && base_memory()->is_Phi() && can_reshape ) {
4327    // Check if PhiNode::Ideal's "Split phis through memory merges"
4328    // transform should be attempted. Look for this->phi->this cycle.
4329    uint merge_width = req();
4330    if (merge_width > Compile::AliasIdxRaw) {
4331      PhiNode* phi = base_memory()->as_Phi();
4332      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4333        if (phi->in(i) == this) {
4334          phase->is_IterGVN()->_worklist.push(phi);
4335          break;
4336        }
4337      }
4338    }
4339  }
4340
4341  assert(progress || verify_sparse(), "please, no dups of base");
4342  return progress;
4343}
4344
4345//-------------------------set_base_memory-------------------------------------
4346void MergeMemNode::set_base_memory(Node *new_base) {
4347  Node* empty_mem = empty_memory();
4348  set_req(Compile::AliasIdxBot, new_base);
4349  assert(memory_at(req()) == new_base, "must set default memory");
4350  // Clear out other occurrences of new_base:
4351  if (new_base != empty_mem) {
4352    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4353      if (in(i) == new_base)  set_req(i, empty_mem);
4354    }
4355  }
4356}
4357
4358//------------------------------out_RegMask------------------------------------
4359const RegMask &MergeMemNode::out_RegMask() const {
4360  return RegMask::Empty;
4361}
4362
4363//------------------------------dump_spec--------------------------------------
4364#ifndef PRODUCT
4365void MergeMemNode::dump_spec(outputStream *st) const {
4366  st->print(" {");
4367  Node* base_mem = base_memory();
4368  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4369    Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4370    if (mem == base_mem) { st->print(" -"); continue; }
4371    st->print( " N%d:", mem->_idx );
4372    Compile::current()->get_adr_type(i)->dump_on(st);
4373  }
4374  st->print(" }");
4375}
4376#endif // !PRODUCT
4377
4378
4379#ifdef ASSERT
4380static bool might_be_same(Node* a, Node* b) {
4381  if (a == b)  return true;
4382  if (!(a->is_Phi() || b->is_Phi()))  return false;
4383  // phis shift around during optimization
4384  return true;  // pretty stupid...
4385}
4386
4387// verify a narrow slice (either incoming or outgoing)
4388static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4389  if (!VerifyAliases)                return;  // don't bother to verify unless requested
4390  if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
4391  if (Node::in_dump())               return;  // muzzle asserts when printing
4392  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4393  assert(n != NULL, "");
4394  // Elide intervening MergeMem's
4395  while (n->is_MergeMem()) {
4396    n = n->as_MergeMem()->memory_at(alias_idx);
4397  }
4398  Compile* C = Compile::current();
4399  const TypePtr* n_adr_type = n->adr_type();
4400  if (n == m->empty_memory()) {
4401    // Implicit copy of base_memory()
4402  } else if (n_adr_type != TypePtr::BOTTOM) {
4403    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4404    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4405  } else {
4406    // A few places like make_runtime_call "know" that VM calls are narrow,
4407    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4408    bool expected_wide_mem = false;
4409    if (n == m->base_memory()) {
4410      expected_wide_mem = true;
4411    } else if (alias_idx == Compile::AliasIdxRaw ||
4412               n == m->memory_at(Compile::AliasIdxRaw)) {
4413      expected_wide_mem = true;
4414    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4415      // memory can "leak through" calls on channels that
4416      // are write-once.  Allow this also.
4417      expected_wide_mem = true;
4418    }
4419    assert(expected_wide_mem, "expected narrow slice replacement");
4420  }
4421}
4422#else // !ASSERT
4423#define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4424#endif
4425
4426
4427//-----------------------------memory_at---------------------------------------
4428Node* MergeMemNode::memory_at(uint alias_idx) const {
4429  assert(alias_idx >= Compile::AliasIdxRaw ||
4430         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4431         "must avoid base_memory and AliasIdxTop");
4432
4433  // Otherwise, it is a narrow slice.
4434  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4435  Compile *C = Compile::current();
4436  if (is_empty_memory(n)) {
4437    // the array is sparse; empty slots are the "top" node
4438    n = base_memory();
4439    assert(Node::in_dump()
4440           || n == NULL || n->bottom_type() == Type::TOP
4441           || n->adr_type() == NULL // address is TOP
4442           || n->adr_type() == TypePtr::BOTTOM
4443           || n->adr_type() == TypeRawPtr::BOTTOM
4444           || Compile::current()->AliasLevel() == 0,
4445           "must be a wide memory");
4446    // AliasLevel == 0 if we are organizing the memory states manually.
4447    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4448  } else {
4449    // make sure the stored slice is sane
4450    #ifdef ASSERT
4451    if (VMError::is_error_reported() || Node::in_dump()) {
4452    } else if (might_be_same(n, base_memory())) {
4453      // Give it a pass:  It is a mostly harmless repetition of the base.
4454      // This can arise normally from node subsumption during optimization.
4455    } else {
4456      verify_memory_slice(this, alias_idx, n);
4457    }
4458    #endif
4459  }
4460  return n;
4461}
4462
4463//---------------------------set_memory_at-------------------------------------
4464void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4465  verify_memory_slice(this, alias_idx, n);
4466  Node* empty_mem = empty_memory();
4467  if (n == base_memory())  n = empty_mem;  // collapse default
4468  uint need_req = alias_idx+1;
4469  if (req() < need_req) {
4470    if (n == empty_mem)  return;  // already the default, so do not grow me
4471    // grow the sparse array
4472    do {
4473      add_req(empty_mem);
4474    } while (req() < need_req);
4475  }
4476  set_req( alias_idx, n );
4477}
4478
4479
4480
4481//--------------------------iteration_setup------------------------------------
4482void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4483  if (other != NULL) {
4484    grow_to_match(other);
4485    // invariant:  the finite support of mm2 is within mm->req()
4486    #ifdef ASSERT
4487    for (uint i = req(); i < other->req(); i++) {
4488      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4489    }
4490    #endif
4491  }
4492  // Replace spurious copies of base_memory by top.
4493  Node* base_mem = base_memory();
4494  if (base_mem != NULL && !base_mem->is_top()) {
4495    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4496      if (in(i) == base_mem)
4497        set_req(i, empty_memory());
4498    }
4499  }
4500}
4501
4502//---------------------------grow_to_match-------------------------------------
4503void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4504  Node* empty_mem = empty_memory();
4505  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4506  // look for the finite support of the other memory
4507  for (uint i = other->req(); --i >= req(); ) {
4508    if (other->in(i) != empty_mem) {
4509      uint new_len = i+1;
4510      while (req() < new_len)  add_req(empty_mem);
4511      break;
4512    }
4513  }
4514}
4515
4516//---------------------------verify_sparse-------------------------------------
4517#ifndef PRODUCT
4518bool MergeMemNode::verify_sparse() const {
4519  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4520  Node* base_mem = base_memory();
4521  // The following can happen in degenerate cases, since empty==top.
4522  if (is_empty_memory(base_mem))  return true;
4523  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4524    assert(in(i) != NULL, "sane slice");
4525    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4526  }
4527  return true;
4528}
4529
4530bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4531  Node* n;
4532  n = mm->in(idx);
4533  if (mem == n)  return true;  // might be empty_memory()
4534  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4535  if (mem == n)  return true;
4536  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4537    if (mem == n)  return true;
4538    if (n == NULL)  break;
4539  }
4540  return false;
4541}
4542#endif // !PRODUCT
4543