loopnode.hpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_LOOPNODE_HPP
26#define SHARE_VM_OPTO_LOOPNODE_HPP
27
28#include "opto/cfgnode.hpp"
29#include "opto/multnode.hpp"
30#include "opto/phaseX.hpp"
31#include "opto/subnode.hpp"
32#include "opto/type.hpp"
33
34class CmpNode;
35class CountedLoopEndNode;
36class CountedLoopNode;
37class IdealLoopTree;
38class LoopNode;
39class Node;
40class PhaseIdealLoop;
41class VectorSet;
42class Invariance;
43struct small_cache;
44
45//
46//                  I D E A L I Z E D   L O O P S
47//
48// Idealized loops are the set of loops I perform more interesting
49// transformations on, beyond simple hoisting.
50
51//------------------------------LoopNode---------------------------------------
52// Simple loop header.  Fall in path on left, loop-back path on right.
53class LoopNode : public RegionNode {
54  // Size is bigger to hold the flags.  However, the flags do not change
55  // the semantics so it does not appear in the hash & cmp functions.
56  virtual uint size_of() const { return sizeof(*this); }
57protected:
58  short _loop_flags;
59  // Names for flag bitfields
60  enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
61  char _unswitch_count;
62  enum { _unswitch_max=3 };
63
64public:
65  // Names for edge indices
66  enum { Self=0, EntryControl, LoopBackControl };
67
68  int is_inner_loop() const { return _loop_flags & inner_loop; }
69  void set_inner_loop() { _loop_flags |= inner_loop; }
70
71  int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
72  void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
73  int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
74  void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
75
76  int unswitch_max() { return _unswitch_max; }
77  int unswitch_count() { return _unswitch_count; }
78  void set_unswitch_count(int val) {
79    assert (val <= unswitch_max(), "too many unswitches");
80    _unswitch_count = val;
81  }
82
83  LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
84    init_class_id(Class_Loop);
85    init_req(EntryControl, entry);
86    init_req(LoopBackControl, backedge);
87  }
88
89  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
90  virtual int Opcode() const;
91  bool can_be_counted_loop(PhaseTransform* phase) const {
92    return req() == 3 && in(0) != NULL &&
93      in(1) != NULL && phase->type(in(1)) != Type::TOP &&
94      in(2) != NULL && phase->type(in(2)) != Type::TOP;
95  }
96#ifndef PRODUCT
97  virtual void dump_spec(outputStream *st) const;
98#endif
99};
100
101//------------------------------Counted Loops----------------------------------
102// Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
103// path (and maybe some other exit paths).  The trip-counter exit is always
104// last in the loop.  The trip-counter does not have to stride by a constant,
105// but it does have to stride by a loop-invariant amount; the exit value is
106// also loop invariant.
107
108// CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
109// CountedLoopNode has the incoming loop control and the loop-back-control
110// which is always the IfTrue before the matching CountedLoopEndNode.  The
111// CountedLoopEndNode has an incoming control (possibly not the
112// CountedLoopNode if there is control flow in the loop), the post-increment
113// trip-counter value, and the limit.  The trip-counter value is always of
114// the form (Op old-trip-counter stride).  The old-trip-counter is produced
115// by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
116// The Op is any commutable opcode, including Add, Mul, Xor.  The
117// CountedLoopEndNode also takes in the loop-invariant limit value.
118
119// From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
120// loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
121// via the old-trip-counter from the Op node.
122
123//------------------------------CountedLoopNode--------------------------------
124// CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
125// inputs the incoming loop-start control and the loop-back control, so they
126// act like RegionNodes.  They also take in the initial trip counter, the
127// loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
128// produce a loop-body control and the trip counter value.  Since
129// CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
130
131class CountedLoopNode : public LoopNode {
132  // Size is bigger to hold _main_idx.  However, _main_idx does not change
133  // the semantics so it does not appear in the hash & cmp functions.
134  virtual uint size_of() const { return sizeof(*this); }
135
136  // For Pre- and Post-loops during debugging ONLY, this holds the index of
137  // the Main CountedLoop.  Used to assert that we understand the graph shape.
138  node_idx_t _main_idx;
139
140  // Known trip count calculated by policy_maximally_unroll
141  int   _trip_count;
142
143  // Expected trip count from profile data
144  float _profile_trip_cnt;
145
146  // Log2 of original loop bodies in unrolled loop
147  int _unrolled_count_log2;
148
149  // Node count prior to last unrolling - used to decide if
150  // unroll,optimize,unroll,optimize,... is making progress
151  int _node_count_before_unroll;
152
153public:
154  CountedLoopNode( Node *entry, Node *backedge )
155    : LoopNode(entry, backedge), _trip_count(max_jint),
156      _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
157      _node_count_before_unroll(0) {
158    init_class_id(Class_CountedLoop);
159    // Initialize _trip_count to the largest possible value.
160    // Will be reset (lower) if the loop's trip count is known.
161  }
162
163  virtual int Opcode() const;
164  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
165
166  Node *init_control() const { return in(EntryControl); }
167  Node *back_control() const { return in(LoopBackControl); }
168  CountedLoopEndNode *loopexit() const;
169  Node *init_trip() const;
170  Node *stride() const;
171  int   stride_con() const;
172  bool  stride_is_con() const;
173  Node *limit() const;
174  Node *incr() const;
175  Node *phi() const;
176
177  // Match increment with optional truncation
178  static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
179
180  // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
181  // can run short a few iterations and may start a few iterations in.
182  // It will be RCE'd and unrolled and aligned.
183
184  // A following 'post' loop will run any remaining iterations.  Used
185  // during Range Check Elimination, the 'post' loop will do any final
186  // iterations with full checks.  Also used by Loop Unrolling, where
187  // the 'post' loop will do any epilog iterations needed.  Basically,
188  // a 'post' loop can not profitably be further unrolled or RCE'd.
189
190  // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
191  // it may do under-flow checks for RCE and may do alignment iterations
192  // so the following main loop 'knows' that it is striding down cache
193  // lines.
194
195  // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
196  // Aligned, may be missing it's pre-loop.
197  enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
198  int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
199  int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
200  int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
201  int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
202  int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
203  void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
204
205  int main_idx() const { return _main_idx; }
206
207
208  void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
209  void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
210  void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
211  void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
212
213  void set_trip_count(int tc) { _trip_count = tc; }
214  int trip_count()            { return _trip_count; }
215
216  void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
217  float profile_trip_cnt()             { return _profile_trip_cnt; }
218
219  void double_unrolled_count() { _unrolled_count_log2++; }
220  int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
221
222  void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
223  int  node_count_before_unroll()           { return _node_count_before_unroll; }
224
225#ifndef PRODUCT
226  virtual void dump_spec(outputStream *st) const;
227#endif
228};
229
230//------------------------------CountedLoopEndNode-----------------------------
231// CountedLoopEndNodes end simple trip counted loops.  They act much like
232// IfNodes.
233class CountedLoopEndNode : public IfNode {
234public:
235  enum { TestControl, TestValue };
236
237  CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
238    : IfNode( control, test, prob, cnt) {
239    init_class_id(Class_CountedLoopEnd);
240  }
241  virtual int Opcode() const;
242
243  Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
244  Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
245  Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
246  Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
247  Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
248  Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
249  int stride_con() const;
250  bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
251  BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
252  CountedLoopNode *loopnode() const {
253    Node *ln = phi()->in(0);
254    assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
255    return (CountedLoopNode*)ln; }
256
257#ifndef PRODUCT
258  virtual void dump_spec(outputStream *st) const;
259#endif
260};
261
262
263inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
264  Node *bc = back_control();
265  if( bc == NULL ) return NULL;
266  Node *le = bc->in(0);
267  if( le->Opcode() != Op_CountedLoopEnd )
268    return NULL;
269  return (CountedLoopEndNode*)le;
270}
271inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
272inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
273inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
274inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
275inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
276inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
277inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
278
279
280// -----------------------------IdealLoopTree----------------------------------
281class IdealLoopTree : public ResourceObj {
282public:
283  IdealLoopTree *_parent;       // Parent in loop tree
284  IdealLoopTree *_next;         // Next sibling in loop tree
285  IdealLoopTree *_child;        // First child in loop tree
286
287  // The head-tail backedge defines the loop.
288  // If tail is NULL then this loop has multiple backedges as part of the
289  // same loop.  During cleanup I'll peel off the multiple backedges; merge
290  // them at the loop bottom and flow 1 real backedge into the loop.
291  Node *_head;                  // Head of loop
292  Node *_tail;                  // Tail of loop
293  inline Node *tail();          // Handle lazy update of _tail field
294  PhaseIdealLoop* _phase;
295
296  Node_List _body;              // Loop body for inner loops
297
298  uint8 _nest;                  // Nesting depth
299  uint8 _irreducible:1,         // True if irreducible
300        _has_call:1,            // True if has call safepoint
301        _has_sfpt:1,            // True if has non-call safepoint
302        _rce_candidate:1;       // True if candidate for range check elimination
303
304  Node_List* _required_safept;  // A inner loop cannot delete these safepts;
305  bool  _allow_optimizations;   // Allow loop optimizations
306
307  IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
308    : _parent(0), _next(0), _child(0),
309      _head(head), _tail(tail),
310      _phase(phase),
311      _required_safept(NULL),
312      _allow_optimizations(true),
313      _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
314  { }
315
316  // Is 'l' a member of 'this'?
317  int is_member( const IdealLoopTree *l ) const; // Test for nested membership
318
319  // Set loop nesting depth.  Accumulate has_call bits.
320  int set_nest( uint depth );
321
322  // Split out multiple fall-in edges from the loop header.  Move them to a
323  // private RegionNode before the loop.  This becomes the loop landing pad.
324  void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
325
326  // Split out the outermost loop from this shared header.
327  void split_outer_loop( PhaseIdealLoop *phase );
328
329  // Merge all the backedges from the shared header into a private Region.
330  // Feed that region as the one backedge to this loop.
331  void merge_many_backedges( PhaseIdealLoop *phase );
332
333  // Split shared headers and insert loop landing pads.
334  // Insert a LoopNode to replace the RegionNode.
335  // Returns TRUE if loop tree is structurally changed.
336  bool beautify_loops( PhaseIdealLoop *phase );
337
338  // Perform optimization to use the loop predicates for null checks and range checks.
339  // Applies to any loop level (not just the innermost one)
340  bool loop_predication( PhaseIdealLoop *phase);
341
342  // Perform iteration-splitting on inner loops.  Split iterations to
343  // avoid range checks or one-shot null checks.  Returns false if the
344  // current round of loop opts should stop.
345  bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
346
347  // Driver for various flavors of iteration splitting.  Returns false
348  // if the current round of loop opts should stop.
349  bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
350
351  // Given dominators, try to find loops with calls that must always be
352  // executed (call dominates loop tail).  These loops do not need non-call
353  // safepoints (ncsfpt).
354  void check_safepts(VectorSet &visited, Node_List &stack);
355
356  // Allpaths backwards scan from loop tail, terminating each path at first safepoint
357  // encountered.
358  void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
359
360  // Convert to counted loops where possible
361  void counted_loop( PhaseIdealLoop *phase );
362
363  // Check for Node being a loop-breaking test
364  Node *is_loop_exit(Node *iff) const;
365
366  // Returns true if ctrl is executed on every complete iteration
367  bool dominates_backedge(Node* ctrl);
368
369  // Remove simplistic dead code from loop body
370  void DCE_loop_body();
371
372  // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
373  // Replace with a 1-in-10 exit guess.
374  void adjust_loop_exit_prob( PhaseIdealLoop *phase );
375
376  // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
377  // Useful for unrolling loops with NO array accesses.
378  bool policy_peel_only( PhaseIdealLoop *phase ) const;
379
380  // Return TRUE or FALSE if the loop should be unswitched -- clone
381  // loop with an invariant test
382  bool policy_unswitching( PhaseIdealLoop *phase ) const;
383
384  // Micro-benchmark spamming.  Remove empty loops.
385  bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
386
387  // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
388  // make some loop-invariant test (usually a null-check) happen before the
389  // loop.
390  bool policy_peeling( PhaseIdealLoop *phase ) const;
391
392  // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
393  // known trip count in the counted loop node.
394  bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
395
396  // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
397  // the loop is a CountedLoop and the body is small enough.
398  bool policy_unroll( PhaseIdealLoop *phase ) const;
399
400  // Return TRUE or FALSE if the loop should be range-check-eliminated.
401  // Gather a list of IF tests that are dominated by iteration splitting;
402  // also gather the end of the first split and the start of the 2nd split.
403  bool policy_range_check( PhaseIdealLoop *phase ) const;
404
405  // Return TRUE or FALSE if the loop should be cache-line aligned.
406  // Gather the expression that does the alignment.  Note that only
407  // one array base can be aligned in a loop (unless the VM guarantees
408  // mutual alignment).  Note that if we vectorize short memory ops
409  // into longer memory ops, we may want to increase alignment.
410  bool policy_align( PhaseIdealLoop *phase ) const;
411
412  // Return TRUE if "iff" is a range check.
413  bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
414
415  // Compute loop trip count from profile data
416  void compute_profile_trip_cnt( PhaseIdealLoop *phase );
417
418  // Reassociate invariant expressions.
419  void reassociate_invariants(PhaseIdealLoop *phase);
420  // Reassociate invariant add and subtract expressions.
421  Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
422  // Return nonzero index of invariant operand if invariant and variant
423  // are combined with an Add or Sub. Helper for reassociate_invariants.
424  int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
425
426  // Return true if n is invariant
427  bool is_invariant(Node* n) const;
428
429  // Put loop body on igvn work list
430  void record_for_igvn();
431
432  bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
433  bool is_inner()   { return is_loop() && _child == NULL; }
434  bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
435
436#ifndef PRODUCT
437  void dump_head( ) const;      // Dump loop head only
438  void dump() const;            // Dump this loop recursively
439  void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
440#endif
441
442};
443
444// -----------------------------PhaseIdealLoop---------------------------------
445// Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
446// loop tree.  Drives the loop-based transformations on the ideal graph.
447class PhaseIdealLoop : public PhaseTransform {
448  friend class IdealLoopTree;
449  friend class SuperWord;
450  // Pre-computed def-use info
451  PhaseIterGVN &_igvn;
452
453  // Head of loop tree
454  IdealLoopTree *_ltree_root;
455
456  // Array of pre-order numbers, plus post-visited bit.
457  // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
458  // ODD for post-visited.  Other bits are the pre-order number.
459  uint *_preorders;
460  uint _max_preorder;
461
462  const PhaseIdealLoop* _verify_me;
463  bool _verify_only;
464
465  // Allocate _preorders[] array
466  void allocate_preorders() {
467    _max_preorder = C->unique()+8;
468    _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
469    memset(_preorders, 0, sizeof(uint) * _max_preorder);
470  }
471
472  // Allocate _preorders[] array
473  void reallocate_preorders() {
474    if ( _max_preorder < C->unique() ) {
475      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
476      _max_preorder = C->unique();
477    }
478    memset(_preorders, 0, sizeof(uint) * _max_preorder);
479  }
480
481  // Check to grow _preorders[] array for the case when build_loop_tree_impl()
482  // adds new nodes.
483  void check_grow_preorders( ) {
484    if ( _max_preorder < C->unique() ) {
485      uint newsize = _max_preorder<<1;  // double size of array
486      _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
487      memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
488      _max_preorder = newsize;
489    }
490  }
491  // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
492  int is_visited( Node *n ) const { return _preorders[n->_idx]; }
493  // Pre-order numbers are written to the Nodes array as low-bit-set values.
494  void set_preorder_visited( Node *n, int pre_order ) {
495    assert( !is_visited( n ), "already set" );
496    _preorders[n->_idx] = (pre_order<<1);
497  };
498  // Return pre-order number.
499  int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
500
501  // Check for being post-visited.
502  // Should be previsited already (checked with assert(is_visited(n))).
503  int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
504
505  // Mark as post visited
506  void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
507
508  // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
509  // Returns true if "n" is a data node, false if it's a control node.
510  bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
511
512  // clear out dead code after build_loop_late
513  Node_List _deadlist;
514
515  // Support for faster execution of get_late_ctrl()/dom_lca()
516  // when a node has many uses and dominator depth is deep.
517  Node_Array _dom_lca_tags;
518  void   init_dom_lca_tags();
519  void   clear_dom_lca_tags();
520
521  // Helper for debugging bad dominance relationships
522  bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
523
524  Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
525
526  // Inline wrapper for frequent cases:
527  // 1) only one use
528  // 2) a use is the same as the current LCA passed as 'n1'
529  Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
530    assert( n->is_CFG(), "" );
531    // Fast-path NULL lca
532    if( lca != NULL && lca != n ) {
533      assert( lca->is_CFG(), "" );
534      // find LCA of all uses
535      n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
536    }
537    return find_non_split_ctrl(n);
538  }
539  Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
540
541  // Helper function for directing control inputs away from CFG split
542  // points.
543  Node *find_non_split_ctrl( Node *ctrl ) const {
544    if (ctrl != NULL) {
545      if (ctrl->is_MultiBranch()) {
546        ctrl = ctrl->in(0);
547      }
548      assert(ctrl->is_CFG(), "CFG");
549    }
550    return ctrl;
551  }
552
553public:
554  bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
555  // check if transform created new nodes that need _ctrl recorded
556  Node *get_late_ctrl( Node *n, Node *early );
557  Node *get_early_ctrl( Node *n );
558  void set_early_ctrl( Node *n );
559  void set_subtree_ctrl( Node *root );
560  void set_ctrl( Node *n, Node *ctrl ) {
561    assert( !has_node(n) || has_ctrl(n), "" );
562    assert( ctrl->in(0), "cannot set dead control node" );
563    assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
564    _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
565  }
566  // Set control and update loop membership
567  void set_ctrl_and_loop(Node* n, Node* ctrl) {
568    IdealLoopTree* old_loop = get_loop(get_ctrl(n));
569    IdealLoopTree* new_loop = get_loop(ctrl);
570    if (old_loop != new_loop) {
571      if (old_loop->_child == NULL) old_loop->_body.yank(n);
572      if (new_loop->_child == NULL) new_loop->_body.push(n);
573    }
574    set_ctrl(n, ctrl);
575  }
576  // Control nodes can be replaced or subsumed.  During this pass they
577  // get their replacement Node in slot 1.  Instead of updating the block
578  // location of all Nodes in the subsumed block, we lazily do it.  As we
579  // pull such a subsumed block out of the array, we write back the final
580  // correct block.
581  Node *get_ctrl( Node *i ) {
582    assert(has_node(i), "");
583    Node *n = get_ctrl_no_update(i);
584    _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
585    assert(has_node(i) && has_ctrl(i), "");
586    assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
587    return n;
588  }
589  // true if CFG node d dominates CFG node n
590  bool is_dominator(Node *d, Node *n);
591  // return get_ctrl for a data node and self(n) for a CFG node
592  Node* ctrl_or_self(Node* n) {
593    if (has_ctrl(n))
594      return get_ctrl(n);
595    else {
596      assert (n->is_CFG(), "must be a CFG node");
597      return n;
598    }
599  }
600
601private:
602  Node *get_ctrl_no_update( Node *i ) const {
603    assert( has_ctrl(i), "" );
604    Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
605    if (!n->in(0)) {
606      // Skip dead CFG nodes
607      do {
608        n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
609      } while (!n->in(0));
610      n = find_non_split_ctrl(n);
611    }
612    return n;
613  }
614
615  // Check for loop being set
616  // "n" must be a control node. Returns true if "n" is known to be in a loop.
617  bool has_loop( Node *n ) const {
618    assert(!has_node(n) || !has_ctrl(n), "");
619    return has_node(n);
620  }
621  // Set loop
622  void set_loop( Node *n, IdealLoopTree *loop ) {
623    _nodes.map(n->_idx, (Node*)loop);
624  }
625  // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
626  // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
627  // from old_node to new_node to support the lazy update.  Reference
628  // replaces loop reference, since that is not needed for dead node.
629public:
630  void lazy_update( Node *old_node, Node *new_node ) {
631    assert( old_node != new_node, "no cycles please" );
632    //old_node->set_req( 1, new_node /*NO DU INFO*/ );
633    // Nodes always have DU info now, so re-use the side array slot
634    // for this node to provide the forwarding pointer.
635    _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
636  }
637  void lazy_replace( Node *old_node, Node *new_node ) {
638    _igvn.replace_node( old_node, new_node );
639    lazy_update( old_node, new_node );
640  }
641  void lazy_replace_proj( Node *old_node, Node *new_node ) {
642    assert( old_node->req() == 1, "use this for Projs" );
643    _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
644    old_node->add_req( NULL );
645    lazy_replace( old_node, new_node );
646  }
647
648private:
649
650  // Place 'n' in some loop nest, where 'n' is a CFG node
651  void build_loop_tree();
652  int build_loop_tree_impl( Node *n, int pre_order );
653  // Insert loop into the existing loop tree.  'innermost' is a leaf of the
654  // loop tree, not the root.
655  IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
656
657  // Place Data nodes in some loop nest
658  void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
659  void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
660  void build_loop_late_post ( Node* n );
661
662  // Array of immediate dominance info for each CFG node indexed by node idx
663private:
664  uint _idom_size;
665  Node **_idom;                 // Array of immediate dominators
666  uint *_dom_depth;           // Used for fast LCA test
667  GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
668
669  Node* idom_no_update(Node* d) const {
670    assert(d->_idx < _idom_size, "oob");
671    Node* n = _idom[d->_idx];
672    assert(n != NULL,"Bad immediate dominator info.");
673    while (n->in(0) == NULL) {  // Skip dead CFG nodes
674      //n = n->in(1);
675      n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
676      assert(n != NULL,"Bad immediate dominator info.");
677    }
678    return n;
679  }
680  Node *idom(Node* d) const {
681    uint didx = d->_idx;
682    Node *n = idom_no_update(d);
683    _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
684    return n;
685  }
686  uint dom_depth(Node* d) const {
687    assert(d->_idx < _idom_size, "");
688    return _dom_depth[d->_idx];
689  }
690  void set_idom(Node* d, Node* n, uint dom_depth);
691  // Locally compute IDOM using dom_lca call
692  Node *compute_idom( Node *region ) const;
693  // Recompute dom_depth
694  void recompute_dom_depth();
695
696  // Is safept not required by an outer loop?
697  bool is_deleteable_safept(Node* sfpt);
698
699  // Perform verification that the graph is valid.
700  PhaseIdealLoop( PhaseIterGVN &igvn) :
701    PhaseTransform(Ideal_Loop),
702    _igvn(igvn),
703    _dom_lca_tags(C->comp_arena()),
704    _verify_me(NULL),
705    _verify_only(true) {
706    build_and_optimize(false, false);
707  }
708
709  // build the loop tree and perform any requested optimizations
710  void build_and_optimize(bool do_split_if, bool do_loop_pred);
711
712public:
713  // Dominators for the sea of nodes
714  void Dominators();
715  Node *dom_lca( Node *n1, Node *n2 ) const {
716    return find_non_split_ctrl(dom_lca_internal(n1, n2));
717  }
718  Node *dom_lca_internal( Node *n1, Node *n2 ) const;
719
720  // Compute the Ideal Node to Loop mapping
721  PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool do_loop_pred) :
722    PhaseTransform(Ideal_Loop),
723    _igvn(igvn),
724    _dom_lca_tags(C->comp_arena()),
725    _verify_me(NULL),
726    _verify_only(false) {
727    build_and_optimize(do_split_ifs, do_loop_pred);
728  }
729
730  // Verify that verify_me made the same decisions as a fresh run.
731  PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
732    PhaseTransform(Ideal_Loop),
733    _igvn(igvn),
734    _dom_lca_tags(C->comp_arena()),
735    _verify_me(verify_me),
736    _verify_only(false) {
737    build_and_optimize(false, false);
738  }
739
740  // Build and verify the loop tree without modifying the graph.  This
741  // is useful to verify that all inputs properly dominate their uses.
742  static void verify(PhaseIterGVN& igvn) {
743#ifdef ASSERT
744    PhaseIdealLoop v(igvn);
745#endif
746  }
747
748  // True if the method has at least 1 irreducible loop
749  bool _has_irreducible_loops;
750
751  // Per-Node transform
752  virtual Node *transform( Node *a_node ) { return 0; }
753
754  Node *is_counted_loop( Node *x, IdealLoopTree *loop );
755
756  // Return a post-walked LoopNode
757  IdealLoopTree *get_loop( Node *n ) const {
758    // Dead nodes have no loop, so return the top level loop instead
759    if (!has_node(n))  return _ltree_root;
760    assert(!has_ctrl(n), "");
761    return (IdealLoopTree*)_nodes[n->_idx];
762  }
763
764  // Is 'n' a (nested) member of 'loop'?
765  int is_member( const IdealLoopTree *loop, Node *n ) const {
766    return loop->is_member(get_loop(n)); }
767
768  // This is the basic building block of the loop optimizations.  It clones an
769  // entire loop body.  It makes an old_new loop body mapping; with this
770  // mapping you can find the new-loop equivalent to an old-loop node.  All
771  // new-loop nodes are exactly equal to their old-loop counterparts, all
772  // edges are the same.  All exits from the old-loop now have a RegionNode
773  // that merges the equivalent new-loop path.  This is true even for the
774  // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
775  // now come from (one or more) Phis that merge their new-loop equivalents.
776  // Parameter side_by_side_idom:
777  //   When side_by_size_idom is NULL, the dominator tree is constructed for
778  //      the clone loop to dominate the original.  Used in construction of
779  //      pre-main-post loop sequence.
780  //   When nonnull, the clone and original are side-by-side, both are
781  //      dominated by the passed in side_by_side_idom node.  Used in
782  //      construction of unswitched loops.
783  void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
784                   Node* side_by_side_idom = NULL);
785
786  // If we got the effect of peeling, either by actually peeling or by
787  // making a pre-loop which must execute at least once, we can remove
788  // all loop-invariant dominated tests in the main body.
789  void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
790
791  // Generate code to do a loop peel for the given loop (and body).
792  // old_new is a temp array.
793  void do_peeling( IdealLoopTree *loop, Node_List &old_new );
794
795  // Add pre and post loops around the given loop.  These loops are used
796  // during RCE, unrolling and aligning loops.
797  void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
798  // If Node n lives in the back_ctrl block, we clone a private version of n
799  // in preheader_ctrl block and return that, otherwise return n.
800  Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
801
802  // Take steps to maximally unroll the loop.  Peel any odd iterations, then
803  // unroll to do double iterations.  The next round of major loop transforms
804  // will repeat till the doubled loop body does all remaining iterations in 1
805  // pass.
806  void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
807
808  // Unroll the loop body one step - make each trip do 2 iterations.
809  void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
810
811  // Return true if exp is a constant times an induction var
812  bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
813
814  // Return true if exp is a scaled induction var plus (or minus) constant
815  bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
816
817  // Return true if proj is for "proj->[region->..]call_uct"
818  bool is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate = false);
819  // Return true for    "if(test)-> proj -> ...
820  //                          |
821  //                          V
822  //                      other_proj->[region->..]call_uct"
823  bool is_uncommon_trap_if_pattern(ProjNode* proj, bool must_reason_predicate = false);
824  // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
825  ProjNode* create_new_if_for_predicate(ProjNode* cont_proj);
826  // Find a good location to insert a predicate
827  ProjNode* find_predicate_insertion_point(Node* start_c);
828  // Construct a range check for a predicate if
829  BoolNode* rc_predicate(Node* ctrl,
830                         int scale, Node* offset,
831                         Node* init, Node* limit, Node* stride,
832                         Node* range, bool upper);
833
834  // Implementation of the loop predication to promote checks outside the loop
835  bool loop_predication_impl(IdealLoopTree *loop);
836
837  // Helper function to collect predicate for eliminating the useless ones
838  void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
839  void eliminate_useless_predicates();
840
841  // Eliminate range-checks and other trip-counter vs loop-invariant tests.
842  void do_range_check( IdealLoopTree *loop, Node_List &old_new );
843
844  // Create a slow version of the loop by cloning the loop
845  // and inserting an if to select fast-slow versions.
846  ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
847                                        Node_List &old_new);
848
849  // Clone loop with an invariant test (that does not exit) and
850  // insert a clone of the test that selects which version to
851  // execute.
852  void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
853
854  // Find candidate "if" for unswitching
855  IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
856
857  // Range Check Elimination uses this function!
858  // Constrain the main loop iterations so the affine function:
859  //    scale_con * I + offset  <  limit
860  // always holds true.  That is, either increase the number of iterations in
861  // the pre-loop or the post-loop until the condition holds true in the main
862  // loop.  Scale_con, offset and limit are all loop invariant.
863  void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
864
865  // Partially peel loop up through last_peel node.
866  bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
867
868  // Create a scheduled list of nodes control dependent on ctrl set.
869  void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
870  // Has a use in the vector set
871  bool has_use_in_set( Node* n, VectorSet& vset );
872  // Has use internal to the vector set (ie. not in a phi at the loop head)
873  bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
874  // clone "n" for uses that are outside of loop
875  void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
876  // clone "n" for special uses that are in the not_peeled region
877  void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
878                                          VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
879  // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
880  void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
881#ifdef ASSERT
882  // Validate the loop partition sets: peel and not_peel
883  bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
884  // Ensure that uses outside of loop are of the right form
885  bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
886                                 uint orig_exit_idx, uint clone_exit_idx);
887  bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
888#endif
889
890  // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
891  int stride_of_possible_iv( Node* iff );
892  bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
893  // Return the (unique) control output node that's in the loop (if it exists.)
894  Node* stay_in_loop( Node* n, IdealLoopTree *loop);
895  // Insert a signed compare loop exit cloned from an unsigned compare.
896  IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
897  void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
898  // Utility to register node "n" with PhaseIdealLoop
899  void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
900  // Utility to create an if-projection
901  ProjNode* proj_clone(ProjNode* p, IfNode* iff);
902  // Force the iff control output to be the live_proj
903  Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
904  // Insert a region before an if projection
905  RegionNode* insert_region_before_proj(ProjNode* proj);
906  // Insert a new if before an if projection
907  ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
908
909  // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
910  // "Nearly" because all Nodes have been cloned from the original in the loop,
911  // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
912  // through the Phi recursively, and return a Bool.
913  BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
914  CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
915
916
917  // Rework addressing expressions to get the most loop-invariant stuff
918  // moved out.  We'd like to do all associative operators, but it's especially
919  // important (common) to do address expressions.
920  Node *remix_address_expressions( Node *n );
921
922  // Attempt to use a conditional move instead of a phi/branch
923  Node *conditional_move( Node *n );
924
925  // Reorganize offset computations to lower register pressure.
926  // Mostly prevent loop-fallout uses of the pre-incremented trip counter
927  // (which are then alive with the post-incremented trip counter
928  // forcing an extra register move)
929  void reorg_offsets( IdealLoopTree *loop );
930
931  // Check for aggressive application of 'split-if' optimization,
932  // using basic block level info.
933  void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
934  Node *split_if_with_blocks_pre ( Node *n );
935  void  split_if_with_blocks_post( Node *n );
936  Node *has_local_phi_input( Node *n );
937  // Mark an IfNode as being dominated by a prior test,
938  // without actually altering the CFG (and hence IDOM info).
939  void dominated_by( Node *prevdom, Node *iff );
940
941  // Split Node 'n' through merge point
942  Node *split_thru_region( Node *n, Node *region );
943  // Split Node 'n' through merge point if there is enough win.
944  Node *split_thru_phi( Node *n, Node *region, int policy );
945  // Found an If getting its condition-code input from a Phi in the
946  // same block.  Split thru the Region.
947  void do_split_if( Node *iff );
948
949  // Conversion of fill/copy patterns into intrisic versions
950  bool do_intrinsify_fill();
951  bool intrinsify_fill(IdealLoopTree* lpt);
952  bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
953                       Node*& shift, Node*& offset);
954
955private:
956  // Return a type based on condition control flow
957  const TypeInt* filtered_type( Node *n, Node* n_ctrl);
958  const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
959 // Helpers for filtered type
960  const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
961
962  // Helper functions
963  Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
964  Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
965  void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
966  bool split_up( Node *n, Node *blk1, Node *blk2 );
967  void sink_use( Node *use, Node *post_loop );
968  Node *place_near_use( Node *useblock ) const;
969
970  bool _created_loop_node;
971public:
972  void set_created_loop_node() { _created_loop_node = true; }
973  bool created_loop_node()     { return _created_loop_node; }
974  void register_new_node( Node *n, Node *blk );
975
976#ifndef PRODUCT
977  void dump( ) const;
978  void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
979  void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
980  void verify() const;          // Major slow  :-)
981  void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
982  IdealLoopTree *get_loop_idx(Node* n) const {
983    // Dead nodes have no loop, so return the top level loop instead
984    return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
985  }
986  // Print some stats
987  static void print_statistics();
988  static int _loop_invokes;     // Count of PhaseIdealLoop invokes
989  static int _loop_work;        // Sum of PhaseIdealLoop x _unique
990#endif
991};
992
993inline Node* IdealLoopTree::tail() {
994// Handle lazy update of _tail field
995  Node *n = _tail;
996  //while( !n->in(0) )  // Skip dead CFG nodes
997    //n = n->in(1);
998  if (n->in(0) == NULL)
999    n = _phase->get_ctrl(n);
1000  _tail = n;
1001  return n;
1002}
1003
1004
1005// Iterate over the loop tree using a preorder, left-to-right traversal.
1006//
1007// Example that visits all counted loops from within PhaseIdealLoop
1008//
1009//  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1010//   IdealLoopTree* lpt = iter.current();
1011//   if (!lpt->is_counted()) continue;
1012//   ...
1013class LoopTreeIterator : public StackObj {
1014private:
1015  IdealLoopTree* _root;
1016  IdealLoopTree* _curnt;
1017
1018public:
1019  LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1020
1021  bool done() { return _curnt == NULL; }       // Finished iterating?
1022
1023  void next();                                 // Advance to next loop tree
1024
1025  IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1026};
1027
1028#endif // SHARE_VM_OPTO_LOOPNODE_HPP
1029