1/*
2 * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_LOOPNODE_HPP
26#define SHARE_VM_OPTO_LOOPNODE_HPP
27
28#include "opto/cfgnode.hpp"
29#include "opto/multnode.hpp"
30#include "opto/phaseX.hpp"
31#include "opto/subnode.hpp"
32#include "opto/type.hpp"
33
34class CmpNode;
35class CountedLoopEndNode;
36class CountedLoopNode;
37class IdealLoopTree;
38class LoopNode;
39class Node;
40class PhaseIdealLoop;
41class CountedLoopReserveKit;
42class VectorSet;
43class Invariance;
44struct small_cache;
45
46//
47//                  I D E A L I Z E D   L O O P S
48//
49// Idealized loops are the set of loops I perform more interesting
50// transformations on, beyond simple hoisting.
51
52//------------------------------LoopNode---------------------------------------
53// Simple loop header.  Fall in path on left, loop-back path on right.
54class LoopNode : public RegionNode {
55  // Size is bigger to hold the flags.  However, the flags do not change
56  // the semantics so it does not appear in the hash & cmp functions.
57  virtual uint size_of() const { return sizeof(*this); }
58protected:
59  short _loop_flags;
60  // Names for flag bitfields
61  enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
62         MainHasNoPreLoop=4,
63         HasExactTripCount=8,
64         InnerLoop=16,
65         PartialPeelLoop=32,
66         PartialPeelFailed=64,
67         HasReductions=128,
68         WasSlpAnalyzed=256,
69         PassedSlpAnalysis=512,
70         DoUnrollOnly=1024,
71         VectorizedLoop=2048,
72         HasAtomicPostLoop=4096,
73         HasRangeChecks=8192,
74         IsMultiversioned=16384};
75  char _unswitch_count;
76  enum { _unswitch_max=3 };
77  char _postloop_flags;
78  enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
79
80public:
81  // Names for edge indices
82  enum { Self=0, EntryControl, LoopBackControl };
83
84  int is_inner_loop() const { return _loop_flags & InnerLoop; }
85  void set_inner_loop() { _loop_flags |= InnerLoop; }
86
87  int range_checks_present() const { return _loop_flags & HasRangeChecks; }
88  int is_multiversioned() const { return _loop_flags & IsMultiversioned; }
89  int is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
90  int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
91  void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
92  int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
93
94  void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
95  void mark_has_reductions() { _loop_flags |= HasReductions; }
96  void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
97  void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
98  void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
99  void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
100  void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
101  void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
102  void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
103
104  int unswitch_max() { return _unswitch_max; }
105  int unswitch_count() { return _unswitch_count; }
106
107  int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
108  void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
109  int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
110  void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
111
112  void set_unswitch_count(int val) {
113    assert (val <= unswitch_max(), "too many unswitches");
114    _unswitch_count = val;
115  }
116
117  LoopNode(Node *entry, Node *backedge) : RegionNode(3), _loop_flags(0), _unswitch_count(0), _postloop_flags(0) {
118    init_class_id(Class_Loop);
119    init_req(EntryControl, entry);
120    init_req(LoopBackControl, backedge);
121  }
122
123  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
124  virtual int Opcode() const;
125  bool can_be_counted_loop(PhaseTransform* phase) const {
126    return req() == 3 && in(0) != NULL &&
127      in(1) != NULL && phase->type(in(1)) != Type::TOP &&
128      in(2) != NULL && phase->type(in(2)) != Type::TOP;
129  }
130  bool is_valid_counted_loop() const;
131#ifndef PRODUCT
132  virtual void dump_spec(outputStream *st) const;
133#endif
134};
135
136//------------------------------Counted Loops----------------------------------
137// Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
138// path (and maybe some other exit paths).  The trip-counter exit is always
139// last in the loop.  The trip-counter have to stride by a constant;
140// the exit value is also loop invariant.
141
142// CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
143// CountedLoopNode has the incoming loop control and the loop-back-control
144// which is always the IfTrue before the matching CountedLoopEndNode.  The
145// CountedLoopEndNode has an incoming control (possibly not the
146// CountedLoopNode if there is control flow in the loop), the post-increment
147// trip-counter value, and the limit.  The trip-counter value is always of
148// the form (Op old-trip-counter stride).  The old-trip-counter is produced
149// by a Phi connected to the CountedLoopNode.  The stride is constant.
150// The Op is any commutable opcode, including Add, Mul, Xor.  The
151// CountedLoopEndNode also takes in the loop-invariant limit value.
152
153// From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
154// loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
155// via the old-trip-counter from the Op node.
156
157//------------------------------CountedLoopNode--------------------------------
158// CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
159// inputs the incoming loop-start control and the loop-back control, so they
160// act like RegionNodes.  They also take in the initial trip counter, the
161// loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
162// produce a loop-body control and the trip counter value.  Since
163// CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
164
165class CountedLoopNode : public LoopNode {
166  // Size is bigger to hold _main_idx.  However, _main_idx does not change
167  // the semantics so it does not appear in the hash & cmp functions.
168  virtual uint size_of() const { return sizeof(*this); }
169
170  // For Pre- and Post-loops during debugging ONLY, this holds the index of
171  // the Main CountedLoop.  Used to assert that we understand the graph shape.
172  node_idx_t _main_idx;
173
174  // Known trip count calculated by compute_exact_trip_count()
175  uint  _trip_count;
176
177  // Expected trip count from profile data
178  float _profile_trip_cnt;
179
180  // Log2 of original loop bodies in unrolled loop
181  int _unrolled_count_log2;
182
183  // Node count prior to last unrolling - used to decide if
184  // unroll,optimize,unroll,optimize,... is making progress
185  int _node_count_before_unroll;
186
187  // If slp analysis is performed we record the maximum
188  // vector mapped unroll factor here
189  int _slp_maximum_unroll_factor;
190
191public:
192  CountedLoopNode( Node *entry, Node *backedge )
193    : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
194      _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
195      _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
196    init_class_id(Class_CountedLoop);
197    // Initialize _trip_count to the largest possible value.
198    // Will be reset (lower) if the loop's trip count is known.
199  }
200
201  virtual int Opcode() const;
202  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
203
204  Node *init_control() const { return in(EntryControl); }
205  Node *back_control() const { return in(LoopBackControl); }
206  CountedLoopEndNode *loopexit() const;
207  Node *init_trip() const;
208  Node *stride() const;
209  int   stride_con() const;
210  bool  stride_is_con() const;
211  Node *limit() const;
212  Node *incr() const;
213  Node *phi() const;
214
215  // Match increment with optional truncation
216  static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
217
218  // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
219  // can run short a few iterations and may start a few iterations in.
220  // It will be RCE'd and unrolled and aligned.
221
222  // A following 'post' loop will run any remaining iterations.  Used
223  // during Range Check Elimination, the 'post' loop will do any final
224  // iterations with full checks.  Also used by Loop Unrolling, where
225  // the 'post' loop will do any epilog iterations needed.  Basically,
226  // a 'post' loop can not profitably be further unrolled or RCE'd.
227
228  // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
229  // it may do under-flow checks for RCE and may do alignment iterations
230  // so the following main loop 'knows' that it is striding down cache
231  // lines.
232
233  // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
234  // Aligned, may be missing it's pre-loop.
235  int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
236  int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
237  int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
238  int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
239  int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
240  int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
241  int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
242  int do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
243  int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
244  int has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
245  void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
246
247  int main_idx() const { return _main_idx; }
248
249
250  void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
251  void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
252  void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
253  void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
254
255  void set_trip_count(uint tc) { _trip_count = tc; }
256  uint trip_count()            { return _trip_count; }
257
258  bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
259  void set_exact_trip_count(uint tc) {
260    _trip_count = tc;
261    _loop_flags |= HasExactTripCount;
262  }
263  void set_nonexact_trip_count() {
264    _loop_flags &= ~HasExactTripCount;
265  }
266  void set_notpassed_slp() {
267    _loop_flags &= ~PassedSlpAnalysis;
268  }
269
270  void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
271  float profile_trip_cnt()             { return _profile_trip_cnt; }
272
273  void double_unrolled_count() { _unrolled_count_log2++; }
274  int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
275
276  void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
277  int  node_count_before_unroll()            { return _node_count_before_unroll; }
278  void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
279  int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
280
281#ifndef PRODUCT
282  virtual void dump_spec(outputStream *st) const;
283#endif
284};
285
286//------------------------------CountedLoopEndNode-----------------------------
287// CountedLoopEndNodes end simple trip counted loops.  They act much like
288// IfNodes.
289class CountedLoopEndNode : public IfNode {
290public:
291  enum { TestControl, TestValue };
292
293  CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
294    : IfNode( control, test, prob, cnt) {
295    init_class_id(Class_CountedLoopEnd);
296  }
297  virtual int Opcode() const;
298
299  Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
300  Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
301  Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
302  Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
303  Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
304  int stride_con() const;
305  bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
306  BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
307  PhiNode *phi() const {
308    Node *tmp = incr();
309    if (tmp && tmp->req() == 3) {
310      Node* phi = tmp->in(1);
311      if (phi->is_Phi()) {
312        return phi->as_Phi();
313      }
314    }
315    return NULL;
316  }
317  CountedLoopNode *loopnode() const {
318    // The CountedLoopNode that goes with this CountedLoopEndNode may
319    // have been optimized out by the IGVN so be cautious with the
320    // pattern matching on the graph
321    PhiNode* iv_phi = phi();
322    if (iv_phi == NULL) {
323      return NULL;
324    }
325    Node *ln = iv_phi->in(0);
326    if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit() == this) {
327      return (CountedLoopNode*)ln;
328    }
329    return NULL;
330  }
331
332#ifndef PRODUCT
333  virtual void dump_spec(outputStream *st) const;
334#endif
335};
336
337
338inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
339  Node *bc = back_control();
340  if( bc == NULL ) return NULL;
341  Node *le = bc->in(0);
342  if( le->Opcode() != Op_CountedLoopEnd )
343    return NULL;
344  return (CountedLoopEndNode*)le;
345}
346inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
347inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
348inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
349inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
350inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
351inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
352inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
353
354//------------------------------LoopLimitNode-----------------------------
355// Counted Loop limit node which represents exact final iterator value:
356// trip_count = (limit - init_trip + stride - 1)/stride
357// final_value= trip_count * stride + init_trip.
358// Use HW instructions to calculate it when it can overflow in integer.
359// Note, final_value should fit into integer since counted loop has
360// limit check: limit <= max_int-stride.
361class LoopLimitNode : public Node {
362  enum { Init=1, Limit=2, Stride=3 };
363 public:
364  LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
365    // Put it on the Macro nodes list to optimize during macro nodes expansion.
366    init_flags(Flag_is_macro);
367    C->add_macro_node(this);
368  }
369  virtual int Opcode() const;
370  virtual const Type *bottom_type() const { return TypeInt::INT; }
371  virtual uint ideal_reg() const { return Op_RegI; }
372  virtual const Type* Value(PhaseGVN* phase) const;
373  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
374  virtual Node* Identity(PhaseGVN* phase);
375};
376
377// -----------------------------IdealLoopTree----------------------------------
378class IdealLoopTree : public ResourceObj {
379public:
380  IdealLoopTree *_parent;       // Parent in loop tree
381  IdealLoopTree *_next;         // Next sibling in loop tree
382  IdealLoopTree *_child;        // First child in loop tree
383
384  // The head-tail backedge defines the loop.
385  // If tail is NULL then this loop has multiple backedges as part of the
386  // same loop.  During cleanup I'll peel off the multiple backedges; merge
387  // them at the loop bottom and flow 1 real backedge into the loop.
388  Node *_head;                  // Head of loop
389  Node *_tail;                  // Tail of loop
390  inline Node *tail();          // Handle lazy update of _tail field
391  PhaseIdealLoop* _phase;
392  int _local_loop_unroll_limit;
393  int _local_loop_unroll_factor;
394
395  Node_List _body;              // Loop body for inner loops
396
397  uint8_t _nest;                // Nesting depth
398  uint8_t _irreducible:1,       // True if irreducible
399          _has_call:1,          // True if has call safepoint
400          _has_sfpt:1,          // True if has non-call safepoint
401          _rce_candidate:1;     // True if candidate for range check elimination
402
403  Node_List* _safepts;          // List of safepoints in this loop
404  Node_List* _required_safept;  // A inner loop cannot delete these safepts;
405  bool  _allow_optimizations;   // Allow loop optimizations
406
407  IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
408    : _parent(0), _next(0), _child(0),
409      _head(head), _tail(tail),
410      _phase(phase),
411      _safepts(NULL),
412      _required_safept(NULL),
413      _allow_optimizations(true),
414      _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
415      _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
416  { }
417
418  // Is 'l' a member of 'this'?
419  bool is_member(const IdealLoopTree *l) const; // Test for nested membership
420
421  // Set loop nesting depth.  Accumulate has_call bits.
422  int set_nest( uint depth );
423
424  // Split out multiple fall-in edges from the loop header.  Move them to a
425  // private RegionNode before the loop.  This becomes the loop landing pad.
426  void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
427
428  // Split out the outermost loop from this shared header.
429  void split_outer_loop( PhaseIdealLoop *phase );
430
431  // Merge all the backedges from the shared header into a private Region.
432  // Feed that region as the one backedge to this loop.
433  void merge_many_backedges( PhaseIdealLoop *phase );
434
435  // Split shared headers and insert loop landing pads.
436  // Insert a LoopNode to replace the RegionNode.
437  // Returns TRUE if loop tree is structurally changed.
438  bool beautify_loops( PhaseIdealLoop *phase );
439
440  // Perform optimization to use the loop predicates for null checks and range checks.
441  // Applies to any loop level (not just the innermost one)
442  bool loop_predication( PhaseIdealLoop *phase);
443
444  // Perform iteration-splitting on inner loops.  Split iterations to
445  // avoid range checks or one-shot null checks.  Returns false if the
446  // current round of loop opts should stop.
447  bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
448
449  // Driver for various flavors of iteration splitting.  Returns false
450  // if the current round of loop opts should stop.
451  bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
452
453  // Given dominators, try to find loops with calls that must always be
454  // executed (call dominates loop tail).  These loops do not need non-call
455  // safepoints (ncsfpt).
456  void check_safepts(VectorSet &visited, Node_List &stack);
457
458  // Allpaths backwards scan from loop tail, terminating each path at first safepoint
459  // encountered.
460  void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
461
462  // Remove safepoints from loop. Optionally keeping one.
463  void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
464
465  // Convert to counted loops where possible
466  void counted_loop( PhaseIdealLoop *phase );
467
468  // Check for Node being a loop-breaking test
469  Node *is_loop_exit(Node *iff) const;
470
471  // Remove simplistic dead code from loop body
472  void DCE_loop_body();
473
474  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
475  // Replace with a 1-in-10 exit guess.
476  void adjust_loop_exit_prob( PhaseIdealLoop *phase );
477
478  // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
479  // Useful for unrolling loops with NO array accesses.
480  bool policy_peel_only( PhaseIdealLoop *phase ) const;
481
482  // Return TRUE or FALSE if the loop should be unswitched -- clone
483  // loop with an invariant test
484  bool policy_unswitching( PhaseIdealLoop *phase ) const;
485
486  // Micro-benchmark spamming.  Remove empty loops.
487  bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
488
489  // Convert one iteration loop into normal code.
490  bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
491
492  // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
493  // make some loop-invariant test (usually a null-check) happen before the
494  // loop.
495  bool policy_peeling( PhaseIdealLoop *phase ) const;
496
497  // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
498  // known trip count in the counted loop node.
499  bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
500
501  // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
502  // the loop is a CountedLoop and the body is small enough.
503  bool policy_unroll(PhaseIdealLoop *phase);
504
505  // Loop analyses to map to a maximal superword unrolling for vectorization.
506  void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
507
508  // Return TRUE or FALSE if the loop should be range-check-eliminated.
509  // Gather a list of IF tests that are dominated by iteration splitting;
510  // also gather the end of the first split and the start of the 2nd split.
511  bool policy_range_check( PhaseIdealLoop *phase ) const;
512
513  // Return TRUE or FALSE if the loop should be cache-line aligned.
514  // Gather the expression that does the alignment.  Note that only
515  // one array base can be aligned in a loop (unless the VM guarantees
516  // mutual alignment).  Note that if we vectorize short memory ops
517  // into longer memory ops, we may want to increase alignment.
518  bool policy_align( PhaseIdealLoop *phase ) const;
519
520  // Return TRUE if "iff" is a range check.
521  bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
522
523  // Compute loop trip count if possible
524  void compute_trip_count(PhaseIdealLoop* phase);
525
526  // Compute loop trip count from profile data
527  void compute_profile_trip_cnt( PhaseIdealLoop *phase );
528
529  // Reassociate invariant expressions.
530  void reassociate_invariants(PhaseIdealLoop *phase);
531  // Reassociate invariant add and subtract expressions.
532  Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
533  // Return nonzero index of invariant operand if invariant and variant
534  // are combined with an Add or Sub. Helper for reassociate_invariants.
535  int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
536
537  // Return true if n is invariant
538  bool is_invariant(Node* n) const;
539
540  // Put loop body on igvn work list
541  void record_for_igvn();
542
543  bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
544  bool is_inner()   { return is_loop() && _child == NULL; }
545  bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
546
547  void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
548
549#ifndef PRODUCT
550  void dump_head( ) const;      // Dump loop head only
551  void dump() const;            // Dump this loop recursively
552  void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
553#endif
554
555};
556
557// -----------------------------PhaseIdealLoop---------------------------------
558// Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
559// loop tree.  Drives the loop-based transformations on the ideal graph.
560class PhaseIdealLoop : public PhaseTransform {
561  friend class IdealLoopTree;
562  friend class SuperWord;
563  friend class CountedLoopReserveKit;
564
565  // Pre-computed def-use info
566  PhaseIterGVN &_igvn;
567
568  // Head of loop tree
569  IdealLoopTree *_ltree_root;
570
571  // Array of pre-order numbers, plus post-visited bit.
572  // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
573  // ODD for post-visited.  Other bits are the pre-order number.
574  uint *_preorders;
575  uint _max_preorder;
576
577  const PhaseIdealLoop* _verify_me;
578  bool _verify_only;
579
580  // Allocate _preorders[] array
581  void allocate_preorders() {
582    _max_preorder = C->unique()+8;
583    _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
584    memset(_preorders, 0, sizeof(uint) * _max_preorder);
585  }
586
587  // Allocate _preorders[] array
588  void reallocate_preorders() {
589    if ( _max_preorder < C->unique() ) {
590      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
591      _max_preorder = C->unique();
592    }
593    memset(_preorders, 0, sizeof(uint) * _max_preorder);
594  }
595
596  // Check to grow _preorders[] array for the case when build_loop_tree_impl()
597  // adds new nodes.
598  void check_grow_preorders( ) {
599    if ( _max_preorder < C->unique() ) {
600      uint newsize = _max_preorder<<1;  // double size of array
601      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
602      memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
603      _max_preorder = newsize;
604    }
605  }
606  // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
607  int is_visited( Node *n ) const { return _preorders[n->_idx]; }
608  // Pre-order numbers are written to the Nodes array as low-bit-set values.
609  void set_preorder_visited( Node *n, int pre_order ) {
610    assert( !is_visited( n ), "already set" );
611    _preorders[n->_idx] = (pre_order<<1);
612  };
613  // Return pre-order number.
614  int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
615
616  // Check for being post-visited.
617  // Should be previsited already (checked with assert(is_visited(n))).
618  int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
619
620  // Mark as post visited
621  void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
622
623  // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
624  // Returns true if "n" is a data node, false if it's a control node.
625  bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
626
627  // clear out dead code after build_loop_late
628  Node_List _deadlist;
629
630  // Support for faster execution of get_late_ctrl()/dom_lca()
631  // when a node has many uses and dominator depth is deep.
632  Node_Array _dom_lca_tags;
633  void   init_dom_lca_tags();
634  void   clear_dom_lca_tags();
635
636  // Helper for debugging bad dominance relationships
637  bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
638
639  Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
640
641  // Inline wrapper for frequent cases:
642  // 1) only one use
643  // 2) a use is the same as the current LCA passed as 'n1'
644  Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
645    assert( n->is_CFG(), "" );
646    // Fast-path NULL lca
647    if( lca != NULL && lca != n ) {
648      assert( lca->is_CFG(), "" );
649      // find LCA of all uses
650      n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
651    }
652    return find_non_split_ctrl(n);
653  }
654  Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
655
656  // Helper function for directing control inputs away from CFG split
657  // points.
658  Node *find_non_split_ctrl( Node *ctrl ) const {
659    if (ctrl != NULL) {
660      if (ctrl->is_MultiBranch()) {
661        ctrl = ctrl->in(0);
662      }
663      assert(ctrl->is_CFG(), "CFG");
664    }
665    return ctrl;
666  }
667
668  bool cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
669
670public:
671
672  static bool is_canonical_loop_entry(CountedLoopNode* cl);
673
674  bool has_node( Node* n ) const {
675    guarantee(n != NULL, "No Node.");
676    return _nodes[n->_idx] != NULL;
677  }
678  // check if transform created new nodes that need _ctrl recorded
679  Node *get_late_ctrl( Node *n, Node *early );
680  Node *get_early_ctrl( Node *n );
681  Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
682  void set_early_ctrl( Node *n );
683  void set_subtree_ctrl( Node *root );
684  void set_ctrl( Node *n, Node *ctrl ) {
685    assert( !has_node(n) || has_ctrl(n), "" );
686    assert( ctrl->in(0), "cannot set dead control node" );
687    assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
688    _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
689  }
690  // Set control and update loop membership
691  void set_ctrl_and_loop(Node* n, Node* ctrl) {
692    IdealLoopTree* old_loop = get_loop(get_ctrl(n));
693    IdealLoopTree* new_loop = get_loop(ctrl);
694    if (old_loop != new_loop) {
695      if (old_loop->_child == NULL) old_loop->_body.yank(n);
696      if (new_loop->_child == NULL) new_loop->_body.push(n);
697    }
698    set_ctrl(n, ctrl);
699  }
700  // Control nodes can be replaced or subsumed.  During this pass they
701  // get their replacement Node in slot 1.  Instead of updating the block
702  // location of all Nodes in the subsumed block, we lazily do it.  As we
703  // pull such a subsumed block out of the array, we write back the final
704  // correct block.
705  Node *get_ctrl( Node *i ) {
706    assert(has_node(i), "");
707    Node *n = get_ctrl_no_update(i);
708    _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
709    assert(has_node(i) && has_ctrl(i), "");
710    assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
711    return n;
712  }
713  // true if CFG node d dominates CFG node n
714  bool is_dominator(Node *d, Node *n);
715  // return get_ctrl for a data node and self(n) for a CFG node
716  Node* ctrl_or_self(Node* n) {
717    if (has_ctrl(n))
718      return get_ctrl(n);
719    else {
720      assert (n->is_CFG(), "must be a CFG node");
721      return n;
722    }
723  }
724
725private:
726  Node *get_ctrl_no_update_helper(Node *i) const {
727    assert(has_ctrl(i), "should be control, not loop");
728    return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
729  }
730
731  Node *get_ctrl_no_update(Node *i) const {
732    assert( has_ctrl(i), "" );
733    Node *n = get_ctrl_no_update_helper(i);
734    if (!n->in(0)) {
735      // Skip dead CFG nodes
736      do {
737        n = get_ctrl_no_update_helper(n);
738      } while (!n->in(0));
739      n = find_non_split_ctrl(n);
740    }
741    return n;
742  }
743
744  // Check for loop being set
745  // "n" must be a control node. Returns true if "n" is known to be in a loop.
746  bool has_loop( Node *n ) const {
747    assert(!has_node(n) || !has_ctrl(n), "");
748    return has_node(n);
749  }
750  // Set loop
751  void set_loop( Node *n, IdealLoopTree *loop ) {
752    _nodes.map(n->_idx, (Node*)loop);
753  }
754  // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
755  // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
756  // from old_node to new_node to support the lazy update.  Reference
757  // replaces loop reference, since that is not needed for dead node.
758public:
759  void lazy_update(Node *old_node, Node *new_node) {
760    assert(old_node != new_node, "no cycles please");
761    // Re-use the side array slot for this node to provide the
762    // forwarding pointer.
763    _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
764  }
765  void lazy_replace(Node *old_node, Node *new_node) {
766    _igvn.replace_node(old_node, new_node);
767    lazy_update(old_node, new_node);
768  }
769
770private:
771
772  // Place 'n' in some loop nest, where 'n' is a CFG node
773  void build_loop_tree();
774  int build_loop_tree_impl( Node *n, int pre_order );
775  // Insert loop into the existing loop tree.  'innermost' is a leaf of the
776  // loop tree, not the root.
777  IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
778
779  // Place Data nodes in some loop nest
780  void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
781  void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
782  void build_loop_late_post ( Node* n );
783
784  // Array of immediate dominance info for each CFG node indexed by node idx
785private:
786  uint _idom_size;
787  Node **_idom;                 // Array of immediate dominators
788  uint *_dom_depth;           // Used for fast LCA test
789  GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
790
791  Node* idom_no_update(Node* d) const {
792    assert(d->_idx < _idom_size, "oob");
793    Node* n = _idom[d->_idx];
794    assert(n != NULL,"Bad immediate dominator info.");
795    while (n->in(0) == NULL) {  // Skip dead CFG nodes
796      //n = n->in(1);
797      n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
798      assert(n != NULL,"Bad immediate dominator info.");
799    }
800    return n;
801  }
802  Node *idom(Node* d) const {
803    uint didx = d->_idx;
804    Node *n = idom_no_update(d);
805    _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
806    return n;
807  }
808  uint dom_depth(Node* d) const {
809    guarantee(d != NULL, "Null dominator info.");
810    guarantee(d->_idx < _idom_size, "");
811    return _dom_depth[d->_idx];
812  }
813  void set_idom(Node* d, Node* n, uint dom_depth);
814  // Locally compute IDOM using dom_lca call
815  Node *compute_idom( Node *region ) const;
816  // Recompute dom_depth
817  void recompute_dom_depth();
818
819  // Is safept not required by an outer loop?
820  bool is_deleteable_safept(Node* sfpt);
821
822  // Replace parallel induction variable (parallel to trip counter)
823  void replace_parallel_iv(IdealLoopTree *loop);
824
825  // Perform verification that the graph is valid.
826  PhaseIdealLoop( PhaseIterGVN &igvn) :
827    PhaseTransform(Ideal_Loop),
828    _igvn(igvn),
829    _dom_lca_tags(arena()), // Thread::resource_area
830    _verify_me(NULL),
831    _verify_only(true) {
832    build_and_optimize(false, false);
833  }
834
835  // build the loop tree and perform any requested optimizations
836  void build_and_optimize(bool do_split_if, bool skip_loop_opts);
837
838public:
839  // Dominators for the sea of nodes
840  void Dominators();
841  Node *dom_lca( Node *n1, Node *n2 ) const {
842    return find_non_split_ctrl(dom_lca_internal(n1, n2));
843  }
844  Node *dom_lca_internal( Node *n1, Node *n2 ) const;
845
846  // Compute the Ideal Node to Loop mapping
847  PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
848    PhaseTransform(Ideal_Loop),
849    _igvn(igvn),
850    _dom_lca_tags(arena()), // Thread::resource_area
851    _verify_me(NULL),
852    _verify_only(false) {
853    build_and_optimize(do_split_ifs, skip_loop_opts);
854  }
855
856  // Verify that verify_me made the same decisions as a fresh run.
857  PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
858    PhaseTransform(Ideal_Loop),
859    _igvn(igvn),
860    _dom_lca_tags(arena()), // Thread::resource_area
861    _verify_me(verify_me),
862    _verify_only(false) {
863    build_and_optimize(false, false);
864  }
865
866  // Build and verify the loop tree without modifying the graph.  This
867  // is useful to verify that all inputs properly dominate their uses.
868  static void verify(PhaseIterGVN& igvn) {
869#ifdef ASSERT
870    PhaseIdealLoop v(igvn);
871#endif
872  }
873
874  // True if the method has at least 1 irreducible loop
875  bool _has_irreducible_loops;
876
877  // Per-Node transform
878  virtual Node *transform( Node *a_node ) { return 0; }
879
880  bool is_counted_loop( Node *x, IdealLoopTree *loop );
881
882  Node* exact_limit( IdealLoopTree *loop );
883
884  // Return a post-walked LoopNode
885  IdealLoopTree *get_loop( Node *n ) const {
886    // Dead nodes have no loop, so return the top level loop instead
887    if (!has_node(n))  return _ltree_root;
888    assert(!has_ctrl(n), "");
889    return (IdealLoopTree*)_nodes[n->_idx];
890  }
891
892  // Is 'n' a (nested) member of 'loop'?
893  int is_member( const IdealLoopTree *loop, Node *n ) const {
894    return loop->is_member(get_loop(n)); }
895
896  // This is the basic building block of the loop optimizations.  It clones an
897  // entire loop body.  It makes an old_new loop body mapping; with this
898  // mapping you can find the new-loop equivalent to an old-loop node.  All
899  // new-loop nodes are exactly equal to their old-loop counterparts, all
900  // edges are the same.  All exits from the old-loop now have a RegionNode
901  // that merges the equivalent new-loop path.  This is true even for the
902  // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
903  // now come from (one or more) Phis that merge their new-loop equivalents.
904  // Parameter side_by_side_idom:
905  //   When side_by_size_idom is NULL, the dominator tree is constructed for
906  //      the clone loop to dominate the original.  Used in construction of
907  //      pre-main-post loop sequence.
908  //   When nonnull, the clone and original are side-by-side, both are
909  //      dominated by the passed in side_by_side_idom node.  Used in
910  //      construction of unswitched loops.
911  void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
912                   Node* side_by_side_idom = NULL);
913
914  // If we got the effect of peeling, either by actually peeling or by
915  // making a pre-loop which must execute at least once, we can remove
916  // all loop-invariant dominated tests in the main body.
917  void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
918
919  // Generate code to do a loop peel for the given loop (and body).
920  // old_new is a temp array.
921  void do_peeling( IdealLoopTree *loop, Node_List &old_new );
922
923  // Add pre and post loops around the given loop.  These loops are used
924  // during RCE, unrolling and aligning loops.
925  void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
926
927  // Add post loop after the given loop.
928  Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
929                         CountedLoopNode *main_head, CountedLoopEndNode *main_end,
930                         Node *incr, Node *limit, CountedLoopNode *&post_head);
931
932  // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
933  void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
934
935  // Add a vector post loop between a vector main loop and the current post loop
936  void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
937  // If Node n lives in the back_ctrl block, we clone a private version of n
938  // in preheader_ctrl block and return that, otherwise return n.
939  Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
940
941  // Take steps to maximally unroll the loop.  Peel any odd iterations, then
942  // unroll to do double iterations.  The next round of major loop transforms
943  // will repeat till the doubled loop body does all remaining iterations in 1
944  // pass.
945  void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
946
947  // Unroll the loop body one step - make each trip do 2 iterations.
948  void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
949
950  // Mark vector reduction candidates before loop unrolling
951  void mark_reductions( IdealLoopTree *loop );
952
953  // Return true if exp is a constant times an induction var
954  bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
955
956  // Return true if exp is a scaled induction var plus (or minus) constant
957  bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
958
959  // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
960  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
961                                        Deoptimization::DeoptReason reason,
962                                        int opcode);
963  void register_control(Node* n, IdealLoopTree *loop, Node* pred);
964
965  // Clone loop predicates to cloned loops (peeled, unswitched)
966  static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
967                                   Deoptimization::DeoptReason reason,
968                                   PhaseIdealLoop* loop_phase,
969                                   PhaseIterGVN* igvn);
970
971  static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
972                                         bool clone_limit_check,
973                                         PhaseIdealLoop* loop_phase,
974                                         PhaseIterGVN* igvn);
975  Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
976
977  static Node* skip_loop_predicates(Node* entry);
978
979  // Find a good location to insert a predicate
980  static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
981  // Find a predicate
982  static Node* find_predicate(Node* entry);
983  // Construct a range check for a predicate if
984  BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
985                         int scale, Node* offset,
986                         Node* init, Node* limit, jint stride,
987                         Node* range, bool upper, bool &overflow);
988
989  // Implementation of the loop predication to promote checks outside the loop
990  bool loop_predication_impl(IdealLoopTree *loop);
991
992  // Helper function to collect predicate for eliminating the useless ones
993  void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
994  void eliminate_useless_predicates();
995
996  // Change the control input of expensive nodes to allow commoning by
997  // IGVN when it is guaranteed to not result in a more frequent
998  // execution of the expensive node. Return true if progress.
999  bool process_expensive_nodes();
1000
1001  // Check whether node has become unreachable
1002  bool is_node_unreachable(Node *n) const {
1003    return !has_node(n) || n->is_unreachable(_igvn);
1004  }
1005
1006  // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1007  int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1008
1009  // Check to see if do_range_check(...) cleaned the main loop of range-checks
1010  void has_range_checks(IdealLoopTree *loop);
1011
1012  // Process post loops which have range checks and try to build a multi-version
1013  // guard to safely determine if we can execute the post loop which was RCE'd.
1014  bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1015
1016  // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1017  void poison_rce_post_loop(IdealLoopTree *rce_loop);
1018
1019  // Create a slow version of the loop by cloning the loop
1020  // and inserting an if to select fast-slow versions.
1021  ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1022                                        Node_List &old_new,
1023                                        int opcode);
1024
1025  // Clone a loop and return the clone head (clone_loop_head).
1026  // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1027  // This routine was created for usage in CountedLoopReserveKit.
1028  //
1029  //    int(1) -> If -> IfTrue -> original_loop_head
1030  //              |
1031  //              V
1032  //           IfFalse -> clone_loop_head (returned by function pointer)
1033  //
1034  LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1035  // Clone loop with an invariant test (that does not exit) and
1036  // insert a clone of the test that selects which version to
1037  // execute.
1038  void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1039
1040  // Find candidate "if" for unswitching
1041  IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1042
1043  // Range Check Elimination uses this function!
1044  // Constrain the main loop iterations so the affine function:
1045  //    low_limit <= scale_con * I + offset  <  upper_limit
1046  // always holds true.  That is, either increase the number of iterations in
1047  // the pre-loop or the post-loop until the condition holds true in the main
1048  // loop.  Scale_con, offset and limit are all loop invariant.
1049  void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1050  // Helper function for add_constraint().
1051  Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1052
1053  // Partially peel loop up through last_peel node.
1054  bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1055
1056  // Create a scheduled list of nodes control dependent on ctrl set.
1057  void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1058  // Has a use in the vector set
1059  bool has_use_in_set( Node* n, VectorSet& vset );
1060  // Has use internal to the vector set (ie. not in a phi at the loop head)
1061  bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1062  // clone "n" for uses that are outside of loop
1063  int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1064  // clone "n" for special uses that are in the not_peeled region
1065  void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1066                                          VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1067  // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1068  void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1069#ifdef ASSERT
1070  // Validate the loop partition sets: peel and not_peel
1071  bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1072  // Ensure that uses outside of loop are of the right form
1073  bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1074                                 uint orig_exit_idx, uint clone_exit_idx);
1075  bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1076#endif
1077
1078  // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1079  int stride_of_possible_iv( Node* iff );
1080  bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1081  // Return the (unique) control output node that's in the loop (if it exists.)
1082  Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1083  // Insert a signed compare loop exit cloned from an unsigned compare.
1084  IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1085  void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1086  // Utility to register node "n" with PhaseIdealLoop
1087  void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1088  // Utility to create an if-projection
1089  ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1090  // Force the iff control output to be the live_proj
1091  Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1092  // Insert a region before an if projection
1093  RegionNode* insert_region_before_proj(ProjNode* proj);
1094  // Insert a new if before an if projection
1095  ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1096
1097  // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1098  // "Nearly" because all Nodes have been cloned from the original in the loop,
1099  // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1100  // through the Phi recursively, and return a Bool.
1101  BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1102  CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1103
1104
1105  // Rework addressing expressions to get the most loop-invariant stuff
1106  // moved out.  We'd like to do all associative operators, but it's especially
1107  // important (common) to do address expressions.
1108  Node *remix_address_expressions( Node *n );
1109
1110  // Attempt to use a conditional move instead of a phi/branch
1111  Node *conditional_move( Node *n );
1112
1113  // Reorganize offset computations to lower register pressure.
1114  // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1115  // (which are then alive with the post-incremented trip counter
1116  // forcing an extra register move)
1117  void reorg_offsets( IdealLoopTree *loop );
1118
1119  // Check for aggressive application of 'split-if' optimization,
1120  // using basic block level info.
1121  void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1122  Node *split_if_with_blocks_pre ( Node *n );
1123  void  split_if_with_blocks_post( Node *n );
1124  Node *has_local_phi_input( Node *n );
1125  // Mark an IfNode as being dominated by a prior test,
1126  // without actually altering the CFG (and hence IDOM info).
1127  void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1128
1129  // Split Node 'n' through merge point
1130  Node *split_thru_region( Node *n, Node *region );
1131  // Split Node 'n' through merge point if there is enough win.
1132  Node *split_thru_phi( Node *n, Node *region, int policy );
1133  // Found an If getting its condition-code input from a Phi in the
1134  // same block.  Split thru the Region.
1135  void do_split_if( Node *iff );
1136
1137  // Conversion of fill/copy patterns into intrisic versions
1138  bool do_intrinsify_fill();
1139  bool intrinsify_fill(IdealLoopTree* lpt);
1140  bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1141                       Node*& shift, Node*& offset);
1142
1143private:
1144  // Return a type based on condition control flow
1145  const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1146  const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1147 // Helpers for filtered type
1148  const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1149
1150  // Helper functions
1151  Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1152  Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1153  void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1154  bool split_up( Node *n, Node *blk1, Node *blk2 );
1155  void sink_use( Node *use, Node *post_loop );
1156  Node *place_near_use( Node *useblock ) const;
1157  Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1158  void try_move_store_after_loop(Node* n);
1159  bool identical_backtoback_ifs(Node *n);
1160  bool can_split_if(Node *n_ctrl);
1161
1162  bool _created_loop_node;
1163public:
1164  void set_created_loop_node() { _created_loop_node = true; }
1165  bool created_loop_node()     { return _created_loop_node; }
1166  void register_new_node( Node *n, Node *blk );
1167
1168#ifdef ASSERT
1169  void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1170#endif
1171
1172#ifndef PRODUCT
1173  void dump( ) const;
1174  void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1175  void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1176  void verify() const;          // Major slow  :-)
1177  void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1178  IdealLoopTree *get_loop_idx(Node* n) const {
1179    // Dead nodes have no loop, so return the top level loop instead
1180    return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1181  }
1182  // Print some stats
1183  static void print_statistics();
1184  static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1185  static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1186#endif
1187};
1188
1189// This kit may be used for making of a reserved copy of a loop before this loop
1190//  goes under non-reversible changes.
1191//
1192// Function create_reserve() creates a reserved copy (clone) of the loop.
1193// The reserved copy is created by calling
1194// PhaseIdealLoop::create_reserve_version_of_loop - see there how
1195// the original and reserved loops are connected in the outer graph.
1196// If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1197//
1198// By default the reserved copy (clone) of the loop is created as dead code - it is
1199// dominated in the outer loop by this node chain:
1200//   intcon(1)->If->IfFalse->reserved_copy.
1201// The original loop is dominated by the the same node chain but IfTrue projection:
1202//   intcon(0)->If->IfTrue->original_loop.
1203//
1204// In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1205// and the dtor, checks _use_new value.
1206// If _use_new == false, it "switches" control to reserved copy of the loop
1207// by simple replacing of node intcon(1) with node intcon(0).
1208//
1209// Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1210//
1211// void CountedLoopReserveKit_example()
1212// {
1213//    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1214//    if (DoReserveCopy && !lrk.has_reserved()) {
1215//      return; //failed to create reserved loop copy
1216//    }
1217//    ...
1218//    //something is wrong, switch to original loop
1219///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1220//    ...
1221//    //everything worked ok, return with the newly modified loop
1222//    lrk.use_new();
1223//    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1224//  }
1225//
1226// Keep in mind, that by default if create_reserve() is not followed by use_new()
1227// the dtor will "switch to the original" loop.
1228// NOTE. You you modify outside of the original loop this class is no help.
1229//
1230class CountedLoopReserveKit {
1231  private:
1232    PhaseIdealLoop* _phase;
1233    IdealLoopTree*  _lpt;
1234    LoopNode*       _lp;
1235    IfNode*         _iff;
1236    LoopNode*       _lp_reserved;
1237    bool            _has_reserved;
1238    bool            _use_new;
1239    const bool      _active; //may be set to false in ctor, then the object is dummy
1240
1241  public:
1242    CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1243    ~CountedLoopReserveKit();
1244    void use_new()                {_use_new = true;}
1245    void set_iff(IfNode* x)       {_iff = x;}
1246    bool has_reserved()     const { return _active && _has_reserved;}
1247  private:
1248    bool create_reserve();
1249};// class CountedLoopReserveKit
1250
1251inline Node* IdealLoopTree::tail() {
1252// Handle lazy update of _tail field
1253  Node *n = _tail;
1254  //while( !n->in(0) )  // Skip dead CFG nodes
1255    //n = n->in(1);
1256  if (n->in(0) == NULL)
1257    n = _phase->get_ctrl(n);
1258  _tail = n;
1259  return n;
1260}
1261
1262
1263// Iterate over the loop tree using a preorder, left-to-right traversal.
1264//
1265// Example that visits all counted loops from within PhaseIdealLoop
1266//
1267//  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1268//   IdealLoopTree* lpt = iter.current();
1269//   if (!lpt->is_counted()) continue;
1270//   ...
1271class LoopTreeIterator : public StackObj {
1272private:
1273  IdealLoopTree* _root;
1274  IdealLoopTree* _curnt;
1275
1276public:
1277  LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1278
1279  bool done() { return _curnt == NULL; }       // Finished iterating?
1280
1281  void next();                                 // Advance to next loop tree
1282
1283  IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1284};
1285
1286#endif // SHARE_VM_OPTO_LOOPNODE_HPP
1287