memnode.cpp revision 113:ba764ed4b6f2
1/*
2 * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29#include "incls/_precompiled.incl"
30#include "incls/_memnode.cpp.incl"
31
32static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
33
34//=============================================================================
35uint MemNode::size_of() const { return sizeof(*this); }
36
37const TypePtr *MemNode::adr_type() const {
38  Node* adr = in(Address);
39  const TypePtr* cross_check = NULL;
40  DEBUG_ONLY(cross_check = _adr_type);
41  return calculate_adr_type(adr->bottom_type(), cross_check);
42}
43
44#ifndef PRODUCT
45void MemNode::dump_spec(outputStream *st) const {
46  if (in(Address) == NULL)  return; // node is dead
47#ifndef ASSERT
48  // fake the missing field
49  const TypePtr* _adr_type = NULL;
50  if (in(Address) != NULL)
51    _adr_type = in(Address)->bottom_type()->isa_ptr();
52#endif
53  dump_adr_type(this, _adr_type, st);
54
55  Compile* C = Compile::current();
56  if( C->alias_type(_adr_type)->is_volatile() )
57    st->print(" Volatile!");
58}
59
60void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
61  st->print(" @");
62  if (adr_type == NULL) {
63    st->print("NULL");
64  } else {
65    adr_type->dump_on(st);
66    Compile* C = Compile::current();
67    Compile::AliasType* atp = NULL;
68    if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
69    if (atp == NULL)
70      st->print(", idx=?\?;");
71    else if (atp->index() == Compile::AliasIdxBot)
72      st->print(", idx=Bot;");
73    else if (atp->index() == Compile::AliasIdxTop)
74      st->print(", idx=Top;");
75    else if (atp->index() == Compile::AliasIdxRaw)
76      st->print(", idx=Raw;");
77    else {
78      ciField* field = atp->field();
79      if (field) {
80        st->print(", name=");
81        field->print_name_on(st);
82      }
83      st->print(", idx=%d;", atp->index());
84    }
85  }
86}
87
88extern void print_alias_types();
89
90#endif
91
92Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
93  const TypeOopPtr *tinst = t_adr->isa_oopptr();
94  if (tinst == NULL || !tinst->is_instance_field())
95    return mchain;  // don't try to optimize non-instance types
96  uint instance_id = tinst->instance_id();
97  Node *prev = NULL;
98  Node *result = mchain;
99  while (prev != result) {
100    prev = result;
101    // skip over a call which does not affect this memory slice
102    if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
103      Node *proj_in = result->in(0);
104      if (proj_in->is_Call()) {
105        CallNode *call = proj_in->as_Call();
106        if (!call->may_modify(t_adr, phase)) {
107          result = call->in(TypeFunc::Memory);
108        }
109      } else if (proj_in->is_Initialize()) {
110        AllocateNode* alloc = proj_in->as_Initialize()->allocation();
111        // Stop if this is the initialization for the object instance which
112        // which contains this memory slice, otherwise skip over it.
113        if (alloc != NULL && alloc->_idx != instance_id) {
114          result = proj_in->in(TypeFunc::Memory);
115        }
116      } else if (proj_in->is_MemBar()) {
117        result = proj_in->in(TypeFunc::Memory);
118      }
119    } else if (result->is_MergeMem()) {
120      result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
121    }
122  }
123  return result;
124}
125
126Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
127  const TypeOopPtr *t_oop = t_adr->isa_oopptr();
128  bool is_instance = (t_oop != NULL) && t_oop->is_instance_field();
129  PhaseIterGVN *igvn = phase->is_IterGVN();
130  Node *result = mchain;
131  result = optimize_simple_memory_chain(result, t_adr, phase);
132  if (is_instance && igvn != NULL  && result->is_Phi()) {
133    PhiNode *mphi = result->as_Phi();
134    assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
135    const TypePtr *t = mphi->adr_type();
136    if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM) {
137      // clone the Phi with our address type
138      result = mphi->split_out_instance(t_adr, igvn);
139    } else {
140      assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
141    }
142  }
143  return result;
144}
145
146static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
147  uint alias_idx = phase->C->get_alias_index(tp);
148  Node *mem = mmem;
149#ifdef ASSERT
150  {
151    // Check that current type is consistent with the alias index used during graph construction
152    assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
153    bool consistent =  adr_check == NULL || adr_check->empty() ||
154                       phase->C->must_alias(adr_check, alias_idx );
155    // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
156    if( !consistent && adr_check != NULL && !adr_check->empty() &&
157           tp->isa_aryptr() &&    tp->offset() == Type::OffsetBot &&
158        adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
159        ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
160          adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
161          adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
162      // don't assert if it is dead code.
163      consistent = true;
164    }
165    if( !consistent ) {
166      st->print("alias_idx==%d, adr_check==", alias_idx);
167      if( adr_check == NULL ) {
168        st->print("NULL");
169      } else {
170        adr_check->dump();
171      }
172      st->cr();
173      print_alias_types();
174      assert(consistent, "adr_check must match alias idx");
175    }
176  }
177#endif
178  // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
179  // means an array I have not precisely typed yet.  Do not do any
180  // alias stuff with it any time soon.
181  const TypeOopPtr *tinst = tp->isa_oopptr();
182  if( tp->base() != Type::AnyPtr &&
183      !(tinst &&
184        tinst->klass()->is_java_lang_Object() &&
185        tinst->offset() == Type::OffsetBot) ) {
186    // compress paths and change unreachable cycles to TOP
187    // If not, we can update the input infinitely along a MergeMem cycle
188    // Equivalent code in PhiNode::Ideal
189    Node* m  = phase->transform(mmem);
190    // If tranformed to a MergeMem, get the desired slice
191    // Otherwise the returned node represents memory for every slice
192    mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
193    // Update input if it is progress over what we have now
194  }
195  return mem;
196}
197
198//--------------------------Ideal_common---------------------------------------
199// Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
200// Unhook non-raw memories from complete (macro-expanded) initializations.
201Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
202  // If our control input is a dead region, kill all below the region
203  Node *ctl = in(MemNode::Control);
204  if (ctl && remove_dead_region(phase, can_reshape))
205    return this;
206
207  // Ignore if memory is dead, or self-loop
208  Node *mem = in(MemNode::Memory);
209  if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
210  assert( mem != this, "dead loop in MemNode::Ideal" );
211
212  Node *address = in(MemNode::Address);
213  const Type *t_adr = phase->type( address );
214  if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
215
216  // Avoid independent memory operations
217  Node* old_mem = mem;
218
219  // The code which unhooks non-raw memories from complete (macro-expanded)
220  // initializations was removed. After macro-expansion all stores catched
221  // by Initialize node became raw stores and there is no information
222  // which memory slices they modify. So it is unsafe to move any memory
223  // operation above these stores. Also in most cases hooked non-raw memories
224  // were already unhooked by using information from detect_ptr_independence()
225  // and find_previous_store().
226
227  if (mem->is_MergeMem()) {
228    MergeMemNode* mmem = mem->as_MergeMem();
229    const TypePtr *tp = t_adr->is_ptr();
230
231    mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
232  }
233
234  if (mem != old_mem) {
235    set_req(MemNode::Memory, mem);
236    return this;
237  }
238
239  // let the subclass continue analyzing...
240  return NULL;
241}
242
243// Helper function for proving some simple control dominations.
244// Attempt to prove that control input 'dom' dominates (or equals) 'sub'.
245// Already assumes that 'dom' is available at 'sub', and that 'sub'
246// is not a constant (dominated by the method's StartNode).
247// Used by MemNode::find_previous_store to prove that the
248// control input of a memory operation predates (dominates)
249// an allocation it wants to look past.
250bool MemNode::detect_dominating_control(Node* dom, Node* sub) {
251  if (dom == NULL)      return false;
252  if (dom->is_Proj())   dom = dom->in(0);
253  if (dom->is_Start())  return true; // anything inside the method
254  if (dom->is_Root())   return true; // dom 'controls' a constant
255  int cnt = 20;                      // detect cycle or too much effort
256  while (sub != NULL) {              // walk 'sub' up the chain to 'dom'
257    if (--cnt < 0)   return false;   // in a cycle or too complex
258    if (sub == dom)  return true;
259    if (sub->is_Start())  return false;
260    if (sub->is_Root())   return false;
261    Node* up = sub->in(0);
262    if (sub == up && sub->is_Region()) {
263      for (uint i = 1; i < sub->req(); i++) {
264        Node* in = sub->in(i);
265        if (in != NULL && !in->is_top() && in != sub) {
266          up = in; break;            // take any path on the way up to 'dom'
267        }
268      }
269    }
270    if (sub == up)  return false;    // some kind of tight cycle
271    sub = up;
272  }
273  return false;
274}
275
276//---------------------detect_ptr_independence---------------------------------
277// Used by MemNode::find_previous_store to prove that two base
278// pointers are never equal.
279// The pointers are accompanied by their associated allocations,
280// if any, which have been previously discovered by the caller.
281bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
282                                      Node* p2, AllocateNode* a2,
283                                      PhaseTransform* phase) {
284  // Attempt to prove that these two pointers cannot be aliased.
285  // They may both manifestly be allocations, and they should differ.
286  // Or, if they are not both allocations, they can be distinct constants.
287  // Otherwise, one is an allocation and the other a pre-existing value.
288  if (a1 == NULL && a2 == NULL) {           // neither an allocation
289    return (p1 != p2) && p1->is_Con() && p2->is_Con();
290  } else if (a1 != NULL && a2 != NULL) {    // both allocations
291    return (a1 != a2);
292  } else if (a1 != NULL) {                  // one allocation a1
293    // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
294    return detect_dominating_control(p2->in(0), a1->in(0));
295  } else { //(a2 != NULL)                   // one allocation a2
296    return detect_dominating_control(p1->in(0), a2->in(0));
297  }
298  return false;
299}
300
301
302// The logic for reordering loads and stores uses four steps:
303// (a) Walk carefully past stores and initializations which we
304//     can prove are independent of this load.
305// (b) Observe that the next memory state makes an exact match
306//     with self (load or store), and locate the relevant store.
307// (c) Ensure that, if we were to wire self directly to the store,
308//     the optimizer would fold it up somehow.
309// (d) Do the rewiring, and return, depending on some other part of
310//     the optimizer to fold up the load.
311// This routine handles steps (a) and (b).  Steps (c) and (d) are
312// specific to loads and stores, so they are handled by the callers.
313// (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
314//
315Node* MemNode::find_previous_store(PhaseTransform* phase) {
316  Node*         ctrl   = in(MemNode::Control);
317  Node*         adr    = in(MemNode::Address);
318  intptr_t      offset = 0;
319  Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
320  AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
321
322  if (offset == Type::OffsetBot)
323    return NULL;            // cannot unalias unless there are precise offsets
324
325  const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
326
327  intptr_t size_in_bytes = memory_size();
328
329  Node* mem = in(MemNode::Memory);   // start searching here...
330
331  int cnt = 50;             // Cycle limiter
332  for (;;) {                // While we can dance past unrelated stores...
333    if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
334
335    if (mem->is_Store()) {
336      Node* st_adr = mem->in(MemNode::Address);
337      intptr_t st_offset = 0;
338      Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
339      if (st_base == NULL)
340        break;              // inscrutable pointer
341      if (st_offset != offset && st_offset != Type::OffsetBot) {
342        const int MAX_STORE = BytesPerLong;
343        if (st_offset >= offset + size_in_bytes ||
344            st_offset <= offset - MAX_STORE ||
345            st_offset <= offset - mem->as_Store()->memory_size()) {
346          // Success:  The offsets are provably independent.
347          // (You may ask, why not just test st_offset != offset and be done?
348          // The answer is that stores of different sizes can co-exist
349          // in the same sequence of RawMem effects.  We sometimes initialize
350          // a whole 'tile' of array elements with a single jint or jlong.)
351          mem = mem->in(MemNode::Memory);
352          continue;           // (a) advance through independent store memory
353        }
354      }
355      if (st_base != base &&
356          detect_ptr_independence(base, alloc,
357                                  st_base,
358                                  AllocateNode::Ideal_allocation(st_base, phase),
359                                  phase)) {
360        // Success:  The bases are provably independent.
361        mem = mem->in(MemNode::Memory);
362        continue;           // (a) advance through independent store memory
363      }
364
365      // (b) At this point, if the bases or offsets do not agree, we lose,
366      // since we have not managed to prove 'this' and 'mem' independent.
367      if (st_base == base && st_offset == offset) {
368        return mem;         // let caller handle steps (c), (d)
369      }
370
371    } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
372      InitializeNode* st_init = mem->in(0)->as_Initialize();
373      AllocateNode*  st_alloc = st_init->allocation();
374      if (st_alloc == NULL)
375        break;              // something degenerated
376      bool known_identical = false;
377      bool known_independent = false;
378      if (alloc == st_alloc)
379        known_identical = true;
380      else if (alloc != NULL)
381        known_independent = true;
382      else if (ctrl != NULL &&
383               detect_dominating_control(ctrl, st_alloc->in(0)))
384        known_independent = true;
385
386      if (known_independent) {
387        // The bases are provably independent: Either they are
388        // manifestly distinct allocations, or else the control
389        // of this load dominates the store's allocation.
390        int alias_idx = phase->C->get_alias_index(adr_type());
391        if (alias_idx == Compile::AliasIdxRaw) {
392          mem = st_alloc->in(TypeFunc::Memory);
393        } else {
394          mem = st_init->memory(alias_idx);
395        }
396        continue;           // (a) advance through independent store memory
397      }
398
399      // (b) at this point, if we are not looking at a store initializing
400      // the same allocation we are loading from, we lose.
401      if (known_identical) {
402        // From caller, can_see_stored_value will consult find_captured_store.
403        return mem;         // let caller handle steps (c), (d)
404      }
405
406    } else if (addr_t != NULL && addr_t->is_instance_field()) {
407      // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
408      if (mem->is_Proj() && mem->in(0)->is_Call()) {
409        CallNode *call = mem->in(0)->as_Call();
410        if (!call->may_modify(addr_t, phase)) {
411          mem = call->in(TypeFunc::Memory);
412          continue;         // (a) advance through independent call memory
413        }
414      } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
415        mem = mem->in(0)->in(TypeFunc::Memory);
416        continue;           // (a) advance through independent MemBar memory
417      } else if (mem->is_MergeMem()) {
418        int alias_idx = phase->C->get_alias_index(adr_type());
419        mem = mem->as_MergeMem()->memory_at(alias_idx);
420        continue;           // (a) advance through independent MergeMem memory
421      }
422    }
423
424    // Unless there is an explicit 'continue', we must bail out here,
425    // because 'mem' is an inscrutable memory state (e.g., a call).
426    break;
427  }
428
429  return NULL;              // bail out
430}
431
432//----------------------calculate_adr_type-------------------------------------
433// Helper function.  Notices when the given type of address hits top or bottom.
434// Also, asserts a cross-check of the type against the expected address type.
435const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
436  if (t == Type::TOP)  return NULL; // does not touch memory any more?
437  #ifdef PRODUCT
438  cross_check = NULL;
439  #else
440  if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
441  #endif
442  const TypePtr* tp = t->isa_ptr();
443  if (tp == NULL) {
444    assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
445    return TypePtr::BOTTOM;           // touches lots of memory
446  } else {
447    #ifdef ASSERT
448    // %%%% [phh] We don't check the alias index if cross_check is
449    //            TypeRawPtr::BOTTOM.  Needs to be investigated.
450    if (cross_check != NULL &&
451        cross_check != TypePtr::BOTTOM &&
452        cross_check != TypeRawPtr::BOTTOM) {
453      // Recheck the alias index, to see if it has changed (due to a bug).
454      Compile* C = Compile::current();
455      assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
456             "must stay in the original alias category");
457      // The type of the address must be contained in the adr_type,
458      // disregarding "null"-ness.
459      // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
460      const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
461      assert(cross_check->meet(tp_notnull) == cross_check,
462             "real address must not escape from expected memory type");
463    }
464    #endif
465    return tp;
466  }
467}
468
469//------------------------adr_phi_is_loop_invariant----------------------------
470// A helper function for Ideal_DU_postCCP to check if a Phi in a counted
471// loop is loop invariant. Make a quick traversal of Phi and associated
472// CastPP nodes, looking to see if they are a closed group within the loop.
473bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
474  // The idea is that the phi-nest must boil down to only CastPP nodes
475  // with the same data. This implies that any path into the loop already
476  // includes such a CastPP, and so the original cast, whatever its input,
477  // must be covered by an equivalent cast, with an earlier control input.
478  ResourceMark rm;
479
480  // The loop entry input of the phi should be the unique dominating
481  // node for every Phi/CastPP in the loop.
482  Unique_Node_List closure;
483  closure.push(adr_phi->in(LoopNode::EntryControl));
484
485  // Add the phi node and the cast to the worklist.
486  Unique_Node_List worklist;
487  worklist.push(adr_phi);
488  if( cast != NULL ){
489    if( !cast->is_ConstraintCast() ) return false;
490    worklist.push(cast);
491  }
492
493  // Begin recursive walk of phi nodes.
494  while( worklist.size() ){
495    // Take a node off the worklist
496    Node *n = worklist.pop();
497    if( !closure.member(n) ){
498      // Add it to the closure.
499      closure.push(n);
500      // Make a sanity check to ensure we don't waste too much time here.
501      if( closure.size() > 20) return false;
502      // This node is OK if:
503      //  - it is a cast of an identical value
504      //  - or it is a phi node (then we add its inputs to the worklist)
505      // Otherwise, the node is not OK, and we presume the cast is not invariant
506      if( n->is_ConstraintCast() ){
507        worklist.push(n->in(1));
508      } else if( n->is_Phi() ) {
509        for( uint i = 1; i < n->req(); i++ ) {
510          worklist.push(n->in(i));
511        }
512      } else {
513        return false;
514      }
515    }
516  }
517
518  // Quit when the worklist is empty, and we've found no offending nodes.
519  return true;
520}
521
522//------------------------------Ideal_DU_postCCP-------------------------------
523// Find any cast-away of null-ness and keep its control.  Null cast-aways are
524// going away in this pass and we need to make this memory op depend on the
525// gating null check.
526
527// I tried to leave the CastPP's in.  This makes the graph more accurate in
528// some sense; we get to keep around the knowledge that an oop is not-null
529// after some test.  Alas, the CastPP's interfere with GVN (some values are
530// the regular oop, some are the CastPP of the oop, all merge at Phi's which
531// cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
532// some of the more trivial cases in the optimizer.  Removing more useless
533// Phi's started allowing Loads to illegally float above null checks.  I gave
534// up on this approach.  CNC 10/20/2000
535Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
536  Node *ctr = in(MemNode::Control);
537  Node *mem = in(MemNode::Memory);
538  Node *adr = in(MemNode::Address);
539  Node *skipped_cast = NULL;
540  // Need a null check?  Regular static accesses do not because they are
541  // from constant addresses.  Array ops are gated by the range check (which
542  // always includes a NULL check).  Just check field ops.
543  if( !ctr ) {
544    // Scan upwards for the highest location we can place this memory op.
545    while( true ) {
546      switch( adr->Opcode() ) {
547
548      case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
549        adr = adr->in(AddPNode::Base);
550        continue;
551
552      case Op_DecodeN:         // No change to NULL-ness, so peek thru
553        adr = adr->in(1);
554        continue;
555
556      case Op_CastPP:
557        // If the CastPP is useless, just peek on through it.
558        if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
559          // Remember the cast that we've peeked though. If we peek
560          // through more than one, then we end up remembering the highest
561          // one, that is, if in a loop, the one closest to the top.
562          skipped_cast = adr;
563          adr = adr->in(1);
564          continue;
565        }
566        // CastPP is going away in this pass!  We need this memory op to be
567        // control-dependent on the test that is guarding the CastPP.
568        ccp->hash_delete(this);
569        set_req(MemNode::Control, adr->in(0));
570        ccp->hash_insert(this);
571        return this;
572
573      case Op_Phi:
574        // Attempt to float above a Phi to some dominating point.
575        if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
576          // If we've already peeked through a Cast (which could have set the
577          // control), we can't float above a Phi, because the skipped Cast
578          // may not be loop invariant.
579          if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
580            adr = adr->in(1);
581            continue;
582          }
583        }
584
585        // Intentional fallthrough!
586
587        // No obvious dominating point.  The mem op is pinned below the Phi
588        // by the Phi itself.  If the Phi goes away (no true value is merged)
589        // then the mem op can float, but not indefinitely.  It must be pinned
590        // behind the controls leading to the Phi.
591      case Op_CheckCastPP:
592        // These usually stick around to change address type, however a
593        // useless one can be elided and we still need to pick up a control edge
594        if (adr->in(0) == NULL) {
595          // This CheckCastPP node has NO control and is likely useless. But we
596          // need check further up the ancestor chain for a control input to keep
597          // the node in place. 4959717.
598          skipped_cast = adr;
599          adr = adr->in(1);
600          continue;
601        }
602        ccp->hash_delete(this);
603        set_req(MemNode::Control, adr->in(0));
604        ccp->hash_insert(this);
605        return this;
606
607        // List of "safe" opcodes; those that implicitly block the memory
608        // op below any null check.
609      case Op_CastX2P:          // no null checks on native pointers
610      case Op_Parm:             // 'this' pointer is not null
611      case Op_LoadP:            // Loading from within a klass
612      case Op_LoadN:            // Loading from within a klass
613      case Op_LoadKlass:        // Loading from within a klass
614      case Op_ConP:             // Loading from a klass
615      case Op_CreateEx:         // Sucking up the guts of an exception oop
616      case Op_Con:              // Reading from TLS
617      case Op_CMoveP:           // CMoveP is pinned
618        break;                  // No progress
619
620      case Op_Proj:             // Direct call to an allocation routine
621      case Op_SCMemProj:        // Memory state from store conditional ops
622#ifdef ASSERT
623        {
624          assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
625          const Node* call = adr->in(0);
626          if (call->is_CallStaticJava()) {
627            const CallStaticJavaNode* call_java = call->as_CallStaticJava();
628            const TypeTuple *r = call_java->tf()->range();
629            assert(r->cnt() > TypeFunc::Parms, "must return value");
630            const Type* ret_type = r->field_at(TypeFunc::Parms);
631            assert(ret_type && ret_type->isa_ptr(), "must return pointer");
632            // We further presume that this is one of
633            // new_instance_Java, new_array_Java, or
634            // the like, but do not assert for this.
635          } else if (call->is_Allocate()) {
636            // similar case to new_instance_Java, etc.
637          } else if (!call->is_CallLeaf()) {
638            // Projections from fetch_oop (OSR) are allowed as well.
639            ShouldNotReachHere();
640          }
641        }
642#endif
643        break;
644      default:
645        ShouldNotReachHere();
646      }
647      break;
648    }
649  }
650
651  return  NULL;               // No progress
652}
653
654
655//=============================================================================
656uint LoadNode::size_of() const { return sizeof(*this); }
657uint LoadNode::cmp( const Node &n ) const
658{ return !Type::cmp( _type, ((LoadNode&)n)._type ); }
659const Type *LoadNode::bottom_type() const { return _type; }
660uint LoadNode::ideal_reg() const {
661  return Matcher::base2reg[_type->base()];
662}
663
664#ifndef PRODUCT
665void LoadNode::dump_spec(outputStream *st) const {
666  MemNode::dump_spec(st);
667  if( !Verbose && !WizardMode ) {
668    // standard dump does this in Verbose and WizardMode
669    st->print(" #"); _type->dump_on(st);
670  }
671}
672#endif
673
674
675//----------------------------LoadNode::make-----------------------------------
676// Polymorphic factory method:
677Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
678  Compile* C = gvn.C;
679
680  // sanity check the alias category against the created node type
681  assert(!(adr_type->isa_oopptr() &&
682           adr_type->offset() == oopDesc::klass_offset_in_bytes()),
683         "use LoadKlassNode instead");
684  assert(!(adr_type->isa_aryptr() &&
685           adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
686         "use LoadRangeNode instead");
687  switch (bt) {
688  case T_BOOLEAN:
689  case T_BYTE:    return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int()    );
690  case T_INT:     return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int()    );
691  case T_CHAR:    return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int()    );
692  case T_SHORT:   return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int()    );
693  case T_LONG:    return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long()   );
694  case T_FLOAT:   return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt              );
695  case T_DOUBLE:  return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt              );
696  case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr()    );
697  case T_OBJECT:
698#ifdef _LP64
699    if (adr->bottom_type()->is_narrow()) {
700      const TypeNarrowOop* narrowtype;
701      if (rt->isa_narrowoop()) {
702        narrowtype = rt->is_narrowoop();
703        rt = narrowtype->make_oopptr();
704      } else {
705        narrowtype = rt->is_oopptr()->make_narrowoop();
706      }
707      Node* load  = gvn.transform(new (C, 3) LoadNNode(ctl, mem, adr, adr_type, narrowtype));
708
709      return new (C, 2) DecodeNNode(load, rt);
710    } else
711#endif
712      {
713        assert(!adr->bottom_type()->is_narrow(), "should have got back a narrow oop");
714        return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
715      }
716  }
717  ShouldNotReachHere();
718  return (LoadNode*)NULL;
719}
720
721LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
722  bool require_atomic = true;
723  return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
724}
725
726
727
728
729//------------------------------hash-------------------------------------------
730uint LoadNode::hash() const {
731  // unroll addition of interesting fields
732  return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
733}
734
735//---------------------------can_see_stored_value------------------------------
736// This routine exists to make sure this set of tests is done the same
737// everywhere.  We need to make a coordinated change: first LoadNode::Ideal
738// will change the graph shape in a way which makes memory alive twice at the
739// same time (uses the Oracle model of aliasing), then some
740// LoadXNode::Identity will fold things back to the equivalence-class model
741// of aliasing.
742Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
743  Node* ld_adr = in(MemNode::Address);
744
745  const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
746  Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
747  if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
748      atp->field() != NULL && !atp->field()->is_volatile()) {
749    uint alias_idx = atp->index();
750    bool final = atp->field()->is_final();
751    Node* result = NULL;
752    Node* current = st;
753    // Skip through chains of MemBarNodes checking the MergeMems for
754    // new states for the slice of this load.  Stop once any other
755    // kind of node is encountered.  Loads from final memory can skip
756    // through any kind of MemBar but normal loads shouldn't skip
757    // through MemBarAcquire since the could allow them to move out of
758    // a synchronized region.
759    while (current->is_Proj()) {
760      int opc = current->in(0)->Opcode();
761      if ((final && opc == Op_MemBarAcquire) ||
762          opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder) {
763        Node* mem = current->in(0)->in(TypeFunc::Memory);
764        if (mem->is_MergeMem()) {
765          MergeMemNode* merge = mem->as_MergeMem();
766          Node* new_st = merge->memory_at(alias_idx);
767          if (new_st == merge->base_memory()) {
768            // Keep searching
769            current = merge->base_memory();
770            continue;
771          }
772          // Save the new memory state for the slice and fall through
773          // to exit.
774          result = new_st;
775        }
776      }
777      break;
778    }
779    if (result != NULL) {
780      st = result;
781    }
782  }
783
784
785  // Loop around twice in the case Load -> Initialize -> Store.
786  // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
787  for (int trip = 0; trip <= 1; trip++) {
788
789    if (st->is_Store()) {
790      Node* st_adr = st->in(MemNode::Address);
791      if (!phase->eqv(st_adr, ld_adr)) {
792        // Try harder before giving up...  Match raw and non-raw pointers.
793        intptr_t st_off = 0;
794        AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
795        if (alloc == NULL)       return NULL;
796        intptr_t ld_off = 0;
797        AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
798        if (alloc != allo2)      return NULL;
799        if (ld_off != st_off)    return NULL;
800        // At this point we have proven something like this setup:
801        //  A = Allocate(...)
802        //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
803        //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
804        // (Actually, we haven't yet proven the Q's are the same.)
805        // In other words, we are loading from a casted version of
806        // the same pointer-and-offset that we stored to.
807        // Thus, we are able to replace L by V.
808      }
809      // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
810      if (store_Opcode() != st->Opcode())
811        return NULL;
812      return st->in(MemNode::ValueIn);
813    }
814
815    intptr_t offset = 0;  // scratch
816
817    // A load from a freshly-created object always returns zero.
818    // (This can happen after LoadNode::Ideal resets the load's memory input
819    // to find_captured_store, which returned InitializeNode::zero_memory.)
820    if (st->is_Proj() && st->in(0)->is_Allocate() &&
821        st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
822        offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
823      // return a zero value for the load's basic type
824      // (This is one of the few places where a generic PhaseTransform
825      // can create new nodes.  Think of it as lazily manifesting
826      // virtually pre-existing constants.)
827      return phase->zerocon(memory_type());
828    }
829
830    // A load from an initialization barrier can match a captured store.
831    if (st->is_Proj() && st->in(0)->is_Initialize()) {
832      InitializeNode* init = st->in(0)->as_Initialize();
833      AllocateNode* alloc = init->allocation();
834      if (alloc != NULL &&
835          alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
836        // examine a captured store value
837        st = init->find_captured_store(offset, memory_size(), phase);
838        if (st != NULL)
839          continue;             // take one more trip around
840      }
841    }
842
843    break;
844  }
845
846  return NULL;
847}
848
849//----------------------is_instance_field_load_with_local_phi------------------
850bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
851  if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
852      in(MemNode::Address)->is_AddP() ) {
853    const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
854    // Only instances.
855    if( t_oop != NULL && t_oop->is_instance_field() &&
856        t_oop->offset() != Type::OffsetBot &&
857        t_oop->offset() != Type::OffsetTop) {
858      return true;
859    }
860  }
861  return false;
862}
863
864//------------------------------Identity---------------------------------------
865// Loads are identity if previous store is to same address
866Node *LoadNode::Identity( PhaseTransform *phase ) {
867  // If the previous store-maker is the right kind of Store, and the store is
868  // to the same address, then we are equal to the value stored.
869  Node* mem = in(MemNode::Memory);
870  Node* value = can_see_stored_value(mem, phase);
871  if( value ) {
872    // byte, short & char stores truncate naturally.
873    // A load has to load the truncated value which requires
874    // some sort of masking operation and that requires an
875    // Ideal call instead of an Identity call.
876    if (memory_size() < BytesPerInt) {
877      // If the input to the store does not fit with the load's result type,
878      // it must be truncated via an Ideal call.
879      if (!phase->type(value)->higher_equal(phase->type(this)))
880        return this;
881    }
882    // (This works even when value is a Con, but LoadNode::Value
883    // usually runs first, producing the singleton type of the Con.)
884    return value;
885  }
886
887  // Search for an existing data phi which was generated before for the same
888  // instance's field to avoid infinite genertion of phis in a loop.
889  Node *region = mem->in(0);
890  if (is_instance_field_load_with_local_phi(region)) {
891    const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
892    int this_index  = phase->C->get_alias_index(addr_t);
893    int this_offset = addr_t->offset();
894    int this_id    = addr_t->is_oopptr()->instance_id();
895    const Type* this_type = bottom_type();
896    for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
897      Node* phi = region->fast_out(i);
898      if (phi->is_Phi() && phi != mem &&
899          phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
900        return phi;
901      }
902    }
903  }
904
905  return this;
906}
907
908
909// Returns true if the AliasType refers to the field that holds the
910// cached box array.  Currently only handles the IntegerCache case.
911static bool is_autobox_cache(Compile::AliasType* atp) {
912  if (atp != NULL && atp->field() != NULL) {
913    ciField* field = atp->field();
914    ciSymbol* klass = field->holder()->name();
915    if (field->name() == ciSymbol::cache_field_name() &&
916        field->holder()->uses_default_loader() &&
917        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
918      return true;
919    }
920  }
921  return false;
922}
923
924// Fetch the base value in the autobox array
925static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
926  if (atp != NULL && atp->field() != NULL) {
927    ciField* field = atp->field();
928    ciSymbol* klass = field->holder()->name();
929    if (field->name() == ciSymbol::cache_field_name() &&
930        field->holder()->uses_default_loader() &&
931        klass == ciSymbol::java_lang_Integer_IntegerCache()) {
932      assert(field->is_constant(), "what?");
933      ciObjArray* array = field->constant_value().as_object()->as_obj_array();
934      // Fetch the box object at the base of the array and get its value
935      ciInstance* box = array->obj_at(0)->as_instance();
936      ciInstanceKlass* ik = box->klass()->as_instance_klass();
937      if (ik->nof_nonstatic_fields() == 1) {
938        // This should be true nonstatic_field_at requires calling
939        // nof_nonstatic_fields so check it anyway
940        ciConstant c = box->field_value(ik->nonstatic_field_at(0));
941        cache_offset = c.as_int();
942      }
943      return true;
944    }
945  }
946  return false;
947}
948
949// Returns true if the AliasType refers to the value field of an
950// autobox object.  Currently only handles Integer.
951static bool is_autobox_object(Compile::AliasType* atp) {
952  if (atp != NULL && atp->field() != NULL) {
953    ciField* field = atp->field();
954    ciSymbol* klass = field->holder()->name();
955    if (field->name() == ciSymbol::value_name() &&
956        field->holder()->uses_default_loader() &&
957        klass == ciSymbol::java_lang_Integer()) {
958      return true;
959    }
960  }
961  return false;
962}
963
964
965// We're loading from an object which has autobox behaviour.
966// If this object is result of a valueOf call we'll have a phi
967// merging a newly allocated object and a load from the cache.
968// We want to replace this load with the original incoming
969// argument to the valueOf call.
970Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
971  Node* base = in(Address)->in(AddPNode::Base);
972  if (base->is_Phi() && base->req() == 3) {
973    AllocateNode* allocation = NULL;
974    int allocation_index = -1;
975    int load_index = -1;
976    for (uint i = 1; i < base->req(); i++) {
977      allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
978      if (allocation != NULL) {
979        allocation_index = i;
980        load_index = 3 - allocation_index;
981        break;
982      }
983    }
984    LoadNode* load = NULL;
985    if (allocation != NULL && base->in(load_index)->is_Load()) {
986      load = base->in(load_index)->as_Load();
987    }
988    if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
989      // Push the loads from the phi that comes from valueOf up
990      // through it to allow elimination of the loads and the recovery
991      // of the original value.
992      Node* mem_phi = in(Memory);
993      Node* offset = in(Address)->in(AddPNode::Offset);
994
995      Node* in1 = clone();
996      Node* in1_addr = in1->in(Address)->clone();
997      in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
998      in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
999      in1_addr->set_req(AddPNode::Offset, offset);
1000      in1->set_req(0, base->in(allocation_index));
1001      in1->set_req(Address, in1_addr);
1002      in1->set_req(Memory, mem_phi->in(allocation_index));
1003
1004      Node* in2 = clone();
1005      Node* in2_addr = in2->in(Address)->clone();
1006      in2_addr->set_req(AddPNode::Base, base->in(load_index));
1007      in2_addr->set_req(AddPNode::Address, base->in(load_index));
1008      in2_addr->set_req(AddPNode::Offset, offset);
1009      in2->set_req(0, base->in(load_index));
1010      in2->set_req(Address, in2_addr);
1011      in2->set_req(Memory, mem_phi->in(load_index));
1012
1013      in1_addr = phase->transform(in1_addr);
1014      in1 =      phase->transform(in1);
1015      in2_addr = phase->transform(in2_addr);
1016      in2 =      phase->transform(in2);
1017
1018      PhiNode* result = PhiNode::make_blank(base->in(0), this);
1019      result->set_req(allocation_index, in1);
1020      result->set_req(load_index, in2);
1021      return result;
1022    }
1023  } else if (base->is_Load()) {
1024    // Eliminate the load of Integer.value for integers from the cache
1025    // array by deriving the value from the index into the array.
1026    // Capture the offset of the load and then reverse the computation.
1027    Node* load_base = base->in(Address)->in(AddPNode::Base);
1028    if (load_base != NULL) {
1029      Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1030      intptr_t cache_offset;
1031      int shift = -1;
1032      Node* cache = NULL;
1033      if (is_autobox_cache(atp)) {
1034        shift  = exact_log2(type2aelembytes(T_OBJECT));
1035        cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1036      }
1037      if (cache != NULL && base->in(Address)->is_AddP()) {
1038        Node* elements[4];
1039        int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1040        int cache_low;
1041        if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1042          int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1043          // Add up all the offsets making of the address of the load
1044          Node* result = elements[0];
1045          for (int i = 1; i < count; i++) {
1046            result = phase->transform(new (phase->C, 3) AddXNode(result, elements[i]));
1047          }
1048          // Remove the constant offset from the address and then
1049          // remove the scaling of the offset to recover the original index.
1050          result = phase->transform(new (phase->C, 3) AddXNode(result, phase->MakeConX(-offset)));
1051          if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1052            // Peel the shift off directly but wrap it in a dummy node
1053            // since Ideal can't return existing nodes
1054            result = new (phase->C, 3) RShiftXNode(result->in(1), phase->intcon(0));
1055          } else {
1056            result = new (phase->C, 3) RShiftXNode(result, phase->intcon(shift));
1057          }
1058#ifdef _LP64
1059          result = new (phase->C, 2) ConvL2INode(phase->transform(result));
1060#endif
1061          return result;
1062        }
1063      }
1064    }
1065  }
1066  return NULL;
1067}
1068
1069
1070//------------------------------Ideal------------------------------------------
1071// If the load is from Field memory and the pointer is non-null, we can
1072// zero out the control input.
1073// If the offset is constant and the base is an object allocation,
1074// try to hook me up to the exact initializing store.
1075Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1076  Node* p = MemNode::Ideal_common(phase, can_reshape);
1077  if (p)  return (p == NodeSentinel) ? NULL : p;
1078
1079  Node* ctrl    = in(MemNode::Control);
1080  Node* address = in(MemNode::Address);
1081
1082  // Skip up past a SafePoint control.  Cannot do this for Stores because
1083  // pointer stores & cardmarks must stay on the same side of a SafePoint.
1084  if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1085      phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1086    ctrl = ctrl->in(0);
1087    set_req(MemNode::Control,ctrl);
1088  }
1089
1090  // Check for useless control edge in some common special cases
1091  if (in(MemNode::Control) != NULL) {
1092    intptr_t ignore = 0;
1093    Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1094    if (base != NULL
1095        && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1096        && detect_dominating_control(base->in(0), phase->C->start())) {
1097      // A method-invariant, non-null address (constant or 'this' argument).
1098      set_req(MemNode::Control, NULL);
1099    }
1100  }
1101
1102  if (EliminateAutoBox && can_reshape && in(Address)->is_AddP()) {
1103    Node* base = in(Address)->in(AddPNode::Base);
1104    if (base != NULL) {
1105      Compile::AliasType* atp = phase->C->alias_type(adr_type());
1106      if (is_autobox_object(atp)) {
1107        Node* result = eliminate_autobox(phase);
1108        if (result != NULL) return result;
1109      }
1110    }
1111  }
1112
1113  Node* mem = in(MemNode::Memory);
1114  const TypePtr *addr_t = phase->type(address)->isa_ptr();
1115
1116  if (addr_t != NULL) {
1117    // try to optimize our memory input
1118    Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1119    if (opt_mem != mem) {
1120      set_req(MemNode::Memory, opt_mem);
1121      return this;
1122    }
1123    const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1124    if (can_reshape && opt_mem->is_Phi() &&
1125        (t_oop != NULL) && t_oop->is_instance_field()) {
1126      assert(t_oop->offset() != Type::OffsetBot && t_oop->offset() != Type::OffsetTop, "");
1127      Node *region = opt_mem->in(0);
1128      uint cnt = opt_mem->req();
1129      for( uint i = 1; i < cnt; i++ ) {
1130        Node *in = opt_mem->in(i);
1131        if( in == NULL ) {
1132          region = NULL; // Wait stable graph
1133          break;
1134        }
1135      }
1136      if (region != NULL) {
1137        // Check for loop invariant.
1138        if (cnt == 3) {
1139          for( uint i = 1; i < cnt; i++ ) {
1140            Node *in = opt_mem->in(i);
1141            Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1142            if (m == opt_mem) {
1143              set_req(MemNode::Memory, opt_mem->in(cnt - i)); // Skip this phi.
1144              return this;
1145            }
1146          }
1147        }
1148        // Split through Phi (see original code in loopopts.cpp).
1149        assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1150
1151        // Do nothing here if Identity will find a value
1152        // (to avoid infinite chain of value phis generation).
1153        if ( !phase->eqv(this, this->Identity(phase)) )
1154          return NULL;
1155
1156        const Type* this_type = this->bottom_type();
1157        int this_index  = phase->C->get_alias_index(addr_t);
1158        int this_offset = addr_t->offset();
1159        int this_iid    = addr_t->is_oopptr()->instance_id();
1160        int wins = 0;
1161        PhaseIterGVN *igvn = phase->is_IterGVN();
1162        Node *phi = new (igvn->C, region->req()) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1163        for( uint i = 1; i < region->req(); i++ ) {
1164          Node *x;
1165          Node* the_clone = NULL;
1166          if( region->in(i) == phase->C->top() ) {
1167            x = phase->C->top();      // Dead path?  Use a dead data op
1168          } else {
1169            x = this->clone();        // Else clone up the data op
1170            the_clone = x;            // Remember for possible deletion.
1171            // Alter data node to use pre-phi inputs
1172            if( this->in(0) == region ) {
1173              x->set_req( 0, region->in(i) );
1174            } else {
1175              x->set_req( 0, NULL );
1176            }
1177            for( uint j = 1; j < this->req(); j++ ) {
1178              Node *in = this->in(j);
1179              if( in->is_Phi() && in->in(0) == region )
1180                x->set_req( j, in->in(i) ); // Use pre-Phi input for the clone
1181            }
1182          }
1183          // Check for a 'win' on some paths
1184          const Type *t = x->Value(igvn);
1185
1186          bool singleton = t->singleton();
1187
1188          // See comments in PhaseIdealLoop::split_thru_phi().
1189          if( singleton && t == Type::TOP ) {
1190            singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1191          }
1192
1193          if( singleton ) {
1194            wins++;
1195            x = igvn->makecon(t);
1196          } else {
1197            // We now call Identity to try to simplify the cloned node.
1198            // Note that some Identity methods call phase->type(this).
1199            // Make sure that the type array is big enough for
1200            // our new node, even though we may throw the node away.
1201            // (This tweaking with igvn only works because x is a new node.)
1202            igvn->set_type(x, t);
1203            Node *y = x->Identity(igvn);
1204            if( y != x ) {
1205              wins++;
1206              x = y;
1207            } else {
1208              y = igvn->hash_find(x);
1209              if( y ) {
1210                wins++;
1211                x = y;
1212              } else {
1213                // Else x is a new node we are keeping
1214                // We do not need register_new_node_with_optimizer
1215                // because set_type has already been called.
1216                igvn->_worklist.push(x);
1217              }
1218            }
1219          }
1220          if (x != the_clone && the_clone != NULL)
1221            igvn->remove_dead_node(the_clone);
1222          phi->set_req(i, x);
1223        }
1224        if( wins > 0 ) {
1225          // Record Phi
1226          igvn->register_new_node_with_optimizer(phi);
1227          return phi;
1228        } else {
1229          igvn->remove_dead_node(phi);
1230        }
1231      }
1232    }
1233  }
1234
1235  // Check for prior store with a different base or offset; make Load
1236  // independent.  Skip through any number of them.  Bail out if the stores
1237  // are in an endless dead cycle and report no progress.  This is a key
1238  // transform for Reflection.  However, if after skipping through the Stores
1239  // we can't then fold up against a prior store do NOT do the transform as
1240  // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1241  // array memory alive twice: once for the hoisted Load and again after the
1242  // bypassed Store.  This situation only works if EVERYBODY who does
1243  // anti-dependence work knows how to bypass.  I.e. we need all
1244  // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1245  // the alias index stuff.  So instead, peek through Stores and IFF we can
1246  // fold up, do so.
1247  Node* prev_mem = find_previous_store(phase);
1248  // Steps (a), (b):  Walk past independent stores to find an exact match.
1249  if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1250    // (c) See if we can fold up on the spot, but don't fold up here.
1251    // Fold-up might require truncation (for LoadB/LoadS/LoadC) or
1252    // just return a prior value, which is done by Identity calls.
1253    if (can_see_stored_value(prev_mem, phase)) {
1254      // Make ready for step (d):
1255      set_req(MemNode::Memory, prev_mem);
1256      return this;
1257    }
1258  }
1259
1260  return NULL;                  // No further progress
1261}
1262
1263// Helper to recognize certain Klass fields which are invariant across
1264// some group of array types (e.g., int[] or all T[] where T < Object).
1265const Type*
1266LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1267                                 ciKlass* klass) const {
1268  if (tkls->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1269    // The field is Klass::_modifier_flags.  Return its (constant) value.
1270    // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1271    assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1272    return TypeInt::make(klass->modifier_flags());
1273  }
1274  if (tkls->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc)) {
1275    // The field is Klass::_access_flags.  Return its (constant) value.
1276    // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1277    assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1278    return TypeInt::make(klass->access_flags());
1279  }
1280  if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)) {
1281    // The field is Klass::_layout_helper.  Return its constant value if known.
1282    assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1283    return TypeInt::make(klass->layout_helper());
1284  }
1285
1286  // No match.
1287  return NULL;
1288}
1289
1290//------------------------------Value-----------------------------------------
1291const Type *LoadNode::Value( PhaseTransform *phase ) const {
1292  // Either input is TOP ==> the result is TOP
1293  Node* mem = in(MemNode::Memory);
1294  const Type *t1 = phase->type(mem);
1295  if (t1 == Type::TOP)  return Type::TOP;
1296  Node* adr = in(MemNode::Address);
1297  const TypePtr* tp = phase->type(adr)->isa_ptr();
1298  if (tp == NULL || tp->empty())  return Type::TOP;
1299  int off = tp->offset();
1300  assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1301
1302  // Try to guess loaded type from pointer type
1303  if (tp->base() == Type::AryPtr) {
1304    const Type *t = tp->is_aryptr()->elem();
1305    // Don't do this for integer types. There is only potential profit if
1306    // the element type t is lower than _type; that is, for int types, if _type is
1307    // more restrictive than t.  This only happens here if one is short and the other
1308    // char (both 16 bits), and in those cases we've made an intentional decision
1309    // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1310    // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1311    //
1312    // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1313    // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1314    // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1315    // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1316    // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1317    // In fact, that could have been the original type of p1, and p1 could have
1318    // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1319    // expression (LShiftL quux 3) independently optimized to the constant 8.
1320    if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1321        && Opcode() != Op_LoadKlass) {
1322      // t might actually be lower than _type, if _type is a unique
1323      // concrete subclass of abstract class t.
1324      // Make sure the reference is not into the header, by comparing
1325      // the offset against the offset of the start of the array's data.
1326      // Different array types begin at slightly different offsets (12 vs. 16).
1327      // We choose T_BYTE as an example base type that is least restrictive
1328      // as to alignment, which will therefore produce the smallest
1329      // possible base offset.
1330      const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1331      if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1332        const Type* jt = t->join(_type);
1333        // In any case, do not allow the join, per se, to empty out the type.
1334        if (jt->empty() && !t->empty()) {
1335          // This can happen if a interface-typed array narrows to a class type.
1336          jt = _type;
1337        }
1338
1339        if (EliminateAutoBox) {
1340          // The pointers in the autobox arrays are always non-null
1341          Node* base = in(Address)->in(AddPNode::Base);
1342          if (base != NULL) {
1343            Compile::AliasType* atp = phase->C->alias_type(base->adr_type());
1344            if (is_autobox_cache(atp)) {
1345              return jt->join(TypePtr::NOTNULL)->is_ptr();
1346            }
1347          }
1348        }
1349        return jt;
1350      }
1351    }
1352  } else if (tp->base() == Type::InstPtr) {
1353    assert( off != Type::OffsetBot ||
1354            // arrays can be cast to Objects
1355            tp->is_oopptr()->klass()->is_java_lang_Object() ||
1356            // unsafe field access may not have a constant offset
1357            phase->C->has_unsafe_access(),
1358            "Field accesses must be precise" );
1359    // For oop loads, we expect the _type to be precise
1360  } else if (tp->base() == Type::KlassPtr) {
1361    assert( off != Type::OffsetBot ||
1362            // arrays can be cast to Objects
1363            tp->is_klassptr()->klass()->is_java_lang_Object() ||
1364            // also allow array-loading from the primary supertype
1365            // array during subtype checks
1366            Opcode() == Op_LoadKlass,
1367            "Field accesses must be precise" );
1368    // For klass/static loads, we expect the _type to be precise
1369  }
1370
1371  const TypeKlassPtr *tkls = tp->isa_klassptr();
1372  if (tkls != NULL && !StressReflectiveCode) {
1373    ciKlass* klass = tkls->klass();
1374    if (klass->is_loaded() && tkls->klass_is_exact()) {
1375      // We are loading a field from a Klass metaobject whose identity
1376      // is known at compile time (the type is "exact" or "precise").
1377      // Check for fields we know are maintained as constants by the VM.
1378      if (tkls->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc)) {
1379        // The field is Klass::_super_check_offset.  Return its (constant) value.
1380        // (Folds up type checking code.)
1381        assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1382        return TypeInt::make(klass->super_check_offset());
1383      }
1384      // Compute index into primary_supers array
1385      juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1386      // Check for overflowing; use unsigned compare to handle the negative case.
1387      if( depth < ciKlass::primary_super_limit() ) {
1388        // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1389        // (Folds up type checking code.)
1390        assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1391        ciKlass *ss = klass->super_of_depth(depth);
1392        return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1393      }
1394      const Type* aift = load_array_final_field(tkls, klass);
1395      if (aift != NULL)  return aift;
1396      if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset()) + (int)sizeof(oopDesc)
1397          && klass->is_array_klass()) {
1398        // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1399        // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1400        assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1401        return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1402      }
1403      if (tkls->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc)) {
1404        // The field is Klass::_java_mirror.  Return its (constant) value.
1405        // (Folds up the 2nd indirection in anObjConstant.getClass().)
1406        assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1407        return TypeInstPtr::make(klass->java_mirror());
1408      }
1409    }
1410
1411    // We can still check if we are loading from the primary_supers array at a
1412    // shallow enough depth.  Even though the klass is not exact, entries less
1413    // than or equal to its super depth are correct.
1414    if (klass->is_loaded() ) {
1415      ciType *inner = klass->klass();
1416      while( inner->is_obj_array_klass() )
1417        inner = inner->as_obj_array_klass()->base_element_type();
1418      if( inner->is_instance_klass() &&
1419          !inner->as_instance_klass()->flags().is_interface() ) {
1420        // Compute index into primary_supers array
1421        juint depth = (tkls->offset() - (Klass::primary_supers_offset_in_bytes() + (int)sizeof(oopDesc))) / sizeof(klassOop);
1422        // Check for overflowing; use unsigned compare to handle the negative case.
1423        if( depth < ciKlass::primary_super_limit() &&
1424            depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1425          // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1426          // (Folds up type checking code.)
1427          assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1428          ciKlass *ss = klass->super_of_depth(depth);
1429          return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1430        }
1431      }
1432    }
1433
1434    // If the type is enough to determine that the thing is not an array,
1435    // we can give the layout_helper a positive interval type.
1436    // This will help short-circuit some reflective code.
1437    if (tkls->offset() == Klass::layout_helper_offset_in_bytes() + (int)sizeof(oopDesc)
1438        && !klass->is_array_klass() // not directly typed as an array
1439        && !klass->is_interface()  // specifically not Serializable & Cloneable
1440        && !klass->is_java_lang_Object()   // not the supertype of all T[]
1441        ) {
1442      // Note:  When interfaces are reliable, we can narrow the interface
1443      // test to (klass != Serializable && klass != Cloneable).
1444      assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1445      jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1446      // The key property of this type is that it folds up tests
1447      // for array-ness, since it proves that the layout_helper is positive.
1448      // Thus, a generic value like the basic object layout helper works fine.
1449      return TypeInt::make(min_size, max_jint, Type::WidenMin);
1450    }
1451  }
1452
1453  // If we are loading from a freshly-allocated object, produce a zero,
1454  // if the load is provably beyond the header of the object.
1455  // (Also allow a variable load from a fresh array to produce zero.)
1456  if (ReduceFieldZeroing) {
1457    Node* value = can_see_stored_value(mem,phase);
1458    if (value != NULL && value->is_Con())
1459      return value->bottom_type();
1460  }
1461
1462  const TypeOopPtr *tinst = tp->isa_oopptr();
1463  if (tinst != NULL && tinst->is_instance_field()) {
1464    // If we have an instance type and our memory input is the
1465    // programs's initial memory state, there is no matching store,
1466    // so just return a zero of the appropriate type
1467    Node *mem = in(MemNode::Memory);
1468    if (mem->is_Parm() && mem->in(0)->is_Start()) {
1469      assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1470      return Type::get_zero_type(_type->basic_type());
1471    }
1472  }
1473  return _type;
1474}
1475
1476//------------------------------match_edge-------------------------------------
1477// Do we Match on this edge index or not?  Match only the address.
1478uint LoadNode::match_edge(uint idx) const {
1479  return idx == MemNode::Address;
1480}
1481
1482//--------------------------LoadBNode::Ideal--------------------------------------
1483//
1484//  If the previous store is to the same address as this load,
1485//  and the value stored was larger than a byte, replace this load
1486//  with the value stored truncated to a byte.  If no truncation is
1487//  needed, the replacement is done in LoadNode::Identity().
1488//
1489Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1490  Node* mem = in(MemNode::Memory);
1491  Node* value = can_see_stored_value(mem,phase);
1492  if( value && !phase->type(value)->higher_equal( _type ) ) {
1493    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(24)) );
1494    return new (phase->C, 3) RShiftINode(result, phase->intcon(24));
1495  }
1496  // Identity call will handle the case where truncation is not needed.
1497  return LoadNode::Ideal(phase, can_reshape);
1498}
1499
1500//--------------------------LoadCNode::Ideal--------------------------------------
1501//
1502//  If the previous store is to the same address as this load,
1503//  and the value stored was larger than a char, replace this load
1504//  with the value stored truncated to a char.  If no truncation is
1505//  needed, the replacement is done in LoadNode::Identity().
1506//
1507Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1508  Node* mem = in(MemNode::Memory);
1509  Node* value = can_see_stored_value(mem,phase);
1510  if( value && !phase->type(value)->higher_equal( _type ) )
1511    return new (phase->C, 3) AndINode(value,phase->intcon(0xFFFF));
1512  // Identity call will handle the case where truncation is not needed.
1513  return LoadNode::Ideal(phase, can_reshape);
1514}
1515
1516//--------------------------LoadSNode::Ideal--------------------------------------
1517//
1518//  If the previous store is to the same address as this load,
1519//  and the value stored was larger than a short, replace this load
1520//  with the value stored truncated to a short.  If no truncation is
1521//  needed, the replacement is done in LoadNode::Identity().
1522//
1523Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1524  Node* mem = in(MemNode::Memory);
1525  Node* value = can_see_stored_value(mem,phase);
1526  if( value && !phase->type(value)->higher_equal( _type ) ) {
1527    Node *result = phase->transform( new (phase->C, 3) LShiftINode(value, phase->intcon(16)) );
1528    return new (phase->C, 3) RShiftINode(result, phase->intcon(16));
1529  }
1530  // Identity call will handle the case where truncation is not needed.
1531  return LoadNode::Ideal(phase, can_reshape);
1532}
1533
1534//=============================================================================
1535//------------------------------Value------------------------------------------
1536const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1537  // Either input is TOP ==> the result is TOP
1538  const Type *t1 = phase->type( in(MemNode::Memory) );
1539  if (t1 == Type::TOP)  return Type::TOP;
1540  Node *adr = in(MemNode::Address);
1541  const Type *t2 = phase->type( adr );
1542  if (t2 == Type::TOP)  return Type::TOP;
1543  const TypePtr *tp = t2->is_ptr();
1544  if (TypePtr::above_centerline(tp->ptr()) ||
1545      tp->ptr() == TypePtr::Null)  return Type::TOP;
1546
1547  // Return a more precise klass, if possible
1548  const TypeInstPtr *tinst = tp->isa_instptr();
1549  if (tinst != NULL) {
1550    ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1551    int offset = tinst->offset();
1552    if (ik == phase->C->env()->Class_klass()
1553        && (offset == java_lang_Class::klass_offset_in_bytes() ||
1554            offset == java_lang_Class::array_klass_offset_in_bytes())) {
1555      // We are loading a special hidden field from a Class mirror object,
1556      // the field which points to the VM's Klass metaobject.
1557      ciType* t = tinst->java_mirror_type();
1558      // java_mirror_type returns non-null for compile-time Class constants.
1559      if (t != NULL) {
1560        // constant oop => constant klass
1561        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1562          return TypeKlassPtr::make(ciArrayKlass::make(t));
1563        }
1564        if (!t->is_klass()) {
1565          // a primitive Class (e.g., int.class) has NULL for a klass field
1566          return TypePtr::NULL_PTR;
1567        }
1568        // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1569        return TypeKlassPtr::make(t->as_klass());
1570      }
1571      // non-constant mirror, so we can't tell what's going on
1572    }
1573    if( !ik->is_loaded() )
1574      return _type;             // Bail out if not loaded
1575    if (offset == oopDesc::klass_offset_in_bytes()) {
1576      if (tinst->klass_is_exact()) {
1577        return TypeKlassPtr::make(ik);
1578      }
1579      // See if we can become precise: no subklasses and no interface
1580      // (Note:  We need to support verified interfaces.)
1581      if (!ik->is_interface() && !ik->has_subklass()) {
1582        //assert(!UseExactTypes, "this code should be useless with exact types");
1583        // Add a dependence; if any subclass added we need to recompile
1584        if (!ik->is_final()) {
1585          // %%% should use stronger assert_unique_concrete_subtype instead
1586          phase->C->dependencies()->assert_leaf_type(ik);
1587        }
1588        // Return precise klass
1589        return TypeKlassPtr::make(ik);
1590      }
1591
1592      // Return root of possible klass
1593      return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1594    }
1595  }
1596
1597  // Check for loading klass from an array
1598  const TypeAryPtr *tary = tp->isa_aryptr();
1599  if( tary != NULL ) {
1600    ciKlass *tary_klass = tary->klass();
1601    if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1602        && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1603      if (tary->klass_is_exact()) {
1604        return TypeKlassPtr::make(tary_klass);
1605      }
1606      ciArrayKlass *ak = tary->klass()->as_array_klass();
1607      // If the klass is an object array, we defer the question to the
1608      // array component klass.
1609      if( ak->is_obj_array_klass() ) {
1610        assert( ak->is_loaded(), "" );
1611        ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1612        if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1613          ciInstanceKlass* ik = base_k->as_instance_klass();
1614          // See if we can become precise: no subklasses and no interface
1615          if (!ik->is_interface() && !ik->has_subklass()) {
1616            //assert(!UseExactTypes, "this code should be useless with exact types");
1617            // Add a dependence; if any subclass added we need to recompile
1618            if (!ik->is_final()) {
1619              phase->C->dependencies()->assert_leaf_type(ik);
1620            }
1621            // Return precise array klass
1622            return TypeKlassPtr::make(ak);
1623          }
1624        }
1625        return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
1626      } else {                  // Found a type-array?
1627        //assert(!UseExactTypes, "this code should be useless with exact types");
1628        assert( ak->is_type_array_klass(), "" );
1629        return TypeKlassPtr::make(ak); // These are always precise
1630      }
1631    }
1632  }
1633
1634  // Check for loading klass from an array klass
1635  const TypeKlassPtr *tkls = tp->isa_klassptr();
1636  if (tkls != NULL && !StressReflectiveCode) {
1637    ciKlass* klass = tkls->klass();
1638    if( !klass->is_loaded() )
1639      return _type;             // Bail out if not loaded
1640    if( klass->is_obj_array_klass() &&
1641        (uint)tkls->offset() == objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)) {
1642      ciKlass* elem = klass->as_obj_array_klass()->element_klass();
1643      // // Always returning precise element type is incorrect,
1644      // // e.g., element type could be object and array may contain strings
1645      // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
1646
1647      // The array's TypeKlassPtr was declared 'precise' or 'not precise'
1648      // according to the element type's subclassing.
1649      return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
1650    }
1651    if( klass->is_instance_klass() && tkls->klass_is_exact() &&
1652        (uint)tkls->offset() == Klass::super_offset_in_bytes() + sizeof(oopDesc)) {
1653      ciKlass* sup = klass->as_instance_klass()->super();
1654      // The field is Klass::_super.  Return its (constant) value.
1655      // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
1656      return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
1657    }
1658  }
1659
1660  // Bailout case
1661  return LoadNode::Value(phase);
1662}
1663
1664//------------------------------Identity---------------------------------------
1665// To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
1666// Also feed through the klass in Allocate(...klass...)._klass.
1667Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
1668  Node* x = LoadNode::Identity(phase);
1669  if (x != this)  return x;
1670
1671  // Take apart the address into an oop and and offset.
1672  // Return 'this' if we cannot.
1673  Node*    adr    = in(MemNode::Address);
1674  intptr_t offset = 0;
1675  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1676  if (base == NULL)     return this;
1677  const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
1678  if (toop == NULL)     return this;
1679
1680  // We can fetch the klass directly through an AllocateNode.
1681  // This works even if the klass is not constant (clone or newArray).
1682  if (offset == oopDesc::klass_offset_in_bytes()) {
1683    Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
1684    if (allocated_klass != NULL) {
1685      return allocated_klass;
1686    }
1687  }
1688
1689  // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
1690  // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
1691  // See inline_native_Class_query for occurrences of these patterns.
1692  // Java Example:  x.getClass().isAssignableFrom(y)
1693  // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
1694  //
1695  // This improves reflective code, often making the Class
1696  // mirror go completely dead.  (Current exception:  Class
1697  // mirrors may appear in debug info, but we could clean them out by
1698  // introducing a new debug info operator for klassOop.java_mirror).
1699  if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
1700      && (offset == java_lang_Class::klass_offset_in_bytes() ||
1701          offset == java_lang_Class::array_klass_offset_in_bytes())) {
1702    // We are loading a special hidden field from a Class mirror,
1703    // the field which points to its Klass or arrayKlass metaobject.
1704    if (base->is_Load()) {
1705      Node* adr2 = base->in(MemNode::Address);
1706      const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
1707      if (tkls != NULL && !tkls->empty()
1708          && (tkls->klass()->is_instance_klass() ||
1709              tkls->klass()->is_array_klass())
1710          && adr2->is_AddP()
1711          ) {
1712        int mirror_field = Klass::java_mirror_offset_in_bytes();
1713        if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1714          mirror_field = in_bytes(arrayKlass::component_mirror_offset());
1715        }
1716        if (tkls->offset() == mirror_field + (int)sizeof(oopDesc)) {
1717          return adr2->in(AddPNode::Base);
1718        }
1719      }
1720    }
1721  }
1722
1723  return this;
1724}
1725
1726//------------------------------Value-----------------------------------------
1727const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
1728  // Either input is TOP ==> the result is TOP
1729  const Type *t1 = phase->type( in(MemNode::Memory) );
1730  if( t1 == Type::TOP ) return Type::TOP;
1731  Node *adr = in(MemNode::Address);
1732  const Type *t2 = phase->type( adr );
1733  if( t2 == Type::TOP ) return Type::TOP;
1734  const TypePtr *tp = t2->is_ptr();
1735  if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
1736  const TypeAryPtr *tap = tp->isa_aryptr();
1737  if( !tap ) return _type;
1738  return tap->size();
1739}
1740
1741//------------------------------Identity---------------------------------------
1742// Feed through the length in AllocateArray(...length...)._length.
1743Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
1744  Node* x = LoadINode::Identity(phase);
1745  if (x != this)  return x;
1746
1747  // Take apart the address into an oop and and offset.
1748  // Return 'this' if we cannot.
1749  Node*    adr    = in(MemNode::Address);
1750  intptr_t offset = 0;
1751  Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
1752  if (base == NULL)     return this;
1753  const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
1754  if (tary == NULL)     return this;
1755
1756  // We can fetch the length directly through an AllocateArrayNode.
1757  // This works even if the length is not constant (clone or newArray).
1758  if (offset == arrayOopDesc::length_offset_in_bytes()) {
1759    Node* allocated_length = AllocateArrayNode::Ideal_length(base, phase);
1760    if (allocated_length != NULL) {
1761      return allocated_length;
1762    }
1763  }
1764
1765  return this;
1766
1767}
1768//=============================================================================
1769//---------------------------StoreNode::make-----------------------------------
1770// Polymorphic factory method:
1771StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
1772  Compile* C = gvn.C;
1773
1774  switch (bt) {
1775  case T_BOOLEAN:
1776  case T_BYTE:    return new (C, 4) StoreBNode(ctl, mem, adr, adr_type, val);
1777  case T_INT:     return new (C, 4) StoreINode(ctl, mem, adr, adr_type, val);
1778  case T_CHAR:
1779  case T_SHORT:   return new (C, 4) StoreCNode(ctl, mem, adr, adr_type, val);
1780  case T_LONG:    return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val);
1781  case T_FLOAT:   return new (C, 4) StoreFNode(ctl, mem, adr, adr_type, val);
1782  case T_DOUBLE:  return new (C, 4) StoreDNode(ctl, mem, adr, adr_type, val);
1783  case T_ADDRESS:
1784  case T_OBJECT:
1785#ifdef _LP64
1786    if (adr->bottom_type()->is_narrow() ||
1787        (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
1788         adr->bottom_type()->isa_rawptr())) {
1789      const TypePtr* type = val->bottom_type()->is_ptr();
1790      Node* cp;
1791      if (type->isa_oopptr()) {
1792        const TypeNarrowOop* etype = type->is_oopptr()->make_narrowoop();
1793        cp = gvn.transform(new (C, 2) EncodePNode(val, etype));
1794      } else if (type == TypePtr::NULL_PTR) {
1795        cp = gvn.transform(new (C, 1) ConNNode(TypeNarrowOop::NULL_PTR));
1796      } else {
1797        ShouldNotReachHere();
1798      }
1799      return new (C, 4) StoreNNode(ctl, mem, adr, adr_type, cp);
1800    } else
1801#endif
1802      {
1803        return new (C, 4) StorePNode(ctl, mem, adr, adr_type, val);
1804      }
1805  }
1806  ShouldNotReachHere();
1807  return (StoreNode*)NULL;
1808}
1809
1810StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
1811  bool require_atomic = true;
1812  return new (C, 4) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
1813}
1814
1815
1816//--------------------------bottom_type----------------------------------------
1817const Type *StoreNode::bottom_type() const {
1818  return Type::MEMORY;
1819}
1820
1821//------------------------------hash-------------------------------------------
1822uint StoreNode::hash() const {
1823  // unroll addition of interesting fields
1824  //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
1825
1826  // Since they are not commoned, do not hash them:
1827  return NO_HASH;
1828}
1829
1830//------------------------------Ideal------------------------------------------
1831// Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
1832// When a store immediately follows a relevant allocation/initialization,
1833// try to capture it into the initialization, or hoist it above.
1834Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1835  Node* p = MemNode::Ideal_common(phase, can_reshape);
1836  if (p)  return (p == NodeSentinel) ? NULL : p;
1837
1838  Node* mem     = in(MemNode::Memory);
1839  Node* address = in(MemNode::Address);
1840
1841  // Back-to-back stores to same address?  Fold em up.
1842  // Generally unsafe if I have intervening uses...
1843  if (mem->is_Store() && phase->eqv_uncast(mem->in(MemNode::Address), address)) {
1844    // Looking at a dead closed cycle of memory?
1845    assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
1846
1847    assert(Opcode() == mem->Opcode() ||
1848           phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
1849           "no mismatched stores, except on raw memory");
1850
1851    if (mem->outcnt() == 1 &&           // check for intervening uses
1852        mem->as_Store()->memory_size() <= this->memory_size()) {
1853      // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
1854      // For example, 'mem' might be the final state at a conditional return.
1855      // Or, 'mem' might be used by some node which is live at the same time
1856      // 'this' is live, which might be unschedulable.  So, require exactly
1857      // ONE user, the 'this' store, until such time as we clone 'mem' for
1858      // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
1859      if (can_reshape) {  // (%%% is this an anachronism?)
1860        set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
1861                  phase->is_IterGVN());
1862      } else {
1863        // It's OK to do this in the parser, since DU info is always accurate,
1864        // and the parser always refers to nodes via SafePointNode maps.
1865        set_req(MemNode::Memory, mem->in(MemNode::Memory));
1866      }
1867      return this;
1868    }
1869  }
1870
1871  // Capture an unaliased, unconditional, simple store into an initializer.
1872  // Or, if it is independent of the allocation, hoist it above the allocation.
1873  if (ReduceFieldZeroing && /*can_reshape &&*/
1874      mem->is_Proj() && mem->in(0)->is_Initialize()) {
1875    InitializeNode* init = mem->in(0)->as_Initialize();
1876    intptr_t offset = init->can_capture_store(this, phase);
1877    if (offset > 0) {
1878      Node* moved = init->capture_store(this, offset, phase);
1879      // If the InitializeNode captured me, it made a raw copy of me,
1880      // and I need to disappear.
1881      if (moved != NULL) {
1882        // %%% hack to ensure that Ideal returns a new node:
1883        mem = MergeMemNode::make(phase->C, mem);
1884        return mem;             // fold me away
1885      }
1886    }
1887  }
1888
1889  return NULL;                  // No further progress
1890}
1891
1892//------------------------------Value-----------------------------------------
1893const Type *StoreNode::Value( PhaseTransform *phase ) const {
1894  // Either input is TOP ==> the result is TOP
1895  const Type *t1 = phase->type( in(MemNode::Memory) );
1896  if( t1 == Type::TOP ) return Type::TOP;
1897  const Type *t2 = phase->type( in(MemNode::Address) );
1898  if( t2 == Type::TOP ) return Type::TOP;
1899  const Type *t3 = phase->type( in(MemNode::ValueIn) );
1900  if( t3 == Type::TOP ) return Type::TOP;
1901  return Type::MEMORY;
1902}
1903
1904//------------------------------Identity---------------------------------------
1905// Remove redundant stores:
1906//   Store(m, p, Load(m, p)) changes to m.
1907//   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
1908Node *StoreNode::Identity( PhaseTransform *phase ) {
1909  Node* mem = in(MemNode::Memory);
1910  Node* adr = in(MemNode::Address);
1911  Node* val = in(MemNode::ValueIn);
1912
1913  // Load then Store?  Then the Store is useless
1914  if (val->is_Load() &&
1915      phase->eqv_uncast( val->in(MemNode::Address), adr ) &&
1916      phase->eqv_uncast( val->in(MemNode::Memory ), mem ) &&
1917      val->as_Load()->store_Opcode() == Opcode()) {
1918    return mem;
1919  }
1920
1921  // Two stores in a row of the same value?
1922  if (mem->is_Store() &&
1923      phase->eqv_uncast( mem->in(MemNode::Address), adr ) &&
1924      phase->eqv_uncast( mem->in(MemNode::ValueIn), val ) &&
1925      mem->Opcode() == Opcode()) {
1926    return mem;
1927  }
1928
1929  // Store of zero anywhere into a freshly-allocated object?
1930  // Then the store is useless.
1931  // (It must already have been captured by the InitializeNode.)
1932  if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
1933    // a newly allocated object is already all-zeroes everywhere
1934    if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
1935      return mem;
1936    }
1937
1938    // the store may also apply to zero-bits in an earlier object
1939    Node* prev_mem = find_previous_store(phase);
1940    // Steps (a), (b):  Walk past independent stores to find an exact match.
1941    if (prev_mem != NULL) {
1942      Node* prev_val = can_see_stored_value(prev_mem, phase);
1943      if (prev_val != NULL && phase->eqv(prev_val, val)) {
1944        // prev_val and val might differ by a cast; it would be good
1945        // to keep the more informative of the two.
1946        return mem;
1947      }
1948    }
1949  }
1950
1951  return this;
1952}
1953
1954//------------------------------match_edge-------------------------------------
1955// Do we Match on this edge index or not?  Match only memory & value
1956uint StoreNode::match_edge(uint idx) const {
1957  return idx == MemNode::Address || idx == MemNode::ValueIn;
1958}
1959
1960//------------------------------cmp--------------------------------------------
1961// Do not common stores up together.  They generally have to be split
1962// back up anyways, so do not bother.
1963uint StoreNode::cmp( const Node &n ) const {
1964  return (&n == this);          // Always fail except on self
1965}
1966
1967//------------------------------Ideal_masked_input-----------------------------
1968// Check for a useless mask before a partial-word store
1969// (StoreB ... (AndI valIn conIa) )
1970// If (conIa & mask == mask) this simplifies to
1971// (StoreB ... (valIn) )
1972Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
1973  Node *val = in(MemNode::ValueIn);
1974  if( val->Opcode() == Op_AndI ) {
1975    const TypeInt *t = phase->type( val->in(2) )->isa_int();
1976    if( t && t->is_con() && (t->get_con() & mask) == mask ) {
1977      set_req(MemNode::ValueIn, val->in(1));
1978      return this;
1979    }
1980  }
1981  return NULL;
1982}
1983
1984
1985//------------------------------Ideal_sign_extended_input----------------------
1986// Check for useless sign-extension before a partial-word store
1987// (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
1988// If (conIL == conIR && conIR <= num_bits)  this simplifies to
1989// (StoreB ... (valIn) )
1990Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
1991  Node *val = in(MemNode::ValueIn);
1992  if( val->Opcode() == Op_RShiftI ) {
1993    const TypeInt *t = phase->type( val->in(2) )->isa_int();
1994    if( t && t->is_con() && (t->get_con() <= num_bits) ) {
1995      Node *shl = val->in(1);
1996      if( shl->Opcode() == Op_LShiftI ) {
1997        const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
1998        if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
1999          set_req(MemNode::ValueIn, shl->in(1));
2000          return this;
2001        }
2002      }
2003    }
2004  }
2005  return NULL;
2006}
2007
2008//------------------------------value_never_loaded-----------------------------------
2009// Determine whether there are any possible loads of the value stored.
2010// For simplicity, we actually check if there are any loads from the
2011// address stored to, not just for loads of the value stored by this node.
2012//
2013bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2014  Node *adr = in(Address);
2015  const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2016  if (adr_oop == NULL)
2017    return false;
2018  if (!adr_oop->is_instance_field())
2019    return false; // if not a distinct instance, there may be aliases of the address
2020  for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2021    Node *use = adr->fast_out(i);
2022    int opc = use->Opcode();
2023    if (use->is_Load() || use->is_LoadStore()) {
2024      return false;
2025    }
2026  }
2027  return true;
2028}
2029
2030//=============================================================================
2031//------------------------------Ideal------------------------------------------
2032// If the store is from an AND mask that leaves the low bits untouched, then
2033// we can skip the AND operation.  If the store is from a sign-extension
2034// (a left shift, then right shift) we can skip both.
2035Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2036  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2037  if( progress != NULL ) return progress;
2038
2039  progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2040  if( progress != NULL ) return progress;
2041
2042  // Finally check the default case
2043  return StoreNode::Ideal(phase, can_reshape);
2044}
2045
2046//=============================================================================
2047//------------------------------Ideal------------------------------------------
2048// If the store is from an AND mask that leaves the low bits untouched, then
2049// we can skip the AND operation
2050Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2051  Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2052  if( progress != NULL ) return progress;
2053
2054  progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2055  if( progress != NULL ) return progress;
2056
2057  // Finally check the default case
2058  return StoreNode::Ideal(phase, can_reshape);
2059}
2060
2061//=============================================================================
2062//------------------------------Identity---------------------------------------
2063Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2064  // No need to card mark when storing a null ptr
2065  Node* my_store = in(MemNode::OopStore);
2066  if (my_store->is_Store()) {
2067    const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2068    if( t1 == TypePtr::NULL_PTR ) {
2069      return in(MemNode::Memory);
2070    }
2071  }
2072  return this;
2073}
2074
2075//------------------------------Value-----------------------------------------
2076const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2077  // Either input is TOP ==> the result is TOP
2078  const Type *t = phase->type( in(MemNode::Memory) );
2079  if( t == Type::TOP ) return Type::TOP;
2080  t = phase->type( in(MemNode::Address) );
2081  if( t == Type::TOP ) return Type::TOP;
2082  t = phase->type( in(MemNode::ValueIn) );
2083  if( t == Type::TOP ) return Type::TOP;
2084  // If extra input is TOP ==> the result is TOP
2085  t = phase->type( in(MemNode::OopStore) );
2086  if( t == Type::TOP ) return Type::TOP;
2087
2088  return StoreNode::Value( phase );
2089}
2090
2091
2092//=============================================================================
2093//----------------------------------SCMemProjNode------------------------------
2094const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2095{
2096  return bottom_type();
2097}
2098
2099//=============================================================================
2100LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2101  init_req(MemNode::Control, c  );
2102  init_req(MemNode::Memory , mem);
2103  init_req(MemNode::Address, adr);
2104  init_req(MemNode::ValueIn, val);
2105  init_req(         ExpectedIn, ex );
2106  init_class_id(Class_LoadStore);
2107
2108}
2109
2110//=============================================================================
2111//-------------------------------adr_type--------------------------------------
2112// Do we Match on this edge index or not?  Do not match memory
2113const TypePtr* ClearArrayNode::adr_type() const {
2114  Node *adr = in(3);
2115  return MemNode::calculate_adr_type(adr->bottom_type());
2116}
2117
2118//------------------------------match_edge-------------------------------------
2119// Do we Match on this edge index or not?  Do not match memory
2120uint ClearArrayNode::match_edge(uint idx) const {
2121  return idx > 1;
2122}
2123
2124//------------------------------Identity---------------------------------------
2125// Clearing a zero length array does nothing
2126Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2127  return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2128}
2129
2130//------------------------------Idealize---------------------------------------
2131// Clearing a short array is faster with stores
2132Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2133  const int unit = BytesPerLong;
2134  const TypeX* t = phase->type(in(2))->isa_intptr_t();
2135  if (!t)  return NULL;
2136  if (!t->is_con())  return NULL;
2137  intptr_t raw_count = t->get_con();
2138  intptr_t size = raw_count;
2139  if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2140  // Clearing nothing uses the Identity call.
2141  // Negative clears are possible on dead ClearArrays
2142  // (see jck test stmt114.stmt11402.val).
2143  if (size <= 0 || size % unit != 0)  return NULL;
2144  intptr_t count = size / unit;
2145  // Length too long; use fast hardware clear
2146  if (size > Matcher::init_array_short_size)  return NULL;
2147  Node *mem = in(1);
2148  if( phase->type(mem)==Type::TOP ) return NULL;
2149  Node *adr = in(3);
2150  const Type* at = phase->type(adr);
2151  if( at==Type::TOP ) return NULL;
2152  const TypePtr* atp = at->isa_ptr();
2153  // adjust atp to be the correct array element address type
2154  if (atp == NULL)  atp = TypePtr::BOTTOM;
2155  else              atp = atp->add_offset(Type::OffsetBot);
2156  // Get base for derived pointer purposes
2157  if( adr->Opcode() != Op_AddP ) Unimplemented();
2158  Node *base = adr->in(1);
2159
2160  Node *zero = phase->makecon(TypeLong::ZERO);
2161  Node *off  = phase->MakeConX(BytesPerLong);
2162  mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2163  count--;
2164  while( count-- ) {
2165    mem = phase->transform(mem);
2166    adr = phase->transform(new (phase->C, 4) AddPNode(base,adr,off));
2167    mem = new (phase->C, 4) StoreLNode(in(0),mem,adr,atp,zero);
2168  }
2169  return mem;
2170}
2171
2172//----------------------------clear_memory-------------------------------------
2173// Generate code to initialize object storage to zero.
2174Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2175                                   intptr_t start_offset,
2176                                   Node* end_offset,
2177                                   PhaseGVN* phase) {
2178  Compile* C = phase->C;
2179  intptr_t offset = start_offset;
2180
2181  int unit = BytesPerLong;
2182  if ((offset % unit) != 0) {
2183    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(offset));
2184    adr = phase->transform(adr);
2185    const TypePtr* atp = TypeRawPtr::BOTTOM;
2186    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2187    mem = phase->transform(mem);
2188    offset += BytesPerInt;
2189  }
2190  assert((offset % unit) == 0, "");
2191
2192  // Initialize the remaining stuff, if any, with a ClearArray.
2193  return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2194}
2195
2196Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2197                                   Node* start_offset,
2198                                   Node* end_offset,
2199                                   PhaseGVN* phase) {
2200  if (start_offset == end_offset) {
2201    // nothing to do
2202    return mem;
2203  }
2204
2205  Compile* C = phase->C;
2206  int unit = BytesPerLong;
2207  Node* zbase = start_offset;
2208  Node* zend  = end_offset;
2209
2210  // Scale to the unit required by the CPU:
2211  if (!Matcher::init_array_count_is_in_bytes) {
2212    Node* shift = phase->intcon(exact_log2(unit));
2213    zbase = phase->transform( new(C,3) URShiftXNode(zbase, shift) );
2214    zend  = phase->transform( new(C,3) URShiftXNode(zend,  shift) );
2215  }
2216
2217  Node* zsize = phase->transform( new(C,3) SubXNode(zend, zbase) );
2218  Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2219
2220  // Bulk clear double-words
2221  Node* adr = phase->transform( new(C,4) AddPNode(dest, dest, start_offset) );
2222  mem = new (C, 4) ClearArrayNode(ctl, mem, zsize, adr);
2223  return phase->transform(mem);
2224}
2225
2226Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2227                                   intptr_t start_offset,
2228                                   intptr_t end_offset,
2229                                   PhaseGVN* phase) {
2230  if (start_offset == end_offset) {
2231    // nothing to do
2232    return mem;
2233  }
2234
2235  Compile* C = phase->C;
2236  assert((end_offset % BytesPerInt) == 0, "odd end offset");
2237  intptr_t done_offset = end_offset;
2238  if ((done_offset % BytesPerLong) != 0) {
2239    done_offset -= BytesPerInt;
2240  }
2241  if (done_offset > start_offset) {
2242    mem = clear_memory(ctl, mem, dest,
2243                       start_offset, phase->MakeConX(done_offset), phase);
2244  }
2245  if (done_offset < end_offset) { // emit the final 32-bit store
2246    Node* adr = new (C, 4) AddPNode(dest, dest, phase->MakeConX(done_offset));
2247    adr = phase->transform(adr);
2248    const TypePtr* atp = TypeRawPtr::BOTTOM;
2249    mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2250    mem = phase->transform(mem);
2251    done_offset += BytesPerInt;
2252  }
2253  assert(done_offset == end_offset, "");
2254  return mem;
2255}
2256
2257//=============================================================================
2258// Do we match on this edge? No memory edges
2259uint StrCompNode::match_edge(uint idx) const {
2260  return idx == 5 || idx == 6;
2261}
2262
2263//------------------------------Ideal------------------------------------------
2264// Return a node which is more "ideal" than the current node.  Strip out
2265// control copies
2266Node *StrCompNode::Ideal(PhaseGVN *phase, bool can_reshape){
2267  return remove_dead_region(phase, can_reshape) ? this : NULL;
2268}
2269
2270
2271//=============================================================================
2272MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2273  : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2274    _adr_type(C->get_adr_type(alias_idx))
2275{
2276  init_class_id(Class_MemBar);
2277  Node* top = C->top();
2278  init_req(TypeFunc::I_O,top);
2279  init_req(TypeFunc::FramePtr,top);
2280  init_req(TypeFunc::ReturnAdr,top);
2281  if (precedent != NULL)
2282    init_req(TypeFunc::Parms, precedent);
2283}
2284
2285//------------------------------cmp--------------------------------------------
2286uint MemBarNode::hash() const { return NO_HASH; }
2287uint MemBarNode::cmp( const Node &n ) const {
2288  return (&n == this);          // Always fail except on self
2289}
2290
2291//------------------------------make-------------------------------------------
2292MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2293  int len = Precedent + (pn == NULL? 0: 1);
2294  switch (opcode) {
2295  case Op_MemBarAcquire:   return new(C, len) MemBarAcquireNode(C,  atp, pn);
2296  case Op_MemBarRelease:   return new(C, len) MemBarReleaseNode(C,  atp, pn);
2297  case Op_MemBarVolatile:  return new(C, len) MemBarVolatileNode(C, atp, pn);
2298  case Op_MemBarCPUOrder:  return new(C, len) MemBarCPUOrderNode(C, atp, pn);
2299  case Op_Initialize:      return new(C, len) InitializeNode(C,     atp, pn);
2300  default:                 ShouldNotReachHere(); return NULL;
2301  }
2302}
2303
2304//------------------------------Ideal------------------------------------------
2305// Return a node which is more "ideal" than the current node.  Strip out
2306// control copies
2307Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2308  if (remove_dead_region(phase, can_reshape))  return this;
2309  return NULL;
2310}
2311
2312//------------------------------Value------------------------------------------
2313const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2314  if( !in(0) ) return Type::TOP;
2315  if( phase->type(in(0)) == Type::TOP )
2316    return Type::TOP;
2317  return TypeTuple::MEMBAR;
2318}
2319
2320//------------------------------match------------------------------------------
2321// Construct projections for memory.
2322Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2323  switch (proj->_con) {
2324  case TypeFunc::Control:
2325  case TypeFunc::Memory:
2326    return new (m->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2327  }
2328  ShouldNotReachHere();
2329  return NULL;
2330}
2331
2332//===========================InitializeNode====================================
2333// SUMMARY:
2334// This node acts as a memory barrier on raw memory, after some raw stores.
2335// The 'cooked' oop value feeds from the Initialize, not the Allocation.
2336// The Initialize can 'capture' suitably constrained stores as raw inits.
2337// It can coalesce related raw stores into larger units (called 'tiles').
2338// It can avoid zeroing new storage for memory units which have raw inits.
2339// At macro-expansion, it is marked 'complete', and does not optimize further.
2340//
2341// EXAMPLE:
2342// The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2343//   ctl = incoming control; mem* = incoming memory
2344// (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2345// First allocate uninitialized memory and fill in the header:
2346//   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2347//   ctl := alloc.Control; mem* := alloc.Memory*
2348//   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2349// Then initialize to zero the non-header parts of the raw memory block:
2350//   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2351//   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2352// After the initialize node executes, the object is ready for service:
2353//   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2354// Suppose its body is immediately initialized as {1,2}:
2355//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2356//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2357//   mem.SLICE(#short[*]) := store2
2358//
2359// DETAILS:
2360// An InitializeNode collects and isolates object initialization after
2361// an AllocateNode and before the next possible safepoint.  As a
2362// memory barrier (MemBarNode), it keeps critical stores from drifting
2363// down past any safepoint or any publication of the allocation.
2364// Before this barrier, a newly-allocated object may have uninitialized bits.
2365// After this barrier, it may be treated as a real oop, and GC is allowed.
2366//
2367// The semantics of the InitializeNode include an implicit zeroing of
2368// the new object from object header to the end of the object.
2369// (The object header and end are determined by the AllocateNode.)
2370//
2371// Certain stores may be added as direct inputs to the InitializeNode.
2372// These stores must update raw memory, and they must be to addresses
2373// derived from the raw address produced by AllocateNode, and with
2374// a constant offset.  They must be ordered by increasing offset.
2375// The first one is at in(RawStores), the last at in(req()-1).
2376// Unlike most memory operations, they are not linked in a chain,
2377// but are displayed in parallel as users of the rawmem output of
2378// the allocation.
2379//
2380// (See comments in InitializeNode::capture_store, which continue
2381// the example given above.)
2382//
2383// When the associated Allocate is macro-expanded, the InitializeNode
2384// may be rewritten to optimize collected stores.  A ClearArrayNode
2385// may also be created at that point to represent any required zeroing.
2386// The InitializeNode is then marked 'complete', prohibiting further
2387// capturing of nearby memory operations.
2388//
2389// During macro-expansion, all captured initializations which store
2390// constant values of 32 bits or smaller are coalesced (if advantagous)
2391// into larger 'tiles' 32 or 64 bits.  This allows an object to be
2392// initialized in fewer memory operations.  Memory words which are
2393// covered by neither tiles nor non-constant stores are pre-zeroed
2394// by explicit stores of zero.  (The code shape happens to do all
2395// zeroing first, then all other stores, with both sequences occurring
2396// in order of ascending offsets.)
2397//
2398// Alternatively, code may be inserted between an AllocateNode and its
2399// InitializeNode, to perform arbitrary initialization of the new object.
2400// E.g., the object copying intrinsics insert complex data transfers here.
2401// The initialization must then be marked as 'complete' disable the
2402// built-in zeroing semantics and the collection of initializing stores.
2403//
2404// While an InitializeNode is incomplete, reads from the memory state
2405// produced by it are optimizable if they match the control edge and
2406// new oop address associated with the allocation/initialization.
2407// They return a stored value (if the offset matches) or else zero.
2408// A write to the memory state, if it matches control and address,
2409// and if it is to a constant offset, may be 'captured' by the
2410// InitializeNode.  It is cloned as a raw memory operation and rewired
2411// inside the initialization, to the raw oop produced by the allocation.
2412// Operations on addresses which are provably distinct (e.g., to
2413// other AllocateNodes) are allowed to bypass the initialization.
2414//
2415// The effect of all this is to consolidate object initialization
2416// (both arrays and non-arrays, both piecewise and bulk) into a
2417// single location, where it can be optimized as a unit.
2418//
2419// Only stores with an offset less than TrackedInitializationLimit words
2420// will be considered for capture by an InitializeNode.  This puts a
2421// reasonable limit on the complexity of optimized initializations.
2422
2423//---------------------------InitializeNode------------------------------------
2424InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2425  : _is_complete(false),
2426    MemBarNode(C, adr_type, rawoop)
2427{
2428  init_class_id(Class_Initialize);
2429
2430  assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2431  assert(in(RawAddress) == rawoop, "proper init");
2432  // Note:  allocation() can be NULL, for secondary initialization barriers
2433}
2434
2435// Since this node is not matched, it will be processed by the
2436// register allocator.  Declare that there are no constraints
2437// on the allocation of the RawAddress edge.
2438const RegMask &InitializeNode::in_RegMask(uint idx) const {
2439  // This edge should be set to top, by the set_complete.  But be conservative.
2440  if (idx == InitializeNode::RawAddress)
2441    return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2442  return RegMask::Empty;
2443}
2444
2445Node* InitializeNode::memory(uint alias_idx) {
2446  Node* mem = in(Memory);
2447  if (mem->is_MergeMem()) {
2448    return mem->as_MergeMem()->memory_at(alias_idx);
2449  } else {
2450    // incoming raw memory is not split
2451    return mem;
2452  }
2453}
2454
2455bool InitializeNode::is_non_zero() {
2456  if (is_complete())  return false;
2457  remove_extra_zeroes();
2458  return (req() > RawStores);
2459}
2460
2461void InitializeNode::set_complete(PhaseGVN* phase) {
2462  assert(!is_complete(), "caller responsibility");
2463  _is_complete = true;
2464
2465  // After this node is complete, it contains a bunch of
2466  // raw-memory initializations.  There is no need for
2467  // it to have anything to do with non-raw memory effects.
2468  // Therefore, tell all non-raw users to re-optimize themselves,
2469  // after skipping the memory effects of this initialization.
2470  PhaseIterGVN* igvn = phase->is_IterGVN();
2471  if (igvn)  igvn->add_users_to_worklist(this);
2472}
2473
2474// convenience function
2475// return false if the init contains any stores already
2476bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2477  InitializeNode* init = initialization();
2478  if (init == NULL || init->is_complete())  return false;
2479  init->remove_extra_zeroes();
2480  // for now, if this allocation has already collected any inits, bail:
2481  if (init->is_non_zero())  return false;
2482  init->set_complete(phase);
2483  return true;
2484}
2485
2486void InitializeNode::remove_extra_zeroes() {
2487  if (req() == RawStores)  return;
2488  Node* zmem = zero_memory();
2489  uint fill = RawStores;
2490  for (uint i = fill; i < req(); i++) {
2491    Node* n = in(i);
2492    if (n->is_top() || n == zmem)  continue;  // skip
2493    if (fill < i)  set_req(fill, n);          // compact
2494    ++fill;
2495  }
2496  // delete any empty spaces created:
2497  while (fill < req()) {
2498    del_req(fill);
2499  }
2500}
2501
2502// Helper for remembering which stores go with which offsets.
2503intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
2504  if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
2505  intptr_t offset = -1;
2506  Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
2507                                               phase, offset);
2508  if (base == NULL)     return -1;  // something is dead,
2509  if (offset < 0)       return -1;  //        dead, dead
2510  return offset;
2511}
2512
2513// Helper for proving that an initialization expression is
2514// "simple enough" to be folded into an object initialization.
2515// Attempts to prove that a store's initial value 'n' can be captured
2516// within the initialization without creating a vicious cycle, such as:
2517//     { Foo p = new Foo(); p.next = p; }
2518// True for constants and parameters and small combinations thereof.
2519bool InitializeNode::detect_init_independence(Node* n,
2520                                              bool st_is_pinned,
2521                                              int& count) {
2522  if (n == NULL)      return true;   // (can this really happen?)
2523  if (n->is_Proj())   n = n->in(0);
2524  if (n == this)      return false;  // found a cycle
2525  if (n->is_Con())    return true;
2526  if (n->is_Start())  return true;   // params, etc., are OK
2527  if (n->is_Root())   return true;   // even better
2528
2529  Node* ctl = n->in(0);
2530  if (ctl != NULL && !ctl->is_top()) {
2531    if (ctl->is_Proj())  ctl = ctl->in(0);
2532    if (ctl == this)  return false;
2533
2534    // If we already know that the enclosing memory op is pinned right after
2535    // the init, then any control flow that the store has picked up
2536    // must have preceded the init, or else be equal to the init.
2537    // Even after loop optimizations (which might change control edges)
2538    // a store is never pinned *before* the availability of its inputs.
2539    if (!MemNode::detect_dominating_control(ctl, this->in(0)))
2540      return false;                  // failed to prove a good control
2541
2542  }
2543
2544  // Check data edges for possible dependencies on 'this'.
2545  if ((count += 1) > 20)  return false;  // complexity limit
2546  for (uint i = 1; i < n->req(); i++) {
2547    Node* m = n->in(i);
2548    if (m == NULL || m == n || m->is_top())  continue;
2549    uint first_i = n->find_edge(m);
2550    if (i != first_i)  continue;  // process duplicate edge just once
2551    if (!detect_init_independence(m, st_is_pinned, count)) {
2552      return false;
2553    }
2554  }
2555
2556  return true;
2557}
2558
2559// Here are all the checks a Store must pass before it can be moved into
2560// an initialization.  Returns zero if a check fails.
2561// On success, returns the (constant) offset to which the store applies,
2562// within the initialized memory.
2563intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
2564  const int FAIL = 0;
2565  if (st->req() != MemNode::ValueIn + 1)
2566    return FAIL;                // an inscrutable StoreNode (card mark?)
2567  Node* ctl = st->in(MemNode::Control);
2568  if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
2569    return FAIL;                // must be unconditional after the initialization
2570  Node* mem = st->in(MemNode::Memory);
2571  if (!(mem->is_Proj() && mem->in(0) == this))
2572    return FAIL;                // must not be preceded by other stores
2573  Node* adr = st->in(MemNode::Address);
2574  intptr_t offset;
2575  AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
2576  if (alloc == NULL)
2577    return FAIL;                // inscrutable address
2578  if (alloc != allocation())
2579    return FAIL;                // wrong allocation!  (store needs to float up)
2580  Node* val = st->in(MemNode::ValueIn);
2581  int complexity_count = 0;
2582  if (!detect_init_independence(val, true, complexity_count))
2583    return FAIL;                // stored value must be 'simple enough'
2584
2585  return offset;                // success
2586}
2587
2588// Find the captured store in(i) which corresponds to the range
2589// [start..start+size) in the initialized object.
2590// If there is one, return its index i.  If there isn't, return the
2591// negative of the index where it should be inserted.
2592// Return 0 if the queried range overlaps an initialization boundary
2593// or if dead code is encountered.
2594// If size_in_bytes is zero, do not bother with overlap checks.
2595int InitializeNode::captured_store_insertion_point(intptr_t start,
2596                                                   int size_in_bytes,
2597                                                   PhaseTransform* phase) {
2598  const int FAIL = 0, MAX_STORE = BytesPerLong;
2599
2600  if (is_complete())
2601    return FAIL;                // arraycopy got here first; punt
2602
2603  assert(allocation() != NULL, "must be present");
2604
2605  // no negatives, no header fields:
2606  if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
2607
2608  // after a certain size, we bail out on tracking all the stores:
2609  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2610  if (start >= ti_limit)  return FAIL;
2611
2612  for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
2613    if (i >= limit)  return -(int)i; // not found; here is where to put it
2614
2615    Node*    st     = in(i);
2616    intptr_t st_off = get_store_offset(st, phase);
2617    if (st_off < 0) {
2618      if (st != zero_memory()) {
2619        return FAIL;            // bail out if there is dead garbage
2620      }
2621    } else if (st_off > start) {
2622      // ...we are done, since stores are ordered
2623      if (st_off < start + size_in_bytes) {
2624        return FAIL;            // the next store overlaps
2625      }
2626      return -(int)i;           // not found; here is where to put it
2627    } else if (st_off < start) {
2628      if (size_in_bytes != 0 &&
2629          start < st_off + MAX_STORE &&
2630          start < st_off + st->as_Store()->memory_size()) {
2631        return FAIL;            // the previous store overlaps
2632      }
2633    } else {
2634      if (size_in_bytes != 0 &&
2635          st->as_Store()->memory_size() != size_in_bytes) {
2636        return FAIL;            // mismatched store size
2637      }
2638      return i;
2639    }
2640
2641    ++i;
2642  }
2643}
2644
2645// Look for a captured store which initializes at the offset 'start'
2646// with the given size.  If there is no such store, and no other
2647// initialization interferes, then return zero_memory (the memory
2648// projection of the AllocateNode).
2649Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
2650                                          PhaseTransform* phase) {
2651  assert(stores_are_sane(phase), "");
2652  int i = captured_store_insertion_point(start, size_in_bytes, phase);
2653  if (i == 0) {
2654    return NULL;                // something is dead
2655  } else if (i < 0) {
2656    return zero_memory();       // just primordial zero bits here
2657  } else {
2658    Node* st = in(i);           // here is the store at this position
2659    assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
2660    return st;
2661  }
2662}
2663
2664// Create, as a raw pointer, an address within my new object at 'offset'.
2665Node* InitializeNode::make_raw_address(intptr_t offset,
2666                                       PhaseTransform* phase) {
2667  Node* addr = in(RawAddress);
2668  if (offset != 0) {
2669    Compile* C = phase->C;
2670    addr = phase->transform( new (C, 4) AddPNode(C->top(), addr,
2671                                                 phase->MakeConX(offset)) );
2672  }
2673  return addr;
2674}
2675
2676// Clone the given store, converting it into a raw store
2677// initializing a field or element of my new object.
2678// Caller is responsible for retiring the original store,
2679// with subsume_node or the like.
2680//
2681// From the example above InitializeNode::InitializeNode,
2682// here are the old stores to be captured:
2683//   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2684//   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2685//
2686// Here is the changed code; note the extra edges on init:
2687//   alloc = (Allocate ...)
2688//   rawoop = alloc.RawAddress
2689//   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
2690//   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
2691//   init = (Initialize alloc.Control alloc.Memory rawoop
2692//                      rawstore1 rawstore2)
2693//
2694Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
2695                                    PhaseTransform* phase) {
2696  assert(stores_are_sane(phase), "");
2697
2698  if (start < 0)  return NULL;
2699  assert(can_capture_store(st, phase) == start, "sanity");
2700
2701  Compile* C = phase->C;
2702  int size_in_bytes = st->memory_size();
2703  int i = captured_store_insertion_point(start, size_in_bytes, phase);
2704  if (i == 0)  return NULL;     // bail out
2705  Node* prev_mem = NULL;        // raw memory for the captured store
2706  if (i > 0) {
2707    prev_mem = in(i);           // there is a pre-existing store under this one
2708    set_req(i, C->top());       // temporarily disconnect it
2709    // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
2710  } else {
2711    i = -i;                     // no pre-existing store
2712    prev_mem = zero_memory();   // a slice of the newly allocated object
2713    if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
2714      set_req(--i, C->top());   // reuse this edge; it has been folded away
2715    else
2716      ins_req(i, C->top());     // build a new edge
2717  }
2718  Node* new_st = st->clone();
2719  new_st->set_req(MemNode::Control, in(Control));
2720  new_st->set_req(MemNode::Memory,  prev_mem);
2721  new_st->set_req(MemNode::Address, make_raw_address(start, phase));
2722  new_st = phase->transform(new_st);
2723
2724  // At this point, new_st might have swallowed a pre-existing store
2725  // at the same offset, or perhaps new_st might have disappeared,
2726  // if it redundantly stored the same value (or zero to fresh memory).
2727
2728  // In any case, wire it in:
2729  set_req(i, new_st);
2730
2731  // The caller may now kill the old guy.
2732  DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
2733  assert(check_st == new_st || check_st == NULL, "must be findable");
2734  assert(!is_complete(), "");
2735  return new_st;
2736}
2737
2738static bool store_constant(jlong* tiles, int num_tiles,
2739                           intptr_t st_off, int st_size,
2740                           jlong con) {
2741  if ((st_off & (st_size-1)) != 0)
2742    return false;               // strange store offset (assume size==2**N)
2743  address addr = (address)tiles + st_off;
2744  assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
2745  switch (st_size) {
2746  case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
2747  case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
2748  case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
2749  case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
2750  default: return false;        // strange store size (detect size!=2**N here)
2751  }
2752  return true;                  // return success to caller
2753}
2754
2755// Coalesce subword constants into int constants and possibly
2756// into long constants.  The goal, if the CPU permits,
2757// is to initialize the object with a small number of 64-bit tiles.
2758// Also, convert floating-point constants to bit patterns.
2759// Non-constants are not relevant to this pass.
2760//
2761// In terms of the running example on InitializeNode::InitializeNode
2762// and InitializeNode::capture_store, here is the transformation
2763// of rawstore1 and rawstore2 into rawstore12:
2764//   alloc = (Allocate ...)
2765//   rawoop = alloc.RawAddress
2766//   tile12 = 0x00010002
2767//   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
2768//   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
2769//
2770void
2771InitializeNode::coalesce_subword_stores(intptr_t header_size,
2772                                        Node* size_in_bytes,
2773                                        PhaseGVN* phase) {
2774  Compile* C = phase->C;
2775
2776  assert(stores_are_sane(phase), "");
2777  // Note:  After this pass, they are not completely sane,
2778  // since there may be some overlaps.
2779
2780  int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
2781
2782  intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
2783  intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
2784  size_limit = MIN2(size_limit, ti_limit);
2785  size_limit = align_size_up(size_limit, BytesPerLong);
2786  int num_tiles = size_limit / BytesPerLong;
2787
2788  // allocate space for the tile map:
2789  const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
2790  jlong  tiles_buf[small_len];
2791  Node*  nodes_buf[small_len];
2792  jlong  inits_buf[small_len];
2793  jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
2794                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2795  Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
2796                  : NEW_RESOURCE_ARRAY(Node*, num_tiles));
2797  jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
2798                  : NEW_RESOURCE_ARRAY(jlong, num_tiles));
2799  // tiles: exact bitwise model of all primitive constants
2800  // nodes: last constant-storing node subsumed into the tiles model
2801  // inits: which bytes (in each tile) are touched by any initializations
2802
2803  //// Pass A: Fill in the tile model with any relevant stores.
2804
2805  Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
2806  Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
2807  Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
2808  Node* zmem = zero_memory(); // initially zero memory state
2809  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
2810    Node* st = in(i);
2811    intptr_t st_off = get_store_offset(st, phase);
2812
2813    // Figure out the store's offset and constant value:
2814    if (st_off < header_size)             continue; //skip (ignore header)
2815    if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
2816    int st_size = st->as_Store()->memory_size();
2817    if (st_off + st_size > size_limit)    break;
2818
2819    // Record which bytes are touched, whether by constant or not.
2820    if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
2821      continue;                 // skip (strange store size)
2822
2823    const Type* val = phase->type(st->in(MemNode::ValueIn));
2824    if (!val->singleton())                continue; //skip (non-con store)
2825    BasicType type = val->basic_type();
2826
2827    jlong con = 0;
2828    switch (type) {
2829    case T_INT:    con = val->is_int()->get_con();  break;
2830    case T_LONG:   con = val->is_long()->get_con(); break;
2831    case T_FLOAT:  con = jint_cast(val->getf());    break;
2832    case T_DOUBLE: con = jlong_cast(val->getd());   break;
2833    default:                              continue; //skip (odd store type)
2834    }
2835
2836    if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
2837        st->Opcode() == Op_StoreL) {
2838      continue;                 // This StoreL is already optimal.
2839    }
2840
2841    // Store down the constant.
2842    store_constant(tiles, num_tiles, st_off, st_size, con);
2843
2844    intptr_t j = st_off >> LogBytesPerLong;
2845
2846    if (type == T_INT && st_size == BytesPerInt
2847        && (st_off & BytesPerInt) == BytesPerInt) {
2848      jlong lcon = tiles[j];
2849      if (!Matcher::isSimpleConstant64(lcon) &&
2850          st->Opcode() == Op_StoreI) {
2851        // This StoreI is already optimal by itself.
2852        jint* intcon = (jint*) &tiles[j];
2853        intcon[1] = 0;  // undo the store_constant()
2854
2855        // If the previous store is also optimal by itself, back up and
2856        // undo the action of the previous loop iteration... if we can.
2857        // But if we can't, just let the previous half take care of itself.
2858        st = nodes[j];
2859        st_off -= BytesPerInt;
2860        con = intcon[0];
2861        if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
2862          assert(st_off >= header_size, "still ignoring header");
2863          assert(get_store_offset(st, phase) == st_off, "must be");
2864          assert(in(i-1) == zmem, "must be");
2865          DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
2866          assert(con == tcon->is_int()->get_con(), "must be");
2867          // Undo the effects of the previous loop trip, which swallowed st:
2868          intcon[0] = 0;        // undo store_constant()
2869          set_req(i-1, st);     // undo set_req(i, zmem)
2870          nodes[j] = NULL;      // undo nodes[j] = st
2871          --old_subword;        // undo ++old_subword
2872        }
2873        continue;               // This StoreI is already optimal.
2874      }
2875    }
2876
2877    // This store is not needed.
2878    set_req(i, zmem);
2879    nodes[j] = st;              // record for the moment
2880    if (st_size < BytesPerLong) // something has changed
2881          ++old_subword;        // includes int/float, but who's counting...
2882    else  ++old_long;
2883  }
2884
2885  if ((old_subword + old_long) == 0)
2886    return;                     // nothing more to do
2887
2888  //// Pass B: Convert any non-zero tiles into optimal constant stores.
2889  // Be sure to insert them before overlapping non-constant stores.
2890  // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
2891  for (int j = 0; j < num_tiles; j++) {
2892    jlong con  = tiles[j];
2893    jlong init = inits[j];
2894    if (con == 0)  continue;
2895    jint con0,  con1;           // split the constant, address-wise
2896    jint init0, init1;          // split the init map, address-wise
2897    { union { jlong con; jint intcon[2]; } u;
2898      u.con = con;
2899      con0  = u.intcon[0];
2900      con1  = u.intcon[1];
2901      u.con = init;
2902      init0 = u.intcon[0];
2903      init1 = u.intcon[1];
2904    }
2905
2906    Node* old = nodes[j];
2907    assert(old != NULL, "need the prior store");
2908    intptr_t offset = (j * BytesPerLong);
2909
2910    bool split = !Matcher::isSimpleConstant64(con);
2911
2912    if (offset < header_size) {
2913      assert(offset + BytesPerInt >= header_size, "second int counts");
2914      assert(*(jint*)&tiles[j] == 0, "junk in header");
2915      split = true;             // only the second word counts
2916      // Example:  int a[] = { 42 ... }
2917    } else if (con0 == 0 && init0 == -1) {
2918      split = true;             // first word is covered by full inits
2919      // Example:  int a[] = { ... foo(), 42 ... }
2920    } else if (con1 == 0 && init1 == -1) {
2921      split = true;             // second word is covered by full inits
2922      // Example:  int a[] = { ... 42, foo() ... }
2923    }
2924
2925    // Here's a case where init0 is neither 0 nor -1:
2926    //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
2927    // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
2928    // In this case the tile is not split; it is (jlong)42.
2929    // The big tile is stored down, and then the foo() value is inserted.
2930    // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
2931
2932    Node* ctl = old->in(MemNode::Control);
2933    Node* adr = make_raw_address(offset, phase);
2934    const TypePtr* atp = TypeRawPtr::BOTTOM;
2935
2936    // One or two coalesced stores to plop down.
2937    Node*    st[2];
2938    intptr_t off[2];
2939    int  nst = 0;
2940    if (!split) {
2941      ++new_long;
2942      off[nst] = offset;
2943      st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
2944                                  phase->longcon(con), T_LONG);
2945    } else {
2946      // Omit either if it is a zero.
2947      if (con0 != 0) {
2948        ++new_int;
2949        off[nst]  = offset;
2950        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
2951                                    phase->intcon(con0), T_INT);
2952      }
2953      if (con1 != 0) {
2954        ++new_int;
2955        offset += BytesPerInt;
2956        adr = make_raw_address(offset, phase);
2957        off[nst]  = offset;
2958        st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
2959                                    phase->intcon(con1), T_INT);
2960      }
2961    }
2962
2963    // Insert second store first, then the first before the second.
2964    // Insert each one just before any overlapping non-constant stores.
2965    while (nst > 0) {
2966      Node* st1 = st[--nst];
2967      C->copy_node_notes_to(st1, old);
2968      st1 = phase->transform(st1);
2969      offset = off[nst];
2970      assert(offset >= header_size, "do not smash header");
2971      int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
2972      guarantee(ins_idx != 0, "must re-insert constant store");
2973      if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
2974      if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
2975        set_req(--ins_idx, st1);
2976      else
2977        ins_req(ins_idx, st1);
2978    }
2979  }
2980
2981  if (PrintCompilation && WizardMode)
2982    tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
2983                  old_subword, old_long, new_int, new_long);
2984  if (C->log() != NULL)
2985    C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
2986                   old_subword, old_long, new_int, new_long);
2987
2988  // Clean up any remaining occurrences of zmem:
2989  remove_extra_zeroes();
2990}
2991
2992// Explore forward from in(start) to find the first fully initialized
2993// word, and return its offset.  Skip groups of subword stores which
2994// together initialize full words.  If in(start) is itself part of a
2995// fully initialized word, return the offset of in(start).  If there
2996// are no following full-word stores, or if something is fishy, return
2997// a negative value.
2998intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
2999  int       int_map = 0;
3000  intptr_t  int_map_off = 0;
3001  const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3002
3003  for (uint i = start, limit = req(); i < limit; i++) {
3004    Node* st = in(i);
3005
3006    intptr_t st_off = get_store_offset(st, phase);
3007    if (st_off < 0)  break;  // return conservative answer
3008
3009    int st_size = st->as_Store()->memory_size();
3010    if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3011      return st_off;            // we found a complete word init
3012    }
3013
3014    // update the map:
3015
3016    intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3017    if (this_int_off != int_map_off) {
3018      // reset the map:
3019      int_map = 0;
3020      int_map_off = this_int_off;
3021    }
3022
3023    int subword_off = st_off - this_int_off;
3024    int_map |= right_n_bits(st_size) << subword_off;
3025    if ((int_map & FULL_MAP) == FULL_MAP) {
3026      return this_int_off;      // we found a complete word init
3027    }
3028
3029    // Did this store hit or cross the word boundary?
3030    intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3031    if (next_int_off == this_int_off + BytesPerInt) {
3032      // We passed the current int, without fully initializing it.
3033      int_map_off = next_int_off;
3034      int_map >>= BytesPerInt;
3035    } else if (next_int_off > this_int_off + BytesPerInt) {
3036      // We passed the current and next int.
3037      return this_int_off + BytesPerInt;
3038    }
3039  }
3040
3041  return -1;
3042}
3043
3044
3045// Called when the associated AllocateNode is expanded into CFG.
3046// At this point, we may perform additional optimizations.
3047// Linearize the stores by ascending offset, to make memory
3048// activity as coherent as possible.
3049Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3050                                      intptr_t header_size,
3051                                      Node* size_in_bytes,
3052                                      PhaseGVN* phase) {
3053  assert(!is_complete(), "not already complete");
3054  assert(stores_are_sane(phase), "");
3055  assert(allocation() != NULL, "must be present");
3056
3057  remove_extra_zeroes();
3058
3059  if (ReduceFieldZeroing || ReduceBulkZeroing)
3060    // reduce instruction count for common initialization patterns
3061    coalesce_subword_stores(header_size, size_in_bytes, phase);
3062
3063  Node* zmem = zero_memory();   // initially zero memory state
3064  Node* inits = zmem;           // accumulating a linearized chain of inits
3065  #ifdef ASSERT
3066  intptr_t first_offset = allocation()->minimum_header_size();
3067  intptr_t last_init_off = first_offset;  // previous init offset
3068  intptr_t last_init_end = first_offset;  // previous init offset+size
3069  intptr_t last_tile_end = first_offset;  // previous tile offset+size
3070  #endif
3071  intptr_t zeroes_done = header_size;
3072
3073  bool do_zeroing = true;       // we might give up if inits are very sparse
3074  int  big_init_gaps = 0;       // how many large gaps have we seen?
3075
3076  if (ZeroTLAB)  do_zeroing = false;
3077  if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3078
3079  for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3080    Node* st = in(i);
3081    intptr_t st_off = get_store_offset(st, phase);
3082    if (st_off < 0)
3083      break;                    // unknown junk in the inits
3084    if (st->in(MemNode::Memory) != zmem)
3085      break;                    // complicated store chains somehow in list
3086
3087    int st_size = st->as_Store()->memory_size();
3088    intptr_t next_init_off = st_off + st_size;
3089
3090    if (do_zeroing && zeroes_done < next_init_off) {
3091      // See if this store needs a zero before it or under it.
3092      intptr_t zeroes_needed = st_off;
3093
3094      if (st_size < BytesPerInt) {
3095        // Look for subword stores which only partially initialize words.
3096        // If we find some, we must lay down some word-level zeroes first,
3097        // underneath the subword stores.
3098        //
3099        // Examples:
3100        //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3101        //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3102        //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3103        //
3104        // Note:  coalesce_subword_stores may have already done this,
3105        // if it was prompted by constant non-zero subword initializers.
3106        // But this case can still arise with non-constant stores.
3107
3108        intptr_t next_full_store = find_next_fullword_store(i, phase);
3109
3110        // In the examples above:
3111        //   in(i)          p   q   r   s     x   y     z
3112        //   st_off        12  13  14  15    12  13    14
3113        //   st_size        1   1   1   1     1   1     1
3114        //   next_full_s.  12  16  16  16    16  16    16
3115        //   z's_done      12  16  16  16    12  16    12
3116        //   z's_needed    12  16  16  16    16  16    16
3117        //   zsize          0   0   0   0     4   0     4
3118        if (next_full_store < 0) {
3119          // Conservative tack:  Zero to end of current word.
3120          zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3121        } else {
3122          // Zero to beginning of next fully initialized word.
3123          // Or, don't zero at all, if we are already in that word.
3124          assert(next_full_store >= zeroes_needed, "must go forward");
3125          assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3126          zeroes_needed = next_full_store;
3127        }
3128      }
3129
3130      if (zeroes_needed > zeroes_done) {
3131        intptr_t zsize = zeroes_needed - zeroes_done;
3132        // Do some incremental zeroing on rawmem, in parallel with inits.
3133        zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3134        rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3135                                              zeroes_done, zeroes_needed,
3136                                              phase);
3137        zeroes_done = zeroes_needed;
3138        if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3139          do_zeroing = false;   // leave the hole, next time
3140      }
3141    }
3142
3143    // Collect the store and move on:
3144    st->set_req(MemNode::Memory, inits);
3145    inits = st;                 // put it on the linearized chain
3146    set_req(i, zmem);           // unhook from previous position
3147
3148    if (zeroes_done == st_off)
3149      zeroes_done = next_init_off;
3150
3151    assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3152
3153    #ifdef ASSERT
3154    // Various order invariants.  Weaker than stores_are_sane because
3155    // a large constant tile can be filled in by smaller non-constant stores.
3156    assert(st_off >= last_init_off, "inits do not reverse");
3157    last_init_off = st_off;
3158    const Type* val = NULL;
3159    if (st_size >= BytesPerInt &&
3160        (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3161        (int)val->basic_type() < (int)T_OBJECT) {
3162      assert(st_off >= last_tile_end, "tiles do not overlap");
3163      assert(st_off >= last_init_end, "tiles do not overwrite inits");
3164      last_tile_end = MAX2(last_tile_end, next_init_off);
3165    } else {
3166      intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3167      assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3168      assert(st_off      >= last_init_end, "inits do not overlap");
3169      last_init_end = next_init_off;  // it's a non-tile
3170    }
3171    #endif //ASSERT
3172  }
3173
3174  remove_extra_zeroes();        // clear out all the zmems left over
3175  add_req(inits);
3176
3177  if (!ZeroTLAB) {
3178    // If anything remains to be zeroed, zero it all now.
3179    zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3180    // if it is the last unused 4 bytes of an instance, forget about it
3181    intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3182    if (zeroes_done + BytesPerLong >= size_limit) {
3183      assert(allocation() != NULL, "");
3184      Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3185      ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3186      if (zeroes_done == k->layout_helper())
3187        zeroes_done = size_limit;
3188    }
3189    if (zeroes_done < size_limit) {
3190      rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3191                                            zeroes_done, size_in_bytes, phase);
3192    }
3193  }
3194
3195  set_complete(phase);
3196  return rawmem;
3197}
3198
3199
3200#ifdef ASSERT
3201bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3202  if (is_complete())
3203    return true;                // stores could be anything at this point
3204  assert(allocation() != NULL, "must be present");
3205  intptr_t last_off = allocation()->minimum_header_size();
3206  for (uint i = InitializeNode::RawStores; i < req(); i++) {
3207    Node* st = in(i);
3208    intptr_t st_off = get_store_offset(st, phase);
3209    if (st_off < 0)  continue;  // ignore dead garbage
3210    if (last_off > st_off) {
3211      tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3212      this->dump(2);
3213      assert(false, "ascending store offsets");
3214      return false;
3215    }
3216    last_off = st_off + st->as_Store()->memory_size();
3217  }
3218  return true;
3219}
3220#endif //ASSERT
3221
3222
3223
3224
3225//============================MergeMemNode=====================================
3226//
3227// SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3228// contributing store or call operations.  Each contributor provides the memory
3229// state for a particular "alias type" (see Compile::alias_type).  For example,
3230// if a MergeMem has an input X for alias category #6, then any memory reference
3231// to alias category #6 may use X as its memory state input, as an exact equivalent
3232// to using the MergeMem as a whole.
3233//   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3234//
3235// (Here, the <N> notation gives the index of the relevant adr_type.)
3236//
3237// In one special case (and more cases in the future), alias categories overlap.
3238// The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3239// states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3240// it is exactly equivalent to that state W:
3241//   MergeMem(<Bot>: W) <==> W
3242//
3243// Usually, the merge has more than one input.  In that case, where inputs
3244// overlap (i.e., one is Bot), the narrower alias type determines the memory
3245// state for that type, and the wider alias type (Bot) fills in everywhere else:
3246//   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3247//   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3248//
3249// A merge can take a "wide" memory state as one of its narrow inputs.
3250// This simply means that the merge observes out only the relevant parts of
3251// the wide input.  That is, wide memory states arriving at narrow merge inputs
3252// are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3253//
3254// These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3255// and that memory slices "leak through":
3256//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3257//
3258// But, in such a cascade, repeated memory slices can "block the leak":
3259//   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3260//
3261// In the last example, Y is not part of the combined memory state of the
3262// outermost MergeMem.  The system must, of course, prevent unschedulable
3263// memory states from arising, so you can be sure that the state Y is somehow
3264// a precursor to state Y'.
3265//
3266//
3267// REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3268// of each MergeMemNode array are exactly the numerical alias indexes, including
3269// but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3270// Compile::alias_type (and kin) produce and manage these indexes.
3271//
3272// By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3273// (Note that this provides quick access to the top node inside MergeMem methods,
3274// without the need to reach out via TLS to Compile::current.)
3275//
3276// As a consequence of what was just described, a MergeMem that represents a full
3277// memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3278// containing all alias categories.
3279//
3280// MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3281//
3282// All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3283// a memory state for the alias type <N>, or else the top node, meaning that
3284// there is no particular input for that alias type.  Note that the length of
3285// a MergeMem is variable, and may be extended at any time to accommodate new
3286// memory states at larger alias indexes.  When merges grow, they are of course
3287// filled with "top" in the unused in() positions.
3288//
3289// This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3290// (Top was chosen because it works smoothly with passes like GCM.)
3291//
3292// For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3293// the type of random VM bits like TLS references.)  Since it is always the
3294// first non-Bot memory slice, some low-level loops use it to initialize an
3295// index variable:  for (i = AliasIdxRaw; i < req(); i++).
3296//
3297//
3298// ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3299// the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3300// the memory state for alias type <N>, or (if there is no particular slice at <N>,
3301// it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3302// or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3303// MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3304//
3305// %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3306// really that different from the other memory inputs.  An abbreviation called
3307// "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3308//
3309//
3310// PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3311// partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3312// that "emerges though" the base memory will be marked as excluding the alias types
3313// of the other (narrow-memory) copies which "emerged through" the narrow edges:
3314//
3315//   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3316//     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3317//
3318// This strange "subtraction" effect is necessary to ensure IGVN convergence.
3319// (It is currently unimplemented.)  As you can see, the resulting merge is
3320// actually a disjoint union of memory states, rather than an overlay.
3321//
3322
3323//------------------------------MergeMemNode-----------------------------------
3324Node* MergeMemNode::make_empty_memory() {
3325  Node* empty_memory = (Node*) Compile::current()->top();
3326  assert(empty_memory->is_top(), "correct sentinel identity");
3327  return empty_memory;
3328}
3329
3330MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3331  init_class_id(Class_MergeMem);
3332  // all inputs are nullified in Node::Node(int)
3333  // set_input(0, NULL);  // no control input
3334
3335  // Initialize the edges uniformly to top, for starters.
3336  Node* empty_mem = make_empty_memory();
3337  for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3338    init_req(i,empty_mem);
3339  }
3340  assert(empty_memory() == empty_mem, "");
3341
3342  if( new_base != NULL && new_base->is_MergeMem() ) {
3343    MergeMemNode* mdef = new_base->as_MergeMem();
3344    assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3345    for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3346      mms.set_memory(mms.memory2());
3347    }
3348    assert(base_memory() == mdef->base_memory(), "");
3349  } else {
3350    set_base_memory(new_base);
3351  }
3352}
3353
3354// Make a new, untransformed MergeMem with the same base as 'mem'.
3355// If mem is itself a MergeMem, populate the result with the same edges.
3356MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3357  return new(C, 1+Compile::AliasIdxRaw) MergeMemNode(mem);
3358}
3359
3360//------------------------------cmp--------------------------------------------
3361uint MergeMemNode::hash() const { return NO_HASH; }
3362uint MergeMemNode::cmp( const Node &n ) const {
3363  return (&n == this);          // Always fail except on self
3364}
3365
3366//------------------------------Identity---------------------------------------
3367Node* MergeMemNode::Identity(PhaseTransform *phase) {
3368  // Identity if this merge point does not record any interesting memory
3369  // disambiguations.
3370  Node* base_mem = base_memory();
3371  Node* empty_mem = empty_memory();
3372  if (base_mem != empty_mem) {  // Memory path is not dead?
3373    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3374      Node* mem = in(i);
3375      if (mem != empty_mem && mem != base_mem) {
3376        return this;            // Many memory splits; no change
3377      }
3378    }
3379  }
3380  return base_mem;              // No memory splits; ID on the one true input
3381}
3382
3383//------------------------------Ideal------------------------------------------
3384// This method is invoked recursively on chains of MergeMem nodes
3385Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3386  // Remove chain'd MergeMems
3387  //
3388  // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3389  // relative to the "in(Bot)".  Since we are patching both at the same time,
3390  // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3391  // but rewrite each "in(i)" relative to the new "in(Bot)".
3392  Node *progress = NULL;
3393
3394
3395  Node* old_base = base_memory();
3396  Node* empty_mem = empty_memory();
3397  if (old_base == empty_mem)
3398    return NULL; // Dead memory path.
3399
3400  MergeMemNode* old_mbase;
3401  if (old_base != NULL && old_base->is_MergeMem())
3402    old_mbase = old_base->as_MergeMem();
3403  else
3404    old_mbase = NULL;
3405  Node* new_base = old_base;
3406
3407  // simplify stacked MergeMems in base memory
3408  if (old_mbase)  new_base = old_mbase->base_memory();
3409
3410  // the base memory might contribute new slices beyond my req()
3411  if (old_mbase)  grow_to_match(old_mbase);
3412
3413  // Look carefully at the base node if it is a phi.
3414  PhiNode* phi_base;
3415  if (new_base != NULL && new_base->is_Phi())
3416    phi_base = new_base->as_Phi();
3417  else
3418    phi_base = NULL;
3419
3420  Node*    phi_reg = NULL;
3421  uint     phi_len = (uint)-1;
3422  if (phi_base != NULL && !phi_base->is_copy()) {
3423    // do not examine phi if degraded to a copy
3424    phi_reg = phi_base->region();
3425    phi_len = phi_base->req();
3426    // see if the phi is unfinished
3427    for (uint i = 1; i < phi_len; i++) {
3428      if (phi_base->in(i) == NULL) {
3429        // incomplete phi; do not look at it yet!
3430        phi_reg = NULL;
3431        phi_len = (uint)-1;
3432        break;
3433      }
3434    }
3435  }
3436
3437  // Note:  We do not call verify_sparse on entry, because inputs
3438  // can normalize to the base_memory via subsume_node or similar
3439  // mechanisms.  This method repairs that damage.
3440
3441  assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3442
3443  // Look at each slice.
3444  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3445    Node* old_in = in(i);
3446    // calculate the old memory value
3447    Node* old_mem = old_in;
3448    if (old_mem == empty_mem)  old_mem = old_base;
3449    assert(old_mem == memory_at(i), "");
3450
3451    // maybe update (reslice) the old memory value
3452
3453    // simplify stacked MergeMems
3454    Node* new_mem = old_mem;
3455    MergeMemNode* old_mmem;
3456    if (old_mem != NULL && old_mem->is_MergeMem())
3457      old_mmem = old_mem->as_MergeMem();
3458    else
3459      old_mmem = NULL;
3460    if (old_mmem == this) {
3461      // This can happen if loops break up and safepoints disappear.
3462      // A merge of BotPtr (default) with a RawPtr memory derived from a
3463      // safepoint can be rewritten to a merge of the same BotPtr with
3464      // the BotPtr phi coming into the loop.  If that phi disappears
3465      // also, we can end up with a self-loop of the mergemem.
3466      // In general, if loops degenerate and memory effects disappear,
3467      // a mergemem can be left looking at itself.  This simply means
3468      // that the mergemem's default should be used, since there is
3469      // no longer any apparent effect on this slice.
3470      // Note: If a memory slice is a MergeMem cycle, it is unreachable
3471      //       from start.  Update the input to TOP.
3472      new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3473    }
3474    else if (old_mmem != NULL) {
3475      new_mem = old_mmem->memory_at(i);
3476    }
3477    // else preceeding memory was not a MergeMem
3478
3479    // replace equivalent phis (unfortunately, they do not GVN together)
3480    if (new_mem != NULL && new_mem != new_base &&
3481        new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
3482      if (new_mem->is_Phi()) {
3483        PhiNode* phi_mem = new_mem->as_Phi();
3484        for (uint i = 1; i < phi_len; i++) {
3485          if (phi_base->in(i) != phi_mem->in(i)) {
3486            phi_mem = NULL;
3487            break;
3488          }
3489        }
3490        if (phi_mem != NULL) {
3491          // equivalent phi nodes; revert to the def
3492          new_mem = new_base;
3493        }
3494      }
3495    }
3496
3497    // maybe store down a new value
3498    Node* new_in = new_mem;
3499    if (new_in == new_base)  new_in = empty_mem;
3500
3501    if (new_in != old_in) {
3502      // Warning:  Do not combine this "if" with the previous "if"
3503      // A memory slice might have be be rewritten even if it is semantically
3504      // unchanged, if the base_memory value has changed.
3505      set_req(i, new_in);
3506      progress = this;          // Report progress
3507    }
3508  }
3509
3510  if (new_base != old_base) {
3511    set_req(Compile::AliasIdxBot, new_base);
3512    // Don't use set_base_memory(new_base), because we need to update du.
3513    assert(base_memory() == new_base, "");
3514    progress = this;
3515  }
3516
3517  if( base_memory() == this ) {
3518    // a self cycle indicates this memory path is dead
3519    set_req(Compile::AliasIdxBot, empty_mem);
3520  }
3521
3522  // Resolve external cycles by calling Ideal on a MergeMem base_memory
3523  // Recursion must occur after the self cycle check above
3524  if( base_memory()->is_MergeMem() ) {
3525    MergeMemNode *new_mbase = base_memory()->as_MergeMem();
3526    Node *m = phase->transform(new_mbase);  // Rollup any cycles
3527    if( m != NULL && (m->is_top() ||
3528        m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
3529      // propagate rollup of dead cycle to self
3530      set_req(Compile::AliasIdxBot, empty_mem);
3531    }
3532  }
3533
3534  if( base_memory() == empty_mem ) {
3535    progress = this;
3536    // Cut inputs during Parse phase only.
3537    // During Optimize phase a dead MergeMem node will be subsumed by Top.
3538    if( !can_reshape ) {
3539      for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3540        if( in(i) != empty_mem ) { set_req(i, empty_mem); }
3541      }
3542    }
3543  }
3544
3545  if( !progress && base_memory()->is_Phi() && can_reshape ) {
3546    // Check if PhiNode::Ideal's "Split phis through memory merges"
3547    // transform should be attempted. Look for this->phi->this cycle.
3548    uint merge_width = req();
3549    if (merge_width > Compile::AliasIdxRaw) {
3550      PhiNode* phi = base_memory()->as_Phi();
3551      for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
3552        if (phi->in(i) == this) {
3553          phase->is_IterGVN()->_worklist.push(phi);
3554          break;
3555        }
3556      }
3557    }
3558  }
3559
3560  assert(progress || verify_sparse(), "please, no dups of base");
3561  return progress;
3562}
3563
3564//-------------------------set_base_memory-------------------------------------
3565void MergeMemNode::set_base_memory(Node *new_base) {
3566  Node* empty_mem = empty_memory();
3567  set_req(Compile::AliasIdxBot, new_base);
3568  assert(memory_at(req()) == new_base, "must set default memory");
3569  // Clear out other occurrences of new_base:
3570  if (new_base != empty_mem) {
3571    for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3572      if (in(i) == new_base)  set_req(i, empty_mem);
3573    }
3574  }
3575}
3576
3577//------------------------------out_RegMask------------------------------------
3578const RegMask &MergeMemNode::out_RegMask() const {
3579  return RegMask::Empty;
3580}
3581
3582//------------------------------dump_spec--------------------------------------
3583#ifndef PRODUCT
3584void MergeMemNode::dump_spec(outputStream *st) const {
3585  st->print(" {");
3586  Node* base_mem = base_memory();
3587  for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
3588    Node* mem = memory_at(i);
3589    if (mem == base_mem) { st->print(" -"); continue; }
3590    st->print( " N%d:", mem->_idx );
3591    Compile::current()->get_adr_type(i)->dump_on(st);
3592  }
3593  st->print(" }");
3594}
3595#endif // !PRODUCT
3596
3597
3598#ifdef ASSERT
3599static bool might_be_same(Node* a, Node* b) {
3600  if (a == b)  return true;
3601  if (!(a->is_Phi() || b->is_Phi()))  return false;
3602  // phis shift around during optimization
3603  return true;  // pretty stupid...
3604}
3605
3606// verify a narrow slice (either incoming or outgoing)
3607static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
3608  if (!VerifyAliases)       return;  // don't bother to verify unless requested
3609  if (is_error_reported())  return;  // muzzle asserts when debugging an error
3610  if (Node::in_dump())      return;  // muzzle asserts when printing
3611  assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
3612  assert(n != NULL, "");
3613  // Elide intervening MergeMem's
3614  while (n->is_MergeMem()) {
3615    n = n->as_MergeMem()->memory_at(alias_idx);
3616  }
3617  Compile* C = Compile::current();
3618  const TypePtr* n_adr_type = n->adr_type();
3619  if (n == m->empty_memory()) {
3620    // Implicit copy of base_memory()
3621  } else if (n_adr_type != TypePtr::BOTTOM) {
3622    assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
3623    assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
3624  } else {
3625    // A few places like make_runtime_call "know" that VM calls are narrow,
3626    // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
3627    bool expected_wide_mem = false;
3628    if (n == m->base_memory()) {
3629      expected_wide_mem = true;
3630    } else if (alias_idx == Compile::AliasIdxRaw ||
3631               n == m->memory_at(Compile::AliasIdxRaw)) {
3632      expected_wide_mem = true;
3633    } else if (!C->alias_type(alias_idx)->is_rewritable()) {
3634      // memory can "leak through" calls on channels that
3635      // are write-once.  Allow this also.
3636      expected_wide_mem = true;
3637    }
3638    assert(expected_wide_mem, "expected narrow slice replacement");
3639  }
3640}
3641#else // !ASSERT
3642#define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
3643#endif
3644
3645
3646//-----------------------------memory_at---------------------------------------
3647Node* MergeMemNode::memory_at(uint alias_idx) const {
3648  assert(alias_idx >= Compile::AliasIdxRaw ||
3649         alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
3650         "must avoid base_memory and AliasIdxTop");
3651
3652  // Otherwise, it is a narrow slice.
3653  Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
3654  Compile *C = Compile::current();
3655  if (is_empty_memory(n)) {
3656    // the array is sparse; empty slots are the "top" node
3657    n = base_memory();
3658    assert(Node::in_dump()
3659           || n == NULL || n->bottom_type() == Type::TOP
3660           || n->adr_type() == TypePtr::BOTTOM
3661           || n->adr_type() == TypeRawPtr::BOTTOM
3662           || Compile::current()->AliasLevel() == 0,
3663           "must be a wide memory");
3664    // AliasLevel == 0 if we are organizing the memory states manually.
3665    // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
3666  } else {
3667    // make sure the stored slice is sane
3668    #ifdef ASSERT
3669    if (is_error_reported() || Node::in_dump()) {
3670    } else if (might_be_same(n, base_memory())) {
3671      // Give it a pass:  It is a mostly harmless repetition of the base.
3672      // This can arise normally from node subsumption during optimization.
3673    } else {
3674      verify_memory_slice(this, alias_idx, n);
3675    }
3676    #endif
3677  }
3678  return n;
3679}
3680
3681//---------------------------set_memory_at-------------------------------------
3682void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
3683  verify_memory_slice(this, alias_idx, n);
3684  Node* empty_mem = empty_memory();
3685  if (n == base_memory())  n = empty_mem;  // collapse default
3686  uint need_req = alias_idx+1;
3687  if (req() < need_req) {
3688    if (n == empty_mem)  return;  // already the default, so do not grow me
3689    // grow the sparse array
3690    do {
3691      add_req(empty_mem);
3692    } while (req() < need_req);
3693  }
3694  set_req( alias_idx, n );
3695}
3696
3697
3698
3699//--------------------------iteration_setup------------------------------------
3700void MergeMemNode::iteration_setup(const MergeMemNode* other) {
3701  if (other != NULL) {
3702    grow_to_match(other);
3703    // invariant:  the finite support of mm2 is within mm->req()
3704    #ifdef ASSERT
3705    for (uint i = req(); i < other->req(); i++) {
3706      assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
3707    }
3708    #endif
3709  }
3710  // Replace spurious copies of base_memory by top.
3711  Node* base_mem = base_memory();
3712  if (base_mem != NULL && !base_mem->is_top()) {
3713    for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
3714      if (in(i) == base_mem)
3715        set_req(i, empty_memory());
3716    }
3717  }
3718}
3719
3720//---------------------------grow_to_match-------------------------------------
3721void MergeMemNode::grow_to_match(const MergeMemNode* other) {
3722  Node* empty_mem = empty_memory();
3723  assert(other->is_empty_memory(empty_mem), "consistent sentinels");
3724  // look for the finite support of the other memory
3725  for (uint i = other->req(); --i >= req(); ) {
3726    if (other->in(i) != empty_mem) {
3727      uint new_len = i+1;
3728      while (req() < new_len)  add_req(empty_mem);
3729      break;
3730    }
3731  }
3732}
3733
3734//---------------------------verify_sparse-------------------------------------
3735#ifndef PRODUCT
3736bool MergeMemNode::verify_sparse() const {
3737  assert(is_empty_memory(make_empty_memory()), "sane sentinel");
3738  Node* base_mem = base_memory();
3739  // The following can happen in degenerate cases, since empty==top.
3740  if (is_empty_memory(base_mem))  return true;
3741  for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3742    assert(in(i) != NULL, "sane slice");
3743    if (in(i) == base_mem)  return false;  // should have been the sentinel value!
3744  }
3745  return true;
3746}
3747
3748bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
3749  Node* n;
3750  n = mm->in(idx);
3751  if (mem == n)  return true;  // might be empty_memory()
3752  n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
3753  if (mem == n)  return true;
3754  while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
3755    if (mem == n)  return true;
3756    if (n == NULL)  break;
3757  }
3758  return false;
3759}
3760#endif // !PRODUCT
3761