1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_MATCHER_HPP
26#define SHARE_VM_OPTO_MATCHER_HPP
27
28#include "libadt/vectset.hpp"
29#include "memory/resourceArea.hpp"
30#include "opto/node.hpp"
31#include "opto/phaseX.hpp"
32#include "opto/regmask.hpp"
33
34class Compile;
35class Node;
36class MachNode;
37class MachTypeNode;
38class MachOper;
39
40//---------------------------Matcher-------------------------------------------
41class Matcher : public PhaseTransform {
42  friend class VMStructs;
43
44public:
45
46  // State and MStack class used in xform() and find_shared() iterative methods.
47  enum Node_State { Pre_Visit,  // node has to be pre-visited
48                    Visit,  // visit node
49                    Post_Visit,  // post-visit node
50                    Alt_Post_Visit   // alternative post-visit path
51  };
52
53  class MStack: public Node_Stack {
54  public:
55    MStack(int size) : Node_Stack(size) { }
56
57    void push(Node *n, Node_State ns) {
58      Node_Stack::push(n, (uint)ns);
59    }
60    void push(Node *n, Node_State ns, Node *parent, int indx) {
61      ++_inode_top;
62      if ((_inode_top + 1) >= _inode_max) grow();
63      _inode_top->node = parent;
64      _inode_top->indx = (uint)indx;
65      ++_inode_top;
66      _inode_top->node = n;
67      _inode_top->indx = (uint)ns;
68    }
69    Node *parent() {
70      pop();
71      return node();
72    }
73    Node_State state() const {
74      return (Node_State)index();
75    }
76    void set_state(Node_State ns) {
77      set_index((uint)ns);
78    }
79  };
80
81private:
82  // Private arena of State objects
83  ResourceArea _states_arena;
84
85  VectorSet   _visited;         // Visit bits
86
87  // Used to control the Label pass
88  VectorSet   _shared;          // Shared Ideal Node
89  VectorSet   _dontcare;        // Nothing the matcher cares about
90
91  // Private methods which perform the actual matching and reduction
92  // Walks the label tree, generating machine nodes
93  MachNode *ReduceInst( State *s, int rule, Node *&mem);
94  void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
95  uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
96  void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
97
98  // If this node already matched using "rule", return the MachNode for it.
99  MachNode* find_shared_node(Node* n, uint rule);
100
101  // Convert a dense opcode number to an expanded rule number
102  const int *_reduceOp;
103  const int *_leftOp;
104  const int *_rightOp;
105
106  // Map dense opcode number to info on when rule is swallowed constant.
107  const bool *_swallowed;
108
109  // Map dense rule number to determine if this is an instruction chain rule
110  const uint _begin_inst_chain_rule;
111  const uint _end_inst_chain_rule;
112
113  // We want to clone constants and possible CmpI-variants.
114  // If we do not clone CmpI, then we can have many instances of
115  // condition codes alive at once.  This is OK on some chips and
116  // bad on others.  Hence the machine-dependent table lookup.
117  const char *_must_clone;
118
119  // Find shared Nodes, or Nodes that otherwise are Matcher roots
120  void find_shared( Node *n );
121#ifdef X86
122  bool is_bmi_pattern(Node *n, Node *m);
123#endif
124
125  // Debug and profile information for nodes in old space:
126  GrowableArray<Node_Notes*>* _old_node_note_array;
127
128  // Node labeling iterator for instruction selection
129  Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
130
131  Node *transform( Node *dummy );
132
133  Node_List _projection_list;        // For Machine nodes killing many values
134
135  Node_Array _shared_nodes;
136
137  debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
138  debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
139
140  // Accessors for the inherited field PhaseTransform::_nodes:
141  void   grow_new_node_array(uint idx_limit) {
142    _nodes.map(idx_limit-1, NULL);
143  }
144  bool    has_new_node(const Node* n) const {
145    return _nodes.at(n->_idx) != NULL;
146  }
147  Node*       new_node(const Node* n) const {
148    assert(has_new_node(n), "set before get");
149    return _nodes.at(n->_idx);
150  }
151  void    set_new_node(const Node* n, Node *nn) {
152    assert(!has_new_node(n), "set only once");
153    _nodes.map(n->_idx, nn);
154  }
155
156#ifdef ASSERT
157  // Make sure only new nodes are reachable from this node
158  void verify_new_nodes_only(Node* root);
159
160  Node* _mem_node;   // Ideal memory node consumed by mach node
161#endif
162
163  // Mach node for ConP #NULL
164  MachNode* _mach_null;
165
166  void handle_precedence_edges(Node* n, MachNode *mach);
167
168public:
169  int LabelRootDepth;
170  // Convert ideal machine register to a register mask for spill-loads
171  static const RegMask *idealreg2regmask[];
172  RegMask *idealreg2spillmask  [_last_machine_leaf];
173  RegMask *idealreg2debugmask  [_last_machine_leaf];
174  RegMask *idealreg2mhdebugmask[_last_machine_leaf];
175  void init_spill_mask( Node *ret );
176  // Convert machine register number to register mask
177  static uint mreg2regmask_max;
178  static RegMask mreg2regmask[];
179  static RegMask STACK_ONLY_mask;
180
181  MachNode* mach_null() const { return _mach_null; }
182
183  bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
184  void   set_shared( Node *n ) {  _shared.set(n->_idx); }
185  bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
186  void  set_visited( Node *n ) { _visited.set(n->_idx); }
187  bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
188  void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
189
190  // Mode bit to tell DFA and expand rules whether we are running after
191  // (or during) register selection.  Usually, the matcher runs before,
192  // but it will also get called to generate post-allocation spill code.
193  // In this situation, it is a deadly error to attempt to allocate more
194  // temporary registers.
195  bool _allocation_started;
196
197  // Machine register names
198  static const char *regName[];
199  // Machine register encodings
200  static const unsigned char _regEncode[];
201  // Machine Node names
202  const char **_ruleName;
203  // Rules that are cheaper to rematerialize than to spill
204  static const uint _begin_rematerialize;
205  static const uint _end_rematerialize;
206
207  // An array of chars, from 0 to _last_Mach_Reg.
208  // No Save       = 'N' (for register windows)
209  // Save on Entry = 'E'
210  // Save on Call  = 'C'
211  // Always Save   = 'A' (same as SOE + SOC)
212  const char *_register_save_policy;
213  const char *_c_reg_save_policy;
214  // Convert a machine register to a machine register type, so-as to
215  // properly match spill code.
216  const int *_register_save_type;
217  // Maps from machine register to boolean; true if machine register can
218  // be holding a call argument in some signature.
219  static bool can_be_java_arg( int reg );
220  // Maps from machine register to boolean; true if machine register holds
221  // a spillable argument.
222  static bool is_spillable_arg( int reg );
223
224  // List of IfFalse or IfTrue Nodes that indicate a taken null test.
225  // List is valid in the post-matching space.
226  Node_List _null_check_tests;
227  void collect_null_checks( Node *proj, Node *orig_proj );
228  void validate_null_checks( );
229
230  Matcher();
231
232  // Get a projection node at position pos
233  Node* get_projection(uint pos) {
234    return _projection_list[pos];
235  }
236
237  // Push a projection node onto the projection list
238  void push_projection(Node* node) {
239    _projection_list.push(node);
240  }
241
242  Node* pop_projection() {
243    return _projection_list.pop();
244  }
245
246  // Number of nodes in the projection list
247  uint number_of_projections() const {
248    return _projection_list.size();
249  }
250
251  // Select instructions for entire method
252  void match();
253
254  // Helper for match
255  OptoReg::Name warp_incoming_stk_arg( VMReg reg );
256
257  // Transform, then walk.  Does implicit DCE while walking.
258  // Name changed from "transform" to avoid it being virtual.
259  Node *xform( Node *old_space_node, int Nodes );
260
261  // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
262  MachNode *match_tree( const Node *n );
263  MachNode *match_sfpt( SafePointNode *sfpt );
264  // Helper for match_sfpt
265  OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
266
267  // Initialize first stack mask and related masks.
268  void init_first_stack_mask();
269
270  // If we should save-on-entry this register
271  bool is_save_on_entry( int reg );
272
273  // Fixup the save-on-entry registers
274  void Fixup_Save_On_Entry( );
275
276  // --- Frame handling ---
277
278  // Register number of the stack slot corresponding to the incoming SP.
279  // Per the Big Picture in the AD file, it is:
280  //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
281  OptoReg::Name _old_SP;
282
283  // Register number of the stack slot corresponding to the highest incoming
284  // argument on the stack.  Per the Big Picture in the AD file, it is:
285  //   _old_SP + out_preserve_stack_slots + incoming argument size.
286  OptoReg::Name _in_arg_limit;
287
288  // Register number of the stack slot corresponding to the new SP.
289  // Per the Big Picture in the AD file, it is:
290  //   _in_arg_limit + pad0
291  OptoReg::Name _new_SP;
292
293  // Register number of the stack slot corresponding to the highest outgoing
294  // argument on the stack.  Per the Big Picture in the AD file, it is:
295  //   _new_SP + max outgoing arguments of all calls
296  OptoReg::Name _out_arg_limit;
297
298  OptoRegPair *_parm_regs;        // Array of machine registers per argument
299  RegMask *_calling_convention_mask; // Array of RegMasks per argument
300
301  // Does matcher have a match rule for this ideal node?
302  static const bool has_match_rule(int opcode);
303  static const bool _hasMatchRule[_last_opcode];
304
305  // Does matcher have a match rule for this ideal node and is the
306  // predicate (if there is one) true?
307  // NOTE: If this function is used more commonly in the future, ADLC
308  // should generate this one.
309  static const bool match_rule_supported(int opcode);
310
311  // identify extra cases that we might want to provide match rules for
312  // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
313  static const bool match_rule_supported_vector(int opcode, int vlen);
314
315  // Some microarchitectures have mask registers used on vectors
316  static const bool has_predicated_vectors(void);
317
318  // Some uarchs have different sized float register resources
319  static const int float_pressure(int default_pressure_threshold);
320
321  // Used to determine if we have fast l2f conversion
322  // USII has it, USIII doesn't
323  static const bool convL2FSupported(void);
324
325  // Vector width in bytes
326  static const int vector_width_in_bytes(BasicType bt);
327
328  // Limits on vector size (number of elements).
329  static const int max_vector_size(const BasicType bt);
330  static const int min_vector_size(const BasicType bt);
331  static const bool vector_size_supported(const BasicType bt, int size) {
332    return (Matcher::max_vector_size(bt) >= size &&
333            Matcher::min_vector_size(bt) <= size);
334  }
335
336  // Vector ideal reg
337  static const uint vector_ideal_reg(int len);
338  static const uint vector_shift_count_ideal_reg(int len);
339
340  // CPU supports misaligned vectors store/load.
341  static const bool misaligned_vectors_ok();
342
343  // Should original key array reference be passed to AES stubs
344  static const bool pass_original_key_for_aes();
345
346  // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
347  // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
348  // Depends on the details of 64-bit constant generation on the CPU.
349  static const bool isSimpleConstant64(jlong con);
350
351  // These calls are all generated by the ADLC
352
353  // TRUE - grows up, FALSE - grows down (Intel)
354  virtual bool stack_direction() const;
355
356  // Java-Java calling convention
357  // (what you use when Java calls Java)
358
359  // Alignment of stack in bytes, standard Intel word alignment is 4.
360  // Sparc probably wants at least double-word (8).
361  static uint stack_alignment_in_bytes();
362  // Alignment of stack, measured in stack slots.
363  // The size of stack slots is defined by VMRegImpl::stack_slot_size.
364  static uint stack_alignment_in_slots() {
365    return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
366  }
367
368  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
369  // pointer.  Registers can include stack-slots and regular registers.
370  static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
371
372  // Convert a sig into a calling convention register layout
373  // and find interesting things about it.
374  static OptoReg::Name  find_receiver( bool is_outgoing );
375  // Return address register.  On Intel it is a stack-slot.  On PowerPC
376  // it is the Link register.  On Sparc it is r31?
377  virtual OptoReg::Name return_addr() const;
378  RegMask              _return_addr_mask;
379  // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
380  static OptoRegPair   return_value(uint ideal_reg, bool is_outgoing);
381  static OptoRegPair c_return_value(uint ideal_reg, bool is_outgoing);
382  RegMask                     _return_value_mask;
383  // Inline Cache Register
384  static OptoReg::Name  inline_cache_reg();
385  static int            inline_cache_reg_encode();
386
387  // Register for DIVI projection of divmodI
388  static RegMask divI_proj_mask();
389  // Register for MODI projection of divmodI
390  static RegMask modI_proj_mask();
391
392  // Register for DIVL projection of divmodL
393  static RegMask divL_proj_mask();
394  // Register for MODL projection of divmodL
395  static RegMask modL_proj_mask();
396
397  // Use hardware DIV instruction when it is faster than
398  // a code which use multiply for division by constant.
399  static bool use_asm_for_ldiv_by_con( jlong divisor );
400
401  static const RegMask method_handle_invoke_SP_save_mask();
402
403  // Java-Interpreter calling convention
404  // (what you use when calling between compiled-Java and Interpreted-Java
405
406  // Number of callee-save + always-save registers
407  // Ignores frame pointer and "special" registers
408  static int  number_of_saved_registers();
409
410  // The Method-klass-holder may be passed in the inline_cache_reg
411  // and then expanded into the inline_cache_reg and a method_oop register
412
413  static OptoReg::Name  interpreter_method_oop_reg();
414  static int            interpreter_method_oop_reg_encode();
415
416  static OptoReg::Name  compiler_method_oop_reg();
417  static const RegMask &compiler_method_oop_reg_mask();
418  static int            compiler_method_oop_reg_encode();
419
420  // Interpreter's Frame Pointer Register
421  static OptoReg::Name  interpreter_frame_pointer_reg();
422
423  // Java-Native calling convention
424  // (what you use when intercalling between Java and C++ code)
425
426  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
427  // pointer.  Registers can include stack-slots and regular registers.
428  static void c_calling_convention( BasicType*, VMRegPair *, uint );
429  // Frame pointer. The frame pointer is kept at the base of the stack
430  // and so is probably the stack pointer for most machines.  On Intel
431  // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
432  OptoReg::Name  c_frame_pointer() const;
433  static RegMask c_frame_ptr_mask;
434
435  // !!!!! Special stuff for building ScopeDescs
436  virtual int      regnum_to_fpu_offset(int regnum);
437
438  // Is this branch offset small enough to be addressed by a short branch?
439  bool is_short_branch_offset(int rule, int br_size, int offset);
440
441  // Optional scaling for the parameter to the ClearArray/CopyArray node.
442  static const bool init_array_count_is_in_bytes;
443
444  // Some hardware needs 2 CMOV's for longs.
445  static const int long_cmove_cost();
446
447  // Some hardware have expensive CMOV for float and double.
448  static const int float_cmove_cost();
449
450  // Should the Matcher clone shifts on addressing modes, expecting them to
451  // be subsumed into complex addressing expressions or compute them into
452  // registers?  True for Intel but false for most RISCs
453  bool clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
454  // Clone base + offset address expression
455  bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
456
457  static bool narrow_oop_use_complex_address();
458  static bool narrow_klass_use_complex_address();
459
460  static bool const_oop_prefer_decode();
461  static bool const_klass_prefer_decode();
462
463  // Generate implicit null check for narrow oops if it can fold
464  // into address expression (x64).
465  //
466  // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
467  // NullCheck narrow_oop_reg
468  //
469  // When narrow oops can't fold into address expression (Sparc) and
470  // base is not null use decode_not_null and normal implicit null check.
471  // Note, decode_not_null node can be used here since it is referenced
472  // only on non null path but it requires special handling, see
473  // collect_null_checks():
474  //
475  // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
476  // [oop_reg + offset]
477  // NullCheck oop_reg
478  //
479  // With Zero base and when narrow oops can not fold into address
480  // expression use normal implicit null check since only shift
481  // is needed to decode narrow oop.
482  //
483  // decode narrow_oop_reg, oop_reg // only 'shift'
484  // [oop_reg + offset]
485  // NullCheck oop_reg
486  //
487  inline static bool gen_narrow_oop_implicit_null_checks() {
488    // Advice matcher to perform null checks on the narrow oop side.
489    // Implicit checks are not possible on the uncompressed oop side anyway
490    // (at least not for read accesses).
491    // Performs significantly better (especially on Power 6).
492    if (!os::zero_page_read_protected()) {
493      return true;
494    }
495    return Universe::narrow_oop_use_implicit_null_checks() &&
496           (narrow_oop_use_complex_address() ||
497            Universe::narrow_oop_base() != NULL);
498  }
499
500  // Is it better to copy float constants, or load them directly from memory?
501  // Intel can load a float constant from a direct address, requiring no
502  // extra registers.  Most RISCs will have to materialize an address into a
503  // register first, so they may as well materialize the constant immediately.
504  static const bool rematerialize_float_constants;
505
506  // If CPU can load and store mis-aligned doubles directly then no fixup is
507  // needed.  Else we split the double into 2 integer pieces and move it
508  // piece-by-piece.  Only happens when passing doubles into C code or when
509  // calling i2c adapters as the Java calling convention forces doubles to be
510  // aligned.
511  static const bool misaligned_doubles_ok;
512
513  // Does the CPU require postalloc expand (see block.cpp for description of
514  // postalloc expand)?
515  static const bool require_postalloc_expand;
516
517  // Perform a platform dependent implicit null fixup.  This is needed
518  // on windows95 to take care of some unusual register constraints.
519  void pd_implicit_null_fixup(MachNode *load, uint idx);
520
521  // Advertise here if the CPU requires explicit rounding operations
522  // to implement the UseStrictFP mode.
523  static const bool strict_fp_requires_explicit_rounding;
524
525  // Are floats conerted to double when stored to stack during deoptimization?
526  static bool float_in_double();
527  // Do ints take an entire long register or just half?
528  static const bool int_in_long;
529
530  // Do the processor's shift instructions only use the low 5/6 bits
531  // of the count for 32/64 bit ints? If not we need to do the masking
532  // ourselves.
533  static const bool need_masked_shift_count;
534
535  // Whether code generation need accurate ConvI2L types.
536  static const bool convi2l_type_required;
537
538  // This routine is run whenever a graph fails to match.
539  // If it returns, the compiler should bailout to interpreter without error.
540  // In non-product mode, SoftMatchFailure is false to detect non-canonical
541  // graphs.  Print a message and exit.
542  static void soft_match_failure() {
543    if( SoftMatchFailure ) return;
544    else { fatal("SoftMatchFailure is not allowed except in product"); }
545  }
546
547  // Check for a following volatile memory barrier without an
548  // intervening load and thus we don't need a barrier here.  We
549  // retain the Node to act as a compiler ordering barrier.
550  static bool post_store_load_barrier(const Node* mb);
551
552  // Does n lead to an uncommon trap that can cause deoptimization?
553  static bool branches_to_uncommon_trap(const Node *n);
554
555#ifdef ASSERT
556  void dump_old2new_map();      // machine-independent to machine-dependent
557
558  Node* find_old_node(Node* new_node) {
559    return _new2old_map[new_node->_idx];
560  }
561#endif
562};
563
564#endif // SHARE_VM_OPTO_MATCHER_HPP
565