matcher.hpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25class Compile;
26class Node;
27class MachNode;
28class MachTypeNode;
29class MachOper;
30
31//---------------------------Matcher-------------------------------------------
32class Matcher : public PhaseTransform {
33  friend class VMStructs;
34  // Private arena of State objects
35  ResourceArea _states_arena;
36
37  VectorSet   _visited;         // Visit bits
38
39  // Used to control the Label pass
40  VectorSet   _shared;          // Shared Ideal Node
41  VectorSet   _dontcare;        // Nothing the matcher cares about
42
43  // Private methods which perform the actual matching and reduction
44  // Walks the label tree, generating machine nodes
45  MachNode *ReduceInst( State *s, int rule, Node *&mem);
46  void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
47  uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
48  void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
49
50  // If this node already matched using "rule", return the MachNode for it.
51  MachNode* find_shared_node(Node* n, uint rule);
52
53  // Convert a dense opcode number to an expanded rule number
54  const int *_reduceOp;
55  const int *_leftOp;
56  const int *_rightOp;
57
58  // Map dense opcode number to info on when rule is swallowed constant.
59  const bool *_swallowed;
60
61  // Map dense rule number to determine if this is an instruction chain rule
62  const uint _begin_inst_chain_rule;
63  const uint _end_inst_chain_rule;
64
65  // We want to clone constants and possible CmpI-variants.
66  // If we do not clone CmpI, then we can have many instances of
67  // condition codes alive at once.  This is OK on some chips and
68  // bad on others.  Hence the machine-dependent table lookup.
69  const char *_must_clone;
70
71  // Find shared Nodes, or Nodes that otherwise are Matcher roots
72  void find_shared( Node *n );
73
74  // Debug and profile information for nodes in old space:
75  GrowableArray<Node_Notes*>* _old_node_note_array;
76
77  // Node labeling iterator for instruction selection
78  Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
79
80  Node *transform( Node *dummy );
81
82  Node_List &_proj_list;        // For Machine nodes killing many values
83
84  Node_Array _shared_nodes;
85
86  debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
87  debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
88
89  // Accessors for the inherited field PhaseTransform::_nodes:
90  void   grow_new_node_array(uint idx_limit) {
91    _nodes.map(idx_limit-1, NULL);
92  }
93  bool    has_new_node(const Node* n) const {
94    return _nodes.at(n->_idx) != NULL;
95  }
96  Node*       new_node(const Node* n) const {
97    assert(has_new_node(n), "set before get");
98    return _nodes.at(n->_idx);
99  }
100  void    set_new_node(const Node* n, Node *nn) {
101    assert(!has_new_node(n), "set only once");
102    _nodes.map(n->_idx, nn);
103  }
104
105#ifdef ASSERT
106  // Make sure only new nodes are reachable from this node
107  void verify_new_nodes_only(Node* root);
108
109  Node* _mem_node;   // Ideal memory node consumed by mach node
110#endif
111
112  // Mach node for ConP #NULL
113  MachNode* _mach_null;
114
115public:
116  int LabelRootDepth;
117  static const int base2reg[];        // Map Types to machine register types
118  // Convert ideal machine register to a register mask for spill-loads
119  static const RegMask *idealreg2regmask[];
120  RegMask *idealreg2spillmask  [_last_machine_leaf];
121  RegMask *idealreg2debugmask  [_last_machine_leaf];
122  RegMask *idealreg2mhdebugmask[_last_machine_leaf];
123  void init_spill_mask( Node *ret );
124  // Convert machine register number to register mask
125  static uint mreg2regmask_max;
126  static RegMask mreg2regmask[];
127  static RegMask STACK_ONLY_mask;
128
129  MachNode* mach_null() const { return _mach_null; }
130
131  bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
132  void   set_shared( Node *n ) {  _shared.set(n->_idx); }
133  bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
134  void  set_visited( Node *n ) { _visited.set(n->_idx); }
135  bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
136  void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
137
138  // Mode bit to tell DFA and expand rules whether we are running after
139  // (or during) register selection.  Usually, the matcher runs before,
140  // but it will also get called to generate post-allocation spill code.
141  // In this situation, it is a deadly error to attempt to allocate more
142  // temporary registers.
143  bool _allocation_started;
144
145  // Machine register names
146  static const char *regName[];
147  // Machine register encodings
148  static const unsigned char _regEncode[];
149  // Machine Node names
150  const char **_ruleName;
151  // Rules that are cheaper to rematerialize than to spill
152  static const uint _begin_rematerialize;
153  static const uint _end_rematerialize;
154
155  // An array of chars, from 0 to _last_Mach_Reg.
156  // No Save       = 'N' (for register windows)
157  // Save on Entry = 'E'
158  // Save on Call  = 'C'
159  // Always Save   = 'A' (same as SOE + SOC)
160  const char *_register_save_policy;
161  const char *_c_reg_save_policy;
162  // Convert a machine register to a machine register type, so-as to
163  // properly match spill code.
164  const int *_register_save_type;
165  // Maps from machine register to boolean; true if machine register can
166  // be holding a call argument in some signature.
167  static bool can_be_java_arg( int reg );
168  // Maps from machine register to boolean; true if machine register holds
169  // a spillable argument.
170  static bool is_spillable_arg( int reg );
171
172  // List of IfFalse or IfTrue Nodes that indicate a taken null test.
173  // List is valid in the post-matching space.
174  Node_List _null_check_tests;
175  void collect_null_checks( Node *proj, Node *orig_proj );
176  void validate_null_checks( );
177
178  Matcher( Node_List &proj_list );
179
180  // Select instructions for entire method
181  void  match( );
182  // Helper for match
183  OptoReg::Name warp_incoming_stk_arg( VMReg reg );
184
185  // Transform, then walk.  Does implicit DCE while walking.
186  // Name changed from "transform" to avoid it being virtual.
187  Node *xform( Node *old_space_node, int Nodes );
188
189  // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
190  MachNode *match_tree( const Node *n );
191  MachNode *match_sfpt( SafePointNode *sfpt );
192  // Helper for match_sfpt
193  OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
194
195  // Initialize first stack mask and related masks.
196  void init_first_stack_mask();
197
198  // If we should save-on-entry this register
199  bool is_save_on_entry( int reg );
200
201  // Fixup the save-on-entry registers
202  void Fixup_Save_On_Entry( );
203
204  // --- Frame handling ---
205
206  // Register number of the stack slot corresponding to the incoming SP.
207  // Per the Big Picture in the AD file, it is:
208  //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
209  OptoReg::Name _old_SP;
210
211  // Register number of the stack slot corresponding to the highest incoming
212  // argument on the stack.  Per the Big Picture in the AD file, it is:
213  //   _old_SP + out_preserve_stack_slots + incoming argument size.
214  OptoReg::Name _in_arg_limit;
215
216  // Register number of the stack slot corresponding to the new SP.
217  // Per the Big Picture in the AD file, it is:
218  //   _in_arg_limit + pad0
219  OptoReg::Name _new_SP;
220
221  // Register number of the stack slot corresponding to the highest outgoing
222  // argument on the stack.  Per the Big Picture in the AD file, it is:
223  //   _new_SP + max outgoing arguments of all calls
224  OptoReg::Name _out_arg_limit;
225
226  OptoRegPair *_parm_regs;        // Array of machine registers per argument
227  RegMask *_calling_convention_mask; // Array of RegMasks per argument
228
229  // Does matcher have a match rule for this ideal node?
230  static const bool has_match_rule(int opcode);
231  static const bool _hasMatchRule[_last_opcode];
232
233  // Does matcher have a match rule for this ideal node and is the
234  // predicate (if there is one) true?
235  // NOTE: If this function is used more commonly in the future, ADLC
236  // should generate this one.
237  static const bool match_rule_supported(int opcode);
238
239  // Used to determine if we have fast l2f conversion
240  // USII has it, USIII doesn't
241  static const bool convL2FSupported(void);
242
243  // Vector width in bytes
244  static const uint vector_width_in_bytes(void);
245
246  // Vector ideal reg
247  static const uint vector_ideal_reg(void);
248
249  // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
250  // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
251  // Depends on the details of 64-bit constant generation on the CPU.
252  static const bool isSimpleConstant64(jlong con);
253
254  // These calls are all generated by the ADLC
255
256  // TRUE - grows up, FALSE - grows down (Intel)
257  virtual bool stack_direction() const;
258
259  // Java-Java calling convention
260  // (what you use when Java calls Java)
261
262  // Alignment of stack in bytes, standard Intel word alignment is 4.
263  // Sparc probably wants at least double-word (8).
264  static uint stack_alignment_in_bytes();
265  // Alignment of stack, measured in stack slots.
266  // The size of stack slots is defined by VMRegImpl::stack_slot_size.
267  static uint stack_alignment_in_slots() {
268    return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
269  }
270
271  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
272  // pointer.  Registers can include stack-slots and regular registers.
273  static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
274
275  // Convert a sig into a calling convention register layout
276  // and find interesting things about it.
277  static OptoReg::Name  find_receiver( bool is_outgoing );
278  // Return address register.  On Intel it is a stack-slot.  On PowerPC
279  // it is the Link register.  On Sparc it is r31?
280  virtual OptoReg::Name return_addr() const;
281  RegMask              _return_addr_mask;
282  // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
283  static OptoRegPair   return_value(int ideal_reg, bool is_outgoing);
284  static OptoRegPair c_return_value(int ideal_reg, bool is_outgoing);
285  RegMask                     _return_value_mask;
286  // Inline Cache Register
287  static OptoReg::Name  inline_cache_reg();
288  static const RegMask &inline_cache_reg_mask();
289  static int            inline_cache_reg_encode();
290
291  // Register for DIVI projection of divmodI
292  static RegMask divI_proj_mask();
293  // Register for MODI projection of divmodI
294  static RegMask modI_proj_mask();
295
296  // Register for DIVL projection of divmodL
297  static RegMask divL_proj_mask();
298  // Register for MODL projection of divmodL
299  static RegMask modL_proj_mask();
300
301  static const RegMask method_handle_invoke_SP_save_mask();
302
303  // Java-Interpreter calling convention
304  // (what you use when calling between compiled-Java and Interpreted-Java
305
306  // Number of callee-save + always-save registers
307  // Ignores frame pointer and "special" registers
308  static int  number_of_saved_registers();
309
310  // The Method-klass-holder may be passed in the inline_cache_reg
311  // and then expanded into the inline_cache_reg and a method_oop register
312
313  static OptoReg::Name  interpreter_method_oop_reg();
314  static const RegMask &interpreter_method_oop_reg_mask();
315  static int            interpreter_method_oop_reg_encode();
316
317  static OptoReg::Name  compiler_method_oop_reg();
318  static const RegMask &compiler_method_oop_reg_mask();
319  static int            compiler_method_oop_reg_encode();
320
321  // Interpreter's Frame Pointer Register
322  static OptoReg::Name  interpreter_frame_pointer_reg();
323  static const RegMask &interpreter_frame_pointer_reg_mask();
324
325  // Java-Native calling convention
326  // (what you use when intercalling between Java and C++ code)
327
328  // Array mapping arguments to registers.  Argument 0 is usually the 'this'
329  // pointer.  Registers can include stack-slots and regular registers.
330  static void c_calling_convention( BasicType*, VMRegPair *, uint );
331  // Frame pointer. The frame pointer is kept at the base of the stack
332  // and so is probably the stack pointer for most machines.  On Intel
333  // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
334  OptoReg::Name  c_frame_pointer() const;
335  static RegMask c_frame_ptr_mask;
336
337  // !!!!! Special stuff for building ScopeDescs
338  virtual int      regnum_to_fpu_offset(int regnum);
339
340  // Is this branch offset small enough to be addressed by a short branch?
341  bool is_short_branch_offset(int rule, int offset);
342
343  // Optional scaling for the parameter to the ClearArray/CopyArray node.
344  static const bool init_array_count_is_in_bytes;
345
346  // Threshold small size (in bytes) for a ClearArray/CopyArray node.
347  // Anything this size or smaller may get converted to discrete scalar stores.
348  static const int init_array_short_size;
349
350  // Should the Matcher clone shifts on addressing modes, expecting them to
351  // be subsumed into complex addressing expressions or compute them into
352  // registers?  True for Intel but false for most RISCs
353  static const bool clone_shift_expressions;
354
355  // Is it better to copy float constants, or load them directly from memory?
356  // Intel can load a float constant from a direct address, requiring no
357  // extra registers.  Most RISCs will have to materialize an address into a
358  // register first, so they may as well materialize the constant immediately.
359  static const bool rematerialize_float_constants;
360
361  // If CPU can load and store mis-aligned doubles directly then no fixup is
362  // needed.  Else we split the double into 2 integer pieces and move it
363  // piece-by-piece.  Only happens when passing doubles into C code or when
364  // calling i2c adapters as the Java calling convention forces doubles to be
365  // aligned.
366  static const bool misaligned_doubles_ok;
367
368  // Perform a platform dependent implicit null fixup.  This is needed
369  // on windows95 to take care of some unusual register constraints.
370  void pd_implicit_null_fixup(MachNode *load, uint idx);
371
372  // Advertise here if the CPU requires explicit rounding operations
373  // to implement the UseStrictFP mode.
374  static const bool strict_fp_requires_explicit_rounding;
375
376  // Are floats conerted to double when stored to stack during deoptimization?
377  static bool float_in_double();
378  // Do ints take an entire long register or just half?
379  static const bool int_in_long;
380
381  // This routine is run whenever a graph fails to match.
382  // If it returns, the compiler should bailout to interpreter without error.
383  // In non-product mode, SoftMatchFailure is false to detect non-canonical
384  // graphs.  Print a message and exit.
385  static void soft_match_failure() {
386    if( SoftMatchFailure ) return;
387    else { fatal("SoftMatchFailure is not allowed except in product"); }
388  }
389
390  // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
391  // acting as an Acquire and thus we don't need an Acquire here.  We
392  // retain the Node to act as a compiler ordering barrier.
393  static bool prior_fast_lock( const Node *acq );
394
395  // Used by the DFA in dfa_sparc.cpp.  Check for a following
396  // FastUnLock acting as a Release and thus we don't need a Release
397  // here.  We retain the Node to act as a compiler ordering barrier.
398  static bool post_fast_unlock( const Node *rel );
399
400  // Check for a following volatile memory barrier without an
401  // intervening load and thus we don't need a barrier here.  We
402  // retain the Node to act as a compiler ordering barrier.
403  static bool post_store_load_barrier(const Node* mb);
404
405
406#ifdef ASSERT
407  void dump_old2new_map();      // machine-independent to machine-dependent
408
409  Node* find_old_node(Node* new_node) {
410    return _new2old_map[new_node->_idx];
411  }
412#endif
413};
414