1/*
2 * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "ci/ciMethodData.hpp"
27#include "compiler/compileLog.hpp"
28#include "libadt/vectset.hpp"
29#include "memory/allocation.inline.hpp"
30#include "memory/resourceArea.hpp"
31#include "opto/addnode.hpp"
32#include "opto/callnode.hpp"
33#include "opto/connode.hpp"
34#include "opto/convertnode.hpp"
35#include "opto/divnode.hpp"
36#include "opto/idealGraphPrinter.hpp"
37#include "opto/loopnode.hpp"
38#include "opto/mulnode.hpp"
39#include "opto/rootnode.hpp"
40#include "opto/superword.hpp"
41
42//=============================================================================
43//------------------------------is_loop_iv-------------------------------------
44// Determine if a node is Counted loop induction variable.
45// The method is declared in node.hpp.
46const Node* Node::is_loop_iv() const {
47  if (this->is_Phi() && !this->as_Phi()->is_copy() &&
48      this->as_Phi()->region()->is_CountedLoop() &&
49      this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
50    return this;
51  } else {
52    return NULL;
53  }
54}
55
56//=============================================================================
57//------------------------------dump_spec--------------------------------------
58// Dump special per-node info
59#ifndef PRODUCT
60void LoopNode::dump_spec(outputStream *st) const {
61  if (is_inner_loop()) st->print( "inner " );
62  if (is_partial_peel_loop()) st->print( "partial_peel " );
63  if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
64}
65#endif
66
67//------------------------------is_valid_counted_loop-------------------------
68bool LoopNode::is_valid_counted_loop() const {
69  if (is_CountedLoop()) {
70    CountedLoopNode*    l  = as_CountedLoop();
71    CountedLoopEndNode* le = l->loopexit();
72    if (le != NULL &&
73        le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
74      Node* phi  = l->phi();
75      Node* exit = le->proj_out(0 /* false */);
76      if (exit != NULL && exit->Opcode() == Op_IfFalse &&
77          phi != NULL && phi->is_Phi() &&
78          phi->in(LoopNode::LoopBackControl) == l->incr() &&
79          le->loopnode() == l && le->stride_is_con()) {
80        return true;
81      }
82    }
83  }
84  return false;
85}
86
87//------------------------------get_early_ctrl---------------------------------
88// Compute earliest legal control
89Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
90  assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
91  uint i;
92  Node *early;
93  if (n->in(0) && !n->is_expensive()) {
94    early = n->in(0);
95    if (!early->is_CFG()) // Might be a non-CFG multi-def
96      early = get_ctrl(early);        // So treat input as a straight data input
97    i = 1;
98  } else {
99    early = get_ctrl(n->in(1));
100    i = 2;
101  }
102  uint e_d = dom_depth(early);
103  assert( early, "" );
104  for (; i < n->req(); i++) {
105    Node *cin = get_ctrl(n->in(i));
106    assert( cin, "" );
107    // Keep deepest dominator depth
108    uint c_d = dom_depth(cin);
109    if (c_d > e_d) {           // Deeper guy?
110      early = cin;              // Keep deepest found so far
111      e_d = c_d;
112    } else if (c_d == e_d &&    // Same depth?
113               early != cin) { // If not equal, must use slower algorithm
114      // If same depth but not equal, one _must_ dominate the other
115      // and we want the deeper (i.e., dominated) guy.
116      Node *n1 = early;
117      Node *n2 = cin;
118      while (1) {
119        n1 = idom(n1);          // Walk up until break cycle
120        n2 = idom(n2);
121        if (n1 == cin ||        // Walked early up to cin
122            dom_depth(n2) < c_d)
123          break;                // early is deeper; keep him
124        if (n2 == early ||      // Walked cin up to early
125            dom_depth(n1) < c_d) {
126          early = cin;          // cin is deeper; keep him
127          break;
128        }
129      }
130      e_d = dom_depth(early);   // Reset depth register cache
131    }
132  }
133
134  // Return earliest legal location
135  assert(early == find_non_split_ctrl(early), "unexpected early control");
136
137  if (n->is_expensive() && !_verify_only && !_verify_me) {
138    assert(n->in(0), "should have control input");
139    early = get_early_ctrl_for_expensive(n, early);
140  }
141
142  return early;
143}
144
145//------------------------------get_early_ctrl_for_expensive---------------------------------
146// Move node up the dominator tree as high as legal while still beneficial
147Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
148  assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
149  assert(OptimizeExpensiveOps, "optimization off?");
150
151  Node* ctl = n->in(0);
152  assert(ctl->is_CFG(), "expensive input 0 must be cfg");
153  uint min_dom_depth = dom_depth(earliest);
154#ifdef ASSERT
155  if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
156    dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
157    assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
158  }
159#endif
160  if (dom_depth(ctl) < min_dom_depth) {
161    return earliest;
162  }
163
164  while (1) {
165    Node *next = ctl;
166    // Moving the node out of a loop on the projection of a If
167    // confuses loop predication. So once we hit a Loop in a If branch
168    // that doesn't branch to an UNC, we stop. The code that process
169    // expensive nodes will notice the loop and skip over it to try to
170    // move the node further up.
171    if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
172      if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
173        break;
174      }
175      next = idom(ctl->in(1)->in(0));
176    } else if (ctl->is_Proj()) {
177      // We only move it up along a projection if the projection is
178      // the single control projection for its parent: same code path,
179      // if it's a If with UNC or fallthrough of a call.
180      Node* parent_ctl = ctl->in(0);
181      if (parent_ctl == NULL) {
182        break;
183      } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
184        next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
185      } else if (parent_ctl->is_If()) {
186        if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
187          break;
188        }
189        assert(idom(ctl) == parent_ctl, "strange");
190        next = idom(parent_ctl);
191      } else if (ctl->is_CatchProj()) {
192        if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
193          break;
194        }
195        assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
196        next = parent_ctl->in(0)->in(0)->in(0);
197      } else {
198        // Check if parent control has a single projection (this
199        // control is the only possible successor of the parent
200        // control). If so, we can try to move the node above the
201        // parent control.
202        int nb_ctl_proj = 0;
203        for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
204          Node *p = parent_ctl->fast_out(i);
205          if (p->is_Proj() && p->is_CFG()) {
206            nb_ctl_proj++;
207            if (nb_ctl_proj > 1) {
208              break;
209            }
210          }
211        }
212
213        if (nb_ctl_proj > 1) {
214          break;
215        }
216        assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
217        assert(idom(ctl) == parent_ctl, "strange");
218        next = idom(parent_ctl);
219      }
220    } else {
221      next = idom(ctl);
222    }
223    if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
224      break;
225    }
226    ctl = next;
227  }
228
229  if (ctl != n->in(0)) {
230    _igvn.replace_input_of(n, 0, ctl);
231    _igvn.hash_insert(n);
232  }
233
234  return ctl;
235}
236
237
238//------------------------------set_early_ctrl---------------------------------
239// Set earliest legal control
240void PhaseIdealLoop::set_early_ctrl( Node *n ) {
241  Node *early = get_early_ctrl(n);
242
243  // Record earliest legal location
244  set_ctrl(n, early);
245}
246
247//------------------------------set_subtree_ctrl-------------------------------
248// set missing _ctrl entries on new nodes
249void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
250  // Already set?  Get out.
251  if( _nodes[n->_idx] ) return;
252  // Recursively set _nodes array to indicate where the Node goes
253  uint i;
254  for( i = 0; i < n->req(); ++i ) {
255    Node *m = n->in(i);
256    if( m && m != C->root() )
257      set_subtree_ctrl( m );
258  }
259
260  // Fixup self
261  set_early_ctrl( n );
262}
263
264//------------------------------is_counted_loop--------------------------------
265bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
266  PhaseGVN *gvn = &_igvn;
267
268  // Counted loop head must be a good RegionNode with only 3 not NULL
269  // control input edges: Self, Entry, LoopBack.
270  if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
271    return false;
272  }
273  Node *init_control = x->in(LoopNode::EntryControl);
274  Node *back_control = x->in(LoopNode::LoopBackControl);
275  if (init_control == NULL || back_control == NULL)    // Partially dead
276    return false;
277  // Must also check for TOP when looking for a dead loop
278  if (init_control->is_top() || back_control->is_top())
279    return false;
280
281  // Allow funny placement of Safepoint
282  if (back_control->Opcode() == Op_SafePoint) {
283    if (UseCountedLoopSafepoints) {
284      // Leaving the safepoint on the backedge and creating a
285      // CountedLoop will confuse optimizations. We can't move the
286      // safepoint around because its jvm state wouldn't match a new
287      // location. Give up on that loop.
288      return false;
289    }
290    back_control = back_control->in(TypeFunc::Control);
291  }
292
293  // Controlling test for loop
294  Node *iftrue = back_control;
295  uint iftrue_op = iftrue->Opcode();
296  if (iftrue_op != Op_IfTrue &&
297      iftrue_op != Op_IfFalse)
298    // I have a weird back-control.  Probably the loop-exit test is in
299    // the middle of the loop and I am looking at some trailing control-flow
300    // merge point.  To fix this I would have to partially peel the loop.
301    return false; // Obscure back-control
302
303  // Get boolean guarding loop-back test
304  Node *iff = iftrue->in(0);
305  if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
306    return false;
307  BoolNode *test = iff->in(1)->as_Bool();
308  BoolTest::mask bt = test->_test._test;
309  float cl_prob = iff->as_If()->_prob;
310  if (iftrue_op == Op_IfFalse) {
311    bt = BoolTest(bt).negate();
312    cl_prob = 1.0 - cl_prob;
313  }
314  // Get backedge compare
315  Node *cmp = test->in(1);
316  int cmp_op = cmp->Opcode();
317  if (cmp_op != Op_CmpI)
318    return false;                // Avoid pointer & float compares
319
320  // Find the trip-counter increment & limit.  Limit must be loop invariant.
321  Node *incr  = cmp->in(1);
322  Node *limit = cmp->in(2);
323
324  // ---------
325  // need 'loop()' test to tell if limit is loop invariant
326  // ---------
327
328  if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
329    Node *tmp = incr;            // Then reverse order into the CmpI
330    incr = limit;
331    limit = tmp;
332    bt = BoolTest(bt).commute(); // And commute the exit test
333  }
334  if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
335    return false;
336  if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
337    return false;
338
339  Node* phi_incr = NULL;
340  // Trip-counter increment must be commutative & associative.
341  if (incr->Opcode() == Op_CastII) {
342    incr = incr->in(1);
343  }
344  if (incr->is_Phi()) {
345    if (incr->as_Phi()->region() != x || incr->req() != 3)
346      return false; // Not simple trip counter expression
347    phi_incr = incr;
348    incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
349    if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
350      return false;
351  }
352
353  Node* trunc1 = NULL;
354  Node* trunc2 = NULL;
355  const TypeInt* iv_trunc_t = NULL;
356  if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
357    return false; // Funny increment opcode
358  }
359  assert(incr->Opcode() == Op_AddI, "wrong increment code");
360
361  // Get merge point
362  Node *xphi = incr->in(1);
363  Node *stride = incr->in(2);
364  if (!stride->is_Con()) {     // Oops, swap these
365    if (!xphi->is_Con())       // Is the other guy a constant?
366      return false;             // Nope, unknown stride, bail out
367    Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
368    xphi = stride;
369    stride = tmp;
370  }
371  if (xphi->Opcode() == Op_CastII) {
372    xphi = xphi->in(1);
373  }
374  // Stride must be constant
375  int stride_con = stride->get_int();
376  if (stride_con == 0)
377    return false; // missed some peephole opt
378
379  if (!xphi->is_Phi())
380    return false; // Too much math on the trip counter
381  if (phi_incr != NULL && phi_incr != xphi)
382    return false;
383  PhiNode *phi = xphi->as_Phi();
384
385  // Phi must be of loop header; backedge must wrap to increment
386  if (phi->region() != x)
387    return false;
388  if ((trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr) ||
389      (trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1)) {
390    return false;
391  }
392  Node *init_trip = phi->in(LoopNode::EntryControl);
393
394  // If iv trunc type is smaller than int, check for possible wrap.
395  if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
396    assert(trunc1 != NULL, "must have found some truncation");
397
398    // Get a better type for the phi (filtered thru if's)
399    const TypeInt* phi_ft = filtered_type(phi);
400
401    // Can iv take on a value that will wrap?
402    //
403    // Ensure iv's limit is not within "stride" of the wrap value.
404    //
405    // Example for "short" type
406    //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
407    //    If the stride is +10, then the last value of the induction
408    //    variable before the increment (phi_ft->_hi) must be
409    //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
410    //    ensure no truncation occurs after the increment.
411
412    if (stride_con > 0) {
413      if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
414          iv_trunc_t->_lo > phi_ft->_lo) {
415        return false;  // truncation may occur
416      }
417    } else if (stride_con < 0) {
418      if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
419          iv_trunc_t->_hi < phi_ft->_hi) {
420        return false;  // truncation may occur
421      }
422    }
423    // No possibility of wrap so truncation can be discarded
424    // Promote iv type to Int
425  } else {
426    assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
427  }
428
429  // If the condition is inverted and we will be rolling
430  // through MININT to MAXINT, then bail out.
431  if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
432      // Odd stride
433      (bt == BoolTest::ne && stride_con != 1 && stride_con != -1) ||
434      // Count down loop rolls through MAXINT
435      ((bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0) ||
436      // Count up loop rolls through MININT
437      ((bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0)) {
438    return false; // Bail out
439  }
440
441  const TypeInt* init_t = gvn->type(init_trip)->is_int();
442  const TypeInt* limit_t = gvn->type(limit)->is_int();
443
444  if (stride_con > 0) {
445    jlong init_p = (jlong)init_t->_lo + stride_con;
446    if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
447      return false; // cyclic loop or this loop trips only once
448  } else {
449    jlong init_p = (jlong)init_t->_hi + stride_con;
450    if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
451      return false; // cyclic loop or this loop trips only once
452  }
453
454  if (phi_incr != NULL) {
455    // check if there is a possiblity of IV overflowing after the first increment
456    if (stride_con > 0) {
457      if (init_t->_hi > max_jint - stride_con) {
458        return false;
459      }
460    } else {
461      if (init_t->_lo < min_jint - stride_con) {
462        return false;
463      }
464    }
465  }
466
467  // =================================================
468  // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
469  //
470  assert(x->Opcode() == Op_Loop, "regular loops only");
471  C->print_method(PHASE_BEFORE_CLOOPS, 3);
472
473  Node *hook = new Node(6);
474
475  // ===================================================
476  // Generate loop limit check to avoid integer overflow
477  // in cases like next (cyclic loops):
478  //
479  // for (i=0; i <= max_jint; i++) {}
480  // for (i=0; i <  max_jint; i+=2) {}
481  //
482  //
483  // Limit check predicate depends on the loop test:
484  //
485  // for(;i != limit; i++)       --> limit <= (max_jint)
486  // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
487  // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
488  //
489
490  // Check if limit is excluded to do more precise int overflow check.
491  bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
492  int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
493
494  // If compare points directly to the phi we need to adjust
495  // the compare so that it points to the incr. Limit have
496  // to be adjusted to keep trip count the same and the
497  // adjusted limit should be checked for int overflow.
498  if (phi_incr != NULL) {
499    stride_m  += stride_con;
500  }
501
502  if (limit->is_Con()) {
503    int limit_con = limit->get_int();
504    if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
505        (stride_con < 0 && limit_con < (min_jint - stride_m))) {
506      // Bailout: it could be integer overflow.
507      return false;
508    }
509  } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
510             (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
511      // Limit's type may satisfy the condition, for example,
512      // when it is an array length.
513  } else {
514    // Generate loop's limit check.
515    // Loop limit check predicate should be near the loop.
516    ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
517    if (!limit_check_proj) {
518      // The limit check predicate is not generated if this method trapped here before.
519#ifdef ASSERT
520      if (TraceLoopLimitCheck) {
521        tty->print("missing loop limit check:");
522        loop->dump_head();
523        x->dump(1);
524      }
525#endif
526      return false;
527    }
528
529    IfNode* check_iff = limit_check_proj->in(0)->as_If();
530    Node* cmp_limit;
531    Node* bol;
532
533    if (stride_con > 0) {
534      cmp_limit = new CmpINode(limit, _igvn.intcon(max_jint - stride_m));
535      bol = new BoolNode(cmp_limit, BoolTest::le);
536    } else {
537      cmp_limit = new CmpINode(limit, _igvn.intcon(min_jint - stride_m));
538      bol = new BoolNode(cmp_limit, BoolTest::ge);
539    }
540    cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
541    bol = _igvn.register_new_node_with_optimizer(bol);
542    set_subtree_ctrl(bol);
543
544    // Replace condition in original predicate but preserve Opaque node
545    // so that previous predicates could be found.
546    assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
547           check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
548    Node* opq = check_iff->in(1)->in(1);
549    _igvn.replace_input_of(opq, 1, bol);
550    // Update ctrl.
551    set_ctrl(opq, check_iff->in(0));
552    set_ctrl(check_iff->in(1), check_iff->in(0));
553
554#ifndef PRODUCT
555    // report that the loop predication has been actually performed
556    // for this loop
557    if (TraceLoopLimitCheck) {
558      tty->print_cr("Counted Loop Limit Check generated:");
559      debug_only( bol->dump(2); )
560    }
561#endif
562  }
563
564  if (phi_incr != NULL) {
565    // If compare points directly to the phi we need to adjust
566    // the compare so that it points to the incr. Limit have
567    // to be adjusted to keep trip count the same and we
568    // should avoid int overflow.
569    //
570    //   i = init; do {} while(i++ < limit);
571    // is converted to
572    //   i = init; do {} while(++i < limit+1);
573    //
574    limit = gvn->transform(new AddINode(limit, stride));
575  }
576
577  // Now we need to canonicalize loop condition.
578  if (bt == BoolTest::ne) {
579    assert(stride_con == 1 || stride_con == -1, "simple increment only");
580    // 'ne' can be replaced with 'lt' only when init < limit.
581    if (stride_con > 0 && init_t->_hi < limit_t->_lo)
582      bt = BoolTest::lt;
583    // 'ne' can be replaced with 'gt' only when init > limit.
584    if (stride_con < 0 && init_t->_lo > limit_t->_hi)
585      bt = BoolTest::gt;
586  }
587
588  if (incl_limit) {
589    // The limit check guaranties that 'limit <= (max_jint - stride)' so
590    // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
591    //
592    Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
593    limit = gvn->transform(new AddINode(limit, one));
594    if (bt == BoolTest::le)
595      bt = BoolTest::lt;
596    else if (bt == BoolTest::ge)
597      bt = BoolTest::gt;
598    else
599      ShouldNotReachHere();
600  }
601  set_subtree_ctrl( limit );
602
603  if (!UseCountedLoopSafepoints) {
604    // Check for SafePoint on backedge and remove
605    Node *sfpt = x->in(LoopNode::LoopBackControl);
606    if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
607      lazy_replace( sfpt, iftrue );
608      if (loop->_safepts != NULL) {
609        loop->_safepts->yank(sfpt);
610      }
611      loop->_tail = iftrue;
612    }
613  }
614
615  // Build a canonical trip test.
616  // Clone code, as old values may be in use.
617  incr = incr->clone();
618  incr->set_req(1,phi);
619  incr->set_req(2,stride);
620  incr = _igvn.register_new_node_with_optimizer(incr);
621  set_early_ctrl( incr );
622  _igvn.rehash_node_delayed(phi);
623  phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
624
625  // If phi type is more restrictive than Int, raise to
626  // Int to prevent (almost) infinite recursion in igvn
627  // which can only handle integer types for constants or minint..maxint.
628  if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
629    Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
630    nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
631    nphi = _igvn.register_new_node_with_optimizer(nphi);
632    set_ctrl(nphi, get_ctrl(phi));
633    _igvn.replace_node(phi, nphi);
634    phi = nphi->as_Phi();
635  }
636  cmp = cmp->clone();
637  cmp->set_req(1,incr);
638  cmp->set_req(2,limit);
639  cmp = _igvn.register_new_node_with_optimizer(cmp);
640  set_ctrl(cmp, iff->in(0));
641
642  test = test->clone()->as_Bool();
643  (*(BoolTest*)&test->_test)._test = bt;
644  test->set_req(1,cmp);
645  _igvn.register_new_node_with_optimizer(test);
646  set_ctrl(test, iff->in(0));
647
648  // Replace the old IfNode with a new LoopEndNode
649  Node *lex = _igvn.register_new_node_with_optimizer(new CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
650  IfNode *le = lex->as_If();
651  uint dd = dom_depth(iff);
652  set_idom(le, le->in(0), dd); // Update dominance for loop exit
653  set_loop(le, loop);
654
655  // Get the loop-exit control
656  Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
657
658  // Need to swap loop-exit and loop-back control?
659  if (iftrue_op == Op_IfFalse) {
660    Node *ift2=_igvn.register_new_node_with_optimizer(new IfTrueNode (le));
661    Node *iff2=_igvn.register_new_node_with_optimizer(new IfFalseNode(le));
662
663    loop->_tail = back_control = ift2;
664    set_loop(ift2, loop);
665    set_loop(iff2, get_loop(iffalse));
666
667    // Lazy update of 'get_ctrl' mechanism.
668    lazy_replace(iffalse, iff2);
669    lazy_replace(iftrue,  ift2);
670
671    // Swap names
672    iffalse = iff2;
673    iftrue  = ift2;
674  } else {
675    _igvn.rehash_node_delayed(iffalse);
676    _igvn.rehash_node_delayed(iftrue);
677    iffalse->set_req_X( 0, le, &_igvn );
678    iftrue ->set_req_X( 0, le, &_igvn );
679  }
680
681  set_idom(iftrue,  le, dd+1);
682  set_idom(iffalse, le, dd+1);
683  assert(iff->outcnt() == 0, "should be dead now");
684  lazy_replace( iff, le ); // fix 'get_ctrl'
685
686  // Now setup a new CountedLoopNode to replace the existing LoopNode
687  CountedLoopNode *l = new CountedLoopNode(init_control, back_control);
688  l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
689  // The following assert is approximately true, and defines the intention
690  // of can_be_counted_loop.  It fails, however, because phase->type
691  // is not yet initialized for this loop and its parts.
692  //assert(l->can_be_counted_loop(this), "sanity");
693  _igvn.register_new_node_with_optimizer(l);
694  set_loop(l, loop);
695  loop->_head = l;
696  // Fix all data nodes placed at the old loop head.
697  // Uses the lazy-update mechanism of 'get_ctrl'.
698  lazy_replace( x, l );
699  set_idom(l, init_control, dom_depth(x));
700
701  if (!UseCountedLoopSafepoints) {
702    // Check for immediately preceding SafePoint and remove
703    Node *sfpt2 = le->in(0);
704    if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
705      lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
706      if (loop->_safepts != NULL) {
707        loop->_safepts->yank(sfpt2);
708      }
709    }
710  }
711
712  // Free up intermediate goo
713  _igvn.remove_dead_node(hook);
714
715#ifdef ASSERT
716  assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
717  assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
718#endif
719#ifndef PRODUCT
720  if (TraceLoopOpts) {
721    tty->print("Counted      ");
722    loop->dump_head();
723  }
724#endif
725
726  C->print_method(PHASE_AFTER_CLOOPS, 3);
727
728  // Capture bounds of the loop in the induction variable Phi before
729  // subsequent transformation (iteration splitting) obscures the
730  // bounds
731  l->phi()->as_Phi()->set_type(l->phi()->Value(&_igvn));
732
733  return true;
734}
735
736//----------------------exact_limit-------------------------------------------
737Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
738  assert(loop->_head->is_CountedLoop(), "");
739  CountedLoopNode *cl = loop->_head->as_CountedLoop();
740  assert(cl->is_valid_counted_loop(), "");
741
742  if (ABS(cl->stride_con()) == 1 ||
743      cl->limit()->Opcode() == Op_LoopLimit) {
744    // Old code has exact limit (it could be incorrect in case of int overflow).
745    // Loop limit is exact with stride == 1. And loop may already have exact limit.
746    return cl->limit();
747  }
748  Node *limit = NULL;
749#ifdef ASSERT
750  BoolTest::mask bt = cl->loopexit()->test_trip();
751  assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
752#endif
753  if (cl->has_exact_trip_count()) {
754    // Simple case: loop has constant boundaries.
755    // Use jlongs to avoid integer overflow.
756    int stride_con = cl->stride_con();
757    jlong  init_con = cl->init_trip()->get_int();
758    jlong limit_con = cl->limit()->get_int();
759    julong trip_cnt = cl->trip_count();
760    jlong final_con = init_con + trip_cnt*stride_con;
761    int final_int = (int)final_con;
762    // The final value should be in integer range since the loop
763    // is counted and the limit was checked for overflow.
764    assert(final_con == (jlong)final_int, "final value should be integer");
765    limit = _igvn.intcon(final_int);
766  } else {
767    // Create new LoopLimit node to get exact limit (final iv value).
768    limit = new LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
769    register_new_node(limit, cl->in(LoopNode::EntryControl));
770  }
771  assert(limit != NULL, "sanity");
772  return limit;
773}
774
775//------------------------------Ideal------------------------------------------
776// Return a node which is more "ideal" than the current node.
777// Attempt to convert into a counted-loop.
778Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
779  if (!can_be_counted_loop(phase)) {
780    phase->C->set_major_progress();
781  }
782  return RegionNode::Ideal(phase, can_reshape);
783}
784
785
786//=============================================================================
787//------------------------------Ideal------------------------------------------
788// Return a node which is more "ideal" than the current node.
789// Attempt to convert into a counted-loop.
790Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
791  return RegionNode::Ideal(phase, can_reshape);
792}
793
794//------------------------------dump_spec--------------------------------------
795// Dump special per-node info
796#ifndef PRODUCT
797void CountedLoopNode::dump_spec(outputStream *st) const {
798  LoopNode::dump_spec(st);
799  if (stride_is_con()) {
800    st->print("stride: %d ",stride_con());
801  }
802  if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
803  if (is_main_loop()) st->print("main of N%d", _idx);
804  if (is_post_loop()) st->print("post of N%d", _main_idx);
805}
806#endif
807
808//=============================================================================
809int CountedLoopEndNode::stride_con() const {
810  return stride()->bottom_type()->is_int()->get_con();
811}
812
813//=============================================================================
814//------------------------------Value-----------------------------------------
815const Type* LoopLimitNode::Value(PhaseGVN* phase) const {
816  const Type* init_t   = phase->type(in(Init));
817  const Type* limit_t  = phase->type(in(Limit));
818  const Type* stride_t = phase->type(in(Stride));
819  // Either input is TOP ==> the result is TOP
820  if (init_t   == Type::TOP) return Type::TOP;
821  if (limit_t  == Type::TOP) return Type::TOP;
822  if (stride_t == Type::TOP) return Type::TOP;
823
824  int stride_con = stride_t->is_int()->get_con();
825  if (stride_con == 1)
826    return NULL;  // Identity
827
828  if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
829    // Use jlongs to avoid integer overflow.
830    jlong init_con   =  init_t->is_int()->get_con();
831    jlong limit_con  = limit_t->is_int()->get_con();
832    int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
833    jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
834    jlong final_con  = init_con + stride_con*trip_count;
835    int final_int = (int)final_con;
836    // The final value should be in integer range since the loop
837    // is counted and the limit was checked for overflow.
838    assert(final_con == (jlong)final_int, "final value should be integer");
839    return TypeInt::make(final_int);
840  }
841
842  return bottom_type(); // TypeInt::INT
843}
844
845//------------------------------Ideal------------------------------------------
846// Return a node which is more "ideal" than the current node.
847Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
848  if (phase->type(in(Init))   == Type::TOP ||
849      phase->type(in(Limit))  == Type::TOP ||
850      phase->type(in(Stride)) == Type::TOP)
851    return NULL;  // Dead
852
853  int stride_con = phase->type(in(Stride))->is_int()->get_con();
854  if (stride_con == 1)
855    return NULL;  // Identity
856
857  if (in(Init)->is_Con() && in(Limit)->is_Con())
858    return NULL;  // Value
859
860  // Delay following optimizations until all loop optimizations
861  // done to keep Ideal graph simple.
862  if (!can_reshape || phase->C->major_progress())
863    return NULL;
864
865  const TypeInt* init_t  = phase->type(in(Init) )->is_int();
866  const TypeInt* limit_t = phase->type(in(Limit))->is_int();
867  int stride_p;
868  jlong lim, ini;
869  julong max;
870  if (stride_con > 0) {
871    stride_p = stride_con;
872    lim = limit_t->_hi;
873    ini = init_t->_lo;
874    max = (julong)max_jint;
875  } else {
876    stride_p = -stride_con;
877    lim = init_t->_hi;
878    ini = limit_t->_lo;
879    max = (julong)min_jint;
880  }
881  julong range = lim - ini + stride_p;
882  if (range <= max) {
883    // Convert to integer expression if it is not overflow.
884    Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
885    Node *range = phase->transform(new SubINode(in(Limit), in(Init)));
886    Node *bias  = phase->transform(new AddINode(range, stride_m));
887    Node *trip  = phase->transform(new DivINode(0, bias, in(Stride)));
888    Node *span  = phase->transform(new MulINode(trip, in(Stride)));
889    return new AddINode(span, in(Init)); // exact limit
890  }
891
892  if (is_power_of_2(stride_p) ||                // divisor is 2^n
893      !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
894    // Convert to long expression to avoid integer overflow
895    // and let igvn optimizer convert this division.
896    //
897    Node*   init   = phase->transform( new ConvI2LNode(in(Init)));
898    Node*  limit   = phase->transform( new ConvI2LNode(in(Limit)));
899    Node* stride   = phase->longcon(stride_con);
900    Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
901
902    Node *range = phase->transform(new SubLNode(limit, init));
903    Node *bias  = phase->transform(new AddLNode(range, stride_m));
904    Node *span;
905    if (stride_con > 0 && is_power_of_2(stride_p)) {
906      // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
907      // and avoid generating rounding for division. Zero trip guard should
908      // guarantee that init < limit but sometimes the guard is missing and
909      // we can get situation when init > limit. Note, for the empty loop
910      // optimization zero trip guard is generated explicitly which leaves
911      // only RCE predicate where exact limit is used and the predicate
912      // will simply fail forcing recompilation.
913      Node* neg_stride   = phase->longcon(-stride_con);
914      span = phase->transform(new AndLNode(bias, neg_stride));
915    } else {
916      Node *trip  = phase->transform(new DivLNode(0, bias, stride));
917      span = phase->transform(new MulLNode(trip, stride));
918    }
919    // Convert back to int
920    Node *span_int = phase->transform(new ConvL2INode(span));
921    return new AddINode(span_int, in(Init)); // exact limit
922  }
923
924  return NULL;    // No progress
925}
926
927//------------------------------Identity---------------------------------------
928// If stride == 1 return limit node.
929Node* LoopLimitNode::Identity(PhaseGVN* phase) {
930  int stride_con = phase->type(in(Stride))->is_int()->get_con();
931  if (stride_con == 1 || stride_con == -1)
932    return in(Limit);
933  return this;
934}
935
936//=============================================================================
937//----------------------match_incr_with_optional_truncation--------------------
938// Match increment with optional truncation:
939// CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
940// Return NULL for failure. Success returns the increment node.
941Node* CountedLoopNode::match_incr_with_optional_truncation(
942                      Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
943  // Quick cutouts:
944  if (expr == NULL || expr->req() != 3)  return NULL;
945
946  Node *t1 = NULL;
947  Node *t2 = NULL;
948  const TypeInt* trunc_t = TypeInt::INT;
949  Node* n1 = expr;
950  int   n1op = n1->Opcode();
951
952  // Try to strip (n1 & M) or (n1 << N >> N) from n1.
953  if (n1op == Op_AndI &&
954      n1->in(2)->is_Con() &&
955      n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
956    // %%% This check should match any mask of 2**K-1.
957    t1 = n1;
958    n1 = t1->in(1);
959    n1op = n1->Opcode();
960    trunc_t = TypeInt::CHAR;
961  } else if (n1op == Op_RShiftI &&
962             n1->in(1) != NULL &&
963             n1->in(1)->Opcode() == Op_LShiftI &&
964             n1->in(2) == n1->in(1)->in(2) &&
965             n1->in(2)->is_Con()) {
966    jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
967    // %%% This check should match any shift in [1..31].
968    if (shift == 16 || shift == 8) {
969      t1 = n1;
970      t2 = t1->in(1);
971      n1 = t2->in(1);
972      n1op = n1->Opcode();
973      if (shift == 16) {
974        trunc_t = TypeInt::SHORT;
975      } else if (shift == 8) {
976        trunc_t = TypeInt::BYTE;
977      }
978    }
979  }
980
981  // If (maybe after stripping) it is an AddI, we won:
982  if (n1op == Op_AddI) {
983    *trunc1 = t1;
984    *trunc2 = t2;
985    *trunc_type = trunc_t;
986    return n1;
987  }
988
989  // failed
990  return NULL;
991}
992
993
994//------------------------------filtered_type--------------------------------
995// Return a type based on condition control flow
996// A successful return will be a type that is restricted due
997// to a series of dominating if-tests, such as:
998//    if (i < 10) {
999//       if (i > 0) {
1000//          here: "i" type is [1..10)
1001//       }
1002//    }
1003// or a control flow merge
1004//    if (i < 10) {
1005//       do {
1006//          phi( , ) -- at top of loop type is [min_int..10)
1007//         i = ?
1008//       } while ( i < 10)
1009//
1010const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
1011  assert(n && n->bottom_type()->is_int(), "must be int");
1012  const TypeInt* filtered_t = NULL;
1013  if (!n->is_Phi()) {
1014    assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
1015    filtered_t = filtered_type_from_dominators(n, n_ctrl);
1016
1017  } else {
1018    Node* phi    = n->as_Phi();
1019    Node* region = phi->in(0);
1020    assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
1021    if (region && region != C->top()) {
1022      for (uint i = 1; i < phi->req(); i++) {
1023        Node* val   = phi->in(i);
1024        Node* use_c = region->in(i);
1025        const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
1026        if (val_t != NULL) {
1027          if (filtered_t == NULL) {
1028            filtered_t = val_t;
1029          } else {
1030            filtered_t = filtered_t->meet(val_t)->is_int();
1031          }
1032        }
1033      }
1034    }
1035  }
1036  const TypeInt* n_t = _igvn.type(n)->is_int();
1037  if (filtered_t != NULL) {
1038    n_t = n_t->join(filtered_t)->is_int();
1039  }
1040  return n_t;
1041}
1042
1043
1044//------------------------------filtered_type_from_dominators--------------------------------
1045// Return a possibly more restrictive type for val based on condition control flow of dominators
1046const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
1047  if (val->is_Con()) {
1048     return val->bottom_type()->is_int();
1049  }
1050  uint if_limit = 10; // Max number of dominating if's visited
1051  const TypeInt* rtn_t = NULL;
1052
1053  if (use_ctrl && use_ctrl != C->top()) {
1054    Node* val_ctrl = get_ctrl(val);
1055    uint val_dom_depth = dom_depth(val_ctrl);
1056    Node* pred = use_ctrl;
1057    uint if_cnt = 0;
1058    while (if_cnt < if_limit) {
1059      if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
1060        if_cnt++;
1061        const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
1062        if (if_t != NULL) {
1063          if (rtn_t == NULL) {
1064            rtn_t = if_t;
1065          } else {
1066            rtn_t = rtn_t->join(if_t)->is_int();
1067          }
1068        }
1069      }
1070      pred = idom(pred);
1071      if (pred == NULL || pred == C->top()) {
1072        break;
1073      }
1074      // Stop if going beyond definition block of val
1075      if (dom_depth(pred) < val_dom_depth) {
1076        break;
1077      }
1078    }
1079  }
1080  return rtn_t;
1081}
1082
1083
1084//------------------------------dump_spec--------------------------------------
1085// Dump special per-node info
1086#ifndef PRODUCT
1087void CountedLoopEndNode::dump_spec(outputStream *st) const {
1088  if( in(TestValue) != NULL && in(TestValue)->is_Bool() ) {
1089    BoolTest bt( test_trip()); // Added this for g++.
1090
1091    st->print("[");
1092    bt.dump_on(st);
1093    st->print("]");
1094  }
1095  st->print(" ");
1096  IfNode::dump_spec(st);
1097}
1098#endif
1099
1100//=============================================================================
1101//------------------------------is_member--------------------------------------
1102// Is 'l' a member of 'this'?
1103bool IdealLoopTree::is_member(const IdealLoopTree *l) const {
1104  while( l->_nest > _nest ) l = l->_parent;
1105  return l == this;
1106}
1107
1108//------------------------------set_nest---------------------------------------
1109// Set loop tree nesting depth.  Accumulate _has_call bits.
1110int IdealLoopTree::set_nest( uint depth ) {
1111  _nest = depth;
1112  int bits = _has_call;
1113  if( _child ) bits |= _child->set_nest(depth+1);
1114  if( bits ) _has_call = 1;
1115  if( _next  ) bits |= _next ->set_nest(depth  );
1116  return bits;
1117}
1118
1119//------------------------------split_fall_in----------------------------------
1120// Split out multiple fall-in edges from the loop header.  Move them to a
1121// private RegionNode before the loop.  This becomes the loop landing pad.
1122void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
1123  PhaseIterGVN &igvn = phase->_igvn;
1124  uint i;
1125
1126  // Make a new RegionNode to be the landing pad.
1127  Node *landing_pad = new RegionNode( fall_in_cnt+1 );
1128  phase->set_loop(landing_pad,_parent);
1129  // Gather all the fall-in control paths into the landing pad
1130  uint icnt = fall_in_cnt;
1131  uint oreq = _head->req();
1132  for( i = oreq-1; i>0; i-- )
1133    if( !phase->is_member( this, _head->in(i) ) )
1134      landing_pad->set_req(icnt--,_head->in(i));
1135
1136  // Peel off PhiNode edges as well
1137  for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1138    Node *oj = _head->fast_out(j);
1139    if( oj->is_Phi() ) {
1140      PhiNode* old_phi = oj->as_Phi();
1141      assert( old_phi->region() == _head, "" );
1142      igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
1143      Node *p = PhiNode::make_blank(landing_pad, old_phi);
1144      uint icnt = fall_in_cnt;
1145      for( i = oreq-1; i>0; i-- ) {
1146        if( !phase->is_member( this, _head->in(i) ) ) {
1147          p->init_req(icnt--, old_phi->in(i));
1148          // Go ahead and clean out old edges from old phi
1149          old_phi->del_req(i);
1150        }
1151      }
1152      // Search for CSE's here, because ZKM.jar does a lot of
1153      // loop hackery and we need to be a little incremental
1154      // with the CSE to avoid O(N^2) node blow-up.
1155      Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
1156      if( p2 ) {                // Found CSE
1157        p->destruct();          // Recover useless new node
1158        p = p2;                 // Use old node
1159      } else {
1160        igvn.register_new_node_with_optimizer(p, old_phi);
1161      }
1162      // Make old Phi refer to new Phi.
1163      old_phi->add_req(p);
1164      // Check for the special case of making the old phi useless and
1165      // disappear it.  In JavaGrande I have a case where this useless
1166      // Phi is the loop limit and prevents recognizing a CountedLoop
1167      // which in turn prevents removing an empty loop.
1168      Node *id_old_phi = old_phi->Identity( &igvn );
1169      if( id_old_phi != old_phi ) { // Found a simple identity?
1170        // Note that I cannot call 'replace_node' here, because
1171        // that will yank the edge from old_phi to the Region and
1172        // I'm mid-iteration over the Region's uses.
1173        for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
1174          Node* use = old_phi->last_out(i);
1175          igvn.rehash_node_delayed(use);
1176          uint uses_found = 0;
1177          for (uint j = 0; j < use->len(); j++) {
1178            if (use->in(j) == old_phi) {
1179              if (j < use->req()) use->set_req (j, id_old_phi);
1180              else                use->set_prec(j, id_old_phi);
1181              uses_found++;
1182            }
1183          }
1184          i -= uses_found;    // we deleted 1 or more copies of this edge
1185        }
1186      }
1187      igvn._worklist.push(old_phi);
1188    }
1189  }
1190  // Finally clean out the fall-in edges from the RegionNode
1191  for( i = oreq-1; i>0; i-- ) {
1192    if( !phase->is_member( this, _head->in(i) ) ) {
1193      _head->del_req(i);
1194    }
1195  }
1196  igvn.rehash_node_delayed(_head);
1197  // Transform landing pad
1198  igvn.register_new_node_with_optimizer(landing_pad, _head);
1199  // Insert landing pad into the header
1200  _head->add_req(landing_pad);
1201}
1202
1203//------------------------------split_outer_loop-------------------------------
1204// Split out the outermost loop from this shared header.
1205void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
1206  PhaseIterGVN &igvn = phase->_igvn;
1207
1208  // Find index of outermost loop; it should also be my tail.
1209  uint outer_idx = 1;
1210  while( _head->in(outer_idx) != _tail ) outer_idx++;
1211
1212  // Make a LoopNode for the outermost loop.
1213  Node *ctl = _head->in(LoopNode::EntryControl);
1214  Node *outer = new LoopNode( ctl, _head->in(outer_idx) );
1215  outer = igvn.register_new_node_with_optimizer(outer, _head);
1216  phase->set_created_loop_node();
1217
1218  // Outermost loop falls into '_head' loop
1219  _head->set_req(LoopNode::EntryControl, outer);
1220  _head->del_req(outer_idx);
1221  // Split all the Phis up between '_head' loop and 'outer' loop.
1222  for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1223    Node *out = _head->fast_out(j);
1224    if( out->is_Phi() ) {
1225      PhiNode *old_phi = out->as_Phi();
1226      assert( old_phi->region() == _head, "" );
1227      Node *phi = PhiNode::make_blank(outer, old_phi);
1228      phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
1229      phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
1230      phi = igvn.register_new_node_with_optimizer(phi, old_phi);
1231      // Make old Phi point to new Phi on the fall-in path
1232      igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
1233      old_phi->del_req(outer_idx);
1234    }
1235  }
1236
1237  // Use the new loop head instead of the old shared one
1238  _head = outer;
1239  phase->set_loop(_head, this);
1240}
1241
1242//------------------------------fix_parent-------------------------------------
1243static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
1244  loop->_parent = parent;
1245  if( loop->_child ) fix_parent( loop->_child, loop   );
1246  if( loop->_next  ) fix_parent( loop->_next , parent );
1247}
1248
1249//------------------------------estimate_path_freq-----------------------------
1250static float estimate_path_freq( Node *n ) {
1251  // Try to extract some path frequency info
1252  IfNode *iff;
1253  for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
1254    uint nop = n->Opcode();
1255    if( nop == Op_SafePoint ) {   // Skip any safepoint
1256      n = n->in(0);
1257      continue;
1258    }
1259    if( nop == Op_CatchProj ) {   // Get count from a prior call
1260      // Assume call does not always throw exceptions: means the call-site
1261      // count is also the frequency of the fall-through path.
1262      assert( n->is_CatchProj(), "" );
1263      if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
1264        return 0.0f;            // Assume call exception path is rare
1265      Node *call = n->in(0)->in(0)->in(0);
1266      assert( call->is_Call(), "expect a call here" );
1267      const JVMState *jvms = ((CallNode*)call)->jvms();
1268      ciMethodData* methodData = jvms->method()->method_data();
1269      if (!methodData->is_mature())  return 0.0f; // No call-site data
1270      ciProfileData* data = methodData->bci_to_data(jvms->bci());
1271      if ((data == NULL) || !data->is_CounterData()) {
1272        // no call profile available, try call's control input
1273        n = n->in(0);
1274        continue;
1275      }
1276      return data->as_CounterData()->count()/FreqCountInvocations;
1277    }
1278    // See if there's a gating IF test
1279    Node *n_c = n->in(0);
1280    if( !n_c->is_If() ) break;       // No estimate available
1281    iff = n_c->as_If();
1282    if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
1283      // Compute how much count comes on this path
1284      return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
1285    // Have no count info.  Skip dull uncommon-trap like branches.
1286    if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
1287        (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
1288      break;
1289    // Skip through never-taken branch; look for a real loop exit.
1290    n = iff->in(0);
1291  }
1292  return 0.0f;                  // No estimate available
1293}
1294
1295//------------------------------merge_many_backedges---------------------------
1296// Merge all the backedges from the shared header into a private Region.
1297// Feed that region as the one backedge to this loop.
1298void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
1299  uint i;
1300
1301  // Scan for the top 2 hottest backedges
1302  float hotcnt = 0.0f;
1303  float warmcnt = 0.0f;
1304  uint hot_idx = 0;
1305  // Loop starts at 2 because slot 1 is the fall-in path
1306  for( i = 2; i < _head->req(); i++ ) {
1307    float cnt = estimate_path_freq(_head->in(i));
1308    if( cnt > hotcnt ) {       // Grab hottest path
1309      warmcnt = hotcnt;
1310      hotcnt = cnt;
1311      hot_idx = i;
1312    } else if( cnt > warmcnt ) { // And 2nd hottest path
1313      warmcnt = cnt;
1314    }
1315  }
1316
1317  // See if the hottest backedge is worthy of being an inner loop
1318  // by being much hotter than the next hottest backedge.
1319  if( hotcnt <= 0.0001 ||
1320      hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
1321
1322  // Peel out the backedges into a private merge point; peel
1323  // them all except optionally hot_idx.
1324  PhaseIterGVN &igvn = phase->_igvn;
1325
1326  Node *hot_tail = NULL;
1327  // Make a Region for the merge point
1328  Node *r = new RegionNode(1);
1329  for( i = 2; i < _head->req(); i++ ) {
1330    if( i != hot_idx )
1331      r->add_req( _head->in(i) );
1332    else hot_tail = _head->in(i);
1333  }
1334  igvn.register_new_node_with_optimizer(r, _head);
1335  // Plug region into end of loop _head, followed by hot_tail
1336  while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
1337  igvn.replace_input_of(_head, 2, r);
1338  if( hot_idx ) _head->add_req(hot_tail);
1339
1340  // Split all the Phis up between '_head' loop and the Region 'r'
1341  for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
1342    Node *out = _head->fast_out(j);
1343    if( out->is_Phi() ) {
1344      PhiNode* n = out->as_Phi();
1345      igvn.hash_delete(n);      // Delete from hash before hacking edges
1346      Node *hot_phi = NULL;
1347      Node *phi = new PhiNode(r, n->type(), n->adr_type());
1348      // Check all inputs for the ones to peel out
1349      uint j = 1;
1350      for( uint i = 2; i < n->req(); i++ ) {
1351        if( i != hot_idx )
1352          phi->set_req( j++, n->in(i) );
1353        else hot_phi = n->in(i);
1354      }
1355      // Register the phi but do not transform until whole place transforms
1356      igvn.register_new_node_with_optimizer(phi, n);
1357      // Add the merge phi to the old Phi
1358      while( n->req() > 3 ) n->del_req( n->req()-1 );
1359      igvn.replace_input_of(n, 2, phi);
1360      if( hot_idx ) n->add_req(hot_phi);
1361    }
1362  }
1363
1364
1365  // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
1366  // of self loop tree.  Turn self into a loop headed by _head and with
1367  // tail being the new merge point.
1368  IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
1369  phase->set_loop(_tail,ilt);   // Adjust tail
1370  _tail = r;                    // Self's tail is new merge point
1371  phase->set_loop(r,this);
1372  ilt->_child = _child;         // New guy has my children
1373  _child = ilt;                 // Self has new guy as only child
1374  ilt->_parent = this;          // new guy has self for parent
1375  ilt->_nest = _nest;           // Same nesting depth (for now)
1376
1377  // Starting with 'ilt', look for child loop trees using the same shared
1378  // header.  Flatten these out; they will no longer be loops in the end.
1379  IdealLoopTree **pilt = &_child;
1380  while( ilt ) {
1381    if( ilt->_head == _head ) {
1382      uint i;
1383      for( i = 2; i < _head->req(); i++ )
1384        if( _head->in(i) == ilt->_tail )
1385          break;                // Still a loop
1386      if( i == _head->req() ) { // No longer a loop
1387        // Flatten ilt.  Hang ilt's "_next" list from the end of
1388        // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
1389        IdealLoopTree **cp = &ilt->_child;
1390        while( *cp ) cp = &(*cp)->_next;   // Find end of child list
1391        *cp = ilt->_next;       // Hang next list at end of child list
1392        *pilt = ilt->_child;    // Move child up to replace ilt
1393        ilt->_head = NULL;      // Flag as a loop UNIONED into parent
1394        ilt = ilt->_child;      // Repeat using new ilt
1395        continue;               // do not advance over ilt->_child
1396      }
1397      assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
1398      phase->set_loop(_head,ilt);
1399    }
1400    pilt = &ilt->_child;        // Advance to next
1401    ilt = *pilt;
1402  }
1403
1404  if( _child ) fix_parent( _child, this );
1405}
1406
1407//------------------------------beautify_loops---------------------------------
1408// Split shared headers and insert loop landing pads.
1409// Insert a LoopNode to replace the RegionNode.
1410// Return TRUE if loop tree is structurally changed.
1411bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1412  bool result = false;
1413  // Cache parts in locals for easy
1414  PhaseIterGVN &igvn = phase->_igvn;
1415
1416  igvn.hash_delete(_head);      // Yank from hash before hacking edges
1417
1418  // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1419  int fall_in_cnt = 0;
1420  for( uint i = 1; i < _head->req(); i++ )
1421    if( !phase->is_member( this, _head->in(i) ) )
1422      fall_in_cnt++;
1423  assert( fall_in_cnt, "at least 1 fall-in path" );
1424  if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1425    split_fall_in( phase, fall_in_cnt );
1426
1427  // Swap inputs to the _head and all Phis to move the fall-in edge to
1428  // the left.
1429  fall_in_cnt = 1;
1430  while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1431    fall_in_cnt++;
1432  if( fall_in_cnt > 1 ) {
1433    // Since I am just swapping inputs I do not need to update def-use info
1434    Node *tmp = _head->in(1);
1435    igvn.rehash_node_delayed(_head);
1436    _head->set_req( 1, _head->in(fall_in_cnt) );
1437    _head->set_req( fall_in_cnt, tmp );
1438    // Swap also all Phis
1439    for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1440      Node* phi = _head->fast_out(i);
1441      if( phi->is_Phi() ) {
1442        igvn.rehash_node_delayed(phi); // Yank from hash before hacking edges
1443        tmp = phi->in(1);
1444        phi->set_req( 1, phi->in(fall_in_cnt) );
1445        phi->set_req( fall_in_cnt, tmp );
1446      }
1447    }
1448  }
1449  assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1450  assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1451
1452  // If I am a shared header (multiple backedges), peel off the many
1453  // backedges into a private merge point and use the merge point as
1454  // the one true backedge.
1455  if( _head->req() > 3 ) {
1456    // Merge the many backedges into a single backedge but leave
1457    // the hottest backedge as separate edge for the following peel.
1458    merge_many_backedges( phase );
1459    result = true;
1460  }
1461
1462  // If I have one hot backedge, peel off myself loop.
1463  // I better be the outermost loop.
1464  if (_head->req() > 3 && !_irreducible) {
1465    split_outer_loop( phase );
1466    result = true;
1467
1468  } else if (!_head->is_Loop() && !_irreducible) {
1469    // Make a new LoopNode to replace the old loop head
1470    Node *l = new LoopNode( _head->in(1), _head->in(2) );
1471    l = igvn.register_new_node_with_optimizer(l, _head);
1472    phase->set_created_loop_node();
1473    // Go ahead and replace _head
1474    phase->_igvn.replace_node( _head, l );
1475    _head = l;
1476    phase->set_loop(_head, this);
1477  }
1478
1479  // Now recursively beautify nested loops
1480  if( _child ) result |= _child->beautify_loops( phase );
1481  if( _next  ) result |= _next ->beautify_loops( phase );
1482  return result;
1483}
1484
1485//------------------------------allpaths_check_safepts----------------------------
1486// Allpaths backwards scan from loop tail, terminating each path at first safepoint
1487// encountered.  Helper for check_safepts.
1488void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1489  assert(stack.size() == 0, "empty stack");
1490  stack.push(_tail);
1491  visited.Clear();
1492  visited.set(_tail->_idx);
1493  while (stack.size() > 0) {
1494    Node* n = stack.pop();
1495    if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1496      // Terminate this path
1497    } else if (n->Opcode() == Op_SafePoint) {
1498      if (_phase->get_loop(n) != this) {
1499        if (_required_safept == NULL) _required_safept = new Node_List();
1500        _required_safept->push(n);  // save the one closest to the tail
1501      }
1502      // Terminate this path
1503    } else {
1504      uint start = n->is_Region() ? 1 : 0;
1505      uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1506      for (uint i = start; i < end; i++) {
1507        Node* in = n->in(i);
1508        assert(in->is_CFG(), "must be");
1509        if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1510          stack.push(in);
1511        }
1512      }
1513    }
1514  }
1515}
1516
1517//------------------------------check_safepts----------------------------
1518// Given dominators, try to find loops with calls that must always be
1519// executed (call dominates loop tail).  These loops do not need non-call
1520// safepoints (ncsfpt).
1521//
1522// A complication is that a safepoint in a inner loop may be needed
1523// by an outer loop. In the following, the inner loop sees it has a
1524// call (block 3) on every path from the head (block 2) to the
1525// backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1526// in block 2, _but_ this leaves the outer loop without a safepoint.
1527//
1528//          entry  0
1529//                 |
1530//                 v
1531// outer 1,2    +->1
1532//              |  |
1533//              |  v
1534//              |  2<---+  ncsfpt in 2
1535//              |_/|\   |
1536//                 | v  |
1537// inner 2,3      /  3  |  call in 3
1538//               /   |  |
1539//              v    +--+
1540//        exit  4
1541//
1542//
1543// This method creates a list (_required_safept) of ncsfpt nodes that must
1544// be protected is created for each loop. When a ncsfpt maybe deleted, it
1545// is first looked for in the lists for the outer loops of the current loop.
1546//
1547// The insights into the problem:
1548//  A) counted loops are okay
1549//  B) innermost loops are okay (only an inner loop can delete
1550//     a ncsfpt needed by an outer loop)
1551//  C) a loop is immune from an inner loop deleting a safepoint
1552//     if the loop has a call on the idom-path
1553//  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1554//     idom-path that is not in a nested loop
1555//  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1556//     loop needs to be prevented from deletion by an inner loop
1557//
1558// There are two analyses:
1559//  1) The first, and cheaper one, scans the loop body from
1560//     tail to head following the idom (immediate dominator)
1561//     chain, looking for the cases (C,D,E) above.
1562//     Since inner loops are scanned before outer loops, there is summary
1563//     information about inner loops.  Inner loops can be skipped over
1564//     when the tail of an inner loop is encountered.
1565//
1566//  2) The second, invoked if the first fails to find a call or ncsfpt on
1567//     the idom path (which is rare), scans all predecessor control paths
1568//     from the tail to the head, terminating a path when a call or sfpt
1569//     is encountered, to find the ncsfpt's that are closest to the tail.
1570//
1571void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1572  // Bottom up traversal
1573  IdealLoopTree* ch = _child;
1574  if (_child) _child->check_safepts(visited, stack);
1575  if (_next)  _next ->check_safepts(visited, stack);
1576
1577  if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1578    bool  has_call         = false; // call on dom-path
1579    bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1580    Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1581    // Scan the dom-path nodes from tail to head
1582    for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1583      if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1584        has_call = true;
1585        _has_sfpt = 1;          // Then no need for a safept!
1586        break;
1587      } else if (n->Opcode() == Op_SafePoint) {
1588        if (_phase->get_loop(n) == this) {
1589          has_local_ncsfpt = true;
1590          break;
1591        }
1592        if (nonlocal_ncsfpt == NULL) {
1593          nonlocal_ncsfpt = n; // save the one closest to the tail
1594        }
1595      } else {
1596        IdealLoopTree* nlpt = _phase->get_loop(n);
1597        if (this != nlpt) {
1598          // If at an inner loop tail, see if the inner loop has already
1599          // recorded seeing a call on the dom-path (and stop.)  If not,
1600          // jump to the head of the inner loop.
1601          assert(is_member(nlpt), "nested loop");
1602          Node* tail = nlpt->_tail;
1603          if (tail->in(0)->is_If()) tail = tail->in(0);
1604          if (n == tail) {
1605            // If inner loop has call on dom-path, so does outer loop
1606            if (nlpt->_has_sfpt) {
1607              has_call = true;
1608              _has_sfpt = 1;
1609              break;
1610            }
1611            // Skip to head of inner loop
1612            assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1613            n = nlpt->_head;
1614          }
1615        }
1616      }
1617    }
1618    // Record safept's that this loop needs preserved when an
1619    // inner loop attempts to delete it's safepoints.
1620    if (_child != NULL && !has_call && !has_local_ncsfpt) {
1621      if (nonlocal_ncsfpt != NULL) {
1622        if (_required_safept == NULL) _required_safept = new Node_List();
1623        _required_safept->push(nonlocal_ncsfpt);
1624      } else {
1625        // Failed to find a suitable safept on the dom-path.  Now use
1626        // an all paths walk from tail to head, looking for safepoints to preserve.
1627        allpaths_check_safepts(visited, stack);
1628      }
1629    }
1630  }
1631}
1632
1633//---------------------------is_deleteable_safept----------------------------
1634// Is safept not required by an outer loop?
1635bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1636  assert(sfpt->Opcode() == Op_SafePoint, "");
1637  IdealLoopTree* lp = get_loop(sfpt)->_parent;
1638  while (lp != NULL) {
1639    Node_List* sfpts = lp->_required_safept;
1640    if (sfpts != NULL) {
1641      for (uint i = 0; i < sfpts->size(); i++) {
1642        if (sfpt == sfpts->at(i))
1643          return false;
1644      }
1645    }
1646    lp = lp->_parent;
1647  }
1648  return true;
1649}
1650
1651//---------------------------replace_parallel_iv-------------------------------
1652// Replace parallel induction variable (parallel to trip counter)
1653void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
1654  assert(loop->_head->is_CountedLoop(), "");
1655  CountedLoopNode *cl = loop->_head->as_CountedLoop();
1656  if (!cl->is_valid_counted_loop())
1657    return;         // skip malformed counted loop
1658  Node *incr = cl->incr();
1659  if (incr == NULL)
1660    return;         // Dead loop?
1661  Node *init = cl->init_trip();
1662  Node *phi  = cl->phi();
1663  int stride_con = cl->stride_con();
1664
1665  // Visit all children, looking for Phis
1666  for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1667    Node *out = cl->out(i);
1668    // Look for other phis (secondary IVs). Skip dead ones
1669    if (!out->is_Phi() || out == phi || !has_node(out))
1670      continue;
1671    PhiNode* phi2 = out->as_Phi();
1672    Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1673    // Look for induction variables of the form:  X += constant
1674    if (phi2->region() != loop->_head ||
1675        incr2->req() != 3 ||
1676        incr2->in(1) != phi2 ||
1677        incr2 == incr ||
1678        incr2->Opcode() != Op_AddI ||
1679        !incr2->in(2)->is_Con())
1680      continue;
1681
1682    // Check for parallel induction variable (parallel to trip counter)
1683    // via an affine function.  In particular, count-down loops with
1684    // count-up array indices are common. We only RCE references off
1685    // the trip-counter, so we need to convert all these to trip-counter
1686    // expressions.
1687    Node *init2 = phi2->in( LoopNode::EntryControl );
1688    int stride_con2 = incr2->in(2)->get_int();
1689
1690    // The ratio of the two strides cannot be represented as an int
1691    // if stride_con2 is min_int and stride_con is -1.
1692    if (stride_con2 == min_jint && stride_con == -1) {
1693      continue;
1694    }
1695
1696    // The general case here gets a little tricky.  We want to find the
1697    // GCD of all possible parallel IV's and make a new IV using this
1698    // GCD for the loop.  Then all possible IVs are simple multiples of
1699    // the GCD.  In practice, this will cover very few extra loops.
1700    // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1701    // where +/-1 is the common case, but other integer multiples are
1702    // also easy to handle.
1703    int ratio_con = stride_con2/stride_con;
1704
1705    if ((ratio_con * stride_con) == stride_con2) { // Check for exact
1706#ifndef PRODUCT
1707      if (TraceLoopOpts) {
1708        tty->print("Parallel IV: %d ", phi2->_idx);
1709        loop->dump_head();
1710      }
1711#endif
1712      // Convert to using the trip counter.  The parallel induction
1713      // variable differs from the trip counter by a loop-invariant
1714      // amount, the difference between their respective initial values.
1715      // It is scaled by the 'ratio_con'.
1716      Node* ratio = _igvn.intcon(ratio_con);
1717      set_ctrl(ratio, C->root());
1718      Node* ratio_init = new MulINode(init, ratio);
1719      _igvn.register_new_node_with_optimizer(ratio_init, init);
1720      set_early_ctrl(ratio_init);
1721      Node* diff = new SubINode(init2, ratio_init);
1722      _igvn.register_new_node_with_optimizer(diff, init2);
1723      set_early_ctrl(diff);
1724      Node* ratio_idx = new MulINode(phi, ratio);
1725      _igvn.register_new_node_with_optimizer(ratio_idx, phi);
1726      set_ctrl(ratio_idx, cl);
1727      Node* add = new AddINode(ratio_idx, diff);
1728      _igvn.register_new_node_with_optimizer(add);
1729      set_ctrl(add, cl);
1730      _igvn.replace_node( phi2, add );
1731      // Sometimes an induction variable is unused
1732      if (add->outcnt() == 0) {
1733        _igvn.remove_dead_node(add);
1734      }
1735      --i; // deleted this phi; rescan starting with next position
1736      continue;
1737    }
1738  }
1739}
1740
1741void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
1742  Node* keep = NULL;
1743  if (keep_one) {
1744    // Look for a safepoint on the idom-path.
1745    for (Node* i = tail(); i != _head; i = phase->idom(i)) {
1746      if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
1747        keep = i;
1748        break; // Found one
1749      }
1750    }
1751  }
1752
1753  // Don't remove any safepoints if it is requested to keep a single safepoint and
1754  // no safepoint was found on idom-path. It is not safe to remove any safepoint
1755  // in this case since there's no safepoint dominating all paths in the loop body.
1756  bool prune = !keep_one || keep != NULL;
1757
1758  // Delete other safepoints in this loop.
1759  Node_List* sfpts = _safepts;
1760  if (prune && sfpts != NULL) {
1761    assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
1762    for (uint i = 0; i < sfpts->size(); i++) {
1763      Node* n = sfpts->at(i);
1764      assert(phase->get_loop(n) == this, "");
1765      if (n != keep && phase->is_deleteable_safept(n)) {
1766        phase->lazy_replace(n, n->in(TypeFunc::Control));
1767      }
1768    }
1769  }
1770}
1771
1772//------------------------------counted_loop-----------------------------------
1773// Convert to counted loops where possible
1774void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1775
1776  // For grins, set the inner-loop flag here
1777  if (!_child) {
1778    if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
1779  }
1780
1781  if (_head->is_CountedLoop() ||
1782      phase->is_counted_loop(_head, this)) {
1783
1784    if (!UseCountedLoopSafepoints) {
1785      // Indicate we do not need a safepoint here
1786      _has_sfpt = 1;
1787    }
1788
1789    // Remove safepoints
1790    bool keep_one_sfpt = !(_has_call || _has_sfpt);
1791    remove_safepoints(phase, keep_one_sfpt);
1792
1793    // Look for induction variables
1794    phase->replace_parallel_iv(this);
1795
1796  } else if (_parent != NULL && !_irreducible) {
1797    // Not a counted loop. Keep one safepoint.
1798    bool keep_one_sfpt = true;
1799    remove_safepoints(phase, keep_one_sfpt);
1800  }
1801
1802  // Recursively
1803  if (_child) _child->counted_loop( phase );
1804  if (_next)  _next ->counted_loop( phase );
1805}
1806
1807#ifndef PRODUCT
1808//------------------------------dump_head--------------------------------------
1809// Dump 1 liner for loop header info
1810void IdealLoopTree::dump_head( ) const {
1811  for (uint i=0; i<_nest; i++)
1812    tty->print("  ");
1813  tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1814  if (_irreducible) tty->print(" IRREDUCIBLE");
1815  Node* entry = _head->in(LoopNode::EntryControl);
1816  Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
1817  if (predicate != NULL ) {
1818    tty->print(" limit_check");
1819    entry = entry->in(0)->in(0);
1820  }
1821  if (UseLoopPredicate) {
1822    entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
1823    if (entry != NULL) {
1824      tty->print(" predicated");
1825    }
1826  }
1827  if (_head->is_CountedLoop()) {
1828    CountedLoopNode *cl = _head->as_CountedLoop();
1829    tty->print(" counted");
1830
1831    Node* init_n = cl->init_trip();
1832    if (init_n  != NULL &&  init_n->is_Con())
1833      tty->print(" [%d,", cl->init_trip()->get_int());
1834    else
1835      tty->print(" [int,");
1836    Node* limit_n = cl->limit();
1837    if (limit_n  != NULL &&  limit_n->is_Con())
1838      tty->print("%d),", cl->limit()->get_int());
1839    else
1840      tty->print("int),");
1841    int stride_con  = cl->stride_con();
1842    if (stride_con > 0) tty->print("+");
1843    tty->print("%d", stride_con);
1844
1845    tty->print(" (%0.f iters) ", cl->profile_trip_cnt());
1846
1847    if (cl->is_pre_loop ()) tty->print(" pre" );
1848    if (cl->is_main_loop()) tty->print(" main");
1849    if (cl->is_post_loop()) tty->print(" post");
1850    if (cl->is_vectorized_loop()) tty->print(" vector");
1851    if (cl->range_checks_present()) tty->print(" rc ");
1852    if (cl->is_multiversioned()) tty->print(" multi ");
1853  }
1854  if (_has_call) tty->print(" has_call");
1855  if (_has_sfpt) tty->print(" has_sfpt");
1856  if (_rce_candidate) tty->print(" rce");
1857  if (_safepts != NULL && _safepts->size() > 0) {
1858    tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
1859  }
1860  if (_required_safept != NULL && _required_safept->size() > 0) {
1861    tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
1862  }
1863  if (Verbose) {
1864    tty->print(" body={"); _body.dump_simple(); tty->print(" }");
1865  }
1866  tty->cr();
1867}
1868
1869//------------------------------dump-------------------------------------------
1870// Dump loops by loop tree
1871void IdealLoopTree::dump( ) const {
1872  dump_head();
1873  if (_child) _child->dump();
1874  if (_next)  _next ->dump();
1875}
1876
1877#endif
1878
1879static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1880  if (loop == root) {
1881    if (loop->_child != NULL) {
1882      log->begin_head("loop_tree");
1883      log->end_head();
1884      if( loop->_child ) log_loop_tree(root, loop->_child, log);
1885      log->tail("loop_tree");
1886      assert(loop->_next == NULL, "what?");
1887    }
1888  } else {
1889    Node* head = loop->_head;
1890    log->begin_head("loop");
1891    log->print(" idx='%d' ", head->_idx);
1892    if (loop->_irreducible) log->print("irreducible='1' ");
1893    if (head->is_Loop()) {
1894      if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1895      if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1896    }
1897    if (head->is_CountedLoop()) {
1898      CountedLoopNode* cl = head->as_CountedLoop();
1899      if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1900      if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1901      if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1902    }
1903    log->end_head();
1904    if( loop->_child ) log_loop_tree(root, loop->_child, log);
1905    log->tail("loop");
1906    if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1907  }
1908}
1909
1910//---------------------collect_potentially_useful_predicates-----------------------
1911// Helper function to collect potentially useful predicates to prevent them from
1912// being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1913void PhaseIdealLoop::collect_potentially_useful_predicates(
1914                         IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1915  if (loop->_child) { // child
1916    collect_potentially_useful_predicates(loop->_child, useful_predicates);
1917  }
1918
1919  // self (only loops that we can apply loop predication may use their predicates)
1920  if (loop->_head->is_Loop() &&
1921      !loop->_irreducible    &&
1922      !loop->tail()->is_top()) {
1923    LoopNode* lpn = loop->_head->as_Loop();
1924    Node* entry = lpn->in(LoopNode::EntryControl);
1925    Node* predicate_proj = find_predicate(entry); // loop_limit_check first
1926    if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
1927      assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
1928      useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1929      entry = entry->in(0)->in(0);
1930    }
1931    predicate_proj = find_predicate(entry); // Predicate
1932    if (predicate_proj != NULL ) {
1933      useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
1934    }
1935  }
1936
1937  if (loop->_next) { // sibling
1938    collect_potentially_useful_predicates(loop->_next, useful_predicates);
1939  }
1940}
1941
1942//------------------------eliminate_useless_predicates-----------------------------
1943// Eliminate all inserted predicates if they could not be used by loop predication.
1944// Note: it will also eliminates loop limits check predicate since it also uses
1945// Opaque1 node (see Parse::add_predicate()).
1946void PhaseIdealLoop::eliminate_useless_predicates() {
1947  if (C->predicate_count() == 0)
1948    return; // no predicate left
1949
1950  Unique_Node_List useful_predicates; // to store useful predicates
1951  if (C->has_loops()) {
1952    collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
1953  }
1954
1955  for (int i = C->predicate_count(); i > 0; i--) {
1956     Node * n = C->predicate_opaque1_node(i-1);
1957     assert(n->Opcode() == Op_Opaque1, "must be");
1958     if (!useful_predicates.member(n)) { // not in the useful list
1959       _igvn.replace_node(n, n->in(1));
1960     }
1961  }
1962}
1963
1964//------------------------process_expensive_nodes-----------------------------
1965// Expensive nodes have their control input set to prevent the GVN
1966// from commoning them and as a result forcing the resulting node to
1967// be in a more frequent path. Use CFG information here, to change the
1968// control inputs so that some expensive nodes can be commoned while
1969// not executed more frequently.
1970bool PhaseIdealLoop::process_expensive_nodes() {
1971  assert(OptimizeExpensiveOps, "optimization off?");
1972
1973  // Sort nodes to bring similar nodes together
1974  C->sort_expensive_nodes();
1975
1976  bool progress = false;
1977
1978  for (int i = 0; i < C->expensive_count(); ) {
1979    Node* n = C->expensive_node(i);
1980    int start = i;
1981    // Find nodes similar to n
1982    i++;
1983    for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
1984    int end = i;
1985    // And compare them two by two
1986    for (int j = start; j < end; j++) {
1987      Node* n1 = C->expensive_node(j);
1988      if (is_node_unreachable(n1)) {
1989        continue;
1990      }
1991      for (int k = j+1; k < end; k++) {
1992        Node* n2 = C->expensive_node(k);
1993        if (is_node_unreachable(n2)) {
1994          continue;
1995        }
1996
1997        assert(n1 != n2, "should be pair of nodes");
1998
1999        Node* c1 = n1->in(0);
2000        Node* c2 = n2->in(0);
2001
2002        Node* parent_c1 = c1;
2003        Node* parent_c2 = c2;
2004
2005        // The call to get_early_ctrl_for_expensive() moves the
2006        // expensive nodes up but stops at loops that are in a if
2007        // branch. See whether we can exit the loop and move above the
2008        // If.
2009        if (c1->is_Loop()) {
2010          parent_c1 = c1->in(1);
2011        }
2012        if (c2->is_Loop()) {
2013          parent_c2 = c2->in(1);
2014        }
2015
2016        if (parent_c1 == parent_c2) {
2017          _igvn._worklist.push(n1);
2018          _igvn._worklist.push(n2);
2019          continue;
2020        }
2021
2022        // Look for identical expensive node up the dominator chain.
2023        if (is_dominator(c1, c2)) {
2024          c2 = c1;
2025        } else if (is_dominator(c2, c1)) {
2026          c1 = c2;
2027        } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
2028                   parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
2029          // Both branches have the same expensive node so move it up
2030          // before the if.
2031          c1 = c2 = idom(parent_c1->in(0));
2032        }
2033        // Do the actual moves
2034        if (n1->in(0) != c1) {
2035          _igvn.hash_delete(n1);
2036          n1->set_req(0, c1);
2037          _igvn.hash_insert(n1);
2038          _igvn._worklist.push(n1);
2039          progress = true;
2040        }
2041        if (n2->in(0) != c2) {
2042          _igvn.hash_delete(n2);
2043          n2->set_req(0, c2);
2044          _igvn.hash_insert(n2);
2045          _igvn._worklist.push(n2);
2046          progress = true;
2047        }
2048      }
2049    }
2050  }
2051
2052  return progress;
2053}
2054
2055
2056//=============================================================================
2057//----------------------------build_and_optimize-------------------------------
2058// Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
2059// its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
2060void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
2061  ResourceMark rm;
2062
2063  int old_progress = C->major_progress();
2064  uint orig_worklist_size = _igvn._worklist.size();
2065
2066  // Reset major-progress flag for the driver's heuristics
2067  C->clear_major_progress();
2068
2069#ifndef PRODUCT
2070  // Capture for later assert
2071  uint unique = C->unique();
2072  _loop_invokes++;
2073  _loop_work += unique;
2074#endif
2075
2076  // True if the method has at least 1 irreducible loop
2077  _has_irreducible_loops = false;
2078
2079  _created_loop_node = false;
2080
2081  Arena *a = Thread::current()->resource_area();
2082  VectorSet visited(a);
2083  // Pre-grow the mapping from Nodes to IdealLoopTrees.
2084  _nodes.map(C->unique(), NULL);
2085  memset(_nodes.adr(), 0, wordSize * C->unique());
2086
2087  // Pre-build the top-level outermost loop tree entry
2088  _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
2089  // Do not need a safepoint at the top level
2090  _ltree_root->_has_sfpt = 1;
2091
2092  // Initialize Dominators.
2093  // Checked in clone_loop_predicate() during beautify_loops().
2094  _idom_size = 0;
2095  _idom      = NULL;
2096  _dom_depth = NULL;
2097  _dom_stk   = NULL;
2098
2099  // Empty pre-order array
2100  allocate_preorders();
2101
2102  // Build a loop tree on the fly.  Build a mapping from CFG nodes to
2103  // IdealLoopTree entries.  Data nodes are NOT walked.
2104  build_loop_tree();
2105  // Check for bailout, and return
2106  if (C->failing()) {
2107    return;
2108  }
2109
2110  // No loops after all
2111  if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
2112
2113  // There should always be an outer loop containing the Root and Return nodes.
2114  // If not, we have a degenerate empty program.  Bail out in this case.
2115  if (!has_node(C->root())) {
2116    if (!_verify_only) {
2117      C->clear_major_progress();
2118      C->record_method_not_compilable("empty program detected during loop optimization");
2119    }
2120    return;
2121  }
2122
2123  // Nothing to do, so get out
2124  bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
2125  bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
2126  if (stop_early && !do_expensive_nodes) {
2127    _igvn.optimize();           // Cleanup NeverBranches
2128    return;
2129  }
2130
2131  // Set loop nesting depth
2132  _ltree_root->set_nest( 0 );
2133
2134  // Split shared headers and insert loop landing pads.
2135  // Do not bother doing this on the Root loop of course.
2136  if( !_verify_me && !_verify_only && _ltree_root->_child ) {
2137    C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
2138    if( _ltree_root->_child->beautify_loops( this ) ) {
2139      // Re-build loop tree!
2140      _ltree_root->_child = NULL;
2141      _nodes.clear();
2142      reallocate_preorders();
2143      build_loop_tree();
2144      // Check for bailout, and return
2145      if (C->failing()) {
2146        return;
2147      }
2148      // Reset loop nesting depth
2149      _ltree_root->set_nest( 0 );
2150
2151      C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
2152    }
2153  }
2154
2155  // Build Dominators for elision of NULL checks & loop finding.
2156  // Since nodes do not have a slot for immediate dominator, make
2157  // a persistent side array for that info indexed on node->_idx.
2158  _idom_size = C->unique();
2159  _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
2160  _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
2161  _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
2162  memset( _dom_depth, 0, _idom_size * sizeof(uint) );
2163
2164  Dominators();
2165
2166  if (!_verify_only) {
2167    // As a side effect, Dominators removed any unreachable CFG paths
2168    // into RegionNodes.  It doesn't do this test against Root, so
2169    // we do it here.
2170    for( uint i = 1; i < C->root()->req(); i++ ) {
2171      if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
2172        _igvn.delete_input_of(C->root(), i);
2173        i--;                      // Rerun same iteration on compressed edges
2174      }
2175    }
2176
2177    // Given dominators, try to find inner loops with calls that must
2178    // always be executed (call dominates loop tail).  These loops do
2179    // not need a separate safepoint.
2180    Node_List cisstack(a);
2181    _ltree_root->check_safepts(visited, cisstack);
2182  }
2183
2184  // Walk the DATA nodes and place into loops.  Find earliest control
2185  // node.  For CFG nodes, the _nodes array starts out and remains
2186  // holding the associated IdealLoopTree pointer.  For DATA nodes, the
2187  // _nodes array holds the earliest legal controlling CFG node.
2188
2189  // Allocate stack with enough space to avoid frequent realloc
2190  int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
2191  Node_Stack nstack( a, stack_size );
2192
2193  visited.Clear();
2194  Node_List worklist(a);
2195  // Don't need C->root() on worklist since
2196  // it will be processed among C->top() inputs
2197  worklist.push( C->top() );
2198  visited.set( C->top()->_idx ); // Set C->top() as visited now
2199  build_loop_early( visited, worklist, nstack );
2200
2201  // Given early legal placement, try finding counted loops.  This placement
2202  // is good enough to discover most loop invariants.
2203  if( !_verify_me && !_verify_only )
2204    _ltree_root->counted_loop( this );
2205
2206  // Find latest loop placement.  Find ideal loop placement.
2207  visited.Clear();
2208  init_dom_lca_tags();
2209  // Need C->root() on worklist when processing outs
2210  worklist.push( C->root() );
2211  NOT_PRODUCT( C->verify_graph_edges(); )
2212  worklist.push( C->top() );
2213  build_loop_late( visited, worklist, nstack );
2214
2215  if (_verify_only) {
2216    // restore major progress flag
2217    for (int i = 0; i < old_progress; i++)
2218      C->set_major_progress();
2219    assert(C->unique() == unique, "verification mode made Nodes? ? ?");
2220    assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
2221    return;
2222  }
2223
2224  // clear out the dead code after build_loop_late
2225  while (_deadlist.size()) {
2226    _igvn.remove_globally_dead_node(_deadlist.pop());
2227  }
2228
2229  if (stop_early) {
2230    assert(do_expensive_nodes, "why are we here?");
2231    if (process_expensive_nodes()) {
2232      // If we made some progress when processing expensive nodes then
2233      // the IGVN may modify the graph in a way that will allow us to
2234      // make some more progress: we need to try processing expensive
2235      // nodes again.
2236      C->set_major_progress();
2237    }
2238    _igvn.optimize();
2239    return;
2240  }
2241
2242  // Some parser-inserted loop predicates could never be used by loop
2243  // predication or they were moved away from loop during some optimizations.
2244  // For example, peeling. Eliminate them before next loop optimizations.
2245  eliminate_useless_predicates();
2246
2247#ifndef PRODUCT
2248  C->verify_graph_edges();
2249  if (_verify_me) {             // Nested verify pass?
2250    // Check to see if the verify mode is broken
2251    assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
2252    return;
2253  }
2254  if(VerifyLoopOptimizations) verify();
2255  if(TraceLoopOpts && C->has_loops()) {
2256    _ltree_root->dump();
2257  }
2258#endif
2259
2260  if (skip_loop_opts) {
2261    // restore major progress flag
2262    for (int i = 0; i < old_progress; i++) {
2263      C->set_major_progress();
2264    }
2265
2266    // Cleanup any modified bits
2267    _igvn.optimize();
2268
2269    if (C->log() != NULL) {
2270      log_loop_tree(_ltree_root, _ltree_root, C->log());
2271    }
2272    return;
2273  }
2274
2275  if (ReassociateInvariants) {
2276    // Reassociate invariants and prep for split_thru_phi
2277    for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2278      IdealLoopTree* lpt = iter.current();
2279      bool is_counted = lpt->is_counted();
2280      if (!is_counted || !lpt->is_inner()) continue;
2281
2282      // check for vectorized loops, any reassociation of invariants was already done
2283      if (is_counted && lpt->_head->as_CountedLoop()->do_unroll_only()) continue;
2284
2285      lpt->reassociate_invariants(this);
2286
2287      // Because RCE opportunities can be masked by split_thru_phi,
2288      // look for RCE candidates and inhibit split_thru_phi
2289      // on just their loop-phi's for this pass of loop opts
2290      if (SplitIfBlocks && do_split_ifs) {
2291        if (lpt->policy_range_check(this)) {
2292          lpt->_rce_candidate = 1; // = true
2293        }
2294      }
2295    }
2296  }
2297
2298  // Check for aggressive application of split-if and other transforms
2299  // that require basic-block info (like cloning through Phi's)
2300  if( SplitIfBlocks && do_split_ifs ) {
2301    visited.Clear();
2302    split_if_with_blocks( visited, nstack );
2303    NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
2304  }
2305
2306  if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
2307    C->set_major_progress();
2308  }
2309
2310  // Perform loop predication before iteration splitting
2311  if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
2312    _ltree_root->_child->loop_predication(this);
2313  }
2314
2315  if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
2316    if (do_intrinsify_fill()) {
2317      C->set_major_progress();
2318    }
2319  }
2320
2321  // Perform iteration-splitting on inner loops.  Split iterations to avoid
2322  // range checks or one-shot null checks.
2323
2324  // If split-if's didn't hack the graph too bad (no CFG changes)
2325  // then do loop opts.
2326  if (C->has_loops() && !C->major_progress()) {
2327    memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
2328    _ltree_root->_child->iteration_split( this, worklist );
2329    // No verify after peeling!  GCM has hoisted code out of the loop.
2330    // After peeling, the hoisted code could sink inside the peeled area.
2331    // The peeling code does not try to recompute the best location for
2332    // all the code before the peeled area, so the verify pass will always
2333    // complain about it.
2334  }
2335  // Do verify graph edges in any case
2336  NOT_PRODUCT( C->verify_graph_edges(); );
2337
2338  if (!do_split_ifs) {
2339    // We saw major progress in Split-If to get here.  We forced a
2340    // pass with unrolling and not split-if, however more split-if's
2341    // might make progress.  If the unrolling didn't make progress
2342    // then the major-progress flag got cleared and we won't try
2343    // another round of Split-If.  In particular the ever-common
2344    // instance-of/check-cast pattern requires at least 2 rounds of
2345    // Split-If to clear out.
2346    C->set_major_progress();
2347  }
2348
2349  // Repeat loop optimizations if new loops were seen
2350  if (created_loop_node()) {
2351    C->set_major_progress();
2352  }
2353
2354  // Keep loop predicates and perform optimizations with them
2355  // until no more loop optimizations could be done.
2356  // After that switch predicates off and do more loop optimizations.
2357  if (!C->major_progress() && (C->predicate_count() > 0)) {
2358     C->cleanup_loop_predicates(_igvn);
2359     if (TraceLoopOpts) {
2360       tty->print_cr("PredicatesOff");
2361     }
2362     C->set_major_progress();
2363  }
2364
2365  // Convert scalar to superword operations at the end of all loop opts.
2366  if (UseSuperWord && C->has_loops() && !C->major_progress()) {
2367    // SuperWord transform
2368    SuperWord sw(this);
2369    for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2370      IdealLoopTree* lpt = iter.current();
2371      if (lpt->is_counted()) {
2372        CountedLoopNode *cl = lpt->_head->as_CountedLoop();
2373
2374        if (PostLoopMultiversioning && cl->is_rce_post_loop() && !cl->is_vectorized_loop()) {
2375          // Check that the rce'd post loop is encountered first, multiversion after all
2376          // major main loop optimization are concluded
2377          if (!C->major_progress()) {
2378            IdealLoopTree *lpt_next = lpt->_next;
2379            if (lpt_next && lpt_next->is_counted()) {
2380              CountedLoopNode *cl = lpt_next->_head->as_CountedLoop();
2381              has_range_checks(lpt_next);
2382              if (cl->is_post_loop() && cl->range_checks_present()) {
2383                if (!cl->is_multiversioned()) {
2384                  if (multi_version_post_loops(lpt, lpt_next) == false) {
2385                    // Cause the rce loop to be optimized away if we fail
2386                    cl->mark_is_multiversioned();
2387                    cl->set_slp_max_unroll(0);
2388                    poison_rce_post_loop(lpt);
2389                  }
2390                }
2391              }
2392            }
2393            sw.transform_loop(lpt, true);
2394          }
2395        } else if (cl->is_main_loop()) {
2396          sw.transform_loop(lpt, true);
2397        }
2398      }
2399    }
2400  }
2401
2402  // Cleanup any modified bits
2403  _igvn.optimize();
2404
2405  // disable assert until issue with split_flow_path is resolved (6742111)
2406  // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
2407  //        "shouldn't introduce irreducible loops");
2408
2409  if (C->log() != NULL) {
2410    log_loop_tree(_ltree_root, _ltree_root, C->log());
2411  }
2412}
2413
2414#ifndef PRODUCT
2415//------------------------------print_statistics-------------------------------
2416int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
2417int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
2418void PhaseIdealLoop::print_statistics() {
2419  tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
2420}
2421
2422//------------------------------verify-----------------------------------------
2423// Build a verify-only PhaseIdealLoop, and see that it agrees with me.
2424static int fail;                // debug only, so its multi-thread dont care
2425void PhaseIdealLoop::verify() const {
2426  int old_progress = C->major_progress();
2427  ResourceMark rm;
2428  PhaseIdealLoop loop_verify( _igvn, this );
2429  VectorSet visited(Thread::current()->resource_area());
2430
2431  fail = 0;
2432  verify_compare( C->root(), &loop_verify, visited );
2433  assert( fail == 0, "verify loops failed" );
2434  // Verify loop structure is the same
2435  _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
2436  // Reset major-progress.  It was cleared by creating a verify version of
2437  // PhaseIdealLoop.
2438  for( int i=0; i<old_progress; i++ )
2439    C->set_major_progress();
2440}
2441
2442//------------------------------verify_compare---------------------------------
2443// Make sure me and the given PhaseIdealLoop agree on key data structures
2444void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
2445  if( !n ) return;
2446  if( visited.test_set( n->_idx ) ) return;
2447  if( !_nodes[n->_idx] ) {      // Unreachable
2448    assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
2449    return;
2450  }
2451
2452  uint i;
2453  for( i = 0; i < n->req(); i++ )
2454    verify_compare( n->in(i), loop_verify, visited );
2455
2456  // Check the '_nodes' block/loop structure
2457  i = n->_idx;
2458  if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
2459    if( _nodes[i] != loop_verify->_nodes[i] &&
2460        get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
2461      tty->print("Mismatched control setting for: ");
2462      n->dump();
2463      if( fail++ > 10 ) return;
2464      Node *c = get_ctrl_no_update(n);
2465      tty->print("We have it as: ");
2466      if( c->in(0) ) c->dump();
2467        else tty->print_cr("N%d",c->_idx);
2468      tty->print("Verify thinks: ");
2469      if( loop_verify->has_ctrl(n) )
2470        loop_verify->get_ctrl_no_update(n)->dump();
2471      else
2472        loop_verify->get_loop_idx(n)->dump();
2473      tty->cr();
2474    }
2475  } else {                    // We have a loop
2476    IdealLoopTree *us = get_loop_idx(n);
2477    if( loop_verify->has_ctrl(n) ) {
2478      tty->print("Mismatched loop setting for: ");
2479      n->dump();
2480      if( fail++ > 10 ) return;
2481      tty->print("We have it as: ");
2482      us->dump();
2483      tty->print("Verify thinks: ");
2484      loop_verify->get_ctrl_no_update(n)->dump();
2485      tty->cr();
2486    } else if (!C->major_progress()) {
2487      // Loop selection can be messed up if we did a major progress
2488      // operation, like split-if.  Do not verify in that case.
2489      IdealLoopTree *them = loop_verify->get_loop_idx(n);
2490      if( us->_head != them->_head ||  us->_tail != them->_tail ) {
2491        tty->print("Unequals loops for: ");
2492        n->dump();
2493        if( fail++ > 10 ) return;
2494        tty->print("We have it as: ");
2495        us->dump();
2496        tty->print("Verify thinks: ");
2497        them->dump();
2498        tty->cr();
2499      }
2500    }
2501  }
2502
2503  // Check for immediate dominators being equal
2504  if( i >= _idom_size ) {
2505    if( !n->is_CFG() ) return;
2506    tty->print("CFG Node with no idom: ");
2507    n->dump();
2508    return;
2509  }
2510  if( !n->is_CFG() ) return;
2511  if( n == C->root() ) return; // No IDOM here
2512
2513  assert(n->_idx == i, "sanity");
2514  Node *id = idom_no_update(n);
2515  if( id != loop_verify->idom_no_update(n) ) {
2516    tty->print("Unequals idoms for: ");
2517    n->dump();
2518    if( fail++ > 10 ) return;
2519    tty->print("We have it as: ");
2520    id->dump();
2521    tty->print("Verify thinks: ");
2522    loop_verify->idom_no_update(n)->dump();
2523    tty->cr();
2524  }
2525
2526}
2527
2528//------------------------------verify_tree------------------------------------
2529// Verify that tree structures match.  Because the CFG can change, siblings
2530// within the loop tree can be reordered.  We attempt to deal with that by
2531// reordering the verify's loop tree if possible.
2532void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
2533  assert( _parent == parent, "Badly formed loop tree" );
2534
2535  // Siblings not in same order?  Attempt to re-order.
2536  if( _head != loop->_head ) {
2537    // Find _next pointer to update
2538    IdealLoopTree **pp = &loop->_parent->_child;
2539    while( *pp != loop )
2540      pp = &((*pp)->_next);
2541    // Find proper sibling to be next
2542    IdealLoopTree **nn = &loop->_next;
2543    while( (*nn) && (*nn)->_head != _head )
2544      nn = &((*nn)->_next);
2545
2546    // Check for no match.
2547    if( !(*nn) ) {
2548      // Annoyingly, irreducible loops can pick different headers
2549      // after a major_progress operation, so the rest of the loop
2550      // tree cannot be matched.
2551      if (_irreducible && Compile::current()->major_progress())  return;
2552      assert( 0, "failed to match loop tree" );
2553    }
2554
2555    // Move (*nn) to (*pp)
2556    IdealLoopTree *hit = *nn;
2557    *nn = hit->_next;
2558    hit->_next = loop;
2559    *pp = loop;
2560    loop = hit;
2561    // Now try again to verify
2562  }
2563
2564  assert( _head  == loop->_head , "mismatched loop head" );
2565  Node *tail = _tail;           // Inline a non-updating version of
2566  while( !tail->in(0) )         // the 'tail()' call.
2567    tail = tail->in(1);
2568  assert( tail == loop->_tail, "mismatched loop tail" );
2569
2570  // Counted loops that are guarded should be able to find their guards
2571  if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
2572    CountedLoopNode *cl = _head->as_CountedLoop();
2573    Node *init = cl->init_trip();
2574    Node *ctrl = cl->in(LoopNode::EntryControl);
2575    assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
2576    Node *iff  = ctrl->in(0);
2577    assert( iff->Opcode() == Op_If, "" );
2578    Node *bol  = iff->in(1);
2579    assert( bol->Opcode() == Op_Bool, "" );
2580    Node *cmp  = bol->in(1);
2581    assert( cmp->Opcode() == Op_CmpI, "" );
2582    Node *add  = cmp->in(1);
2583    Node *opaq;
2584    if( add->Opcode() == Op_Opaque1 ) {
2585      opaq = add;
2586    } else {
2587      assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
2588      assert( add == init, "" );
2589      opaq = cmp->in(2);
2590    }
2591    assert( opaq->Opcode() == Op_Opaque1, "" );
2592
2593  }
2594
2595  if (_child != NULL)  _child->verify_tree(loop->_child, this);
2596  if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
2597  // Innermost loops need to verify loop bodies,
2598  // but only if no 'major_progress'
2599  int fail = 0;
2600  if (!Compile::current()->major_progress() && _child == NULL) {
2601    for( uint i = 0; i < _body.size(); i++ ) {
2602      Node *n = _body.at(i);
2603      if (n->outcnt() == 0)  continue; // Ignore dead
2604      uint j;
2605      for( j = 0; j < loop->_body.size(); j++ )
2606        if( loop->_body.at(j) == n )
2607          break;
2608      if( j == loop->_body.size() ) { // Not found in loop body
2609        // Last ditch effort to avoid assertion: Its possible that we
2610        // have some users (so outcnt not zero) but are still dead.
2611        // Try to find from root.
2612        if (Compile::current()->root()->find(n->_idx)) {
2613          fail++;
2614          tty->print("We have that verify does not: ");
2615          n->dump();
2616        }
2617      }
2618    }
2619    for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
2620      Node *n = loop->_body.at(i2);
2621      if (n->outcnt() == 0)  continue; // Ignore dead
2622      uint j;
2623      for( j = 0; j < _body.size(); j++ )
2624        if( _body.at(j) == n )
2625          break;
2626      if( j == _body.size() ) { // Not found in loop body
2627        // Last ditch effort to avoid assertion: Its possible that we
2628        // have some users (so outcnt not zero) but are still dead.
2629        // Try to find from root.
2630        if (Compile::current()->root()->find(n->_idx)) {
2631          fail++;
2632          tty->print("Verify has that we do not: ");
2633          n->dump();
2634        }
2635      }
2636    }
2637    assert( !fail, "loop body mismatch" );
2638  }
2639}
2640
2641#endif
2642
2643//------------------------------set_idom---------------------------------------
2644void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
2645  uint idx = d->_idx;
2646  if (idx >= _idom_size) {
2647    uint newsize = _idom_size<<1;
2648    while( idx >= newsize ) {
2649      newsize <<= 1;
2650    }
2651    _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
2652    _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
2653    memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
2654    _idom_size = newsize;
2655  }
2656  _idom[idx] = n;
2657  _dom_depth[idx] = dom_depth;
2658}
2659
2660//------------------------------recompute_dom_depth---------------------------------------
2661// The dominator tree is constructed with only parent pointers.
2662// This recomputes the depth in the tree by first tagging all
2663// nodes as "no depth yet" marker.  The next pass then runs up
2664// the dom tree from each node marked "no depth yet", and computes
2665// the depth on the way back down.
2666void PhaseIdealLoop::recompute_dom_depth() {
2667  uint no_depth_marker = C->unique();
2668  uint i;
2669  // Initialize depth to "no depth yet"
2670  for (i = 0; i < _idom_size; i++) {
2671    if (_dom_depth[i] > 0 && _idom[i] != NULL) {
2672     _dom_depth[i] = no_depth_marker;
2673    }
2674  }
2675  if (_dom_stk == NULL) {
2676    uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
2677    if (init_size < 10) init_size = 10;
2678    _dom_stk = new GrowableArray<uint>(init_size);
2679  }
2680  // Compute new depth for each node.
2681  for (i = 0; i < _idom_size; i++) {
2682    uint j = i;
2683    // Run up the dom tree to find a node with a depth
2684    while (_dom_depth[j] == no_depth_marker) {
2685      _dom_stk->push(j);
2686      j = _idom[j]->_idx;
2687    }
2688    // Compute the depth on the way back down this tree branch
2689    uint dd = _dom_depth[j] + 1;
2690    while (_dom_stk->length() > 0) {
2691      uint j = _dom_stk->pop();
2692      _dom_depth[j] = dd;
2693      dd++;
2694    }
2695  }
2696}
2697
2698//------------------------------sort-------------------------------------------
2699// Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2700// loop tree, not the root.
2701IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2702  if( !innermost ) return loop; // New innermost loop
2703
2704  int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2705  assert( loop_preorder, "not yet post-walked loop" );
2706  IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2707  IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2708
2709  // Insert at start of list
2710  while( l ) {                  // Insertion sort based on pre-order
2711    if( l == loop ) return innermost; // Already on list!
2712    int l_preorder = get_preorder(l->_head); // Cache pre-order number
2713    assert( l_preorder, "not yet post-walked l" );
2714    // Check header pre-order number to figure proper nesting
2715    if( loop_preorder > l_preorder )
2716      break;                    // End of insertion
2717    // If headers tie (e.g., shared headers) check tail pre-order numbers.
2718    // Since I split shared headers, you'd think this could not happen.
2719    // BUT: I must first do the preorder numbering before I can discover I
2720    // have shared headers, so the split headers all get the same preorder
2721    // number as the RegionNode they split from.
2722    if( loop_preorder == l_preorder &&
2723        get_preorder(loop->_tail) < get_preorder(l->_tail) )
2724      break;                    // Also check for shared headers (same pre#)
2725    pp = &l->_parent;           // Chain up list
2726    l = *pp;
2727  }
2728  // Link into list
2729  // Point predecessor to me
2730  *pp = loop;
2731  // Point me to successor
2732  IdealLoopTree *p = loop->_parent;
2733  loop->_parent = l;            // Point me to successor
2734  if( p ) sort( p, innermost ); // Insert my parents into list as well
2735  return innermost;
2736}
2737
2738//------------------------------build_loop_tree--------------------------------
2739// I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2740// bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2741// not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2742// tightest enclosing IdealLoopTree for post-walked.
2743//
2744// During my forward walk I do a short 1-layer lookahead to see if I can find
2745// a loop backedge with that doesn't have any work on the backedge.  This
2746// helps me construct nested loops with shared headers better.
2747//
2748// Once I've done the forward recursion, I do the post-work.  For each child
2749// I check to see if there is a backedge.  Backedges define a loop!  I
2750// insert an IdealLoopTree at the target of the backedge.
2751//
2752// During the post-work I also check to see if I have several children
2753// belonging to different loops.  If so, then this Node is a decision point
2754// where control flow can choose to change loop nests.  It is at this
2755// decision point where I can figure out how loops are nested.  At this
2756// time I can properly order the different loop nests from my children.
2757// Note that there may not be any backedges at the decision point!
2758//
2759// Since the decision point can be far removed from the backedges, I can't
2760// order my loops at the time I discover them.  Thus at the decision point
2761// I need to inspect loop header pre-order numbers to properly nest my
2762// loops.  This means I need to sort my childrens' loops by pre-order.
2763// The sort is of size number-of-control-children, which generally limits
2764// it to size 2 (i.e., I just choose between my 2 target loops).
2765void PhaseIdealLoop::build_loop_tree() {
2766  // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
2767  GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
2768  Node *n = C->root();
2769  bltstack.push(n);
2770  int pre_order = 1;
2771  int stack_size;
2772
2773  while ( ( stack_size = bltstack.length() ) != 0 ) {
2774    n = bltstack.top(); // Leave node on stack
2775    if ( !is_visited(n) ) {
2776      // ---- Pre-pass Work ----
2777      // Pre-walked but not post-walked nodes need a pre_order number.
2778
2779      set_preorder_visited( n, pre_order ); // set as visited
2780
2781      // ---- Scan over children ----
2782      // Scan first over control projections that lead to loop headers.
2783      // This helps us find inner-to-outer loops with shared headers better.
2784
2785      // Scan children's children for loop headers.
2786      for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2787        Node* m = n->raw_out(i);       // Child
2788        if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2789          // Scan over children's children to find loop
2790          for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2791            Node* l = m->fast_out(j);
2792            if( is_visited(l) &&       // Been visited?
2793                !is_postvisited(l) &&  // But not post-visited
2794                get_preorder(l) < pre_order ) { // And smaller pre-order
2795              // Found!  Scan the DFS down this path before doing other paths
2796              bltstack.push(m);
2797              break;
2798            }
2799          }
2800        }
2801      }
2802      pre_order++;
2803    }
2804    else if ( !is_postvisited(n) ) {
2805      // Note: build_loop_tree_impl() adds out edges on rare occasions,
2806      // such as com.sun.rsasign.am::a.
2807      // For non-recursive version, first, process current children.
2808      // On next iteration, check if additional children were added.
2809      for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2810        Node* u = n->raw_out(k);
2811        if ( u->is_CFG() && !is_visited(u) ) {
2812          bltstack.push(u);
2813        }
2814      }
2815      if ( bltstack.length() == stack_size ) {
2816        // There were no additional children, post visit node now
2817        (void)bltstack.pop(); // Remove node from stack
2818        pre_order = build_loop_tree_impl( n, pre_order );
2819        // Check for bailout
2820        if (C->failing()) {
2821          return;
2822        }
2823        // Check to grow _preorders[] array for the case when
2824        // build_loop_tree_impl() adds new nodes.
2825        check_grow_preorders();
2826      }
2827    }
2828    else {
2829      (void)bltstack.pop(); // Remove post-visited node from stack
2830    }
2831  }
2832}
2833
2834//------------------------------build_loop_tree_impl---------------------------
2835int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2836  // ---- Post-pass Work ----
2837  // Pre-walked but not post-walked nodes need a pre_order number.
2838
2839  // Tightest enclosing loop for this Node
2840  IdealLoopTree *innermost = NULL;
2841
2842  // For all children, see if any edge is a backedge.  If so, make a loop
2843  // for it.  Then find the tightest enclosing loop for the self Node.
2844  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2845    Node* m = n->fast_out(i);   // Child
2846    if( n == m ) continue;      // Ignore control self-cycles
2847    if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2848
2849    IdealLoopTree *l;           // Child's loop
2850    if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2851      // Found a backedge
2852      assert( get_preorder(m) < pre_order, "should be backedge" );
2853      // Check for the RootNode, which is already a LoopNode and is allowed
2854      // to have multiple "backedges".
2855      if( m == C->root()) {     // Found the root?
2856        l = _ltree_root;        // Root is the outermost LoopNode
2857      } else {                  // Else found a nested loop
2858        // Insert a LoopNode to mark this loop.
2859        l = new IdealLoopTree(this, m, n);
2860      } // End of Else found a nested loop
2861      if( !has_loop(m) )        // If 'm' does not already have a loop set
2862        set_loop(m, l);         // Set loop header to loop now
2863
2864    } else {                    // Else not a nested loop
2865      if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2866      l = get_loop(m);          // Get previously determined loop
2867      // If successor is header of a loop (nest), move up-loop till it
2868      // is a member of some outer enclosing loop.  Since there are no
2869      // shared headers (I've split them already) I only need to go up
2870      // at most 1 level.
2871      while( l && l->_head == m ) // Successor heads loop?
2872        l = l->_parent;         // Move up 1 for me
2873      // If this loop is not properly parented, then this loop
2874      // has no exit path out, i.e. its an infinite loop.
2875      if( !l ) {
2876        // Make loop "reachable" from root so the CFG is reachable.  Basically
2877        // insert a bogus loop exit that is never taken.  'm', the loop head,
2878        // points to 'n', one (of possibly many) fall-in paths.  There may be
2879        // many backedges as well.
2880
2881        // Here I set the loop to be the root loop.  I could have, after
2882        // inserting a bogus loop exit, restarted the recursion and found my
2883        // new loop exit.  This would make the infinite loop a first-class
2884        // loop and it would then get properly optimized.  What's the use of
2885        // optimizing an infinite loop?
2886        l = _ltree_root;        // Oops, found infinite loop
2887
2888        if (!_verify_only) {
2889          // Insert the NeverBranch between 'm' and it's control user.
2890          NeverBranchNode *iff = new NeverBranchNode( m );
2891          _igvn.register_new_node_with_optimizer(iff);
2892          set_loop(iff, l);
2893          Node *if_t = new CProjNode( iff, 0 );
2894          _igvn.register_new_node_with_optimizer(if_t);
2895          set_loop(if_t, l);
2896
2897          Node* cfg = NULL;       // Find the One True Control User of m
2898          for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2899            Node* x = m->fast_out(j);
2900            if (x->is_CFG() && x != m && x != iff)
2901              { cfg = x; break; }
2902          }
2903          assert(cfg != NULL, "must find the control user of m");
2904          uint k = 0;             // Probably cfg->in(0)
2905          while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2906          cfg->set_req( k, if_t ); // Now point to NeverBranch
2907          _igvn._worklist.push(cfg);
2908
2909          // Now create the never-taken loop exit
2910          Node *if_f = new CProjNode( iff, 1 );
2911          _igvn.register_new_node_with_optimizer(if_f);
2912          set_loop(if_f, l);
2913          // Find frame ptr for Halt.  Relies on the optimizer
2914          // V-N'ing.  Easier and quicker than searching through
2915          // the program structure.
2916          Node *frame = new ParmNode( C->start(), TypeFunc::FramePtr );
2917          _igvn.register_new_node_with_optimizer(frame);
2918          // Halt & Catch Fire
2919          Node *halt = new HaltNode( if_f, frame );
2920          _igvn.register_new_node_with_optimizer(halt);
2921          set_loop(halt, l);
2922          C->root()->add_req(halt);
2923        }
2924        set_loop(C->root(), _ltree_root);
2925      }
2926    }
2927    // Weeny check for irreducible.  This child was already visited (this
2928    // IS the post-work phase).  Is this child's loop header post-visited
2929    // as well?  If so, then I found another entry into the loop.
2930    if (!_verify_only) {
2931      while( is_postvisited(l->_head) ) {
2932        // found irreducible
2933        l->_irreducible = 1; // = true
2934        l = l->_parent;
2935        _has_irreducible_loops = true;
2936        // Check for bad CFG here to prevent crash, and bailout of compile
2937        if (l == NULL) {
2938          C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2939          return pre_order;
2940        }
2941      }
2942      C->set_has_irreducible_loop(_has_irreducible_loops);
2943    }
2944
2945    // This Node might be a decision point for loops.  It is only if
2946    // it's children belong to several different loops.  The sort call
2947    // does a trivial amount of work if there is only 1 child or all
2948    // children belong to the same loop.  If however, the children
2949    // belong to different loops, the sort call will properly set the
2950    // _parent pointers to show how the loops nest.
2951    //
2952    // In any case, it returns the tightest enclosing loop.
2953    innermost = sort( l, innermost );
2954  }
2955
2956  // Def-use info will have some dead stuff; dead stuff will have no
2957  // loop decided on.
2958
2959  // Am I a loop header?  If so fix up my parent's child and next ptrs.
2960  if( innermost && innermost->_head == n ) {
2961    assert( get_loop(n) == innermost, "" );
2962    IdealLoopTree *p = innermost->_parent;
2963    IdealLoopTree *l = innermost;
2964    while( p && l->_head == n ) {
2965      l->_next = p->_child;     // Put self on parents 'next child'
2966      p->_child = l;            // Make self as first child of parent
2967      l = p;                    // Now walk up the parent chain
2968      p = l->_parent;
2969    }
2970  } else {
2971    // Note that it is possible for a LoopNode to reach here, if the
2972    // backedge has been made unreachable (hence the LoopNode no longer
2973    // denotes a Loop, and will eventually be removed).
2974
2975    // Record tightest enclosing loop for self.  Mark as post-visited.
2976    set_loop(n, innermost);
2977    // Also record has_call flag early on
2978    if( innermost ) {
2979      if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
2980        // Do not count uncommon calls
2981        if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
2982          Node *iff = n->in(0)->in(0);
2983          // No any calls for vectorized loops.
2984          if( UseSuperWord || !iff->is_If() ||
2985              (n->in(0)->Opcode() == Op_IfFalse &&
2986               (1.0 - iff->as_If()->_prob) >= 0.01) ||
2987              (iff->as_If()->_prob >= 0.01) )
2988            innermost->_has_call = 1;
2989        }
2990      } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
2991        // Disable loop optimizations if the loop has a scalar replaceable
2992        // allocation. This disabling may cause a potential performance lost
2993        // if the allocation is not eliminated for some reason.
2994        innermost->_allow_optimizations = false;
2995        innermost->_has_call = 1; // = true
2996      } else if (n->Opcode() == Op_SafePoint) {
2997        // Record all safepoints in this loop.
2998        if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
2999        innermost->_safepts->push(n);
3000      }
3001    }
3002  }
3003
3004  // Flag as post-visited now
3005  set_postvisited(n);
3006  return pre_order;
3007}
3008
3009
3010//------------------------------build_loop_early-------------------------------
3011// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3012// First pass computes the earliest controlling node possible.  This is the
3013// controlling input with the deepest dominating depth.
3014void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3015  while (worklist.size() != 0) {
3016    // Use local variables nstack_top_n & nstack_top_i to cache values
3017    // on nstack's top.
3018    Node *nstack_top_n = worklist.pop();
3019    uint  nstack_top_i = 0;
3020//while_nstack_nonempty:
3021    while (true) {
3022      // Get parent node and next input's index from stack's top.
3023      Node  *n = nstack_top_n;
3024      uint   i = nstack_top_i;
3025      uint cnt = n->req(); // Count of inputs
3026      if (i == 0) {        // Pre-process the node.
3027        if( has_node(n) &&            // Have either loop or control already?
3028            !has_ctrl(n) ) {          // Have loop picked out already?
3029          // During "merge_many_backedges" we fold up several nested loops
3030          // into a single loop.  This makes the members of the original
3031          // loop bodies pointing to dead loops; they need to move up
3032          // to the new UNION'd larger loop.  I set the _head field of these
3033          // dead loops to NULL and the _parent field points to the owning
3034          // loop.  Shades of UNION-FIND algorithm.
3035          IdealLoopTree *ilt;
3036          while( !(ilt = get_loop(n))->_head ) {
3037            // Normally I would use a set_loop here.  But in this one special
3038            // case, it is legal (and expected) to change what loop a Node
3039            // belongs to.
3040            _nodes.map(n->_idx, (Node*)(ilt->_parent) );
3041          }
3042          // Remove safepoints ONLY if I've already seen I don't need one.
3043          // (the old code here would yank a 2nd safepoint after seeing a
3044          // first one, even though the 1st did not dominate in the loop body
3045          // and thus could be avoided indefinitely)
3046          if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
3047              is_deleteable_safept(n)) {
3048            Node *in = n->in(TypeFunc::Control);
3049            lazy_replace(n,in);       // Pull safepoint now
3050            if (ilt->_safepts != NULL) {
3051              ilt->_safepts->yank(n);
3052            }
3053            // Carry on with the recursion "as if" we are walking
3054            // only the control input
3055            if( !visited.test_set( in->_idx ) ) {
3056              worklist.push(in);      // Visit this guy later, using worklist
3057            }
3058            // Get next node from nstack:
3059            // - skip n's inputs processing by setting i > cnt;
3060            // - we also will not call set_early_ctrl(n) since
3061            //   has_node(n) == true (see the condition above).
3062            i = cnt + 1;
3063          }
3064        }
3065      } // if (i == 0)
3066
3067      // Visit all inputs
3068      bool done = true;       // Assume all n's inputs will be processed
3069      while (i < cnt) {
3070        Node *in = n->in(i);
3071        ++i;
3072        if (in == NULL) continue;
3073        if (in->pinned() && !in->is_CFG())
3074          set_ctrl(in, in->in(0));
3075        int is_visited = visited.test_set( in->_idx );
3076        if (!has_node(in)) {  // No controlling input yet?
3077          assert( !in->is_CFG(), "CFG Node with no controlling input?" );
3078          assert( !is_visited, "visit only once" );
3079          nstack.push(n, i);  // Save parent node and next input's index.
3080          nstack_top_n = in;  // Process current input now.
3081          nstack_top_i = 0;
3082          done = false;       // Not all n's inputs processed.
3083          break; // continue while_nstack_nonempty;
3084        } else if (!is_visited) {
3085          // This guy has a location picked out for him, but has not yet
3086          // been visited.  Happens to all CFG nodes, for instance.
3087          // Visit him using the worklist instead of recursion, to break
3088          // cycles.  Since he has a location already we do not need to
3089          // find his location before proceeding with the current Node.
3090          worklist.push(in);  // Visit this guy later, using worklist
3091        }
3092      }
3093      if (done) {
3094        // All of n's inputs have been processed, complete post-processing.
3095
3096        // Compute earliest point this Node can go.
3097        // CFG, Phi, pinned nodes already know their controlling input.
3098        if (!has_node(n)) {
3099          // Record earliest legal location
3100          set_early_ctrl( n );
3101        }
3102        if (nstack.is_empty()) {
3103          // Finished all nodes on stack.
3104          // Process next node on the worklist.
3105          break;
3106        }
3107        // Get saved parent node and next input's index.
3108        nstack_top_n = nstack.node();
3109        nstack_top_i = nstack.index();
3110        nstack.pop();
3111      }
3112    } // while (true)
3113  }
3114}
3115
3116//------------------------------dom_lca_internal--------------------------------
3117// Pair-wise LCA
3118Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
3119  if( !n1 ) return n2;          // Handle NULL original LCA
3120  assert( n1->is_CFG(), "" );
3121  assert( n2->is_CFG(), "" );
3122  // find LCA of all uses
3123  uint d1 = dom_depth(n1);
3124  uint d2 = dom_depth(n2);
3125  while (n1 != n2) {
3126    if (d1 > d2) {
3127      n1 =      idom(n1);
3128      d1 = dom_depth(n1);
3129    } else if (d1 < d2) {
3130      n2 =      idom(n2);
3131      d2 = dom_depth(n2);
3132    } else {
3133      // Here d1 == d2.  Due to edits of the dominator-tree, sections
3134      // of the tree might have the same depth.  These sections have
3135      // to be searched more carefully.
3136
3137      // Scan up all the n1's with equal depth, looking for n2.
3138      Node *t1 = idom(n1);
3139      while (dom_depth(t1) == d1) {
3140        if (t1 == n2)  return n2;
3141        t1 = idom(t1);
3142      }
3143      // Scan up all the n2's with equal depth, looking for n1.
3144      Node *t2 = idom(n2);
3145      while (dom_depth(t2) == d2) {
3146        if (t2 == n1)  return n1;
3147        t2 = idom(t2);
3148      }
3149      // Move up to a new dominator-depth value as well as up the dom-tree.
3150      n1 = t1;
3151      n2 = t2;
3152      d1 = dom_depth(n1);
3153      d2 = dom_depth(n2);
3154    }
3155  }
3156  return n1;
3157}
3158
3159//------------------------------compute_idom-----------------------------------
3160// Locally compute IDOM using dom_lca call.  Correct only if the incoming
3161// IDOMs are correct.
3162Node *PhaseIdealLoop::compute_idom( Node *region ) const {
3163  assert( region->is_Region(), "" );
3164  Node *LCA = NULL;
3165  for( uint i = 1; i < region->req(); i++ ) {
3166    if( region->in(i) != C->top() )
3167      LCA = dom_lca( LCA, region->in(i) );
3168  }
3169  return LCA;
3170}
3171
3172bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
3173  bool had_error = false;
3174#ifdef ASSERT
3175  if (early != C->root()) {
3176    // Make sure that there's a dominance path from LCA to early
3177    Node* d = LCA;
3178    while (d != early) {
3179      if (d == C->root()) {
3180        dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
3181        tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
3182        had_error = true;
3183        break;
3184      }
3185      d = idom(d);
3186    }
3187  }
3188#endif
3189  return had_error;
3190}
3191
3192
3193Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
3194  // Compute LCA over list of uses
3195  bool had_error = false;
3196  Node *LCA = NULL;
3197  for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
3198    Node* c = n->fast_out(i);
3199    if (_nodes[c->_idx] == NULL)
3200      continue;                 // Skip the occasional dead node
3201    if( c->is_Phi() ) {         // For Phis, we must land above on the path
3202      for( uint j=1; j<c->req(); j++ ) {// For all inputs
3203        if( c->in(j) == n ) {   // Found matching input?
3204          Node *use = c->in(0)->in(j);
3205          if (_verify_only && use->is_top()) continue;
3206          LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3207          if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3208        }
3209      }
3210    } else {
3211      // For CFG data-users, use is in the block just prior
3212      Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
3213      LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
3214      if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
3215    }
3216  }
3217  assert(!had_error, "bad dominance");
3218  return LCA;
3219}
3220
3221// Check the shape of the graph at the loop entry. In some cases,
3222// the shape of the graph does not match the shape outlined below.
3223// That is caused by the Opaque1 node "protecting" the shape of
3224// the graph being removed by, for example, the IGVN performed
3225// in PhaseIdealLoop::build_and_optimize().
3226//
3227// After the Opaque1 node has been removed, optimizations (e.g., split-if,
3228// loop unswitching, and IGVN, or a combination of them) can freely change
3229// the graph's shape. As a result, the graph shape outlined below cannot
3230// be guaranteed anymore.
3231bool PhaseIdealLoop::is_canonical_loop_entry(CountedLoopNode* cl) {
3232  if (!cl->is_main_loop() && !cl->is_post_loop()) {
3233    return false;
3234  }
3235  Node* ctrl = cl->in(LoopNode::EntryControl);
3236  if (ctrl == NULL || (!ctrl->is_IfTrue() && !ctrl->is_IfFalse())) {
3237    return false;
3238  }
3239  Node* iffm = ctrl->in(0);
3240  if (iffm == NULL || !iffm->is_If()) {
3241    return false;
3242  }
3243  Node* bolzm = iffm->in(1);
3244  if (bolzm == NULL || !bolzm->is_Bool()) {
3245    return false;
3246  }
3247  Node* cmpzm = bolzm->in(1);
3248  if (cmpzm == NULL || !cmpzm->is_Cmp()) {
3249    return false;
3250  }
3251  // compares can get conditionally flipped
3252  bool found_opaque = false;
3253  for (uint i = 1; i < cmpzm->req(); i++) {
3254    Node* opnd = cmpzm->in(i);
3255    if (opnd && opnd->Opcode() == Op_Opaque1) {
3256      found_opaque = true;
3257      break;
3258    }
3259  }
3260  if (!found_opaque) {
3261    return false;
3262  }
3263  return true;
3264}
3265
3266//------------------------------get_late_ctrl----------------------------------
3267// Compute latest legal control.
3268Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
3269  assert(early != NULL, "early control should not be NULL");
3270
3271  Node* LCA = compute_lca_of_uses(n, early);
3272#ifdef ASSERT
3273  if (LCA == C->root() && LCA != early) {
3274    // def doesn't dominate uses so print some useful debugging output
3275    compute_lca_of_uses(n, early, true);
3276  }
3277#endif
3278
3279  // if this is a load, check for anti-dependent stores
3280  // We use a conservative algorithm to identify potential interfering
3281  // instructions and for rescheduling the load.  The users of the memory
3282  // input of this load are examined.  Any use which is not a load and is
3283  // dominated by early is considered a potentially interfering store.
3284  // This can produce false positives.
3285  if (n->is_Load() && LCA != early) {
3286    Node_List worklist;
3287
3288    Node *mem = n->in(MemNode::Memory);
3289    for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
3290      Node* s = mem->fast_out(i);
3291      worklist.push(s);
3292    }
3293    while(worklist.size() != 0 && LCA != early) {
3294      Node* s = worklist.pop();
3295      if (s->is_Load()) {
3296        continue;
3297      } else if (s->is_MergeMem()) {
3298        for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
3299          Node* s1 = s->fast_out(i);
3300          worklist.push(s1);
3301        }
3302      } else {
3303        Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
3304        assert(sctrl != NULL || s->outcnt() == 0, "must have control");
3305        if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
3306          LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
3307        }
3308      }
3309    }
3310  }
3311
3312  assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
3313  return LCA;
3314}
3315
3316// true if CFG node d dominates CFG node n
3317bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
3318  if (d == n)
3319    return true;
3320  assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
3321  uint dd = dom_depth(d);
3322  while (dom_depth(n) >= dd) {
3323    if (n == d)
3324      return true;
3325    n = idom(n);
3326  }
3327  return false;
3328}
3329
3330//------------------------------dom_lca_for_get_late_ctrl_internal-------------
3331// Pair-wise LCA with tags.
3332// Tag each index with the node 'tag' currently being processed
3333// before advancing up the dominator chain using idom().
3334// Later calls that find a match to 'tag' know that this path has already
3335// been considered in the current LCA (which is input 'n1' by convention).
3336// Since get_late_ctrl() is only called once for each node, the tag array
3337// does not need to be cleared between calls to get_late_ctrl().
3338// Algorithm trades a larger constant factor for better asymptotic behavior
3339//
3340Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
3341  uint d1 = dom_depth(n1);
3342  uint d2 = dom_depth(n2);
3343
3344  do {
3345    if (d1 > d2) {
3346      // current lca is deeper than n2
3347      _dom_lca_tags.map(n1->_idx, tag);
3348      n1 =      idom(n1);
3349      d1 = dom_depth(n1);
3350    } else if (d1 < d2) {
3351      // n2 is deeper than current lca
3352      Node *memo = _dom_lca_tags[n2->_idx];
3353      if( memo == tag ) {
3354        return n1;    // Return the current LCA
3355      }
3356      _dom_lca_tags.map(n2->_idx, tag);
3357      n2 =      idom(n2);
3358      d2 = dom_depth(n2);
3359    } else {
3360      // Here d1 == d2.  Due to edits of the dominator-tree, sections
3361      // of the tree might have the same depth.  These sections have
3362      // to be searched more carefully.
3363
3364      // Scan up all the n1's with equal depth, looking for n2.
3365      _dom_lca_tags.map(n1->_idx, tag);
3366      Node *t1 = idom(n1);
3367      while (dom_depth(t1) == d1) {
3368        if (t1 == n2)  return n2;
3369        _dom_lca_tags.map(t1->_idx, tag);
3370        t1 = idom(t1);
3371      }
3372      // Scan up all the n2's with equal depth, looking for n1.
3373      _dom_lca_tags.map(n2->_idx, tag);
3374      Node *t2 = idom(n2);
3375      while (dom_depth(t2) == d2) {
3376        if (t2 == n1)  return n1;
3377        _dom_lca_tags.map(t2->_idx, tag);
3378        t2 = idom(t2);
3379      }
3380      // Move up to a new dominator-depth value as well as up the dom-tree.
3381      n1 = t1;
3382      n2 = t2;
3383      d1 = dom_depth(n1);
3384      d2 = dom_depth(n2);
3385    }
3386  } while (n1 != n2);
3387  return n1;
3388}
3389
3390//------------------------------init_dom_lca_tags------------------------------
3391// Tag could be a node's integer index, 32bits instead of 64bits in some cases
3392// Intended use does not involve any growth for the array, so it could
3393// be of fixed size.
3394void PhaseIdealLoop::init_dom_lca_tags() {
3395  uint limit = C->unique() + 1;
3396  _dom_lca_tags.map( limit, NULL );
3397#ifdef ASSERT
3398  for( uint i = 0; i < limit; ++i ) {
3399    assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3400  }
3401#endif // ASSERT
3402}
3403
3404//------------------------------clear_dom_lca_tags------------------------------
3405// Tag could be a node's integer index, 32bits instead of 64bits in some cases
3406// Intended use does not involve any growth for the array, so it could
3407// be of fixed size.
3408void PhaseIdealLoop::clear_dom_lca_tags() {
3409  uint limit = C->unique() + 1;
3410  _dom_lca_tags.map( limit, NULL );
3411  _dom_lca_tags.clear();
3412#ifdef ASSERT
3413  for( uint i = 0; i < limit; ++i ) {
3414    assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
3415  }
3416#endif // ASSERT
3417}
3418
3419//------------------------------build_loop_late--------------------------------
3420// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3421// Second pass finds latest legal placement, and ideal loop placement.
3422void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
3423  while (worklist.size() != 0) {
3424    Node *n = worklist.pop();
3425    // Only visit once
3426    if (visited.test_set(n->_idx)) continue;
3427    uint cnt = n->outcnt();
3428    uint   i = 0;
3429    while (true) {
3430      assert( _nodes[n->_idx], "no dead nodes" );
3431      // Visit all children
3432      if (i < cnt) {
3433        Node* use = n->raw_out(i);
3434        ++i;
3435        // Check for dead uses.  Aggressively prune such junk.  It might be
3436        // dead in the global sense, but still have local uses so I cannot
3437        // easily call 'remove_dead_node'.
3438        if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
3439          // Due to cycles, we might not hit the same fixed point in the verify
3440          // pass as we do in the regular pass.  Instead, visit such phis as
3441          // simple uses of the loop head.
3442          if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
3443            if( !visited.test(use->_idx) )
3444              worklist.push(use);
3445          } else if( !visited.test_set(use->_idx) ) {
3446            nstack.push(n, i); // Save parent and next use's index.
3447            n   = use;         // Process all children of current use.
3448            cnt = use->outcnt();
3449            i   = 0;
3450          }
3451        } else {
3452          // Do not visit around the backedge of loops via data edges.
3453          // push dead code onto a worklist
3454          _deadlist.push(use);
3455        }
3456      } else {
3457        // All of n's children have been processed, complete post-processing.
3458        build_loop_late_post(n);
3459        if (nstack.is_empty()) {
3460          // Finished all nodes on stack.
3461          // Process next node on the worklist.
3462          break;
3463        }
3464        // Get saved parent node and next use's index. Visit the rest of uses.
3465        n   = nstack.node();
3466        cnt = n->outcnt();
3467        i   = nstack.index();
3468        nstack.pop();
3469      }
3470    }
3471  }
3472}
3473
3474//------------------------------build_loop_late_post---------------------------
3475// Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
3476// Second pass finds latest legal placement, and ideal loop placement.
3477void PhaseIdealLoop::build_loop_late_post( Node *n ) {
3478
3479  if (n->req() == 2 && (n->Opcode() == Op_ConvI2L || n->Opcode() == Op_CastII) && !C->major_progress() && !_verify_only) {
3480    _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
3481  }
3482
3483#ifdef ASSERT
3484  if (_verify_only && !n->is_CFG()) {
3485    // Check def-use domination.
3486    compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
3487  }
3488#endif
3489
3490  // CFG and pinned nodes already handled
3491  if( n->in(0) ) {
3492    if( n->in(0)->is_top() ) return; // Dead?
3493
3494    // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
3495    // _must_ be pinned (they have to observe their control edge of course).
3496    // Unlike Stores (which modify an unallocable resource, the memory
3497    // state), Mods/Loads can float around.  So free them up.
3498    bool pinned = true;
3499    switch( n->Opcode() ) {
3500    case Op_DivI:
3501    case Op_DivF:
3502    case Op_DivD:
3503    case Op_ModI:
3504    case Op_ModF:
3505    case Op_ModD:
3506    case Op_LoadB:              // Same with Loads; they can sink
3507    case Op_LoadUB:             // during loop optimizations.
3508    case Op_LoadUS:
3509    case Op_LoadD:
3510    case Op_LoadF:
3511    case Op_LoadI:
3512    case Op_LoadKlass:
3513    case Op_LoadNKlass:
3514    case Op_LoadL:
3515    case Op_LoadS:
3516    case Op_LoadP:
3517    case Op_LoadN:
3518    case Op_LoadRange:
3519    case Op_LoadD_unaligned:
3520    case Op_LoadL_unaligned:
3521    case Op_StrComp:            // Does a bunch of load-like effects
3522    case Op_StrEquals:
3523    case Op_StrIndexOf:
3524    case Op_StrIndexOfChar:
3525    case Op_AryEq:
3526    case Op_HasNegatives:
3527      pinned = false;
3528    }
3529    if( pinned ) {
3530      IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
3531      if( !chosen_loop->_child )       // Inner loop?
3532        chosen_loop->_body.push(n); // Collect inner loops
3533      return;
3534    }
3535  } else {                      // No slot zero
3536    if( n->is_CFG() ) {         // CFG with no slot 0 is dead
3537      _nodes.map(n->_idx,0);    // No block setting, it's globally dead
3538      return;
3539    }
3540    assert(!n->is_CFG() || n->outcnt() == 0, "");
3541  }
3542
3543  // Do I have a "safe range" I can select over?
3544  Node *early = get_ctrl(n);// Early location already computed
3545
3546  // Compute latest point this Node can go
3547  Node *LCA = get_late_ctrl( n, early );
3548  // LCA is NULL due to uses being dead
3549  if( LCA == NULL ) {
3550#ifdef ASSERT
3551    for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
3552      assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
3553    }
3554#endif
3555    _nodes.map(n->_idx, 0);     // This node is useless
3556    _deadlist.push(n);
3557    return;
3558  }
3559  assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
3560
3561  Node *legal = LCA;            // Walk 'legal' up the IDOM chain
3562  Node *least = legal;          // Best legal position so far
3563  while( early != legal ) {     // While not at earliest legal
3564#ifdef ASSERT
3565    if (legal->is_Start() && !early->is_Root()) {
3566      // Bad graph. Print idom path and fail.
3567      dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
3568      assert(false, "Bad graph detected in build_loop_late");
3569    }
3570#endif
3571    // Find least loop nesting depth
3572    legal = idom(legal);        // Bump up the IDOM tree
3573    // Check for lower nesting depth
3574    if( get_loop(legal)->_nest < get_loop(least)->_nest )
3575      least = legal;
3576  }
3577  assert(early == legal || legal != C->root(), "bad dominance of inputs");
3578
3579  // Try not to place code on a loop entry projection
3580  // which can inhibit range check elimination.
3581  if (least != early) {
3582    Node* ctrl_out = least->unique_ctrl_out();
3583    if (ctrl_out && ctrl_out->is_CountedLoop() &&
3584        least == ctrl_out->in(LoopNode::EntryControl)) {
3585      Node* least_dom = idom(least);
3586      if (get_loop(least_dom)->is_member(get_loop(least))) {
3587        least = least_dom;
3588      }
3589    }
3590  }
3591
3592#ifdef ASSERT
3593  // If verifying, verify that 'verify_me' has a legal location
3594  // and choose it as our location.
3595  if( _verify_me ) {
3596    Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
3597    Node *legal = LCA;
3598    while( early != legal ) {   // While not at earliest legal
3599      if( legal == v_ctrl ) break;  // Check for prior good location
3600      legal = idom(legal)      ;// Bump up the IDOM tree
3601    }
3602    // Check for prior good location
3603    if( legal == v_ctrl ) least = legal; // Keep prior if found
3604  }
3605#endif
3606
3607  // Assign discovered "here or above" point
3608  least = find_non_split_ctrl(least);
3609  set_ctrl(n, least);
3610
3611  // Collect inner loop bodies
3612  IdealLoopTree *chosen_loop = get_loop(least);
3613  if( !chosen_loop->_child )   // Inner loop?
3614    chosen_loop->_body.push(n);// Collect inner loops
3615}
3616
3617#ifdef ASSERT
3618void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
3619  tty->print_cr("%s", msg);
3620  tty->print("n: "); n->dump();
3621  tty->print("early(n): "); early->dump();
3622  if (n->in(0) != NULL  && !n->in(0)->is_top() &&
3623      n->in(0) != early && !n->in(0)->is_Root()) {
3624    tty->print("n->in(0): "); n->in(0)->dump();
3625  }
3626  for (uint i = 1; i < n->req(); i++) {
3627    Node* in1 = n->in(i);
3628    if (in1 != NULL && in1 != n && !in1->is_top()) {
3629      tty->print("n->in(%d): ", i); in1->dump();
3630      Node* in1_early = get_ctrl(in1);
3631      tty->print("early(n->in(%d)): ", i); in1_early->dump();
3632      if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
3633          in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
3634        tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
3635      }
3636      for (uint j = 1; j < in1->req(); j++) {
3637        Node* in2 = in1->in(j);
3638        if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
3639          tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
3640          Node* in2_early = get_ctrl(in2);
3641          tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
3642          if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
3643              in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
3644            tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
3645          }
3646        }
3647      }
3648    }
3649  }
3650  tty->cr();
3651  tty->print("LCA(n): "); LCA->dump();
3652  for (uint i = 0; i < n->outcnt(); i++) {
3653    Node* u1 = n->raw_out(i);
3654    if (u1 == n)
3655      continue;
3656    tty->print("n->out(%d): ", i); u1->dump();
3657    if (u1->is_CFG()) {
3658      for (uint j = 0; j < u1->outcnt(); j++) {
3659        Node* u2 = u1->raw_out(j);
3660        if (u2 != u1 && u2 != n && u2->is_CFG()) {
3661          tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3662        }
3663      }
3664    } else {
3665      Node* u1_later = get_ctrl(u1);
3666      tty->print("later(n->out(%d)): ", i); u1_later->dump();
3667      if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
3668          u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
3669        tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
3670      }
3671      for (uint j = 0; j < u1->outcnt(); j++) {
3672        Node* u2 = u1->raw_out(j);
3673        if (u2 == n || u2 == u1)
3674          continue;
3675        tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
3676        if (!u2->is_CFG()) {
3677          Node* u2_later = get_ctrl(u2);
3678          tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
3679          if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
3680              u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
3681            tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
3682          }
3683        }
3684      }
3685    }
3686  }
3687  tty->cr();
3688  int ct = 0;
3689  Node *dbg_legal = LCA;
3690  while(!dbg_legal->is_Start() && ct < 100) {
3691    tty->print("idom[%d] ",ct); dbg_legal->dump();
3692    ct++;
3693    dbg_legal = idom(dbg_legal);
3694  }
3695  tty->cr();
3696}
3697#endif
3698
3699#ifndef PRODUCT
3700//------------------------------dump-------------------------------------------
3701void PhaseIdealLoop::dump( ) const {
3702  ResourceMark rm;
3703  Arena* arena = Thread::current()->resource_area();
3704  Node_Stack stack(arena, C->live_nodes() >> 2);
3705  Node_List rpo_list;
3706  VectorSet visited(arena);
3707  visited.set(C->top()->_idx);
3708  rpo( C->root(), stack, visited, rpo_list );
3709  // Dump root loop indexed by last element in PO order
3710  dump( _ltree_root, rpo_list.size(), rpo_list );
3711}
3712
3713void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
3714  loop->dump_head();
3715
3716  // Now scan for CFG nodes in the same loop
3717  for( uint j=idx; j > 0;  j-- ) {
3718    Node *n = rpo_list[j-1];
3719    if( !_nodes[n->_idx] )      // Skip dead nodes
3720      continue;
3721    if( get_loop(n) != loop ) { // Wrong loop nest
3722      if( get_loop(n)->_head == n &&    // Found nested loop?
3723          get_loop(n)->_parent == loop )
3724        dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
3725      continue;
3726    }
3727
3728    // Dump controlling node
3729    for( uint x = 0; x < loop->_nest; x++ )
3730      tty->print("  ");
3731    tty->print("C");
3732    if( n == C->root() ) {
3733      n->dump();
3734    } else {
3735      Node* cached_idom   = idom_no_update(n);
3736      Node *computed_idom = n->in(0);
3737      if( n->is_Region() ) {
3738        computed_idom = compute_idom(n);
3739        // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
3740        // any MultiBranch ctrl node), so apply a similar transform to
3741        // the cached idom returned from idom_no_update.
3742        cached_idom = find_non_split_ctrl(cached_idom);
3743      }
3744      tty->print(" ID:%d",computed_idom->_idx);
3745      n->dump();
3746      if( cached_idom != computed_idom ) {
3747        tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
3748                      computed_idom->_idx, cached_idom->_idx);
3749      }
3750    }
3751    // Dump nodes it controls
3752    for( uint k = 0; k < _nodes.Size(); k++ ) {
3753      // (k < C->unique() && get_ctrl(find(k)) == n)
3754      if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
3755        Node *m = C->root()->find(k);
3756        if( m && m->outcnt() > 0 ) {
3757          if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
3758            tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
3759                          _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
3760          }
3761          for( uint j = 0; j < loop->_nest; j++ )
3762            tty->print("  ");
3763          tty->print(" ");
3764          m->dump();
3765        }
3766      }
3767    }
3768  }
3769}
3770
3771// Collect a R-P-O for the whole CFG.
3772// Result list is in post-order (scan backwards for RPO)
3773void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
3774  stk.push(start, 0);
3775  visited.set(start->_idx);
3776
3777  while (stk.is_nonempty()) {
3778    Node* m   = stk.node();
3779    uint  idx = stk.index();
3780    if (idx < m->outcnt()) {
3781      stk.set_index(idx + 1);
3782      Node* n = m->raw_out(idx);
3783      if (n->is_CFG() && !visited.test_set(n->_idx)) {
3784        stk.push(n, 0);
3785      }
3786    } else {
3787      rpo_list.push(m);
3788      stk.pop();
3789    }
3790  }
3791}
3792#endif
3793
3794
3795//=============================================================================
3796//------------------------------LoopTreeIterator-----------------------------------
3797
3798// Advance to next loop tree using a preorder, left-to-right traversal.
3799void LoopTreeIterator::next() {
3800  assert(!done(), "must not be done.");
3801  if (_curnt->_child != NULL) {
3802    _curnt = _curnt->_child;
3803  } else if (_curnt->_next != NULL) {
3804    _curnt = _curnt->_next;
3805  } else {
3806    while (_curnt != _root && _curnt->_next == NULL) {
3807      _curnt = _curnt->_parent;
3808    }
3809    if (_curnt == _root) {
3810      _curnt = NULL;
3811      assert(done(), "must be done.");
3812    } else {
3813      assert(_curnt->_next != NULL, "must be more to do");
3814      _curnt = _curnt->_next;
3815    }
3816  }
3817}
3818