matcher.hpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25class Compile;
26class Node;
27class MachNode;
28class MachTypeNode;
29class MachOper;
30
31//---------------------------Matcher-------------------------------------------
32class Matcher : public PhaseTransform {
33  friend class VMStructs;
34  // Private arena of State objects
35  ResourceArea _states_arena;
36
37  VectorSet   _visited;         // Visit bits
38
39  // Used to control the Label pass
40  VectorSet   _shared;          // Shared Ideal Node
41  VectorSet   _dontcare;        // Nothing the matcher cares about
42
43  // Private methods which perform the actual matching and reduction
44  // Walks the label tree, generating machine nodes
45  MachNode *ReduceInst( State *s, int rule, Node *&mem);
46  void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
47  uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
48  void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
49
50  // If this node already matched using "rule", return the MachNode for it.
51  MachNode* find_shared_node(Node* n, uint rule);
52
53  // Convert a dense opcode number to an expanded rule number
54  const int *_reduceOp;
55  const int *_leftOp;
56  const int *_rightOp;
57
58  // Map dense opcode number to info on when rule is swallowed constant.
59  const bool *_swallowed;
60
61  // Map dense rule number to determine if this is an instruction chain rule
62  const uint _begin_inst_chain_rule;
63  const uint _end_inst_chain_rule;
64
65  // We want to clone constants and possible CmpI-variants.
66  // If we do not clone CmpI, then we can have many instances of
67  // condition codes alive at once.  This is OK on some chips and
68  // bad on others.  Hence the machine-dependent table lookup.
69  const char *_must_clone;
70
71  // Find shared Nodes, or Nodes that otherwise are Matcher roots
72  void find_shared( Node *n );
73
74  // Debug and profile information for nodes in old space:
75  GrowableArray<Node_Notes*>* _old_node_note_array;
76
77  // Node labeling iterator for instruction selection
78  Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
79
80  Node *transform( Node *dummy );
81
82  Node_List &_proj_list;        // For Machine nodes killing many values
83
84  Node_Array _shared_nodes;
85
86  debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
87
88  // Accessors for the inherited field PhaseTransform::_nodes:
89  void   grow_new_node_array(uint idx_limit) {
90    _nodes.map(idx_limit-1, NULL);
91  }
92  bool    has_new_node(const Node* n) const {
93    return _nodes.at(n->_idx) != NULL;
94  }
95  Node*       new_node(const Node* n) const {
96    assert(has_new_node(n), "set before get");
97    return _nodes.at(n->_idx);
98  }
99  void    set_new_node(const Node* n, Node *nn) {
100    assert(!has_new_node(n), "set only once");
101    _nodes.map(n->_idx, nn);
102  }
103
104#ifdef ASSERT
105  // Make sure only new nodes are reachable from this node
106  void verify_new_nodes_only(Node* root);
107#endif
108
109public:
110  int LabelRootDepth;
111  static const int base2reg[];        // Map Types to machine register types
112  // Convert ideal machine register to a register mask for spill-loads
113  static const RegMask *idealreg2regmask[];
114  RegMask *idealreg2spillmask[_last_machine_leaf];
115  RegMask *idealreg2debugmask[_last_machine_leaf];
116  void init_spill_mask( Node *ret );
117  // Convert machine register number to register mask
118  static uint mreg2regmask_max;
119  static RegMask mreg2regmask[];
120  static RegMask STACK_ONLY_mask;
121
122  bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
123  void   set_shared( Node *n ) {  _shared.set(n->_idx); }
124  bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
125  void  set_visited( Node *n ) { _visited.set(n->_idx); }
126  bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
127  void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
128
129  // Mode bit to tell DFA and expand rules whether we are running after
130  // (or during) register selection.  Usually, the matcher runs before,
131  // but it will also get called to generate post-allocation spill code.
132  // In this situation, it is a deadly error to attempt to allocate more
133  // temporary registers.
134  bool _allocation_started;
135
136  // Machine register names
137  static const char *regName[];
138  // Machine register encodings
139  static const unsigned char _regEncode[];
140  // Machine Node names
141  const char **_ruleName;
142  // Rules that are cheaper to rematerialize than to spill
143  static const uint _begin_rematerialize;
144  static const uint _end_rematerialize;
145
146  // An array of chars, from 0 to _last_Mach_Reg.
147  // No Save       = 'N' (for register windows)
148  // Save on Entry = 'E'
149  // Save on Call  = 'C'
150  // Always Save   = 'A' (same as SOE + SOC)
151  const char *_register_save_policy;
152  const char *_c_reg_save_policy;
153  // Convert a machine register to a machine register type, so-as to
154  // properly match spill code.
155  const int *_register_save_type;
156  // Maps from machine register to boolean; true if machine register can
157  // be holding a call argument in some signature.
158  static bool can_be_java_arg( int reg );
159  // Maps from machine register to boolean; true if machine register holds
160  // a spillable argument.
161  static bool is_spillable_arg( int reg );
162
163  // List of IfFalse or IfTrue Nodes that indicate a taken null test.
164  // List is valid in the post-matching space.
165  Node_List _null_check_tests;
166  void collect_null_checks( Node *proj );
167  void validate_null_checks( );
168
169  Matcher( Node_List &proj_list );
170
171  // Select instructions for entire method
172  void  match( );
173  // Helper for match
174  OptoReg::Name warp_incoming_stk_arg( VMReg reg );
175
176  // Transform, then walk.  Does implicit DCE while walking.
177  // Name changed from "transform" to avoid it being virtual.
178  Node *xform( Node *old_space_node, int Nodes );
179
180  // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
181  MachNode *match_tree( const Node *n );
182  MachNode *match_sfpt( SafePointNode *sfpt );
183  // Helper for match_sfpt
184  OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
185
186  // Initialize first stack mask and related masks.
187  void init_first_stack_mask();
188
189  // If we should save-on-entry this register
190  bool is_save_on_entry( int reg );
191
192  // Fixup the save-on-entry registers
193  void Fixup_Save_On_Entry( );
194
195  // --- Frame handling ---
196
197  // Register number of the stack slot corresponding to the incoming SP.
198  // Per the Big Picture in the AD file, it is:
199  //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
200  OptoReg::Name _old_SP;
201
202  // Register number of the stack slot corresponding to the highest incoming
203  // argument on the stack.  Per the Big Picture in the AD file, it is:
204  //   _old_SP + out_preserve_stack_slots + incoming argument size.
205  OptoReg::Name _in_arg_limit;
206
207  // Register number of the stack slot corresponding to the new SP.
208  // Per the Big Picture in the AD file, it is:
209  //   _in_arg_limit + pad0
210  OptoReg::Name _new_SP;
211
212  // Register number of the stack slot corresponding to the highest outgoing
213  // argument on the stack.  Per the Big Picture in the AD file, it is:
214  //   _new_SP + max outgoing arguments of all calls
215  OptoReg::Name _out_arg_limit;
216
217  OptoRegPair *_parm_regs;        // Array of machine registers per argument
218  RegMask *_calling_convention_mask; // Array of RegMasks per argument
219
220  // Does matcher support this ideal node?
221  static const bool has_match_rule(int opcode);
222  static const bool _hasMatchRule[_last_opcode];
223
224  // Used to determine if we have fast l2f conversion
225  // USII has it, USIII doesn't
226  static const bool convL2FSupported(void);
227
228  // Vector width in bytes
229  static const uint vector_width_in_bytes(void);
230
231  // Vector ideal reg
232  static const uint vector_ideal_reg(void);
233
234  // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
235  // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
236  // Depends on the details of 64-bit constant generation on the CPU.
237  static const bool isSimpleConstant64(jlong con);
238
239  // These calls are all generated by the ADLC
240
241  // TRUE - grows up, FALSE - grows down (Intel)
242  virtual bool stack_direction() const;
243
244  // Java-Java calling convention
245  // (what you use when Java calls Java)
246
247  // Alignment of stack in bytes, standard Intel word alignment is 4.
248  // Sparc probably wants at least double-word (8).
249  static uint stack_alignment_in_bytes();
250  // Alignment of stack, measured in stack slots.
251  // The size of stack slots is defined by VMRegImpl::stack_slot_size.
252  static uint stack_alignment_in_slots() {
253    return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
254  }
255
256  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
257  // pointer.  Registers can include stack-slots and regular registers.
258  static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
259
260  // Convert a sig into a calling convention register layout
261  // and find interesting things about it.
262  static OptoReg::Name  find_receiver( bool is_outgoing );
263  // Return address register.  On Intel it is a stack-slot.  On PowerPC
264  // it is the Link register.  On Sparc it is r31?
265  virtual OptoReg::Name return_addr() const;
266  RegMask              _return_addr_mask;
267  // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
268  static OptoRegPair   return_value(int ideal_reg, bool is_outgoing);
269  static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
270  RegMask                     _return_value_mask;
271  // Inline Cache Register
272  static OptoReg::Name  inline_cache_reg();
273  static const RegMask &inline_cache_reg_mask();
274  static int            inline_cache_reg_encode();
275
276  // Register for DIVI projection of divmodI
277  static RegMask divI_proj_mask();
278  // Register for MODI projection of divmodI
279  static RegMask modI_proj_mask();
280
281  // Register for DIVL projection of divmodL
282  static RegMask divL_proj_mask();
283  // Register for MODL projection of divmodL
284  static RegMask modL_proj_mask();
285
286  // Java-Interpreter calling convention
287  // (what you use when calling between compiled-Java and Interpreted-Java
288
289  // Number of callee-save + always-save registers
290  // Ignores frame pointer and "special" registers
291  static int  number_of_saved_registers();
292
293  // The Method-klass-holder may be passed in the inline_cache_reg
294  // and then expanded into the inline_cache_reg and a method_oop register
295
296  static OptoReg::Name  interpreter_method_oop_reg();
297  static const RegMask &interpreter_method_oop_reg_mask();
298  static int            interpreter_method_oop_reg_encode();
299
300  static OptoReg::Name  compiler_method_oop_reg();
301  static const RegMask &compiler_method_oop_reg_mask();
302  static int            compiler_method_oop_reg_encode();
303
304  // Interpreter's Frame Pointer Register
305  static OptoReg::Name  interpreter_frame_pointer_reg();
306  static const RegMask &interpreter_frame_pointer_reg_mask();
307
308  // Java-Native calling convention
309  // (what you use when intercalling between Java and C++ code)
310
311  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
312  // pointer.  Registers can include stack-slots and regular registers.
313  static void c_calling_convention( BasicType*, VMRegPair *, uint );
314  // Frame pointer. The frame pointer is kept at the base of the stack
315  // and so is probably the stack pointer for most machines.  On Intel
316  // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
317  OptoReg::Name  c_frame_pointer() const;
318  static RegMask c_frame_ptr_mask;
319
320  // !!!!! Special stuff for building ScopeDescs
321  virtual int      regnum_to_fpu_offset(int regnum);
322
323  // Is this branch offset small enough to be addressed by a short branch?
324  bool is_short_branch_offset(int offset);
325
326  // Optional scaling for the parameter to the ClearArray/CopyArray node.
327  static const bool init_array_count_is_in_bytes;
328
329  // Threshold small size (in bytes) for a ClearArray/CopyArray node.
330  // Anything this size or smaller may get converted to discrete scalar stores.
331  static const int init_array_short_size;
332
333  // Should the Matcher clone shifts on addressing modes, expecting them to
334  // be subsumed into complex addressing expressions or compute them into
335  // registers?  True for Intel but false for most RISCs
336  static const bool clone_shift_expressions;
337
338  // Is it better to copy float constants, or load them directly from memory?
339  // Intel can load a float constant from a direct address, requiring no
340  // extra registers.  Most RISCs will have to materialize an address into a
341  // register first, so they may as well materialize the constant immediately.
342  static const bool rematerialize_float_constants;
343
344  // If CPU can load and store mis-aligned doubles directly then no fixup is
345  // needed.  Else we split the double into 2 integer pieces and move it
346  // piece-by-piece.  Only happens when passing doubles into C code or when
347  // calling i2c adapters as the Java calling convention forces doubles to be
348  // aligned.
349  static const bool misaligned_doubles_ok;
350
351  // Perform a platform dependent implicit null fixup.  This is needed
352  // on windows95 to take care of some unusual register constraints.
353  void pd_implicit_null_fixup(MachNode *load, uint idx);
354
355  // Advertise here if the CPU requires explicit rounding operations
356  // to implement the UseStrictFP mode.
357  static const bool strict_fp_requires_explicit_rounding;
358
359  // Do floats take an entire double register or just half?
360  static const bool float_in_double;
361  // Do ints take an entire long register or just half?
362  static const bool int_in_long;
363
364  // This routine is run whenever a graph fails to match.
365  // If it returns, the compiler should bailout to interpreter without error.
366  // In non-product mode, SoftMatchFailure is false to detect non-canonical
367  // graphs.  Print a message and exit.
368  static void soft_match_failure() {
369    if( SoftMatchFailure ) return;
370    else { fatal("SoftMatchFailure is not allowed except in product"); }
371  }
372
373  // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
374  // acting as an Acquire and thus we don't need an Acquire here.  We
375  // retain the Node to act as a compiler ordering barrier.
376  static bool prior_fast_lock( const Node *acq );
377
378  // Used by the DFA in dfa_sparc.cpp.  Check for a following
379  // FastUnLock acting as a Release and thus we don't need a Release
380  // here.  We retain the Node to act as a compiler ordering barrier.
381  static bool post_fast_unlock( const Node *rel );
382
383  // Check for a following volatile memory barrier without an
384  // intervening load and thus we don't need a barrier here.  We
385  // retain the Node to act as a compiler ordering barrier.
386  static bool post_store_load_barrier(const Node* mb);
387
388
389#ifdef ASSERT
390  void dump_old2new_map();      // machine-independent to machine-dependent
391#endif
392};
393