loopnode.hpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_LOOPNODE_HPP
26#define SHARE_VM_OPTO_LOOPNODE_HPP
27
28#include "opto/cfgnode.hpp"
29#include "opto/multnode.hpp"
30#include "opto/phaseX.hpp"
31#include "opto/subnode.hpp"
32#include "opto/type.hpp"
33
34class CmpNode;
35class CountedLoopEndNode;
36class CountedLoopNode;
37class IdealLoopTree;
38class LoopNode;
39class Node;
40class PhaseIdealLoop;
41class VectorSet;
42class Invariance;
43struct small_cache;
44
45//
46//                  I D E A L I Z E D   L O O P S
47//
48// Idealized loops are the set of loops I perform more interesting
49// transformations on, beyond simple hoisting.
50
51//------------------------------LoopNode---------------------------------------
52// Simple loop header.  Fall in path on left, loop-back path on right.
53class LoopNode : public RegionNode {
54  // Size is bigger to hold the flags.  However, the flags do not change
55  // the semantics so it does not appear in the hash & cmp functions.
56  virtual uint size_of() const { return sizeof(*this); }
57protected:
58  short _loop_flags;
59  // Names for flag bitfields
60  enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
61         MainHasNoPreLoop=4,
62         HasExactTripCount=8,
63         InnerLoop=16,
64         PartialPeelLoop=32,
65         PartialPeelFailed=64 };
66  char _unswitch_count;
67  enum { _unswitch_max=3 };
68
69public:
70  // Names for edge indices
71  enum { Self=0, EntryControl, LoopBackControl };
72
73  int is_inner_loop() const { return _loop_flags & InnerLoop; }
74  void set_inner_loop() { _loop_flags |= InnerLoop; }
75
76  int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
77  void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
78  int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
79  void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
80
81  int unswitch_max() { return _unswitch_max; }
82  int unswitch_count() { return _unswitch_count; }
83  void set_unswitch_count(int val) {
84    assert (val <= unswitch_max(), "too many unswitches");
85    _unswitch_count = val;
86  }
87
88  LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
89    init_class_id(Class_Loop);
90    init_req(EntryControl, entry);
91    init_req(LoopBackControl, backedge);
92  }
93
94  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
95  virtual int Opcode() const;
96  bool can_be_counted_loop(PhaseTransform* phase) const {
97    return req() == 3 && in(0) != NULL &&
98      in(1) != NULL && phase->type(in(1)) != Type::TOP &&
99      in(2) != NULL && phase->type(in(2)) != Type::TOP;
100  }
101  bool is_valid_counted_loop() const;
102#ifndef PRODUCT
103  virtual void dump_spec(outputStream *st) const;
104#endif
105};
106
107//------------------------------Counted Loops----------------------------------
108// Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
109// path (and maybe some other exit paths).  The trip-counter exit is always
110// last in the loop.  The trip-counter have to stride by a constant;
111// the exit value is also loop invariant.
112
113// CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
114// CountedLoopNode has the incoming loop control and the loop-back-control
115// which is always the IfTrue before the matching CountedLoopEndNode.  The
116// CountedLoopEndNode has an incoming control (possibly not the
117// CountedLoopNode if there is control flow in the loop), the post-increment
118// trip-counter value, and the limit.  The trip-counter value is always of
119// the form (Op old-trip-counter stride).  The old-trip-counter is produced
120// by a Phi connected to the CountedLoopNode.  The stride is constant.
121// The Op is any commutable opcode, including Add, Mul, Xor.  The
122// CountedLoopEndNode also takes in the loop-invariant limit value.
123
124// From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
125// loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
126// via the old-trip-counter from the Op node.
127
128//------------------------------CountedLoopNode--------------------------------
129// CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
130// inputs the incoming loop-start control and the loop-back control, so they
131// act like RegionNodes.  They also take in the initial trip counter, the
132// loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
133// produce a loop-body control and the trip counter value.  Since
134// CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
135
136class CountedLoopNode : public LoopNode {
137  // Size is bigger to hold _main_idx.  However, _main_idx does not change
138  // the semantics so it does not appear in the hash & cmp functions.
139  virtual uint size_of() const { return sizeof(*this); }
140
141  // For Pre- and Post-loops during debugging ONLY, this holds the index of
142  // the Main CountedLoop.  Used to assert that we understand the graph shape.
143  node_idx_t _main_idx;
144
145  // Known trip count calculated by compute_exact_trip_count()
146  uint  _trip_count;
147
148  // Expected trip count from profile data
149  float _profile_trip_cnt;
150
151  // Log2 of original loop bodies in unrolled loop
152  int _unrolled_count_log2;
153
154  // Node count prior to last unrolling - used to decide if
155  // unroll,optimize,unroll,optimize,... is making progress
156  int _node_count_before_unroll;
157
158public:
159  CountedLoopNode( Node *entry, Node *backedge )
160    : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
161      _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
162      _node_count_before_unroll(0) {
163    init_class_id(Class_CountedLoop);
164    // Initialize _trip_count to the largest possible value.
165    // Will be reset (lower) if the loop's trip count is known.
166  }
167
168  virtual int Opcode() const;
169  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
170
171  Node *init_control() const { return in(EntryControl); }
172  Node *back_control() const { return in(LoopBackControl); }
173  CountedLoopEndNode *loopexit() const;
174  Node *init_trip() const;
175  Node *stride() const;
176  int   stride_con() const;
177  bool  stride_is_con() const;
178  Node *limit() const;
179  Node *incr() const;
180  Node *phi() const;
181
182  // Match increment with optional truncation
183  static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
184
185  // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
186  // can run short a few iterations and may start a few iterations in.
187  // It will be RCE'd and unrolled and aligned.
188
189  // A following 'post' loop will run any remaining iterations.  Used
190  // during Range Check Elimination, the 'post' loop will do any final
191  // iterations with full checks.  Also used by Loop Unrolling, where
192  // the 'post' loop will do any epilog iterations needed.  Basically,
193  // a 'post' loop can not profitably be further unrolled or RCE'd.
194
195  // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
196  // it may do under-flow checks for RCE and may do alignment iterations
197  // so the following main loop 'knows' that it is striding down cache
198  // lines.
199
200  // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
201  // Aligned, may be missing it's pre-loop.
202  int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
203  int is_pre_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
204  int is_main_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
205  int is_post_loop  () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
206  int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
207  void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
208
209  int main_idx() const { return _main_idx; }
210
211
212  void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
213  void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
214  void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
215  void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
216
217  void set_trip_count(uint tc) { _trip_count = tc; }
218  uint trip_count()            { return _trip_count; }
219
220  bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
221  void set_exact_trip_count(uint tc) {
222    _trip_count = tc;
223    _loop_flags |= HasExactTripCount;
224  }
225  void set_nonexact_trip_count() {
226    _loop_flags &= ~HasExactTripCount;
227  }
228
229  void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
230  float profile_trip_cnt()             { return _profile_trip_cnt; }
231
232  void double_unrolled_count() { _unrolled_count_log2++; }
233  int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
234
235  void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
236  int  node_count_before_unroll()           { return _node_count_before_unroll; }
237
238#ifndef PRODUCT
239  virtual void dump_spec(outputStream *st) const;
240#endif
241};
242
243//------------------------------CountedLoopEndNode-----------------------------
244// CountedLoopEndNodes end simple trip counted loops.  They act much like
245// IfNodes.
246class CountedLoopEndNode : public IfNode {
247public:
248  enum { TestControl, TestValue };
249
250  CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
251    : IfNode( control, test, prob, cnt) {
252    init_class_id(Class_CountedLoopEnd);
253  }
254  virtual int Opcode() const;
255
256  Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
257  Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
258  Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
259  Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
260  Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
261  Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
262  int stride_con() const;
263  bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
264  BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
265  CountedLoopNode *loopnode() const {
266    // The CountedLoopNode that goes with this CountedLoopEndNode may
267    // have been optimized out by the IGVN so be cautious with the
268    // pattern matching on the graph
269    if (phi() == NULL) {
270      return NULL;
271    }
272    Node *ln = phi()->in(0);
273    if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
274      return (CountedLoopNode*)ln;
275    }
276    return NULL;
277  }
278
279#ifndef PRODUCT
280  virtual void dump_spec(outputStream *st) const;
281#endif
282};
283
284
285inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
286  Node *bc = back_control();
287  if( bc == NULL ) return NULL;
288  Node *le = bc->in(0);
289  if( le->Opcode() != Op_CountedLoopEnd )
290    return NULL;
291  return (CountedLoopEndNode*)le;
292}
293inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
294inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
295inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
296inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
297inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
298inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
299inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
300
301//------------------------------LoopLimitNode-----------------------------
302// Counted Loop limit node which represents exact final iterator value:
303// trip_count = (limit - init_trip + stride - 1)/stride
304// final_value= trip_count * stride + init_trip.
305// Use HW instructions to calculate it when it can overflow in integer.
306// Note, final_value should fit into integer since counted loop has
307// limit check: limit <= max_int-stride.
308class LoopLimitNode : public Node {
309  enum { Init=1, Limit=2, Stride=3 };
310 public:
311  LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
312    // Put it on the Macro nodes list to optimize during macro nodes expansion.
313    init_flags(Flag_is_macro);
314    C->add_macro_node(this);
315  }
316  virtual int Opcode() const;
317  virtual const Type *bottom_type() const { return TypeInt::INT; }
318  virtual uint ideal_reg() const { return Op_RegI; }
319  virtual const Type *Value( PhaseTransform *phase ) const;
320  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
321  virtual Node *Identity( PhaseTransform *phase );
322};
323
324// -----------------------------IdealLoopTree----------------------------------
325class IdealLoopTree : public ResourceObj {
326public:
327  IdealLoopTree *_parent;       // Parent in loop tree
328  IdealLoopTree *_next;         // Next sibling in loop tree
329  IdealLoopTree *_child;        // First child in loop tree
330
331  // The head-tail backedge defines the loop.
332  // If tail is NULL then this loop has multiple backedges as part of the
333  // same loop.  During cleanup I'll peel off the multiple backedges; merge
334  // them at the loop bottom and flow 1 real backedge into the loop.
335  Node *_head;                  // Head of loop
336  Node *_tail;                  // Tail of loop
337  inline Node *tail();          // Handle lazy update of _tail field
338  PhaseIdealLoop* _phase;
339
340  Node_List _body;              // Loop body for inner loops
341
342  uint8 _nest;                  // Nesting depth
343  uint8 _irreducible:1,         // True if irreducible
344        _has_call:1,            // True if has call safepoint
345        _has_sfpt:1,            // True if has non-call safepoint
346        _rce_candidate:1;       // True if candidate for range check elimination
347
348  Node_List* _safepts;          // List of safepoints in this loop
349  Node_List* _required_safept;  // A inner loop cannot delete these safepts;
350  bool  _allow_optimizations;   // Allow loop optimizations
351
352  IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
353    : _parent(0), _next(0), _child(0),
354      _head(head), _tail(tail),
355      _phase(phase),
356      _safepts(NULL),
357      _required_safept(NULL),
358      _allow_optimizations(true),
359      _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
360  { }
361
362  // Is 'l' a member of 'this'?
363  int is_member( const IdealLoopTree *l ) const; // Test for nested membership
364
365  // Set loop nesting depth.  Accumulate has_call bits.
366  int set_nest( uint depth );
367
368  // Split out multiple fall-in edges from the loop header.  Move them to a
369  // private RegionNode before the loop.  This becomes the loop landing pad.
370  void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
371
372  // Split out the outermost loop from this shared header.
373  void split_outer_loop( PhaseIdealLoop *phase );
374
375  // Merge all the backedges from the shared header into a private Region.
376  // Feed that region as the one backedge to this loop.
377  void merge_many_backedges( PhaseIdealLoop *phase );
378
379  // Split shared headers and insert loop landing pads.
380  // Insert a LoopNode to replace the RegionNode.
381  // Returns TRUE if loop tree is structurally changed.
382  bool beautify_loops( PhaseIdealLoop *phase );
383
384  // Perform optimization to use the loop predicates for null checks and range checks.
385  // Applies to any loop level (not just the innermost one)
386  bool loop_predication( PhaseIdealLoop *phase);
387
388  // Perform iteration-splitting on inner loops.  Split iterations to
389  // avoid range checks or one-shot null checks.  Returns false if the
390  // current round of loop opts should stop.
391  bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
392
393  // Driver for various flavors of iteration splitting.  Returns false
394  // if the current round of loop opts should stop.
395  bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
396
397  // Given dominators, try to find loops with calls that must always be
398  // executed (call dominates loop tail).  These loops do not need non-call
399  // safepoints (ncsfpt).
400  void check_safepts(VectorSet &visited, Node_List &stack);
401
402  // Allpaths backwards scan from loop tail, terminating each path at first safepoint
403  // encountered.
404  void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
405
406  // Convert to counted loops where possible
407  void counted_loop( PhaseIdealLoop *phase );
408
409  // Check for Node being a loop-breaking test
410  Node *is_loop_exit(Node *iff) const;
411
412  // Returns true if ctrl is executed on every complete iteration
413  bool dominates_backedge(Node* ctrl);
414
415  // Remove simplistic dead code from loop body
416  void DCE_loop_body();
417
418  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
419  // Replace with a 1-in-10 exit guess.
420  void adjust_loop_exit_prob( PhaseIdealLoop *phase );
421
422  // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
423  // Useful for unrolling loops with NO array accesses.
424  bool policy_peel_only( PhaseIdealLoop *phase ) const;
425
426  // Return TRUE or FALSE if the loop should be unswitched -- clone
427  // loop with an invariant test
428  bool policy_unswitching( PhaseIdealLoop *phase ) const;
429
430  // Micro-benchmark spamming.  Remove empty loops.
431  bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
432
433  // Convert one iteration loop into normal code.
434  bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
435
436  // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
437  // make some loop-invariant test (usually a null-check) happen before the
438  // loop.
439  bool policy_peeling( PhaseIdealLoop *phase ) const;
440
441  // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
442  // known trip count in the counted loop node.
443  bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
444
445  // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
446  // the loop is a CountedLoop and the body is small enough.
447  bool policy_unroll( PhaseIdealLoop *phase ) const;
448
449  // Return TRUE or FALSE if the loop should be range-check-eliminated.
450  // Gather a list of IF tests that are dominated by iteration splitting;
451  // also gather the end of the first split and the start of the 2nd split.
452  bool policy_range_check( PhaseIdealLoop *phase ) const;
453
454  // Return TRUE or FALSE if the loop should be cache-line aligned.
455  // Gather the expression that does the alignment.  Note that only
456  // one array base can be aligned in a loop (unless the VM guarantees
457  // mutual alignment).  Note that if we vectorize short memory ops
458  // into longer memory ops, we may want to increase alignment.
459  bool policy_align( PhaseIdealLoop *phase ) const;
460
461  // Return TRUE if "iff" is a range check.
462  bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
463
464  // Compute loop exact trip count if possible
465  void compute_exact_trip_count( PhaseIdealLoop *phase );
466
467  // Compute loop trip count from profile data
468  void compute_profile_trip_cnt( PhaseIdealLoop *phase );
469
470  // Reassociate invariant expressions.
471  void reassociate_invariants(PhaseIdealLoop *phase);
472  // Reassociate invariant add and subtract expressions.
473  Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
474  // Return nonzero index of invariant operand if invariant and variant
475  // are combined with an Add or Sub. Helper for reassociate_invariants.
476  int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
477
478  // Return true if n is invariant
479  bool is_invariant(Node* n) const;
480
481  // Put loop body on igvn work list
482  void record_for_igvn();
483
484  bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
485  bool is_inner()   { return is_loop() && _child == NULL; }
486  bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
487
488#ifndef PRODUCT
489  void dump_head( ) const;      // Dump loop head only
490  void dump() const;            // Dump this loop recursively
491  void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
492#endif
493
494};
495
496// -----------------------------PhaseIdealLoop---------------------------------
497// Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
498// loop tree.  Drives the loop-based transformations on the ideal graph.
499class PhaseIdealLoop : public PhaseTransform {
500  friend class IdealLoopTree;
501  friend class SuperWord;
502  // Pre-computed def-use info
503  PhaseIterGVN &_igvn;
504
505  // Head of loop tree
506  IdealLoopTree *_ltree_root;
507
508  // Array of pre-order numbers, plus post-visited bit.
509  // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
510  // ODD for post-visited.  Other bits are the pre-order number.
511  uint *_preorders;
512  uint _max_preorder;
513
514  const PhaseIdealLoop* _verify_me;
515  bool _verify_only;
516
517  // Allocate _preorders[] array
518  void allocate_preorders() {
519    _max_preorder = C->unique()+8;
520    _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
521    memset(_preorders, 0, sizeof(uint) * _max_preorder);
522  }
523
524  // Allocate _preorders[] array
525  void reallocate_preorders() {
526    if ( _max_preorder < C->unique() ) {
527      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
528      _max_preorder = C->unique();
529    }
530    memset(_preorders, 0, sizeof(uint) * _max_preorder);
531  }
532
533  // Check to grow _preorders[] array for the case when build_loop_tree_impl()
534  // adds new nodes.
535  void check_grow_preorders( ) {
536    if ( _max_preorder < C->unique() ) {
537      uint newsize = _max_preorder<<1;  // double size of array
538      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
539      memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
540      _max_preorder = newsize;
541    }
542  }
543  // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
544  int is_visited( Node *n ) const { return _preorders[n->_idx]; }
545  // Pre-order numbers are written to the Nodes array as low-bit-set values.
546  void set_preorder_visited( Node *n, int pre_order ) {
547    assert( !is_visited( n ), "already set" );
548    _preorders[n->_idx] = (pre_order<<1);
549  };
550  // Return pre-order number.
551  int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
552
553  // Check for being post-visited.
554  // Should be previsited already (checked with assert(is_visited(n))).
555  int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
556
557  // Mark as post visited
558  void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
559
560  // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
561  // Returns true if "n" is a data node, false if it's a control node.
562  bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
563
564  // clear out dead code after build_loop_late
565  Node_List _deadlist;
566
567  // Support for faster execution of get_late_ctrl()/dom_lca()
568  // when a node has many uses and dominator depth is deep.
569  Node_Array _dom_lca_tags;
570  void   init_dom_lca_tags();
571  void   clear_dom_lca_tags();
572
573  // Helper for debugging bad dominance relationships
574  bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
575
576  Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
577
578  // Inline wrapper for frequent cases:
579  // 1) only one use
580  // 2) a use is the same as the current LCA passed as 'n1'
581  Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
582    assert( n->is_CFG(), "" );
583    // Fast-path NULL lca
584    if( lca != NULL && lca != n ) {
585      assert( lca->is_CFG(), "" );
586      // find LCA of all uses
587      n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
588    }
589    return find_non_split_ctrl(n);
590  }
591  Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
592
593  // Helper function for directing control inputs away from CFG split
594  // points.
595  Node *find_non_split_ctrl( Node *ctrl ) const {
596    if (ctrl != NULL) {
597      if (ctrl->is_MultiBranch()) {
598        ctrl = ctrl->in(0);
599      }
600      assert(ctrl->is_CFG(), "CFG");
601    }
602    return ctrl;
603  }
604
605public:
606  bool has_node( Node* n ) const {
607    guarantee(n != NULL, "No Node.");
608    return _nodes[n->_idx] != NULL;
609  }
610  // check if transform created new nodes that need _ctrl recorded
611  Node *get_late_ctrl( Node *n, Node *early );
612  Node *get_early_ctrl( Node *n );
613  Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
614  void set_early_ctrl( Node *n );
615  void set_subtree_ctrl( Node *root );
616  void set_ctrl( Node *n, Node *ctrl ) {
617    assert( !has_node(n) || has_ctrl(n), "" );
618    assert( ctrl->in(0), "cannot set dead control node" );
619    assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
620    _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
621  }
622  // Set control and update loop membership
623  void set_ctrl_and_loop(Node* n, Node* ctrl) {
624    IdealLoopTree* old_loop = get_loop(get_ctrl(n));
625    IdealLoopTree* new_loop = get_loop(ctrl);
626    if (old_loop != new_loop) {
627      if (old_loop->_child == NULL) old_loop->_body.yank(n);
628      if (new_loop->_child == NULL) new_loop->_body.push(n);
629    }
630    set_ctrl(n, ctrl);
631  }
632  // Control nodes can be replaced or subsumed.  During this pass they
633  // get their replacement Node in slot 1.  Instead of updating the block
634  // location of all Nodes in the subsumed block, we lazily do it.  As we
635  // pull such a subsumed block out of the array, we write back the final
636  // correct block.
637  Node *get_ctrl( Node *i ) {
638    assert(has_node(i), "");
639    Node *n = get_ctrl_no_update(i);
640    _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
641    assert(has_node(i) && has_ctrl(i), "");
642    assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
643    return n;
644  }
645  // true if CFG node d dominates CFG node n
646  bool is_dominator(Node *d, Node *n);
647  // return get_ctrl for a data node and self(n) for a CFG node
648  Node* ctrl_or_self(Node* n) {
649    if (has_ctrl(n))
650      return get_ctrl(n);
651    else {
652      assert (n->is_CFG(), "must be a CFG node");
653      return n;
654    }
655  }
656
657private:
658  Node *get_ctrl_no_update( Node *i ) const {
659    assert( has_ctrl(i), "" );
660    Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
661    if (!n->in(0)) {
662      // Skip dead CFG nodes
663      do {
664        n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
665      } while (!n->in(0));
666      n = find_non_split_ctrl(n);
667    }
668    return n;
669  }
670
671  // Check for loop being set
672  // "n" must be a control node. Returns true if "n" is known to be in a loop.
673  bool has_loop( Node *n ) const {
674    assert(!has_node(n) || !has_ctrl(n), "");
675    return has_node(n);
676  }
677  // Set loop
678  void set_loop( Node *n, IdealLoopTree *loop ) {
679    _nodes.map(n->_idx, (Node*)loop);
680  }
681  // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
682  // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
683  // from old_node to new_node to support the lazy update.  Reference
684  // replaces loop reference, since that is not needed for dead node.
685public:
686  void lazy_update( Node *old_node, Node *new_node ) {
687    assert( old_node != new_node, "no cycles please" );
688    //old_node->set_req( 1, new_node /*NO DU INFO*/ );
689    // Nodes always have DU info now, so re-use the side array slot
690    // for this node to provide the forwarding pointer.
691    _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
692  }
693  void lazy_replace( Node *old_node, Node *new_node ) {
694    _igvn.replace_node( old_node, new_node );
695    lazy_update( old_node, new_node );
696  }
697  void lazy_replace_proj( Node *old_node, Node *new_node ) {
698    assert( old_node->req() == 1, "use this for Projs" );
699    _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
700    old_node->add_req( NULL );
701    lazy_replace( old_node, new_node );
702  }
703
704private:
705
706  // Place 'n' in some loop nest, where 'n' is a CFG node
707  void build_loop_tree();
708  int build_loop_tree_impl( Node *n, int pre_order );
709  // Insert loop into the existing loop tree.  'innermost' is a leaf of the
710  // loop tree, not the root.
711  IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
712
713  // Place Data nodes in some loop nest
714  void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
715  void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
716  void build_loop_late_post ( Node* n );
717
718  // Array of immediate dominance info for each CFG node indexed by node idx
719private:
720  uint _idom_size;
721  Node **_idom;                 // Array of immediate dominators
722  uint *_dom_depth;           // Used for fast LCA test
723  GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
724
725  Node* idom_no_update(Node* d) const {
726    assert(d->_idx < _idom_size, "oob");
727    Node* n = _idom[d->_idx];
728    assert(n != NULL,"Bad immediate dominator info.");
729    while (n->in(0) == NULL) {  // Skip dead CFG nodes
730      //n = n->in(1);
731      n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
732      assert(n != NULL,"Bad immediate dominator info.");
733    }
734    return n;
735  }
736  Node *idom(Node* d) const {
737    uint didx = d->_idx;
738    Node *n = idom_no_update(d);
739    _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
740    return n;
741  }
742  uint dom_depth(Node* d) const {
743    guarantee(d != NULL, "Null dominator info.");
744    guarantee(d->_idx < _idom_size, "");
745    return _dom_depth[d->_idx];
746  }
747  void set_idom(Node* d, Node* n, uint dom_depth);
748  // Locally compute IDOM using dom_lca call
749  Node *compute_idom( Node *region ) const;
750  // Recompute dom_depth
751  void recompute_dom_depth();
752
753  // Is safept not required by an outer loop?
754  bool is_deleteable_safept(Node* sfpt);
755
756  // Replace parallel induction variable (parallel to trip counter)
757  void replace_parallel_iv(IdealLoopTree *loop);
758
759  // Perform verification that the graph is valid.
760  PhaseIdealLoop( PhaseIterGVN &igvn) :
761    PhaseTransform(Ideal_Loop),
762    _igvn(igvn),
763    _dom_lca_tags(arena()), // Thread::resource_area
764    _verify_me(NULL),
765    _verify_only(true) {
766    build_and_optimize(false, false);
767  }
768
769  // build the loop tree and perform any requested optimizations
770  void build_and_optimize(bool do_split_if, bool skip_loop_opts);
771
772public:
773  // Dominators for the sea of nodes
774  void Dominators();
775  Node *dom_lca( Node *n1, Node *n2 ) const {
776    return find_non_split_ctrl(dom_lca_internal(n1, n2));
777  }
778  Node *dom_lca_internal( Node *n1, Node *n2 ) const;
779
780  // Compute the Ideal Node to Loop mapping
781  PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
782    PhaseTransform(Ideal_Loop),
783    _igvn(igvn),
784    _dom_lca_tags(arena()), // Thread::resource_area
785    _verify_me(NULL),
786    _verify_only(false) {
787    build_and_optimize(do_split_ifs, skip_loop_opts);
788  }
789
790  // Verify that verify_me made the same decisions as a fresh run.
791  PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
792    PhaseTransform(Ideal_Loop),
793    _igvn(igvn),
794    _dom_lca_tags(arena()), // Thread::resource_area
795    _verify_me(verify_me),
796    _verify_only(false) {
797    build_and_optimize(false, false);
798  }
799
800  // Build and verify the loop tree without modifying the graph.  This
801  // is useful to verify that all inputs properly dominate their uses.
802  static void verify(PhaseIterGVN& igvn) {
803#ifdef ASSERT
804    PhaseIdealLoop v(igvn);
805#endif
806  }
807
808  // True if the method has at least 1 irreducible loop
809  bool _has_irreducible_loops;
810
811  // Per-Node transform
812  virtual Node *transform( Node *a_node ) { return 0; }
813
814  bool is_counted_loop( Node *x, IdealLoopTree *loop );
815
816  Node* exact_limit( IdealLoopTree *loop );
817
818  // Return a post-walked LoopNode
819  IdealLoopTree *get_loop( Node *n ) const {
820    // Dead nodes have no loop, so return the top level loop instead
821    if (!has_node(n))  return _ltree_root;
822    assert(!has_ctrl(n), "");
823    return (IdealLoopTree*)_nodes[n->_idx];
824  }
825
826  // Is 'n' a (nested) member of 'loop'?
827  int is_member( const IdealLoopTree *loop, Node *n ) const {
828    return loop->is_member(get_loop(n)); }
829
830  // This is the basic building block of the loop optimizations.  It clones an
831  // entire loop body.  It makes an old_new loop body mapping; with this
832  // mapping you can find the new-loop equivalent to an old-loop node.  All
833  // new-loop nodes are exactly equal to their old-loop counterparts, all
834  // edges are the same.  All exits from the old-loop now have a RegionNode
835  // that merges the equivalent new-loop path.  This is true even for the
836  // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
837  // now come from (one or more) Phis that merge their new-loop equivalents.
838  // Parameter side_by_side_idom:
839  //   When side_by_size_idom is NULL, the dominator tree is constructed for
840  //      the clone loop to dominate the original.  Used in construction of
841  //      pre-main-post loop sequence.
842  //   When nonnull, the clone and original are side-by-side, both are
843  //      dominated by the passed in side_by_side_idom node.  Used in
844  //      construction of unswitched loops.
845  void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
846                   Node* side_by_side_idom = NULL);
847
848  // If we got the effect of peeling, either by actually peeling or by
849  // making a pre-loop which must execute at least once, we can remove
850  // all loop-invariant dominated tests in the main body.
851  void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
852
853  // Generate code to do a loop peel for the given loop (and body).
854  // old_new is a temp array.
855  void do_peeling( IdealLoopTree *loop, Node_List &old_new );
856
857  // Add pre and post loops around the given loop.  These loops are used
858  // during RCE, unrolling and aligning loops.
859  void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
860  // If Node n lives in the back_ctrl block, we clone a private version of n
861  // in preheader_ctrl block and return that, otherwise return n.
862  Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
863
864  // Take steps to maximally unroll the loop.  Peel any odd iterations, then
865  // unroll to do double iterations.  The next round of major loop transforms
866  // will repeat till the doubled loop body does all remaining iterations in 1
867  // pass.
868  void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
869
870  // Unroll the loop body one step - make each trip do 2 iterations.
871  void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
872
873  // Return true if exp is a constant times an induction var
874  bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
875
876  // Return true if exp is a scaled induction var plus (or minus) constant
877  bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
878
879  // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
880  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
881                                        Deoptimization::DeoptReason reason);
882  void register_control(Node* n, IdealLoopTree *loop, Node* pred);
883
884  // Clone loop predicates to cloned loops (peeled, unswitched)
885  static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
886                                   Deoptimization::DeoptReason reason,
887                                   PhaseIdealLoop* loop_phase,
888                                   PhaseIterGVN* igvn);
889
890  static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
891                                         bool clone_limit_check,
892                                         PhaseIdealLoop* loop_phase,
893                                         PhaseIterGVN* igvn);
894  Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
895
896  static Node* skip_loop_predicates(Node* entry);
897
898  // Find a good location to insert a predicate
899  static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
900  // Find a predicate
901  static Node* find_predicate(Node* entry);
902  // Construct a range check for a predicate if
903  BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
904                         int scale, Node* offset,
905                         Node* init, Node* limit, Node* stride,
906                         Node* range, bool upper);
907
908  // Implementation of the loop predication to promote checks outside the loop
909  bool loop_predication_impl(IdealLoopTree *loop);
910
911  // Helper function to collect predicate for eliminating the useless ones
912  void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
913  void eliminate_useless_predicates();
914
915  // Change the control input of expensive nodes to allow commoning by
916  // IGVN when it is guaranteed to not result in a more frequent
917  // execution of the expensive node. Return true if progress.
918  bool process_expensive_nodes();
919
920  // Check whether node has become unreachable
921  bool is_node_unreachable(Node *n) const {
922    return !has_node(n) || n->is_unreachable(_igvn);
923  }
924
925  // Eliminate range-checks and other trip-counter vs loop-invariant tests.
926  void do_range_check( IdealLoopTree *loop, Node_List &old_new );
927
928  // Create a slow version of the loop by cloning the loop
929  // and inserting an if to select fast-slow versions.
930  ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
931                                        Node_List &old_new);
932
933  // Clone loop with an invariant test (that does not exit) and
934  // insert a clone of the test that selects which version to
935  // execute.
936  void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
937
938  // Find candidate "if" for unswitching
939  IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
940
941  // Range Check Elimination uses this function!
942  // Constrain the main loop iterations so the affine function:
943  //    low_limit <= scale_con * I + offset  <  upper_limit
944  // always holds true.  That is, either increase the number of iterations in
945  // the pre-loop or the post-loop until the condition holds true in the main
946  // loop.  Scale_con, offset and limit are all loop invariant.
947  void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
948  // Helper function for add_constraint().
949  Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
950
951  // Partially peel loop up through last_peel node.
952  bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
953
954  // Create a scheduled list of nodes control dependent on ctrl set.
955  void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
956  // Has a use in the vector set
957  bool has_use_in_set( Node* n, VectorSet& vset );
958  // Has use internal to the vector set (ie. not in a phi at the loop head)
959  bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
960  // clone "n" for uses that are outside of loop
961  int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
962  // clone "n" for special uses that are in the not_peeled region
963  void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
964                                          VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
965  // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
966  void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
967#ifdef ASSERT
968  // Validate the loop partition sets: peel and not_peel
969  bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
970  // Ensure that uses outside of loop are of the right form
971  bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
972                                 uint orig_exit_idx, uint clone_exit_idx);
973  bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
974#endif
975
976  // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
977  int stride_of_possible_iv( Node* iff );
978  bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
979  // Return the (unique) control output node that's in the loop (if it exists.)
980  Node* stay_in_loop( Node* n, IdealLoopTree *loop);
981  // Insert a signed compare loop exit cloned from an unsigned compare.
982  IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
983  void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
984  // Utility to register node "n" with PhaseIdealLoop
985  void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
986  // Utility to create an if-projection
987  ProjNode* proj_clone(ProjNode* p, IfNode* iff);
988  // Force the iff control output to be the live_proj
989  Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
990  // Insert a region before an if projection
991  RegionNode* insert_region_before_proj(ProjNode* proj);
992  // Insert a new if before an if projection
993  ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
994
995  // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
996  // "Nearly" because all Nodes have been cloned from the original in the loop,
997  // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
998  // through the Phi recursively, and return a Bool.
999  BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1000  CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1001
1002
1003  // Rework addressing expressions to get the most loop-invariant stuff
1004  // moved out.  We'd like to do all associative operators, but it's especially
1005  // important (common) to do address expressions.
1006  Node *remix_address_expressions( Node *n );
1007
1008  // Attempt to use a conditional move instead of a phi/branch
1009  Node *conditional_move( Node *n );
1010
1011  // Reorganize offset computations to lower register pressure.
1012  // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1013  // (which are then alive with the post-incremented trip counter
1014  // forcing an extra register move)
1015  void reorg_offsets( IdealLoopTree *loop );
1016
1017  // Check for aggressive application of 'split-if' optimization,
1018  // using basic block level info.
1019  void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1020  Node *split_if_with_blocks_pre ( Node *n );
1021  void  split_if_with_blocks_post( Node *n );
1022  Node *has_local_phi_input( Node *n );
1023  // Mark an IfNode as being dominated by a prior test,
1024  // without actually altering the CFG (and hence IDOM info).
1025  void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1026
1027  // Split Node 'n' through merge point
1028  Node *split_thru_region( Node *n, Node *region );
1029  // Split Node 'n' through merge point if there is enough win.
1030  Node *split_thru_phi( Node *n, Node *region, int policy );
1031  // Found an If getting its condition-code input from a Phi in the
1032  // same block.  Split thru the Region.
1033  void do_split_if( Node *iff );
1034
1035  // Conversion of fill/copy patterns into intrisic versions
1036  bool do_intrinsify_fill();
1037  bool intrinsify_fill(IdealLoopTree* lpt);
1038  bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1039                       Node*& shift, Node*& offset);
1040
1041private:
1042  // Return a type based on condition control flow
1043  const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1044  const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1045 // Helpers for filtered type
1046  const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1047
1048  // Helper functions
1049  Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1050  Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1051  void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1052  bool split_up( Node *n, Node *blk1, Node *blk2 );
1053  void sink_use( Node *use, Node *post_loop );
1054  Node *place_near_use( Node *useblock ) const;
1055
1056  bool _created_loop_node;
1057public:
1058  void set_created_loop_node() { _created_loop_node = true; }
1059  bool created_loop_node()     { return _created_loop_node; }
1060  void register_new_node( Node *n, Node *blk );
1061
1062#ifdef ASSERT
1063  void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1064#endif
1065
1066#ifndef PRODUCT
1067  void dump( ) const;
1068  void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1069  void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1070  void verify() const;          // Major slow  :-)
1071  void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1072  IdealLoopTree *get_loop_idx(Node* n) const {
1073    // Dead nodes have no loop, so return the top level loop instead
1074    return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1075  }
1076  // Print some stats
1077  static void print_statistics();
1078  static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1079  static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1080#endif
1081};
1082
1083inline Node* IdealLoopTree::tail() {
1084// Handle lazy update of _tail field
1085  Node *n = _tail;
1086  //while( !n->in(0) )  // Skip dead CFG nodes
1087    //n = n->in(1);
1088  if (n->in(0) == NULL)
1089    n = _phase->get_ctrl(n);
1090  _tail = n;
1091  return n;
1092}
1093
1094
1095// Iterate over the loop tree using a preorder, left-to-right traversal.
1096//
1097// Example that visits all counted loops from within PhaseIdealLoop
1098//
1099//  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1100//   IdealLoopTree* lpt = iter.current();
1101//   if (!lpt->is_counted()) continue;
1102//   ...
1103class LoopTreeIterator : public StackObj {
1104private:
1105  IdealLoopTree* _root;
1106  IdealLoopTree* _curnt;
1107
1108public:
1109  LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1110
1111  bool done() { return _curnt == NULL; }       // Finished iterating?
1112
1113  void next();                                 // Advance to next loop tree
1114
1115  IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1116};
1117
1118#endif // SHARE_VM_OPTO_LOOPNODE_HPP
1119