matcher.hpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_MATCHER_HPP
26#define SHARE_VM_OPTO_MATCHER_HPP
27
28#include "libadt/vectset.hpp"
29#include "memory/resourceArea.hpp"
30#include "opto/node.hpp"
31#include "opto/phaseX.hpp"
32#include "opto/regmask.hpp"
33
34class Compile;
35class Node;
36class MachNode;
37class MachTypeNode;
38class MachOper;
39
40//---------------------------Matcher-------------------------------------------
41class Matcher : public PhaseTransform {
42  friend class VMStructs;
43  // Private arena of State objects
44  ResourceArea _states_arena;
45
46  VectorSet   _visited;         // Visit bits
47
48  // Used to control the Label pass
49  VectorSet   _shared;          // Shared Ideal Node
50  VectorSet   _dontcare;        // Nothing the matcher cares about
51
52  // Private methods which perform the actual matching and reduction
53  // Walks the label tree, generating machine nodes
54  MachNode *ReduceInst( State *s, int rule, Node *&mem);
55  void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
56  uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
57  void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
58
59  // If this node already matched using "rule", return the MachNode for it.
60  MachNode* find_shared_node(Node* n, uint rule);
61
62  // Convert a dense opcode number to an expanded rule number
63  const int *_reduceOp;
64  const int *_leftOp;
65  const int *_rightOp;
66
67  // Map dense opcode number to info on when rule is swallowed constant.
68  const bool *_swallowed;
69
70  // Map dense rule number to determine if this is an instruction chain rule
71  const uint _begin_inst_chain_rule;
72  const uint _end_inst_chain_rule;
73
74  // We want to clone constants and possible CmpI-variants.
75  // If we do not clone CmpI, then we can have many instances of
76  // condition codes alive at once.  This is OK on some chips and
77  // bad on others.  Hence the machine-dependent table lookup.
78  const char *_must_clone;
79
80  // Find shared Nodes, or Nodes that otherwise are Matcher roots
81  void find_shared( Node *n );
82
83  // Debug and profile information for nodes in old space:
84  GrowableArray<Node_Notes*>* _old_node_note_array;
85
86  // Node labeling iterator for instruction selection
87  Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
88
89  Node *transform( Node *dummy );
90
91  Node_List &_proj_list;        // For Machine nodes killing many values
92
93  Node_Array _shared_nodes;
94
95  debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
96  debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
97
98  // Accessors for the inherited field PhaseTransform::_nodes:
99  void   grow_new_node_array(uint idx_limit) {
100    _nodes.map(idx_limit-1, NULL);
101  }
102  bool    has_new_node(const Node* n) const {
103    return _nodes.at(n->_idx) != NULL;
104  }
105  Node*       new_node(const Node* n) const {
106    assert(has_new_node(n), "set before get");
107    return _nodes.at(n->_idx);
108  }
109  void    set_new_node(const Node* n, Node *nn) {
110    assert(!has_new_node(n), "set only once");
111    _nodes.map(n->_idx, nn);
112  }
113
114#ifdef ASSERT
115  // Make sure only new nodes are reachable from this node
116  void verify_new_nodes_only(Node* root);
117
118  Node* _mem_node;   // Ideal memory node consumed by mach node
119#endif
120
121  // Mach node for ConP #NULL
122  MachNode* _mach_null;
123
124public:
125  int LabelRootDepth;
126  // Convert ideal machine register to a register mask for spill-loads
127  static const RegMask *idealreg2regmask[];
128  RegMask *idealreg2spillmask  [_last_machine_leaf];
129  RegMask *idealreg2debugmask  [_last_machine_leaf];
130  RegMask *idealreg2mhdebugmask[_last_machine_leaf];
131  void init_spill_mask( Node *ret );
132  // Convert machine register number to register mask
133  static uint mreg2regmask_max;
134  static RegMask mreg2regmask[];
135  static RegMask STACK_ONLY_mask;
136
137  MachNode* mach_null() const { return _mach_null; }
138
139  bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
140  void   set_shared( Node *n ) {  _shared.set(n->_idx); }
141  bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
142  void  set_visited( Node *n ) { _visited.set(n->_idx); }
143  bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
144  void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
145
146  // Mode bit to tell DFA and expand rules whether we are running after
147  // (or during) register selection.  Usually, the matcher runs before,
148  // but it will also get called to generate post-allocation spill code.
149  // In this situation, it is a deadly error to attempt to allocate more
150  // temporary registers.
151  bool _allocation_started;
152
153  // Machine register names
154  static const char *regName[];
155  // Machine register encodings
156  static const unsigned char _regEncode[];
157  // Machine Node names
158  const char **_ruleName;
159  // Rules that are cheaper to rematerialize than to spill
160  static const uint _begin_rematerialize;
161  static const uint _end_rematerialize;
162
163  // An array of chars, from 0 to _last_Mach_Reg.
164  // No Save       = 'N' (for register windows)
165  // Save on Entry = 'E'
166  // Save on Call  = 'C'
167  // Always Save   = 'A' (same as SOE + SOC)
168  const char *_register_save_policy;
169  const char *_c_reg_save_policy;
170  // Convert a machine register to a machine register type, so-as to
171  // properly match spill code.
172  const int *_register_save_type;
173  // Maps from machine register to boolean; true if machine register can
174  // be holding a call argument in some signature.
175  static bool can_be_java_arg( int reg );
176  // Maps from machine register to boolean; true if machine register holds
177  // a spillable argument.
178  static bool is_spillable_arg( int reg );
179
180  // List of IfFalse or IfTrue Nodes that indicate a taken null test.
181  // List is valid in the post-matching space.
182  Node_List _null_check_tests;
183  void collect_null_checks( Node *proj, Node *orig_proj );
184  void validate_null_checks( );
185
186  Matcher( Node_List &proj_list );
187
188  // Select instructions for entire method
189  void  match( );
190  // Helper for match
191  OptoReg::Name warp_incoming_stk_arg( VMReg reg );
192
193  // Transform, then walk.  Does implicit DCE while walking.
194  // Name changed from "transform" to avoid it being virtual.
195  Node *xform( Node *old_space_node, int Nodes );
196
197  // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
198  MachNode *match_tree( const Node *n );
199  MachNode *match_sfpt( SafePointNode *sfpt );
200  // Helper for match_sfpt
201  OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
202
203  // Initialize first stack mask and related masks.
204  void init_first_stack_mask();
205
206  // If we should save-on-entry this register
207  bool is_save_on_entry( int reg );
208
209  // Fixup the save-on-entry registers
210  void Fixup_Save_On_Entry( );
211
212  // --- Frame handling ---
213
214  // Register number of the stack slot corresponding to the incoming SP.
215  // Per the Big Picture in the AD file, it is:
216  //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
217  OptoReg::Name _old_SP;
218
219  // Register number of the stack slot corresponding to the highest incoming
220  // argument on the stack.  Per the Big Picture in the AD file, it is:
221  //   _old_SP + out_preserve_stack_slots + incoming argument size.
222  OptoReg::Name _in_arg_limit;
223
224  // Register number of the stack slot corresponding to the new SP.
225  // Per the Big Picture in the AD file, it is:
226  //   _in_arg_limit + pad0
227  OptoReg::Name _new_SP;
228
229  // Register number of the stack slot corresponding to the highest outgoing
230  // argument on the stack.  Per the Big Picture in the AD file, it is:
231  //   _new_SP + max outgoing arguments of all calls
232  OptoReg::Name _out_arg_limit;
233
234  OptoRegPair *_parm_regs;        // Array of machine registers per argument
235  RegMask *_calling_convention_mask; // Array of RegMasks per argument
236
237  // Does matcher have a match rule for this ideal node?
238  static const bool has_match_rule(int opcode);
239  static const bool _hasMatchRule[_last_opcode];
240
241  // Does matcher have a match rule for this ideal node and is the
242  // predicate (if there is one) true?
243  // NOTE: If this function is used more commonly in the future, ADLC
244  // should generate this one.
245  static const bool match_rule_supported(int opcode);
246
247  // Used to determine if we have fast l2f conversion
248  // USII has it, USIII doesn't
249  static const bool convL2FSupported(void);
250
251  // Vector width in bytes
252  static const int vector_width_in_bytes(BasicType bt);
253
254  // Limits on vector size (number of elements).
255  static const int max_vector_size(const BasicType bt);
256  static const int min_vector_size(const BasicType bt);
257  static const bool vector_size_supported(const BasicType bt, int size) {
258    return (Matcher::max_vector_size(bt) >= size &&
259            Matcher::min_vector_size(bt) <= size);
260  }
261
262  // Vector ideal reg
263  static const int vector_ideal_reg(int len);
264
265  // CPU supports misaligned vectors store/load.
266  static const bool misaligned_vectors_ok();
267
268  // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
269  // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
270  // Depends on the details of 64-bit constant generation on the CPU.
271  static const bool isSimpleConstant64(jlong con);
272
273  // These calls are all generated by the ADLC
274
275  // TRUE - grows up, FALSE - grows down (Intel)
276  virtual bool stack_direction() const;
277
278  // Java-Java calling convention
279  // (what you use when Java calls Java)
280
281  // Alignment of stack in bytes, standard Intel word alignment is 4.
282  // Sparc probably wants at least double-word (8).
283  static uint stack_alignment_in_bytes();
284  // Alignment of stack, measured in stack slots.
285  // The size of stack slots is defined by VMRegImpl::stack_slot_size.
286  static uint stack_alignment_in_slots() {
287    return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
288  }
289
290  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
291  // pointer.  Registers can include stack-slots and regular registers.
292  static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
293
294  // Convert a sig into a calling convention register layout
295  // and find interesting things about it.
296  static OptoReg::Name  find_receiver( bool is_outgoing );
297  // Return address register.  On Intel it is a stack-slot.  On PowerPC
298  // it is the Link register.  On Sparc it is r31?
299  virtual OptoReg::Name return_addr() const;
300  RegMask              _return_addr_mask;
301  // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
302  static OptoRegPair   return_value(int ideal_reg, bool is_outgoing);
303  static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
304  RegMask                     _return_value_mask;
305  // Inline Cache Register
306  static OptoReg::Name  inline_cache_reg();
307  static int            inline_cache_reg_encode();
308
309  // Register for DIVI projection of divmodI
310  static RegMask divI_proj_mask();
311  // Register for MODI projection of divmodI
312  static RegMask modI_proj_mask();
313
314  // Register for DIVL projection of divmodL
315  static RegMask divL_proj_mask();
316  // Register for MODL projection of divmodL
317  static RegMask modL_proj_mask();
318
319  // Use hardware DIV instruction when it is faster than
320  // a code which use multiply for division by constant.
321  static bool use_asm_for_ldiv_by_con( jlong divisor );
322
323  static const RegMask method_handle_invoke_SP_save_mask();
324
325  // Java-Interpreter calling convention
326  // (what you use when calling between compiled-Java and Interpreted-Java
327
328  // Number of callee-save + always-save registers
329  // Ignores frame pointer and "special" registers
330  static int  number_of_saved_registers();
331
332  // The Method-klass-holder may be passed in the inline_cache_reg
333  // and then expanded into the inline_cache_reg and a method_oop register
334
335  static OptoReg::Name  interpreter_method_oop_reg();
336  static int            interpreter_method_oop_reg_encode();
337
338  static OptoReg::Name  compiler_method_oop_reg();
339  static const RegMask &compiler_method_oop_reg_mask();
340  static int            compiler_method_oop_reg_encode();
341
342  // Interpreter's Frame Pointer Register
343  static OptoReg::Name  interpreter_frame_pointer_reg();
344
345  // Java-Native calling convention
346  // (what you use when intercalling between Java and C++ code)
347
348  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
349  // pointer.  Registers can include stack-slots and regular registers.
350  static void c_calling_convention( BasicType*, VMRegPair *, uint );
351  // Frame pointer. The frame pointer is kept at the base of the stack
352  // and so is probably the stack pointer for most machines.  On Intel
353  // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
354  OptoReg::Name  c_frame_pointer() const;
355  static RegMask c_frame_ptr_mask;
356
357  // !!!!! Special stuff for building ScopeDescs
358  virtual int      regnum_to_fpu_offset(int regnum);
359
360  // Is this branch offset small enough to be addressed by a short branch?
361  bool is_short_branch_offset(int rule, int br_size, int offset);
362
363  // Optional scaling for the parameter to the ClearArray/CopyArray node.
364  static const bool init_array_count_is_in_bytes;
365
366  // Threshold small size (in bytes) for a ClearArray/CopyArray node.
367  // Anything this size or smaller may get converted to discrete scalar stores.
368  static const int init_array_short_size;
369
370  // Some hardware needs 2 CMOV's for longs.
371  static const int long_cmove_cost();
372
373  // Some hardware have expensive CMOV for float and double.
374  static const int float_cmove_cost();
375
376  // Should the Matcher clone shifts on addressing modes, expecting them to
377  // be subsumed into complex addressing expressions or compute them into
378  // registers?  True for Intel but false for most RISCs
379  static const bool clone_shift_expressions;
380
381  static bool narrow_oop_use_complex_address();
382
383  // Generate implicit null check for narrow oops if it can fold
384  // into address expression (x64).
385  //
386  // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
387  // NullCheck narrow_oop_reg
388  //
389  // When narrow oops can't fold into address expression (Sparc) and
390  // base is not null use decode_not_null and normal implicit null check.
391  // Note, decode_not_null node can be used here since it is referenced
392  // only on non null path but it requires special handling, see
393  // collect_null_checks():
394  //
395  // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
396  // [oop_reg + offset]
397  // NullCheck oop_reg
398  //
399  // With Zero base and when narrow oops can not fold into address
400  // expression use normal implicit null check since only shift
401  // is needed to decode narrow oop.
402  //
403  // decode narrow_oop_reg, oop_reg // only 'shift'
404  // [oop_reg + offset]
405  // NullCheck oop_reg
406  //
407  inline static bool gen_narrow_oop_implicit_null_checks() {
408    return Universe::narrow_oop_use_implicit_null_checks() &&
409           (narrow_oop_use_complex_address() ||
410            Universe::narrow_oop_base() != NULL);
411  }
412
413  // Is it better to copy float constants, or load them directly from memory?
414  // Intel can load a float constant from a direct address, requiring no
415  // extra registers.  Most RISCs will have to materialize an address into a
416  // register first, so they may as well materialize the constant immediately.
417  static const bool rematerialize_float_constants;
418
419  // If CPU can load and store mis-aligned doubles directly then no fixup is
420  // needed.  Else we split the double into 2 integer pieces and move it
421  // piece-by-piece.  Only happens when passing doubles into C code or when
422  // calling i2c adapters as the Java calling convention forces doubles to be
423  // aligned.
424  static const bool misaligned_doubles_ok;
425
426  // Perform a platform dependent implicit null fixup.  This is needed
427  // on windows95 to take care of some unusual register constraints.
428  void pd_implicit_null_fixup(MachNode *load, uint idx);
429
430  // Advertise here if the CPU requires explicit rounding operations
431  // to implement the UseStrictFP mode.
432  static const bool strict_fp_requires_explicit_rounding;
433
434  // Are floats conerted to double when stored to stack during deoptimization?
435  static bool float_in_double();
436  // Do ints take an entire long register or just half?
437  static const bool int_in_long;
438
439  // Do the processor's shift instructions only use the low 5/6 bits
440  // of the count for 32/64 bit ints? If not we need to do the masking
441  // ourselves.
442  static const bool need_masked_shift_count;
443
444  // This routine is run whenever a graph fails to match.
445  // If it returns, the compiler should bailout to interpreter without error.
446  // In non-product mode, SoftMatchFailure is false to detect non-canonical
447  // graphs.  Print a message and exit.
448  static void soft_match_failure() {
449    if( SoftMatchFailure ) return;
450    else { fatal("SoftMatchFailure is not allowed except in product"); }
451  }
452
453  // Check for a following volatile memory barrier without an
454  // intervening load and thus we don't need a barrier here.  We
455  // retain the Node to act as a compiler ordering barrier.
456  static bool post_store_load_barrier(const Node* mb);
457
458
459#ifdef ASSERT
460  void dump_old2new_map();      // machine-independent to machine-dependent
461
462  Node* find_old_node(Node* new_node) {
463    return _new2old_map[new_node->_idx];
464  }
465#endif
466};
467
468#endif // SHARE_VM_OPTO_MATCHER_HPP
469