library_call.cpp revision 9293:a20807e48002
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileBroker.hpp"
30#include "compiler/compileLog.hpp"
31#include "oops/objArrayKlass.hpp"
32#include "opto/addnode.hpp"
33#include "opto/arraycopynode.hpp"
34#include "opto/c2compiler.hpp"
35#include "opto/callGenerator.hpp"
36#include "opto/castnode.hpp"
37#include "opto/cfgnode.hpp"
38#include "opto/convertnode.hpp"
39#include "opto/countbitsnode.hpp"
40#include "opto/intrinsicnode.hpp"
41#include "opto/idealKit.hpp"
42#include "opto/mathexactnode.hpp"
43#include "opto/movenode.hpp"
44#include "opto/mulnode.hpp"
45#include "opto/narrowptrnode.hpp"
46#include "opto/opaquenode.hpp"
47#include "opto/parse.hpp"
48#include "opto/runtime.hpp"
49#include "opto/subnode.hpp"
50#include "prims/nativeLookup.hpp"
51#include "runtime/sharedRuntime.hpp"
52#include "trace/traceMacros.hpp"
53
54class LibraryIntrinsic : public InlineCallGenerator {
55  // Extend the set of intrinsics known to the runtime:
56 public:
57 private:
58  bool             _is_virtual;
59  bool             _does_virtual_dispatch;
60  int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
61  int8_t           _last_predicate; // Last generated predicate
62  vmIntrinsics::ID _intrinsic_id;
63
64 public:
65  LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
66    : InlineCallGenerator(m),
67      _is_virtual(is_virtual),
68      _does_virtual_dispatch(does_virtual_dispatch),
69      _predicates_count((int8_t)predicates_count),
70      _last_predicate((int8_t)-1),
71      _intrinsic_id(id)
72  {
73  }
74  virtual bool is_intrinsic() const { return true; }
75  virtual bool is_virtual()   const { return _is_virtual; }
76  virtual bool is_predicated() const { return _predicates_count > 0; }
77  virtual int  predicates_count() const { return _predicates_count; }
78  virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
79  virtual JVMState* generate(JVMState* jvms);
80  virtual Node* generate_predicate(JVMState* jvms, int predicate);
81  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
82};
83
84
85// Local helper class for LibraryIntrinsic:
86class LibraryCallKit : public GraphKit {
87 private:
88  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
89  Node*             _result;        // the result node, if any
90  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
91
92  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
93
94 public:
95  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
96    : GraphKit(jvms),
97      _intrinsic(intrinsic),
98      _result(NULL)
99  {
100    // Check if this is a root compile.  In that case we don't have a caller.
101    if (!jvms->has_method()) {
102      _reexecute_sp = sp();
103    } else {
104      // Find out how many arguments the interpreter needs when deoptimizing
105      // and save the stack pointer value so it can used by uncommon_trap.
106      // We find the argument count by looking at the declared signature.
107      bool ignored_will_link;
108      ciSignature* declared_signature = NULL;
109      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
110      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
111      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
112    }
113  }
114
115  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
116
117  ciMethod*         caller()    const    { return jvms()->method(); }
118  int               bci()       const    { return jvms()->bci(); }
119  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
120  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
121  ciMethod*         callee()    const    { return _intrinsic->method(); }
122
123  bool  try_to_inline(int predicate);
124  Node* try_to_predicate(int predicate);
125
126  void push_result() {
127    // Push the result onto the stack.
128    if (!stopped() && result() != NULL) {
129      BasicType bt = result()->bottom_type()->basic_type();
130      push_node(bt, result());
131    }
132  }
133
134 private:
135  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
136    fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
137  }
138
139  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
140  void  set_result(RegionNode* region, PhiNode* value);
141  Node*     result() { return _result; }
142
143  virtual int reexecute_sp() { return _reexecute_sp; }
144
145  // Helper functions to inline natives
146  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
147  Node* generate_slow_guard(Node* test, RegionNode* region);
148  Node* generate_fair_guard(Node* test, RegionNode* region);
149  Node* generate_negative_guard(Node* index, RegionNode* region,
150                                // resulting CastII of index:
151                                Node* *pos_index = NULL);
152  Node* generate_limit_guard(Node* offset, Node* subseq_length,
153                             Node* array_length,
154                             RegionNode* region);
155  Node* generate_current_thread(Node* &tls_output);
156  Node* load_mirror_from_klass(Node* klass);
157  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
158                                      RegionNode* region, int null_path,
159                                      int offset);
160  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
161                               RegionNode* region, int null_path) {
162    int offset = java_lang_Class::klass_offset_in_bytes();
163    return load_klass_from_mirror_common(mirror, never_see_null,
164                                         region, null_path,
165                                         offset);
166  }
167  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
168                                     RegionNode* region, int null_path) {
169    int offset = java_lang_Class::array_klass_offset_in_bytes();
170    return load_klass_from_mirror_common(mirror, never_see_null,
171                                         region, null_path,
172                                         offset);
173  }
174  Node* generate_access_flags_guard(Node* kls,
175                                    int modifier_mask, int modifier_bits,
176                                    RegionNode* region);
177  Node* generate_interface_guard(Node* kls, RegionNode* region);
178  Node* generate_array_guard(Node* kls, RegionNode* region) {
179    return generate_array_guard_common(kls, region, false, false);
180  }
181  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
182    return generate_array_guard_common(kls, region, false, true);
183  }
184  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
185    return generate_array_guard_common(kls, region, true, false);
186  }
187  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
188    return generate_array_guard_common(kls, region, true, true);
189  }
190  Node* generate_array_guard_common(Node* kls, RegionNode* region,
191                                    bool obj_array, bool not_array);
192  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
193  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
194                                     bool is_virtual = false, bool is_static = false);
195  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
196    return generate_method_call(method_id, false, true);
197  }
198  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
199    return generate_method_call(method_id, true, false);
200  }
201  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
202
203  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
204  bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
205  bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
206  bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
207  bool inline_string_indexOfChar();
208  bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
209  bool inline_string_toBytesU();
210  bool inline_string_getCharsU();
211  bool inline_string_copy(bool compress);
212  bool inline_string_char_access(bool is_store);
213  Node* round_double_node(Node* n);
214  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
215  bool inline_math_native(vmIntrinsics::ID id);
216  bool inline_trig(vmIntrinsics::ID id);
217  bool inline_math(vmIntrinsics::ID id);
218  template <typename OverflowOp>
219  bool inline_math_overflow(Node* arg1, Node* arg2);
220  void inline_math_mathExact(Node* math, Node* test);
221  bool inline_math_addExactI(bool is_increment);
222  bool inline_math_addExactL(bool is_increment);
223  bool inline_math_multiplyExactI();
224  bool inline_math_multiplyExactL();
225  bool inline_math_negateExactI();
226  bool inline_math_negateExactL();
227  bool inline_math_subtractExactI(bool is_decrement);
228  bool inline_math_subtractExactL(bool is_decrement);
229  bool inline_pow();
230  Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
231  bool inline_min_max(vmIntrinsics::ID id);
232  bool inline_notify(vmIntrinsics::ID id);
233  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
234  // This returns Type::AnyPtr, RawPtr, or OopPtr.
235  int classify_unsafe_addr(Node* &base, Node* &offset);
236  Node* make_unsafe_address(Node* base, Node* offset);
237  // Helper for inline_unsafe_access.
238  // Generates the guards that check whether the result of
239  // Unsafe.getObject should be recorded in an SATB log buffer.
240  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
241  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
242  static bool klass_needs_init_guard(Node* kls);
243  bool inline_unsafe_allocate();
244  bool inline_unsafe_copyMemory();
245  bool inline_native_currentThread();
246#ifdef TRACE_HAVE_INTRINSICS
247  bool inline_native_classID();
248  bool inline_native_threadID();
249#endif
250  bool inline_native_time_funcs(address method, const char* funcName);
251  bool inline_native_isInterrupted();
252  bool inline_native_Class_query(vmIntrinsics::ID id);
253  bool inline_native_subtype_check();
254
255  bool inline_native_newArray();
256  bool inline_native_getLength();
257  bool inline_array_copyOf(bool is_copyOfRange);
258  bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
259  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
260  bool inline_native_clone(bool is_virtual);
261  bool inline_native_Reflection_getCallerClass();
262  // Helper function for inlining native object hash method
263  bool inline_native_hashcode(bool is_virtual, bool is_static);
264  bool inline_native_getClass();
265
266  // Helper functions for inlining arraycopy
267  bool inline_arraycopy();
268  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
269                                                RegionNode* slow_region);
270  JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
271  void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
272
273  typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
274  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
275  bool inline_unsafe_ordered_store(BasicType type);
276  bool inline_unsafe_fence(vmIntrinsics::ID id);
277  bool inline_fp_conversions(vmIntrinsics::ID id);
278  bool inline_number_methods(vmIntrinsics::ID id);
279  bool inline_reference_get();
280  bool inline_Class_cast();
281  bool inline_aescrypt_Block(vmIntrinsics::ID id);
282  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
283  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
284  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
285  Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
286  bool inline_ghash_processBlocks();
287  bool inline_sha_implCompress(vmIntrinsics::ID id);
288  bool inline_digestBase_implCompressMB(int predicate);
289  bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
290                                 bool long_state, address stubAddr, const char *stubName,
291                                 Node* src_start, Node* ofs, Node* limit);
292  Node* get_state_from_sha_object(Node *sha_object);
293  Node* get_state_from_sha5_object(Node *sha_object);
294  Node* inline_digestBase_implCompressMB_predicate(int predicate);
295  bool inline_encodeISOArray();
296  bool inline_updateCRC32();
297  bool inline_updateBytesCRC32();
298  bool inline_updateByteBufferCRC32();
299  Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
300  bool inline_updateBytesCRC32C();
301  bool inline_updateDirectByteBufferCRC32C();
302  bool inline_updateBytesAdler32();
303  bool inline_updateByteBufferAdler32();
304  bool inline_multiplyToLen();
305  bool inline_hasNegatives();
306  bool inline_squareToLen();
307  bool inline_mulAdd();
308  bool inline_montgomeryMultiply();
309  bool inline_montgomerySquare();
310
311  bool inline_profileBoolean();
312  bool inline_isCompileConstant();
313};
314
315//---------------------------make_vm_intrinsic----------------------------
316CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
317  vmIntrinsics::ID id = m->intrinsic_id();
318  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
319
320  if (!m->is_loaded()) {
321    // Do not attempt to inline unloaded methods.
322    return NULL;
323  }
324
325  C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
326  bool is_available = false;
327
328  {
329    // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
330    // the compiler must transition to '_thread_in_vm' state because both
331    // methods access VM-internal data.
332    VM_ENTRY_MARK;
333    methodHandle mh(THREAD, m->get_Method());
334    is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
335                   !C->directive()->is_intrinsic_disabled(mh) &&
336                   !vmIntrinsics::is_disabled_by_flags(mh);
337
338  }
339
340  if (is_available) {
341    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
342    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
343    return new LibraryIntrinsic(m, is_virtual,
344                                vmIntrinsics::predicates_needed(id),
345                                vmIntrinsics::does_virtual_dispatch(id),
346                                (vmIntrinsics::ID) id);
347  } else {
348    return NULL;
349  }
350}
351
352//----------------------register_library_intrinsics-----------------------
353// Initialize this file's data structures, for each Compile instance.
354void Compile::register_library_intrinsics() {
355  // Nothing to do here.
356}
357
358JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
359  LibraryCallKit kit(jvms, this);
360  Compile* C = kit.C;
361  int nodes = C->unique();
362#ifndef PRODUCT
363  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
364    char buf[1000];
365    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
366    tty->print_cr("Intrinsic %s", str);
367  }
368#endif
369  ciMethod* callee = kit.callee();
370  const int bci    = kit.bci();
371
372  // Try to inline the intrinsic.
373  if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
374      kit.try_to_inline(_last_predicate)) {
375    if (C->print_intrinsics() || C->print_inlining()) {
376      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
377    }
378    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
379    if (C->log()) {
380      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
381                     vmIntrinsics::name_at(intrinsic_id()),
382                     (is_virtual() ? " virtual='1'" : ""),
383                     C->unique() - nodes);
384    }
385    // Push the result from the inlined method onto the stack.
386    kit.push_result();
387    C->print_inlining_update(this);
388    return kit.transfer_exceptions_into_jvms();
389  }
390
391  // The intrinsic bailed out
392  if (C->print_intrinsics() || C->print_inlining()) {
393    if (jvms->has_method()) {
394      // Not a root compile.
395      const char* msg;
396      if (callee->intrinsic_candidate()) {
397        msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
398      } else {
399        msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
400                           : "failed to inline (intrinsic), method not annotated";
401      }
402      C->print_inlining(callee, jvms->depth() - 1, bci, msg);
403    } else {
404      // Root compile
405      tty->print("Did not generate intrinsic %s%s at bci:%d in",
406               vmIntrinsics::name_at(intrinsic_id()),
407               (is_virtual() ? " (virtual)" : ""), bci);
408    }
409  }
410  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
411  C->print_inlining_update(this);
412  return NULL;
413}
414
415Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
416  LibraryCallKit kit(jvms, this);
417  Compile* C = kit.C;
418  int nodes = C->unique();
419  _last_predicate = predicate;
420#ifndef PRODUCT
421  assert(is_predicated() && predicate < predicates_count(), "sanity");
422  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
423    char buf[1000];
424    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
425    tty->print_cr("Predicate for intrinsic %s", str);
426  }
427#endif
428  ciMethod* callee = kit.callee();
429  const int bci    = kit.bci();
430
431  Node* slow_ctl = kit.try_to_predicate(predicate);
432  if (!kit.failing()) {
433    if (C->print_intrinsics() || C->print_inlining()) {
434      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
435    }
436    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
437    if (C->log()) {
438      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
439                     vmIntrinsics::name_at(intrinsic_id()),
440                     (is_virtual() ? " virtual='1'" : ""),
441                     C->unique() - nodes);
442    }
443    return slow_ctl; // Could be NULL if the check folds.
444  }
445
446  // The intrinsic bailed out
447  if (C->print_intrinsics() || C->print_inlining()) {
448    if (jvms->has_method()) {
449      // Not a root compile.
450      const char* msg = "failed to generate predicate for intrinsic";
451      C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
452    } else {
453      // Root compile
454      C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
455                                        vmIntrinsics::name_at(intrinsic_id()),
456                                        (is_virtual() ? " (virtual)" : ""), bci);
457    }
458  }
459  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
460  return NULL;
461}
462
463bool LibraryCallKit::try_to_inline(int predicate) {
464  // Handle symbolic names for otherwise undistinguished boolean switches:
465  const bool is_store       = true;
466  const bool is_compress    = true;
467  const bool is_native_ptr  = true;
468  const bool is_static      = true;
469  const bool is_volatile    = true;
470
471  if (!jvms()->has_method()) {
472    // Root JVMState has a null method.
473    assert(map()->memory()->Opcode() == Op_Parm, "");
474    // Insert the memory aliasing node
475    set_all_memory(reset_memory());
476  }
477  assert(merged_memory(), "");
478
479
480  switch (intrinsic_id()) {
481  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
482  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
483  case vmIntrinsics::_getClass:                 return inline_native_getClass();
484
485  case vmIntrinsics::_dsin:
486  case vmIntrinsics::_dcos:
487  case vmIntrinsics::_dtan:
488  case vmIntrinsics::_dabs:
489  case vmIntrinsics::_datan2:
490  case vmIntrinsics::_dsqrt:
491  case vmIntrinsics::_dexp:
492  case vmIntrinsics::_dlog:
493  case vmIntrinsics::_dlog10:
494  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
495
496  case vmIntrinsics::_min:
497  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
498
499  case vmIntrinsics::_notify:
500  case vmIntrinsics::_notifyAll:
501    if (InlineNotify) {
502      return inline_notify(intrinsic_id());
503    }
504    return false;
505
506  case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
507  case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
508  case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
509  case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
510  case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
511  case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
512  case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
513  case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
514  case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
515  case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
516  case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
517  case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
518
519  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
520
521  case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
522  case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
523  case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
524  case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
525
526  case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
527  case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
528  case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
529  case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
530  case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
531  case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
532  case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
533
534  case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
535  case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
536
537  case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
538  case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
539  case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
540  case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
541
542  case vmIntrinsics::_compressStringC:
543  case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
544  case vmIntrinsics::_inflateStringC:
545  case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
546
547  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
548  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
549  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
550  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
551  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
552  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
553  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
554  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
555  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
556  case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
557  case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
558  case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
559  case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
560  case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
561  case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
562  case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
563  case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
564  case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
565
566  case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
567  case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
568  case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
569  case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
570  case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
571  case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
572  case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
573  case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
574
575  case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
576  case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
577  case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
578  case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
579  case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
580  case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
581  case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
582  case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
583
584  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
585  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
586  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
587  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
588  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
589  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
590  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
591  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
592  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
593
594  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
595  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
596  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
597  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
598  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
599  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
600  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
601  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
602  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
603
604  case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
605  case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
606  case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
607  case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
608
609  case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
610  case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
611  case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
612  case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
613
614  case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
615  case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
616  case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
617
618  case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
619  case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
620  case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
621
622  case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
623  case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
624  case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
625  case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
626  case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
627
628  case vmIntrinsics::_loadFence:
629  case vmIntrinsics::_storeFence:
630  case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
631
632  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
633  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
634
635#ifdef TRACE_HAVE_INTRINSICS
636  case vmIntrinsics::_classID:                  return inline_native_classID();
637  case vmIntrinsics::_threadID:                 return inline_native_threadID();
638  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
639#endif
640  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
641  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
642  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
643  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
644  case vmIntrinsics::_newArray:                 return inline_native_newArray();
645  case vmIntrinsics::_getLength:                return inline_native_getLength();
646  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
647  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
648  case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
649  case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
650  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
651
652  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
653
654  case vmIntrinsics::_isInstance:
655  case vmIntrinsics::_getModifiers:
656  case vmIntrinsics::_isInterface:
657  case vmIntrinsics::_isArray:
658  case vmIntrinsics::_isPrimitive:
659  case vmIntrinsics::_getSuperclass:
660  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
661
662  case vmIntrinsics::_floatToRawIntBits:
663  case vmIntrinsics::_floatToIntBits:
664  case vmIntrinsics::_intBitsToFloat:
665  case vmIntrinsics::_doubleToRawLongBits:
666  case vmIntrinsics::_doubleToLongBits:
667  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
668
669  case vmIntrinsics::_numberOfLeadingZeros_i:
670  case vmIntrinsics::_numberOfLeadingZeros_l:
671  case vmIntrinsics::_numberOfTrailingZeros_i:
672  case vmIntrinsics::_numberOfTrailingZeros_l:
673  case vmIntrinsics::_bitCount_i:
674  case vmIntrinsics::_bitCount_l:
675  case vmIntrinsics::_reverseBytes_i:
676  case vmIntrinsics::_reverseBytes_l:
677  case vmIntrinsics::_reverseBytes_s:
678  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
679
680  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
681
682  case vmIntrinsics::_Reference_get:            return inline_reference_get();
683
684  case vmIntrinsics::_Class_cast:               return inline_Class_cast();
685
686  case vmIntrinsics::_aescrypt_encryptBlock:
687  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
688
689  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
690  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
691    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
692
693  case vmIntrinsics::_sha_implCompress:
694  case vmIntrinsics::_sha2_implCompress:
695  case vmIntrinsics::_sha5_implCompress:
696    return inline_sha_implCompress(intrinsic_id());
697
698  case vmIntrinsics::_digestBase_implCompressMB:
699    return inline_digestBase_implCompressMB(predicate);
700
701  case vmIntrinsics::_multiplyToLen:
702    return inline_multiplyToLen();
703
704  case vmIntrinsics::_squareToLen:
705    return inline_squareToLen();
706
707  case vmIntrinsics::_mulAdd:
708    return inline_mulAdd();
709
710  case vmIntrinsics::_montgomeryMultiply:
711    return inline_montgomeryMultiply();
712  case vmIntrinsics::_montgomerySquare:
713    return inline_montgomerySquare();
714
715  case vmIntrinsics::_ghash_processBlocks:
716    return inline_ghash_processBlocks();
717
718  case vmIntrinsics::_encodeISOArray:
719  case vmIntrinsics::_encodeByteISOArray:
720    return inline_encodeISOArray();
721
722  case vmIntrinsics::_updateCRC32:
723    return inline_updateCRC32();
724  case vmIntrinsics::_updateBytesCRC32:
725    return inline_updateBytesCRC32();
726  case vmIntrinsics::_updateByteBufferCRC32:
727    return inline_updateByteBufferCRC32();
728
729  case vmIntrinsics::_updateBytesCRC32C:
730    return inline_updateBytesCRC32C();
731  case vmIntrinsics::_updateDirectByteBufferCRC32C:
732    return inline_updateDirectByteBufferCRC32C();
733
734  case vmIntrinsics::_updateBytesAdler32:
735    return inline_updateBytesAdler32();
736  case vmIntrinsics::_updateByteBufferAdler32:
737    return inline_updateByteBufferAdler32();
738
739  case vmIntrinsics::_profileBoolean:
740    return inline_profileBoolean();
741  case vmIntrinsics::_isCompileConstant:
742    return inline_isCompileConstant();
743
744  case vmIntrinsics::_hasNegatives:
745    return inline_hasNegatives();
746
747  default:
748    // If you get here, it may be that someone has added a new intrinsic
749    // to the list in vmSymbols.hpp without implementing it here.
750#ifndef PRODUCT
751    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
752      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
753                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
754    }
755#endif
756    return false;
757  }
758}
759
760Node* LibraryCallKit::try_to_predicate(int predicate) {
761  if (!jvms()->has_method()) {
762    // Root JVMState has a null method.
763    assert(map()->memory()->Opcode() == Op_Parm, "");
764    // Insert the memory aliasing node
765    set_all_memory(reset_memory());
766  }
767  assert(merged_memory(), "");
768
769  switch (intrinsic_id()) {
770  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
771    return inline_cipherBlockChaining_AESCrypt_predicate(false);
772  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
773    return inline_cipherBlockChaining_AESCrypt_predicate(true);
774  case vmIntrinsics::_digestBase_implCompressMB:
775    return inline_digestBase_implCompressMB_predicate(predicate);
776
777  default:
778    // If you get here, it may be that someone has added a new intrinsic
779    // to the list in vmSymbols.hpp without implementing it here.
780#ifndef PRODUCT
781    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
782      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
783                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
784    }
785#endif
786    Node* slow_ctl = control();
787    set_control(top()); // No fast path instrinsic
788    return slow_ctl;
789  }
790}
791
792//------------------------------set_result-------------------------------
793// Helper function for finishing intrinsics.
794void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
795  record_for_igvn(region);
796  set_control(_gvn.transform(region));
797  set_result( _gvn.transform(value));
798  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
799}
800
801//------------------------------generate_guard---------------------------
802// Helper function for generating guarded fast-slow graph structures.
803// The given 'test', if true, guards a slow path.  If the test fails
804// then a fast path can be taken.  (We generally hope it fails.)
805// In all cases, GraphKit::control() is updated to the fast path.
806// The returned value represents the control for the slow path.
807// The return value is never 'top'; it is either a valid control
808// or NULL if it is obvious that the slow path can never be taken.
809// Also, if region and the slow control are not NULL, the slow edge
810// is appended to the region.
811Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
812  if (stopped()) {
813    // Already short circuited.
814    return NULL;
815  }
816
817  // Build an if node and its projections.
818  // If test is true we take the slow path, which we assume is uncommon.
819  if (_gvn.type(test) == TypeInt::ZERO) {
820    // The slow branch is never taken.  No need to build this guard.
821    return NULL;
822  }
823
824  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
825
826  Node* if_slow = _gvn.transform(new IfTrueNode(iff));
827  if (if_slow == top()) {
828    // The slow branch is never taken.  No need to build this guard.
829    return NULL;
830  }
831
832  if (region != NULL)
833    region->add_req(if_slow);
834
835  Node* if_fast = _gvn.transform(new IfFalseNode(iff));
836  set_control(if_fast);
837
838  return if_slow;
839}
840
841inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
842  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
843}
844inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
845  return generate_guard(test, region, PROB_FAIR);
846}
847
848inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
849                                                     Node* *pos_index) {
850  if (stopped())
851    return NULL;                // already stopped
852  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
853    return NULL;                // index is already adequately typed
854  Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
855  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
856  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
857  if (is_neg != NULL && pos_index != NULL) {
858    // Emulate effect of Parse::adjust_map_after_if.
859    Node* ccast = new CastIINode(index, TypeInt::POS);
860    ccast->set_req(0, control());
861    (*pos_index) = _gvn.transform(ccast);
862  }
863  return is_neg;
864}
865
866// Make sure that 'position' is a valid limit index, in [0..length].
867// There are two equivalent plans for checking this:
868//   A. (offset + copyLength)  unsigned<=  arrayLength
869//   B. offset  <=  (arrayLength - copyLength)
870// We require that all of the values above, except for the sum and
871// difference, are already known to be non-negative.
872// Plan A is robust in the face of overflow, if offset and copyLength
873// are both hugely positive.
874//
875// Plan B is less direct and intuitive, but it does not overflow at
876// all, since the difference of two non-negatives is always
877// representable.  Whenever Java methods must perform the equivalent
878// check they generally use Plan B instead of Plan A.
879// For the moment we use Plan A.
880inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
881                                                  Node* subseq_length,
882                                                  Node* array_length,
883                                                  RegionNode* region) {
884  if (stopped())
885    return NULL;                // already stopped
886  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
887  if (zero_offset && subseq_length->eqv_uncast(array_length))
888    return NULL;                // common case of whole-array copy
889  Node* last = subseq_length;
890  if (!zero_offset)             // last += offset
891    last = _gvn.transform(new AddINode(last, offset));
892  Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
893  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
894  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
895  return is_over;
896}
897
898
899//--------------------------generate_current_thread--------------------
900Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
901  ciKlass*    thread_klass = env()->Thread_klass();
902  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
903  Node* thread = _gvn.transform(new ThreadLocalNode());
904  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
905  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
906  tls_output = thread;
907  return threadObj;
908}
909
910
911//------------------------------make_string_method_node------------------------
912// Helper method for String intrinsic functions. This version is called with
913// str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
914// characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
915// containing the lengths of str1 and str2.
916Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
917  Node* result = NULL;
918  switch (opcode) {
919  case Op_StrIndexOf:
920    result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
921                                str1_start, cnt1, str2_start, cnt2, ae);
922    break;
923  case Op_StrComp:
924    result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
925                             str1_start, cnt1, str2_start, cnt2, ae);
926    break;
927  case Op_StrEquals:
928    result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
929                               str1_start, str2_start, cnt1, ae);
930    break;
931  default:
932    ShouldNotReachHere();
933    return NULL;
934  }
935
936  // All these intrinsics have checks.
937  C->set_has_split_ifs(true); // Has chance for split-if optimization
938
939  return _gvn.transform(result);
940}
941
942//------------------------------inline_string_compareTo------------------------
943bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
944  Node* arg1 = argument(0);
945  Node* arg2 = argument(1);
946
947  // Get start addr and length of first argument
948  Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
949  Node* arg1_cnt    = load_array_length(arg1);
950
951  // Get start addr and length of second argument
952  Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
953  Node* arg2_cnt    = load_array_length(arg2);
954
955  Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
956  set_result(result);
957  return true;
958}
959
960//------------------------------inline_string_equals------------------------
961bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
962  Node* arg1 = argument(0);
963  Node* arg2 = argument(1);
964
965  // paths (plus control) merge
966  RegionNode* region = new RegionNode(3);
967  Node* phi = new PhiNode(region, TypeInt::BOOL);
968
969  if (!stopped()) {
970    // Get start addr and length of first argument
971    Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
972    Node* arg1_cnt    = load_array_length(arg1);
973
974    // Get start addr and length of second argument
975    Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
976    Node* arg2_cnt    = load_array_length(arg2);
977
978    // Check for arg1_cnt != arg2_cnt
979    Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
980    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
981    Node* if_ne = generate_slow_guard(bol, NULL);
982    if (if_ne != NULL) {
983      phi->init_req(2, intcon(0));
984      region->init_req(2, if_ne);
985    }
986
987    // Check for count == 0 is done by assembler code for StrEquals.
988
989    if (!stopped()) {
990      Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
991      phi->init_req(1, equals);
992      region->init_req(1, control());
993    }
994  }
995
996  // post merge
997  set_control(_gvn.transform(region));
998  record_for_igvn(region);
999
1000  set_result(_gvn.transform(phi));
1001  return true;
1002}
1003
1004//------------------------------inline_array_equals----------------------------
1005bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1006  assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1007  Node* arg1 = argument(0);
1008  Node* arg2 = argument(1);
1009
1010  const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1011  set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1012  return true;
1013}
1014
1015//------------------------------inline_hasNegatives------------------------------
1016bool LibraryCallKit::inline_hasNegatives() {
1017  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1018
1019  assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1020  // no receiver since it is static method
1021  Node* ba         = argument(0);
1022  Node* offset     = argument(1);
1023  Node* len        = argument(2);
1024
1025  RegionNode* bailout = new RegionNode(1);
1026  record_for_igvn(bailout);
1027
1028  // offset must not be negative.
1029  generate_negative_guard(offset, bailout);
1030
1031  // offset + length must not exceed length of ba.
1032  generate_limit_guard(offset, len, load_array_length(ba), bailout);
1033
1034  if (bailout->req() > 1) {
1035    PreserveJVMState pjvms(this);
1036    set_control(_gvn.transform(bailout));
1037    uncommon_trap(Deoptimization::Reason_intrinsic,
1038                  Deoptimization::Action_maybe_recompile);
1039  }
1040  if (!stopped()) {
1041    Node* ba_start = array_element_address(ba, offset, T_BYTE);
1042    Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1043    set_result(_gvn.transform(result));
1044  }
1045  return true;
1046}
1047
1048//------------------------------inline_string_indexOf------------------------
1049bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1050  if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1051    return false;
1052  }
1053  Node* src = argument(0);
1054  Node* tgt = argument(1);
1055
1056  // Make the merge point
1057  RegionNode* result_rgn = new RegionNode(4);
1058  Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1059
1060  // Get start addr and length of source string
1061  Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1062  Node* src_count = load_array_length(src);
1063
1064  // Get start addr and length of substring
1065  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1066  Node* tgt_count = load_array_length(tgt);
1067
1068  if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1069    // Divide src size by 2 if String is UTF16 encoded
1070    src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1071  }
1072  if (ae == StrIntrinsicNode::UU) {
1073    // Divide substring size by 2 if String is UTF16 encoded
1074    tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1075  }
1076
1077  // Check for substr count > string count
1078  Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1079  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1080  Node* if_gt = generate_slow_guard(bol, NULL);
1081  if (if_gt != NULL) {
1082    result_phi->init_req(2, intcon(-1));
1083    result_rgn->init_req(2, if_gt);
1084  }
1085
1086  if (!stopped()) {
1087    // Check for substr count == 0
1088    cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1089    bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1090    Node* if_zero = generate_slow_guard(bol, NULL);
1091    if (if_zero != NULL) {
1092      result_phi->init_req(3, intcon(0));
1093      result_rgn->init_req(3, if_zero);
1094    }
1095  }
1096
1097  if (!stopped()) {
1098    Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1099    result_phi->init_req(1, result);
1100    result_rgn->init_req(1, control());
1101  }
1102  set_control(_gvn.transform(result_rgn));
1103  record_for_igvn(result_rgn);
1104  set_result(_gvn.transform(result_phi));
1105
1106  return true;
1107}
1108
1109//-----------------------------inline_string_indexOf-----------------------
1110bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1111  if (!Matcher::has_match_rule(Op_StrIndexOf) || !UseSSE42Intrinsics) {
1112    return false;
1113  }
1114  assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1115  Node* src         = argument(0); // byte[]
1116  Node* src_count   = argument(1);
1117  Node* tgt         = argument(2); // byte[]
1118  Node* tgt_count   = argument(3);
1119  Node* from_index  = argument(4);
1120
1121  // Java code which calls this method has range checks for from_index value.
1122  src_count = _gvn.transform(new SubINode(src_count, from_index));
1123
1124  // Multiply byte array index by 2 if String is UTF16 encoded
1125  Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1126  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1127  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1128
1129  Node* result = make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1130
1131  // The result is index relative to from_index if substring was found, -1 otherwise.
1132  // Generate code which will fold into cmove.
1133  RegionNode* region = new RegionNode(3);
1134  Node* phi = new PhiNode(region, TypeInt::INT);
1135
1136  Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1137  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1138
1139  Node* if_lt = generate_slow_guard(bol, NULL);
1140  if (if_lt != NULL) {
1141    // result == -1
1142    phi->init_req(2, result);
1143    region->init_req(2, if_lt);
1144  }
1145  if (!stopped()) {
1146    result = _gvn.transform(new AddINode(result, from_index));
1147    phi->init_req(1, result);
1148    region->init_req(1, control());
1149  }
1150
1151  set_control(_gvn.transform(region));
1152  record_for_igvn(region);
1153  set_result(_gvn.transform(phi));
1154
1155  return true;
1156}
1157
1158//-----------------------------inline_string_indexOfChar-----------------------
1159bool LibraryCallKit::inline_string_indexOfChar() {
1160  if (!Matcher::has_match_rule(Op_StrIndexOfChar) || !(UseSSE > 4)) {
1161    return false;
1162  }
1163  assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1164  Node* src         = argument(0); // byte[]
1165  Node* tgt         = argument(1); // tgt is int ch
1166  Node* from_index  = argument(2);
1167  Node* max         = argument(3);
1168
1169  Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1170  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1171
1172  Node* src_count = _gvn.transform(new SubINode(max, from_index));
1173
1174  RegionNode* region = new RegionNode(3);
1175  Node* phi = new PhiNode(region, TypeInt::INT);
1176
1177  Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1178  C->set_has_split_ifs(true); // Has chance for split-if optimization
1179  _gvn.transform(result);
1180
1181  Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1182  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1183
1184  Node* if_lt = generate_slow_guard(bol, NULL);
1185  if (if_lt != NULL) {
1186    // result == -1
1187    phi->init_req(2, result);
1188    region->init_req(2, if_lt);
1189  }
1190  if (!stopped()) {
1191    result = _gvn.transform(new AddINode(result, from_index));
1192    phi->init_req(1, result);
1193    region->init_req(1, control());
1194  }
1195  set_control(_gvn.transform(region));
1196  record_for_igvn(region);
1197  set_result(_gvn.transform(phi));
1198
1199  return true;
1200}
1201//---------------------------inline_string_copy---------------------
1202// compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1203//   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1204//   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1205// compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1206//   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1207//   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1208bool LibraryCallKit::inline_string_copy(bool compress) {
1209  int nargs = 5;  // 2 oops, 3 ints
1210  assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1211
1212  Node* src         = argument(0);
1213  Node* src_offset  = argument(1);
1214  Node* dst         = argument(2);
1215  Node* dst_offset  = argument(3);
1216  Node* length      = argument(4);
1217
1218  // Check for allocation before we add nodes that would confuse
1219  // tightly_coupled_allocation()
1220  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1221
1222  // Figure out the size and type of the elements we will be copying.
1223  const Type* src_type = src->Value(&_gvn);
1224  const Type* dst_type = dst->Value(&_gvn);
1225  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1226  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1227  assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1228         (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1229         "Unsupported array types for inline_string_copy");
1230
1231  // Convert char[] offsets to byte[] offsets
1232  if (compress && src_elem == T_BYTE) {
1233    src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1234  } else if (!compress && dst_elem == T_BYTE) {
1235    dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1236  }
1237
1238  Node* src_start = array_element_address(src, src_offset, src_elem);
1239  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1240  // 'src_start' points to src array + scaled offset
1241  // 'dst_start' points to dst array + scaled offset
1242  Node* count;
1243  if (compress) {
1244    count = compress_string(src_start, dst_start, length);
1245  } else {
1246    inflate_string(src_start, dst_start, length);
1247  }
1248
1249  if (alloc != NULL) {
1250    if (alloc->maybe_set_complete(&_gvn)) {
1251      // "You break it, you buy it."
1252      InitializeNode* init = alloc->initialization();
1253      assert(init->is_complete(), "we just did this");
1254      init->set_complete_with_arraycopy();
1255      assert(dst->is_CheckCastPP(), "sanity");
1256      assert(dst->in(0)->in(0) == init, "dest pinned");
1257    }
1258    // Do not let stores that initialize this object be reordered with
1259    // a subsequent store that would make this object accessible by
1260    // other threads.
1261    // Record what AllocateNode this StoreStore protects so that
1262    // escape analysis can go from the MemBarStoreStoreNode to the
1263    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1264    // based on the escape status of the AllocateNode.
1265    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1266  }
1267  if (compress) {
1268    set_result(_gvn.transform(count));
1269  }
1270  return true;
1271}
1272
1273#ifdef _LP64
1274#define XTOP ,top() /*additional argument*/
1275#else  //_LP64
1276#define XTOP        /*no additional argument*/
1277#endif //_LP64
1278
1279//------------------------inline_string_toBytesU--------------------------
1280// public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1281bool LibraryCallKit::inline_string_toBytesU() {
1282  // Get the arguments.
1283  Node* value     = argument(0);
1284  Node* offset    = argument(1);
1285  Node* length    = argument(2);
1286
1287  Node* newcopy = NULL;
1288
1289  // Set the original stack and the reexecute bit for the interpreter to reexecute
1290  // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1291  { PreserveReexecuteState preexecs(this);
1292    jvms()->set_should_reexecute(true);
1293
1294    // Check if a null path was taken unconditionally.
1295    value = null_check(value);
1296
1297    RegionNode* bailout = new RegionNode(1);
1298    record_for_igvn(bailout);
1299
1300    // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1301    generate_negative_guard(length, bailout);
1302    generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1303
1304    if (bailout->req() > 1) {
1305      PreserveJVMState pjvms(this);
1306      set_control(_gvn.transform(bailout));
1307      uncommon_trap(Deoptimization::Reason_intrinsic,
1308                    Deoptimization::Action_maybe_recompile);
1309    }
1310    if (stopped()) return true;
1311
1312    // Range checks are done by caller.
1313
1314    Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1315    Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1316    newcopy = new_array(klass_node, size, 0);  // no arguments to push
1317    AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1318
1319    // Calculate starting addresses.
1320    Node* src_start = array_element_address(value, offset, T_CHAR);
1321    Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1322
1323    // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1324    const TypeInt* toffset = gvn().type(offset)->is_int();
1325    bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1326
1327    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1328    const char* copyfunc_name = "arraycopy";
1329    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1330    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1331                      OptoRuntime::fast_arraycopy_Type(),
1332                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1333                      src_start, dst_start, ConvI2X(length) XTOP);
1334    // Do not let reads from the cloned object float above the arraycopy.
1335    if (alloc != NULL) {
1336      if (alloc->maybe_set_complete(&_gvn)) {
1337        // "You break it, you buy it."
1338        InitializeNode* init = alloc->initialization();
1339        assert(init->is_complete(), "we just did this");
1340        init->set_complete_with_arraycopy();
1341        assert(newcopy->is_CheckCastPP(), "sanity");
1342        assert(newcopy->in(0)->in(0) == init, "dest pinned");
1343      }
1344      // Do not let stores that initialize this object be reordered with
1345      // a subsequent store that would make this object accessible by
1346      // other threads.
1347      // Record what AllocateNode this StoreStore protects so that
1348      // escape analysis can go from the MemBarStoreStoreNode to the
1349      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1350      // based on the escape status of the AllocateNode.
1351      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1352    } else {
1353      insert_mem_bar(Op_MemBarCPUOrder);
1354    }
1355  } // original reexecute is set back here
1356
1357  C->set_has_split_ifs(true); // Has chance for split-if optimization
1358  if (!stopped()) {
1359    set_result(newcopy);
1360  }
1361  return true;
1362}
1363
1364//------------------------inline_string_getCharsU--------------------------
1365// public void StringUTF16.getChars(byte[] value, int srcBegin, int srcEnd, char dst[], int dstBegin)
1366bool LibraryCallKit::inline_string_getCharsU() {
1367  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1368
1369  // Get the arguments.
1370  Node* value     = argument(0);
1371  Node* src_begin = argument(1);
1372  Node* src_end   = argument(2); // exclusive offset (i < src_end)
1373  Node* dst       = argument(3);
1374  Node* dst_begin = argument(4);
1375
1376  // Check for allocation before we add nodes that would confuse
1377  // tightly_coupled_allocation()
1378  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1379
1380  // Check if a null path was taken unconditionally.
1381  value = null_check(value);
1382  dst = null_check(dst);
1383  if (stopped()) {
1384    return true;
1385  }
1386
1387  // Range checks are done by caller.
1388
1389  // Get length and convert char[] offset to byte[] offset
1390  Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1391  src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1392
1393  if (!stopped()) {
1394    // Calculate starting addresses.
1395    Node* src_start = array_element_address(value, src_begin, T_BYTE);
1396    Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1397
1398    // Check if array addresses are aligned to HeapWordSize
1399    const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1400    const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1401    bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1402                   tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1403
1404    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1405    const char* copyfunc_name = "arraycopy";
1406    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1407    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1408                      OptoRuntime::fast_arraycopy_Type(),
1409                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1410                      src_start, dst_start, ConvI2X(length) XTOP);
1411    // Do not let reads from the cloned object float above the arraycopy.
1412    if (alloc != NULL) {
1413      if (alloc->maybe_set_complete(&_gvn)) {
1414        // "You break it, you buy it."
1415        InitializeNode* init = alloc->initialization();
1416        assert(init->is_complete(), "we just did this");
1417        init->set_complete_with_arraycopy();
1418        assert(dst->is_CheckCastPP(), "sanity");
1419        assert(dst->in(0)->in(0) == init, "dest pinned");
1420      }
1421      // Do not let stores that initialize this object be reordered with
1422      // a subsequent store that would make this object accessible by
1423      // other threads.
1424      // Record what AllocateNode this StoreStore protects so that
1425      // escape analysis can go from the MemBarStoreStoreNode to the
1426      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1427      // based on the escape status of the AllocateNode.
1428      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1429    } else {
1430      insert_mem_bar(Op_MemBarCPUOrder);
1431    }
1432  }
1433
1434  C->set_has_split_ifs(true); // Has chance for split-if optimization
1435  return true;
1436}
1437
1438//----------------------inline_string_char_access----------------------------
1439// Store/Load char to/from byte[] array.
1440// static void StringUTF16.putChar(byte[] val, int index, int c)
1441// static char StringUTF16.getChar(byte[] val, int index)
1442bool LibraryCallKit::inline_string_char_access(bool is_store) {
1443  Node* value  = argument(0);
1444  Node* index  = argument(1);
1445  Node* ch = is_store ? argument(2) : NULL;
1446
1447  // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1448  // correctly requires matched array shapes.
1449  assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1450          "sanity: byte[] and char[] bases agree");
1451  assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1452          "sanity: byte[] and char[] scales agree");
1453
1454  Node* adr = array_element_address(value, index, T_CHAR);
1455  if (is_store) {
1456    (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered);
1457  } else {
1458    ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, MemNode::unordered);
1459    set_result(ch);
1460  }
1461  return true;
1462}
1463
1464//--------------------------round_double_node--------------------------------
1465// Round a double node if necessary.
1466Node* LibraryCallKit::round_double_node(Node* n) {
1467  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1468    n = _gvn.transform(new RoundDoubleNode(0, n));
1469  return n;
1470}
1471
1472//------------------------------inline_math-----------------------------------
1473// public static double Math.abs(double)
1474// public static double Math.sqrt(double)
1475// public static double Math.log(double)
1476// public static double Math.log10(double)
1477bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1478  Node* arg = round_double_node(argument(0));
1479  Node* n = NULL;
1480  switch (id) {
1481  case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1482  case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1483  case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1484  default:  fatal_unexpected_iid(id);  break;
1485  }
1486  set_result(_gvn.transform(n));
1487  return true;
1488}
1489
1490//------------------------------inline_trig----------------------------------
1491// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1492// argument reduction which will turn into a fast/slow diamond.
1493bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1494  Node* arg = round_double_node(argument(0));
1495  Node* n = NULL;
1496
1497  switch (id) {
1498  case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1499  case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1500  case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1501  default:  fatal_unexpected_iid(id);  break;
1502  }
1503  n = _gvn.transform(n);
1504
1505  // Rounding required?  Check for argument reduction!
1506  if (Matcher::strict_fp_requires_explicit_rounding) {
1507    static const double     pi_4 =  0.7853981633974483;
1508    static const double neg_pi_4 = -0.7853981633974483;
1509    // pi/2 in 80-bit extended precision
1510    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1511    // -pi/2 in 80-bit extended precision
1512    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1513    // Cutoff value for using this argument reduction technique
1514    //static const double    pi_2_minus_epsilon =  1.564660403643354;
1515    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1516
1517    // Pseudocode for sin:
1518    // if (x <= Math.PI / 4.0) {
1519    //   if (x >= -Math.PI / 4.0) return  fsin(x);
1520    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1521    // } else {
1522    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1523    // }
1524    // return StrictMath.sin(x);
1525
1526    // Pseudocode for cos:
1527    // if (x <= Math.PI / 4.0) {
1528    //   if (x >= -Math.PI / 4.0) return  fcos(x);
1529    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1530    // } else {
1531    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1532    // }
1533    // return StrictMath.cos(x);
1534
1535    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1536    // requires a special machine instruction to load it.  Instead we'll try
1537    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1538    // probably do the math inside the SIN encoding.
1539
1540    // Make the merge point
1541    RegionNode* r = new RegionNode(3);
1542    Node* phi = new PhiNode(r, Type::DOUBLE);
1543
1544    // Flatten arg so we need only 1 test
1545    Node *abs = _gvn.transform(new AbsDNode(arg));
1546    // Node for PI/4 constant
1547    Node *pi4 = makecon(TypeD::make(pi_4));
1548    // Check PI/4 : abs(arg)
1549    Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1550    // Check: If PI/4 < abs(arg) then go slow
1551    Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1552    // Branch either way
1553    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1554    set_control(opt_iff(r,iff));
1555
1556    // Set fast path result
1557    phi->init_req(2, n);
1558
1559    // Slow path - non-blocking leaf call
1560    Node* call = NULL;
1561    switch (id) {
1562    case vmIntrinsics::_dsin:
1563      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1564                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1565                               "Sin", NULL, arg, top());
1566      break;
1567    case vmIntrinsics::_dcos:
1568      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1569                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1570                               "Cos", NULL, arg, top());
1571      break;
1572    case vmIntrinsics::_dtan:
1573      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1574                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1575                               "Tan", NULL, arg, top());
1576      break;
1577    }
1578    assert(control()->in(0) == call, "");
1579    Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1580    r->init_req(1, control());
1581    phi->init_req(1, slow_result);
1582
1583    // Post-merge
1584    set_control(_gvn.transform(r));
1585    record_for_igvn(r);
1586    n = _gvn.transform(phi);
1587
1588    C->set_has_split_ifs(true); // Has chance for split-if optimization
1589  }
1590  set_result(n);
1591  return true;
1592}
1593
1594Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1595  //-------------------
1596  //result=(result.isNaN())? funcAddr():result;
1597  // Check: If isNaN() by checking result!=result? then either trap
1598  // or go to runtime
1599  Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1600  // Build the boolean node
1601  Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1602
1603  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1604    { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1605      // The pow or exp intrinsic returned a NaN, which requires a call
1606      // to the runtime.  Recompile with the runtime call.
1607      uncommon_trap(Deoptimization::Reason_intrinsic,
1608                    Deoptimization::Action_make_not_entrant);
1609    }
1610    return result;
1611  } else {
1612    // If this inlining ever returned NaN in the past, we compile a call
1613    // to the runtime to properly handle corner cases
1614
1615    IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1616    Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1617    Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1618
1619    if (!if_slow->is_top()) {
1620      RegionNode* result_region = new RegionNode(3);
1621      PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1622
1623      result_region->init_req(1, if_fast);
1624      result_val->init_req(1, result);
1625
1626      set_control(if_slow);
1627
1628      const TypePtr* no_memory_effects = NULL;
1629      Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1630                                   no_memory_effects,
1631                                   x, top(), y, y ? top() : NULL);
1632      Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1633#ifdef ASSERT
1634      Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1635      assert(value_top == top(), "second value must be top");
1636#endif
1637
1638      result_region->init_req(2, control());
1639      result_val->init_req(2, value);
1640      set_control(_gvn.transform(result_region));
1641      return _gvn.transform(result_val);
1642    } else {
1643      return result;
1644    }
1645  }
1646}
1647
1648//------------------------------inline_pow-------------------------------------
1649// Inline power instructions, if possible.
1650bool LibraryCallKit::inline_pow() {
1651  // Pseudocode for pow
1652  // if (y == 2) {
1653  //   return x * x;
1654  // } else {
1655  //   if (x <= 0.0) {
1656  //     long longy = (long)y;
1657  //     if ((double)longy == y) { // if y is long
1658  //       if (y + 1 == y) longy = 0; // huge number: even
1659  //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1660  //     } else {
1661  //       result = NaN;
1662  //     }
1663  //   } else {
1664  //     result = DPow(x,y);
1665  //   }
1666  //   if (result != result)?  {
1667  //     result = uncommon_trap() or runtime_call();
1668  //   }
1669  //   return result;
1670  // }
1671
1672  Node* x = round_double_node(argument(0));
1673  Node* y = round_double_node(argument(2));
1674
1675  Node* result = NULL;
1676
1677  Node*   const_two_node = makecon(TypeD::make(2.0));
1678  Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1679  Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1680  IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1681  Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1682  Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1683
1684  RegionNode* region_node = new RegionNode(3);
1685  region_node->init_req(1, if_true);
1686
1687  Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1688  // special case for x^y where y == 2, we can convert it to x * x
1689  phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1690
1691  // set control to if_false since we will now process the false branch
1692  set_control(if_false);
1693
1694  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1695    // Short form: skip the fancy tests and just check for NaN result.
1696    result = _gvn.transform(new PowDNode(C, control(), x, y));
1697  } else {
1698    // If this inlining ever returned NaN in the past, include all
1699    // checks + call to the runtime.
1700
1701    // Set the merge point for If node with condition of (x <= 0.0)
1702    // There are four possible paths to region node and phi node
1703    RegionNode *r = new RegionNode(4);
1704    Node *phi = new PhiNode(r, Type::DOUBLE);
1705
1706    // Build the first if node: if (x <= 0.0)
1707    // Node for 0 constant
1708    Node *zeronode = makecon(TypeD::ZERO);
1709    // Check x:0
1710    Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1711    // Check: If (x<=0) then go complex path
1712    Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1713    // Branch either way
1714    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1715    // Fast path taken; set region slot 3
1716    Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1717    r->init_req(3,fast_taken); // Capture fast-control
1718
1719    // Fast path not-taken, i.e. slow path
1720    Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1721
1722    // Set fast path result
1723    Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1724    phi->init_req(3, fast_result);
1725
1726    // Complex path
1727    // Build the second if node (if y is long)
1728    // Node for (long)y
1729    Node *longy = _gvn.transform(new ConvD2LNode(y));
1730    // Node for (double)((long) y)
1731    Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1732    // Check (double)((long) y) : y
1733    Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1734    // Check if (y isn't long) then go to slow path
1735
1736    Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1737    // Branch either way
1738    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1739    Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1740
1741    Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1742
1743    // Calculate DPow(abs(x), y)*(1 & (long)y)
1744    // Node for constant 1
1745    Node *conone = longcon(1);
1746    // 1& (long)y
1747    Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1748
1749    // A huge number is always even. Detect a huge number by checking
1750    // if y + 1 == y and set integer to be tested for parity to 0.
1751    // Required for corner case:
1752    // (long)9.223372036854776E18 = max_jlong
1753    // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1754    // max_jlong is odd but 9.223372036854776E18 is even
1755    Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1756    Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1757    Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1758    Node* correctedsign = NULL;
1759    if (ConditionalMoveLimit != 0) {
1760      correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1761    } else {
1762      IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1763      RegionNode *r = new RegionNode(3);
1764      Node *phi = new PhiNode(r, TypeLong::LONG);
1765      r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1766      r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1767      phi->init_req(1, signnode);
1768      phi->init_req(2, longcon(0));
1769      correctedsign = _gvn.transform(phi);
1770      ylong_path = _gvn.transform(r);
1771      record_for_igvn(r);
1772    }
1773
1774    // zero node
1775    Node *conzero = longcon(0);
1776    // Check (1&(long)y)==0?
1777    Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1778    // Check if (1&(long)y)!=0?, if so the result is negative
1779    Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1780    // abs(x)
1781    Node *absx=_gvn.transform(new AbsDNode(x));
1782    // abs(x)^y
1783    Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1784    // -abs(x)^y
1785    Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1786    // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1787    Node *signresult = NULL;
1788    if (ConditionalMoveLimit != 0) {
1789      signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1790    } else {
1791      IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1792      RegionNode *r = new RegionNode(3);
1793      Node *phi = new PhiNode(r, Type::DOUBLE);
1794      r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1795      r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1796      phi->init_req(1, absxpowy);
1797      phi->init_req(2, negabsxpowy);
1798      signresult = _gvn.transform(phi);
1799      ylong_path = _gvn.transform(r);
1800      record_for_igvn(r);
1801    }
1802    // Set complex path fast result
1803    r->init_req(2, ylong_path);
1804    phi->init_req(2, signresult);
1805
1806    static const jlong nan_bits = CONST64(0x7ff8000000000000);
1807    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1808    r->init_req(1,slow_path);
1809    phi->init_req(1,slow_result);
1810
1811    // Post merge
1812    set_control(_gvn.transform(r));
1813    record_for_igvn(r);
1814    result = _gvn.transform(phi);
1815  }
1816
1817  result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1818
1819  // control from finish_pow_exp is now input to the region node
1820  region_node->set_req(2, control());
1821  // the result from finish_pow_exp is now input to the phi node
1822  phi_node->init_req(2, result);
1823  set_control(_gvn.transform(region_node));
1824  record_for_igvn(region_node);
1825  set_result(_gvn.transform(phi_node));
1826
1827  C->set_has_split_ifs(true); // Has chance for split-if optimization
1828  return true;
1829}
1830
1831//------------------------------runtime_math-----------------------------
1832bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1833  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1834         "must be (DD)D or (D)D type");
1835
1836  // Inputs
1837  Node* a = round_double_node(argument(0));
1838  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1839
1840  const TypePtr* no_memory_effects = NULL;
1841  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1842                                 no_memory_effects,
1843                                 a, top(), b, b ? top() : NULL);
1844  Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1845#ifdef ASSERT
1846  Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1847  assert(value_top == top(), "second value must be top");
1848#endif
1849
1850  set_result(value);
1851  return true;
1852}
1853
1854//------------------------------inline_math_native-----------------------------
1855bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1856#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1857  switch (id) {
1858    // These intrinsics are not properly supported on all hardware
1859  case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1860    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1861  case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1862    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1863  case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1864    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1865
1866  case vmIntrinsics::_dlog:
1867    return StubRoutines::dlog() != NULL ?
1868    runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1869    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1870  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1871    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1872
1873    // These intrinsics are supported on all hardware
1874  case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1875  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1876
1877  case vmIntrinsics::_dexp:
1878    return StubRoutines::dexp() != NULL ?
1879      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1880      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1881  case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1882    runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1883#undef FN_PTR
1884
1885   // These intrinsics are not yet correctly implemented
1886  case vmIntrinsics::_datan2:
1887    return false;
1888
1889  default:
1890    fatal_unexpected_iid(id);
1891    return false;
1892  }
1893}
1894
1895static bool is_simple_name(Node* n) {
1896  return (n->req() == 1         // constant
1897          || (n->is_Type() && n->as_Type()->type()->singleton())
1898          || n->is_Proj()       // parameter or return value
1899          || n->is_Phi()        // local of some sort
1900          );
1901}
1902
1903//----------------------------inline_notify-----------------------------------*
1904bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1905  const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1906  address func;
1907  if (id == vmIntrinsics::_notify) {
1908    func = OptoRuntime::monitor_notify_Java();
1909  } else {
1910    func = OptoRuntime::monitor_notifyAll_Java();
1911  }
1912  Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1913  make_slow_call_ex(call, env()->Throwable_klass(), false);
1914  return true;
1915}
1916
1917
1918//----------------------------inline_min_max-----------------------------------
1919bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1920  set_result(generate_min_max(id, argument(0), argument(1)));
1921  return true;
1922}
1923
1924void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1925  Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1926  IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1927  Node* fast_path = _gvn.transform( new IfFalseNode(check));
1928  Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1929
1930  {
1931    PreserveJVMState pjvms(this);
1932    PreserveReexecuteState preexecs(this);
1933    jvms()->set_should_reexecute(true);
1934
1935    set_control(slow_path);
1936    set_i_o(i_o());
1937
1938    uncommon_trap(Deoptimization::Reason_intrinsic,
1939                  Deoptimization::Action_none);
1940  }
1941
1942  set_control(fast_path);
1943  set_result(math);
1944}
1945
1946template <typename OverflowOp>
1947bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1948  typedef typename OverflowOp::MathOp MathOp;
1949
1950  MathOp* mathOp = new MathOp(arg1, arg2);
1951  Node* operation = _gvn.transform( mathOp );
1952  Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1953  inline_math_mathExact(operation, ofcheck);
1954  return true;
1955}
1956
1957bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1958  return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1959}
1960
1961bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1962  return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1963}
1964
1965bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1966  return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1967}
1968
1969bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1970  return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1971}
1972
1973bool LibraryCallKit::inline_math_negateExactI() {
1974  return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1975}
1976
1977bool LibraryCallKit::inline_math_negateExactL() {
1978  return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1979}
1980
1981bool LibraryCallKit::inline_math_multiplyExactI() {
1982  return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1983}
1984
1985bool LibraryCallKit::inline_math_multiplyExactL() {
1986  return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1987}
1988
1989Node*
1990LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1991  // These are the candidate return value:
1992  Node* xvalue = x0;
1993  Node* yvalue = y0;
1994
1995  if (xvalue == yvalue) {
1996    return xvalue;
1997  }
1998
1999  bool want_max = (id == vmIntrinsics::_max);
2000
2001  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2002  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2003  if (txvalue == NULL || tyvalue == NULL)  return top();
2004  // This is not really necessary, but it is consistent with a
2005  // hypothetical MaxINode::Value method:
2006  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2007
2008  // %%% This folding logic should (ideally) be in a different place.
2009  // Some should be inside IfNode, and there to be a more reliable
2010  // transformation of ?: style patterns into cmoves.  We also want
2011  // more powerful optimizations around cmove and min/max.
2012
2013  // Try to find a dominating comparison of these guys.
2014  // It can simplify the index computation for Arrays.copyOf
2015  // and similar uses of System.arraycopy.
2016  // First, compute the normalized version of CmpI(x, y).
2017  int   cmp_op = Op_CmpI;
2018  Node* xkey = xvalue;
2019  Node* ykey = yvalue;
2020  Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2021  if (ideal_cmpxy->is_Cmp()) {
2022    // E.g., if we have CmpI(length - offset, count),
2023    // it might idealize to CmpI(length, count + offset)
2024    cmp_op = ideal_cmpxy->Opcode();
2025    xkey = ideal_cmpxy->in(1);
2026    ykey = ideal_cmpxy->in(2);
2027  }
2028
2029  // Start by locating any relevant comparisons.
2030  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2031  Node* cmpxy = NULL;
2032  Node* cmpyx = NULL;
2033  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2034    Node* cmp = start_from->fast_out(k);
2035    if (cmp->outcnt() > 0 &&            // must have prior uses
2036        cmp->in(0) == NULL &&           // must be context-independent
2037        cmp->Opcode() == cmp_op) {      // right kind of compare
2038      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2039      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2040    }
2041  }
2042
2043  const int NCMPS = 2;
2044  Node* cmps[NCMPS] = { cmpxy, cmpyx };
2045  int cmpn;
2046  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2047    if (cmps[cmpn] != NULL)  break;     // find a result
2048  }
2049  if (cmpn < NCMPS) {
2050    // Look for a dominating test that tells us the min and max.
2051    int depth = 0;                // Limit search depth for speed
2052    Node* dom = control();
2053    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2054      if (++depth >= 100)  break;
2055      Node* ifproj = dom;
2056      if (!ifproj->is_Proj())  continue;
2057      Node* iff = ifproj->in(0);
2058      if (!iff->is_If())  continue;
2059      Node* bol = iff->in(1);
2060      if (!bol->is_Bool())  continue;
2061      Node* cmp = bol->in(1);
2062      if (cmp == NULL)  continue;
2063      for (cmpn = 0; cmpn < NCMPS; cmpn++)
2064        if (cmps[cmpn] == cmp)  break;
2065      if (cmpn == NCMPS)  continue;
2066      BoolTest::mask btest = bol->as_Bool()->_test._test;
2067      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2068      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2069      // At this point, we know that 'x btest y' is true.
2070      switch (btest) {
2071      case BoolTest::eq:
2072        // They are proven equal, so we can collapse the min/max.
2073        // Either value is the answer.  Choose the simpler.
2074        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2075          return yvalue;
2076        return xvalue;
2077      case BoolTest::lt:          // x < y
2078      case BoolTest::le:          // x <= y
2079        return (want_max ? yvalue : xvalue);
2080      case BoolTest::gt:          // x > y
2081      case BoolTest::ge:          // x >= y
2082        return (want_max ? xvalue : yvalue);
2083      }
2084    }
2085  }
2086
2087  // We failed to find a dominating test.
2088  // Let's pick a test that might GVN with prior tests.
2089  Node*          best_bol   = NULL;
2090  BoolTest::mask best_btest = BoolTest::illegal;
2091  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2092    Node* cmp = cmps[cmpn];
2093    if (cmp == NULL)  continue;
2094    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2095      Node* bol = cmp->fast_out(j);
2096      if (!bol->is_Bool())  continue;
2097      BoolTest::mask btest = bol->as_Bool()->_test._test;
2098      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2099      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2100      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2101        best_bol   = bol->as_Bool();
2102        best_btest = btest;
2103      }
2104    }
2105  }
2106
2107  Node* answer_if_true  = NULL;
2108  Node* answer_if_false = NULL;
2109  switch (best_btest) {
2110  default:
2111    if (cmpxy == NULL)
2112      cmpxy = ideal_cmpxy;
2113    best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2114    // and fall through:
2115  case BoolTest::lt:          // x < y
2116  case BoolTest::le:          // x <= y
2117    answer_if_true  = (want_max ? yvalue : xvalue);
2118    answer_if_false = (want_max ? xvalue : yvalue);
2119    break;
2120  case BoolTest::gt:          // x > y
2121  case BoolTest::ge:          // x >= y
2122    answer_if_true  = (want_max ? xvalue : yvalue);
2123    answer_if_false = (want_max ? yvalue : xvalue);
2124    break;
2125  }
2126
2127  jint hi, lo;
2128  if (want_max) {
2129    // We can sharpen the minimum.
2130    hi = MAX2(txvalue->_hi, tyvalue->_hi);
2131    lo = MAX2(txvalue->_lo, tyvalue->_lo);
2132  } else {
2133    // We can sharpen the maximum.
2134    hi = MIN2(txvalue->_hi, tyvalue->_hi);
2135    lo = MIN2(txvalue->_lo, tyvalue->_lo);
2136  }
2137
2138  // Use a flow-free graph structure, to avoid creating excess control edges
2139  // which could hinder other optimizations.
2140  // Since Math.min/max is often used with arraycopy, we want
2141  // tightly_coupled_allocation to be able to see beyond min/max expressions.
2142  Node* cmov = CMoveNode::make(NULL, best_bol,
2143                               answer_if_false, answer_if_true,
2144                               TypeInt::make(lo, hi, widen));
2145
2146  return _gvn.transform(cmov);
2147
2148  /*
2149  // This is not as desirable as it may seem, since Min and Max
2150  // nodes do not have a full set of optimizations.
2151  // And they would interfere, anyway, with 'if' optimizations
2152  // and with CMoveI canonical forms.
2153  switch (id) {
2154  case vmIntrinsics::_min:
2155    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2156  case vmIntrinsics::_max:
2157    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2158  default:
2159    ShouldNotReachHere();
2160  }
2161  */
2162}
2163
2164inline int
2165LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2166  const TypePtr* base_type = TypePtr::NULL_PTR;
2167  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2168  if (base_type == NULL) {
2169    // Unknown type.
2170    return Type::AnyPtr;
2171  } else if (base_type == TypePtr::NULL_PTR) {
2172    // Since this is a NULL+long form, we have to switch to a rawptr.
2173    base   = _gvn.transform(new CastX2PNode(offset));
2174    offset = MakeConX(0);
2175    return Type::RawPtr;
2176  } else if (base_type->base() == Type::RawPtr) {
2177    return Type::RawPtr;
2178  } else if (base_type->isa_oopptr()) {
2179    // Base is never null => always a heap address.
2180    if (base_type->ptr() == TypePtr::NotNull) {
2181      return Type::OopPtr;
2182    }
2183    // Offset is small => always a heap address.
2184    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2185    if (offset_type != NULL &&
2186        base_type->offset() == 0 &&     // (should always be?)
2187        offset_type->_lo >= 0 &&
2188        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2189      return Type::OopPtr;
2190    }
2191    // Otherwise, it might either be oop+off or NULL+addr.
2192    return Type::AnyPtr;
2193  } else {
2194    // No information:
2195    return Type::AnyPtr;
2196  }
2197}
2198
2199inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2200  int kind = classify_unsafe_addr(base, offset);
2201  if (kind == Type::RawPtr) {
2202    return basic_plus_adr(top(), base, offset);
2203  } else {
2204    return basic_plus_adr(base, offset);
2205  }
2206}
2207
2208//--------------------------inline_number_methods-----------------------------
2209// inline int     Integer.numberOfLeadingZeros(int)
2210// inline int        Long.numberOfLeadingZeros(long)
2211//
2212// inline int     Integer.numberOfTrailingZeros(int)
2213// inline int        Long.numberOfTrailingZeros(long)
2214//
2215// inline int     Integer.bitCount(int)
2216// inline int        Long.bitCount(long)
2217//
2218// inline char  Character.reverseBytes(char)
2219// inline short     Short.reverseBytes(short)
2220// inline int     Integer.reverseBytes(int)
2221// inline long       Long.reverseBytes(long)
2222bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2223  Node* arg = argument(0);
2224  Node* n = NULL;
2225  switch (id) {
2226  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2227  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2228  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2229  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2230  case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2231  case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2232  case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2233  case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2234  case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2235  case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2236  default:  fatal_unexpected_iid(id);  break;
2237  }
2238  set_result(_gvn.transform(n));
2239  return true;
2240}
2241
2242//----------------------------inline_unsafe_access----------------------------
2243
2244const static BasicType T_ADDRESS_HOLDER = T_LONG;
2245
2246// Helper that guards and inserts a pre-barrier.
2247void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2248                                        Node* pre_val, bool need_mem_bar) {
2249  // We could be accessing the referent field of a reference object. If so, when G1
2250  // is enabled, we need to log the value in the referent field in an SATB buffer.
2251  // This routine performs some compile time filters and generates suitable
2252  // runtime filters that guard the pre-barrier code.
2253  // Also add memory barrier for non volatile load from the referent field
2254  // to prevent commoning of loads across safepoint.
2255  if (!UseG1GC && !need_mem_bar)
2256    return;
2257
2258  // Some compile time checks.
2259
2260  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2261  const TypeX* otype = offset->find_intptr_t_type();
2262  if (otype != NULL && otype->is_con() &&
2263      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2264    // Constant offset but not the reference_offset so just return
2265    return;
2266  }
2267
2268  // We only need to generate the runtime guards for instances.
2269  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2270  if (btype != NULL) {
2271    if (btype->isa_aryptr()) {
2272      // Array type so nothing to do
2273      return;
2274    }
2275
2276    const TypeInstPtr* itype = btype->isa_instptr();
2277    if (itype != NULL) {
2278      // Can the klass of base_oop be statically determined to be
2279      // _not_ a sub-class of Reference and _not_ Object?
2280      ciKlass* klass = itype->klass();
2281      if ( klass->is_loaded() &&
2282          !klass->is_subtype_of(env()->Reference_klass()) &&
2283          !env()->Object_klass()->is_subtype_of(klass)) {
2284        return;
2285      }
2286    }
2287  }
2288
2289  // The compile time filters did not reject base_oop/offset so
2290  // we need to generate the following runtime filters
2291  //
2292  // if (offset == java_lang_ref_Reference::_reference_offset) {
2293  //   if (instance_of(base, java.lang.ref.Reference)) {
2294  //     pre_barrier(_, pre_val, ...);
2295  //   }
2296  // }
2297
2298  float likely   = PROB_LIKELY(  0.999);
2299  float unlikely = PROB_UNLIKELY(0.999);
2300
2301  IdealKit ideal(this);
2302#define __ ideal.
2303
2304  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2305
2306  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2307      // Update graphKit memory and control from IdealKit.
2308      sync_kit(ideal);
2309
2310      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2311      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2312
2313      // Update IdealKit memory and control from graphKit.
2314      __ sync_kit(this);
2315
2316      Node* one = __ ConI(1);
2317      // is_instof == 0 if base_oop == NULL
2318      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2319
2320        // Update graphKit from IdeakKit.
2321        sync_kit(ideal);
2322
2323        // Use the pre-barrier to record the value in the referent field
2324        pre_barrier(false /* do_load */,
2325                    __ ctrl(),
2326                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2327                    pre_val /* pre_val */,
2328                    T_OBJECT);
2329        if (need_mem_bar) {
2330          // Add memory barrier to prevent commoning reads from this field
2331          // across safepoint since GC can change its value.
2332          insert_mem_bar(Op_MemBarCPUOrder);
2333        }
2334        // Update IdealKit from graphKit.
2335        __ sync_kit(this);
2336
2337      } __ end_if(); // _ref_type != ref_none
2338  } __ end_if(); // offset == referent_offset
2339
2340  // Final sync IdealKit and GraphKit.
2341  final_sync(ideal);
2342#undef __
2343}
2344
2345
2346// Interpret Unsafe.fieldOffset cookies correctly:
2347extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2348
2349const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2350  // Attempt to infer a sharper value type from the offset and base type.
2351  ciKlass* sharpened_klass = NULL;
2352
2353  // See if it is an instance field, with an object type.
2354  if (alias_type->field() != NULL) {
2355    assert(!is_native_ptr, "native pointer op cannot use a java address");
2356    if (alias_type->field()->type()->is_klass()) {
2357      sharpened_klass = alias_type->field()->type()->as_klass();
2358    }
2359  }
2360
2361  // See if it is a narrow oop array.
2362  if (adr_type->isa_aryptr()) {
2363    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2364      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2365      if (elem_type != NULL) {
2366        sharpened_klass = elem_type->klass();
2367      }
2368    }
2369  }
2370
2371  // The sharpened class might be unloaded if there is no class loader
2372  // contraint in place.
2373  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2374    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2375
2376#ifndef PRODUCT
2377    if (C->print_intrinsics() || C->print_inlining()) {
2378      tty->print("  from base type: ");  adr_type->dump();
2379      tty->print("  sharpened value: ");  tjp->dump();
2380    }
2381#endif
2382    // Sharpen the value type.
2383    return tjp;
2384  }
2385  return NULL;
2386}
2387
2388bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2389  if (callee()->is_static())  return false;  // caller must have the capability!
2390
2391#ifndef PRODUCT
2392  {
2393    ResourceMark rm;
2394    // Check the signatures.
2395    ciSignature* sig = callee()->signature();
2396#ifdef ASSERT
2397    if (!is_store) {
2398      // Object getObject(Object base, int/long offset), etc.
2399      BasicType rtype = sig->return_type()->basic_type();
2400      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2401          rtype = T_ADDRESS;  // it is really a C void*
2402      assert(rtype == type, "getter must return the expected value");
2403      if (!is_native_ptr) {
2404        assert(sig->count() == 2, "oop getter has 2 arguments");
2405        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2406        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2407      } else {
2408        assert(sig->count() == 1, "native getter has 1 argument");
2409        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2410      }
2411    } else {
2412      // void putObject(Object base, int/long offset, Object x), etc.
2413      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2414      if (!is_native_ptr) {
2415        assert(sig->count() == 3, "oop putter has 3 arguments");
2416        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2417        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2418      } else {
2419        assert(sig->count() == 2, "native putter has 2 arguments");
2420        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2421      }
2422      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2423      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2424        vtype = T_ADDRESS;  // it is really a C void*
2425      assert(vtype == type, "putter must accept the expected value");
2426    }
2427#endif // ASSERT
2428 }
2429#endif //PRODUCT
2430
2431  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2432
2433  Node* receiver = argument(0);  // type: oop
2434
2435  // Build address expression.
2436  Node* adr;
2437  Node* heap_base_oop = top();
2438  Node* offset = top();
2439  Node* val;
2440
2441  if (!is_native_ptr) {
2442    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2443    Node* base = argument(1);  // type: oop
2444    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2445    offset = argument(2);  // type: long
2446    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2447    // to be plain byte offsets, which are also the same as those accepted
2448    // by oopDesc::field_base.
2449    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2450           "fieldOffset must be byte-scaled");
2451    // 32-bit machines ignore the high half!
2452    offset = ConvL2X(offset);
2453    adr = make_unsafe_address(base, offset);
2454    heap_base_oop = base;
2455    val = is_store ? argument(4) : NULL;
2456  } else {
2457    Node* ptr = argument(1);  // type: long
2458    ptr = ConvL2X(ptr);  // adjust Java long to machine word
2459    adr = make_unsafe_address(NULL, ptr);
2460    val = is_store ? argument(3) : NULL;
2461  }
2462
2463  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2464
2465  // First guess at the value type.
2466  const Type *value_type = Type::get_const_basic_type(type);
2467
2468  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2469  // there was not enough information to nail it down.
2470  Compile::AliasType* alias_type = C->alias_type(adr_type);
2471  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2472
2473  // We will need memory barriers unless we can determine a unique
2474  // alias category for this reference.  (Note:  If for some reason
2475  // the barriers get omitted and the unsafe reference begins to "pollute"
2476  // the alias analysis of the rest of the graph, either Compile::can_alias
2477  // or Compile::must_alias will throw a diagnostic assert.)
2478  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2479
2480  // If we are reading the value of the referent field of a Reference
2481  // object (either by using Unsafe directly or through reflection)
2482  // then, if G1 is enabled, we need to record the referent in an
2483  // SATB log buffer using the pre-barrier mechanism.
2484  // Also we need to add memory barrier to prevent commoning reads
2485  // from this field across safepoint since GC can change its value.
2486  bool need_read_barrier = !is_native_ptr && !is_store &&
2487                           offset != top() && heap_base_oop != top();
2488
2489  if (!is_store && type == T_OBJECT) {
2490    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2491    if (tjp != NULL) {
2492      value_type = tjp;
2493    }
2494  }
2495
2496  receiver = null_check(receiver);
2497  if (stopped()) {
2498    return true;
2499  }
2500  // Heap pointers get a null-check from the interpreter,
2501  // as a courtesy.  However, this is not guaranteed by Unsafe,
2502  // and it is not possible to fully distinguish unintended nulls
2503  // from intended ones in this API.
2504
2505  if (is_volatile) {
2506    // We need to emit leading and trailing CPU membars (see below) in
2507    // addition to memory membars when is_volatile. This is a little
2508    // too strong, but avoids the need to insert per-alias-type
2509    // volatile membars (for stores; compare Parse::do_put_xxx), which
2510    // we cannot do effectively here because we probably only have a
2511    // rough approximation of type.
2512    need_mem_bar = true;
2513    // For Stores, place a memory ordering barrier now.
2514    if (is_store) {
2515      insert_mem_bar(Op_MemBarRelease);
2516    } else {
2517      if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2518        insert_mem_bar(Op_MemBarVolatile);
2519      }
2520    }
2521  }
2522
2523  // Memory barrier to prevent normal and 'unsafe' accesses from
2524  // bypassing each other.  Happens after null checks, so the
2525  // exception paths do not take memory state from the memory barrier,
2526  // so there's no problems making a strong assert about mixing users
2527  // of safe & unsafe memory.
2528  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2529
2530   if (!is_store) {
2531    Node* p = NULL;
2532    // Try to constant fold a load from a constant field
2533    ciField* field = alias_type->field();
2534    if (heap_base_oop != top() &&
2535        field != NULL && field->is_constant() && field->layout_type() == type) {
2536      // final or stable field
2537      const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2538      if (con_type != NULL) {
2539        p = makecon(con_type);
2540      }
2541    }
2542    if (p == NULL) {
2543      MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2544      // To be valid, unsafe loads may depend on other conditions than
2545      // the one that guards them: pin the Load node
2546      p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2547      // load value
2548      switch (type) {
2549      case T_BOOLEAN:
2550      case T_CHAR:
2551      case T_BYTE:
2552      case T_SHORT:
2553      case T_INT:
2554      case T_LONG:
2555      case T_FLOAT:
2556      case T_DOUBLE:
2557        break;
2558      case T_OBJECT:
2559        if (need_read_barrier) {
2560          insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2561        }
2562        break;
2563      case T_ADDRESS:
2564        // Cast to an int type.
2565        p = _gvn.transform(new CastP2XNode(NULL, p));
2566        p = ConvX2UL(p);
2567        break;
2568      default:
2569        fatal("unexpected type %d: %s", type, type2name(type));
2570        break;
2571      }
2572    }
2573    // The load node has the control of the preceding MemBarCPUOrder.  All
2574    // following nodes will have the control of the MemBarCPUOrder inserted at
2575    // the end of this method.  So, pushing the load onto the stack at a later
2576    // point is fine.
2577    set_result(p);
2578  } else {
2579    // place effect of store into memory
2580    switch (type) {
2581    case T_DOUBLE:
2582      val = dstore_rounding(val);
2583      break;
2584    case T_ADDRESS:
2585      // Repackage the long as a pointer.
2586      val = ConvL2X(val);
2587      val = _gvn.transform(new CastX2PNode(val));
2588      break;
2589    }
2590
2591    MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2592    if (type != T_OBJECT ) {
2593      (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2594    } else {
2595      // Possibly an oop being stored to Java heap or native memory
2596      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2597        // oop to Java heap.
2598        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2599      } else {
2600        // We can't tell at compile time if we are storing in the Java heap or outside
2601        // of it. So we need to emit code to conditionally do the proper type of
2602        // store.
2603
2604        IdealKit ideal(this);
2605#define __ ideal.
2606        // QQQ who knows what probability is here??
2607        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2608          // Sync IdealKit and graphKit.
2609          sync_kit(ideal);
2610          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2611          // Update IdealKit memory.
2612          __ sync_kit(this);
2613        } __ else_(); {
2614          __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2615        } __ end_if();
2616        // Final sync IdealKit and GraphKit.
2617        final_sync(ideal);
2618#undef __
2619      }
2620    }
2621  }
2622
2623  if (is_volatile) {
2624    if (!is_store) {
2625      insert_mem_bar(Op_MemBarAcquire);
2626    } else {
2627      if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2628        insert_mem_bar(Op_MemBarVolatile);
2629      }
2630    }
2631  }
2632
2633  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2634
2635  return true;
2636}
2637
2638//----------------------------inline_unsafe_load_store----------------------------
2639// This method serves a couple of different customers (depending on LoadStoreKind):
2640//
2641// LS_cmpxchg:
2642//   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2643//   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2644//   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2645//
2646// LS_xadd:
2647//   public int  getAndAddInt( Object o, long offset, int  delta)
2648//   public long getAndAddLong(Object o, long offset, long delta)
2649//
2650// LS_xchg:
2651//   int    getAndSet(Object o, long offset, int    newValue)
2652//   long   getAndSet(Object o, long offset, long   newValue)
2653//   Object getAndSet(Object o, long offset, Object newValue)
2654//
2655bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2656  // This basic scheme here is the same as inline_unsafe_access, but
2657  // differs in enough details that combining them would make the code
2658  // overly confusing.  (This is a true fact! I originally combined
2659  // them, but even I was confused by it!) As much code/comments as
2660  // possible are retained from inline_unsafe_access though to make
2661  // the correspondences clearer. - dl
2662
2663  if (callee()->is_static())  return false;  // caller must have the capability!
2664
2665#ifndef PRODUCT
2666  BasicType rtype;
2667  {
2668    ResourceMark rm;
2669    // Check the signatures.
2670    ciSignature* sig = callee()->signature();
2671    rtype = sig->return_type()->basic_type();
2672    if (kind == LS_xadd || kind == LS_xchg) {
2673      // Check the signatures.
2674#ifdef ASSERT
2675      assert(rtype == type, "get and set must return the expected type");
2676      assert(sig->count() == 3, "get and set has 3 arguments");
2677      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2678      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2679      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2680#endif // ASSERT
2681    } else if (kind == LS_cmpxchg) {
2682      // Check the signatures.
2683#ifdef ASSERT
2684      assert(rtype == T_BOOLEAN, "CAS must return boolean");
2685      assert(sig->count() == 4, "CAS has 4 arguments");
2686      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2687      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2688#endif // ASSERT
2689    } else {
2690      ShouldNotReachHere();
2691    }
2692  }
2693#endif //PRODUCT
2694
2695  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2696
2697  // Get arguments:
2698  Node* receiver = NULL;
2699  Node* base     = NULL;
2700  Node* offset   = NULL;
2701  Node* oldval   = NULL;
2702  Node* newval   = NULL;
2703  if (kind == LS_cmpxchg) {
2704    const bool two_slot_type = type2size[type] == 2;
2705    receiver = argument(0);  // type: oop
2706    base     = argument(1);  // type: oop
2707    offset   = argument(2);  // type: long
2708    oldval   = argument(4);  // type: oop, int, or long
2709    newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2710  } else if (kind == LS_xadd || kind == LS_xchg){
2711    receiver = argument(0);  // type: oop
2712    base     = argument(1);  // type: oop
2713    offset   = argument(2);  // type: long
2714    oldval   = NULL;
2715    newval   = argument(4);  // type: oop, int, or long
2716  }
2717
2718  // Null check receiver.
2719  receiver = null_check(receiver);
2720  if (stopped()) {
2721    return true;
2722  }
2723
2724  // Build field offset expression.
2725  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2726  // to be plain byte offsets, which are also the same as those accepted
2727  // by oopDesc::field_base.
2728  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2729  // 32-bit machines ignore the high half of long offsets
2730  offset = ConvL2X(offset);
2731  Node* adr = make_unsafe_address(base, offset);
2732  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2733
2734  // For CAS, unlike inline_unsafe_access, there seems no point in
2735  // trying to refine types. Just use the coarse types here.
2736  const Type *value_type = Type::get_const_basic_type(type);
2737  Compile::AliasType* alias_type = C->alias_type(adr_type);
2738  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2739
2740  if (kind == LS_xchg && type == T_OBJECT) {
2741    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2742    if (tjp != NULL) {
2743      value_type = tjp;
2744    }
2745  }
2746
2747  int alias_idx = C->get_alias_index(adr_type);
2748
2749  // Memory-model-wise, a LoadStore acts like a little synchronized
2750  // block, so needs barriers on each side.  These don't translate
2751  // into actual barriers on most machines, but we still need rest of
2752  // compiler to respect ordering.
2753
2754  insert_mem_bar(Op_MemBarRelease);
2755  insert_mem_bar(Op_MemBarCPUOrder);
2756
2757  // 4984716: MemBars must be inserted before this
2758  //          memory node in order to avoid a false
2759  //          dependency which will confuse the scheduler.
2760  Node *mem = memory(alias_idx);
2761
2762  // For now, we handle only those cases that actually exist: ints,
2763  // longs, and Object. Adding others should be straightforward.
2764  Node* load_store = NULL;
2765  switch(type) {
2766  case T_INT:
2767    if (kind == LS_xadd) {
2768      load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2769    } else if (kind == LS_xchg) {
2770      load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2771    } else if (kind == LS_cmpxchg) {
2772      load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2773    } else {
2774      ShouldNotReachHere();
2775    }
2776    break;
2777  case T_LONG:
2778    if (kind == LS_xadd) {
2779      load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2780    } else if (kind == LS_xchg) {
2781      load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2782    } else if (kind == LS_cmpxchg) {
2783      load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2784    } else {
2785      ShouldNotReachHere();
2786    }
2787    break;
2788  case T_OBJECT:
2789    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2790    // could be delayed during Parse (for example, in adjust_map_after_if()).
2791    // Execute transformation here to avoid barrier generation in such case.
2792    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2793      newval = _gvn.makecon(TypePtr::NULL_PTR);
2794
2795    // Reference stores need a store barrier.
2796    if (kind == LS_xchg) {
2797      // If pre-barrier must execute before the oop store, old value will require do_load here.
2798      if (!can_move_pre_barrier()) {
2799        pre_barrier(true /* do_load*/,
2800                    control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2801                    NULL /* pre_val*/,
2802                    T_OBJECT);
2803      } // Else move pre_barrier to use load_store value, see below.
2804    } else if (kind == LS_cmpxchg) {
2805      // Same as for newval above:
2806      if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2807        oldval = _gvn.makecon(TypePtr::NULL_PTR);
2808      }
2809      // The only known value which might get overwritten is oldval.
2810      pre_barrier(false /* do_load */,
2811                  control(), NULL, NULL, max_juint, NULL, NULL,
2812                  oldval /* pre_val */,
2813                  T_OBJECT);
2814    } else {
2815      ShouldNotReachHere();
2816    }
2817
2818#ifdef _LP64
2819    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2820      Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2821      if (kind == LS_xchg) {
2822        load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2823                                                       newval_enc, adr_type, value_type->make_narrowoop()));
2824      } else {
2825        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2826        Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2827        load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2828                                                                newval_enc, oldval_enc));
2829      }
2830    } else
2831#endif
2832    {
2833      if (kind == LS_xchg) {
2834        load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2835      } else {
2836        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2837        load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2838      }
2839    }
2840    if (kind == LS_cmpxchg) {
2841      // Emit the post barrier only when the actual store happened.
2842      // This makes sense to check only for compareAndSet that can fail to set the value.
2843      // CAS success path is marked more likely since we anticipate this is a performance
2844      // critical path, while CAS failure path can use the penalty for going through unlikely
2845      // path as backoff. Which is still better than doing a store barrier there.
2846      IdealKit ideal(this);
2847      ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2848        sync_kit(ideal);
2849        post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2850        ideal.sync_kit(this);
2851      } ideal.end_if();
2852      final_sync(ideal);
2853    } else {
2854      post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2855    }
2856    break;
2857  default:
2858    fatal("unexpected type %d: %s", type, type2name(type));
2859    break;
2860  }
2861
2862  // SCMemProjNodes represent the memory state of a LoadStore. Their
2863  // main role is to prevent LoadStore nodes from being optimized away
2864  // when their results aren't used.
2865  Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2866  set_memory(proj, alias_idx);
2867
2868  if (type == T_OBJECT && kind == LS_xchg) {
2869#ifdef _LP64
2870    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2871      load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2872    }
2873#endif
2874    if (can_move_pre_barrier()) {
2875      // Don't need to load pre_val. The old value is returned by load_store.
2876      // The pre_barrier can execute after the xchg as long as no safepoint
2877      // gets inserted between them.
2878      pre_barrier(false /* do_load */,
2879                  control(), NULL, NULL, max_juint, NULL, NULL,
2880                  load_store /* pre_val */,
2881                  T_OBJECT);
2882    }
2883  }
2884
2885  // Add the trailing membar surrounding the access
2886  insert_mem_bar(Op_MemBarCPUOrder);
2887  insert_mem_bar(Op_MemBarAcquire);
2888
2889  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2890  set_result(load_store);
2891  return true;
2892}
2893
2894//----------------------------inline_unsafe_ordered_store----------------------
2895// public native void Unsafe.putOrderedObject(Object o, long offset, Object x);
2896// public native void Unsafe.putOrderedInt(Object o, long offset, int x);
2897// public native void Unsafe.putOrderedLong(Object o, long offset, long x);
2898bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2899  // This is another variant of inline_unsafe_access, differing in
2900  // that it always issues store-store ("release") barrier and ensures
2901  // store-atomicity (which only matters for "long").
2902
2903  if (callee()->is_static())  return false;  // caller must have the capability!
2904
2905#ifndef PRODUCT
2906  {
2907    ResourceMark rm;
2908    // Check the signatures.
2909    ciSignature* sig = callee()->signature();
2910#ifdef ASSERT
2911    BasicType rtype = sig->return_type()->basic_type();
2912    assert(rtype == T_VOID, "must return void");
2913    assert(sig->count() == 3, "has 3 arguments");
2914    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2915    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2916#endif // ASSERT
2917  }
2918#endif //PRODUCT
2919
2920  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2921
2922  // Get arguments:
2923  Node* receiver = argument(0);  // type: oop
2924  Node* base     = argument(1);  // type: oop
2925  Node* offset   = argument(2);  // type: long
2926  Node* val      = argument(4);  // type: oop, int, or long
2927
2928  // Null check receiver.
2929  receiver = null_check(receiver);
2930  if (stopped()) {
2931    return true;
2932  }
2933
2934  // Build field offset expression.
2935  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2936  // 32-bit machines ignore the high half of long offsets
2937  offset = ConvL2X(offset);
2938  Node* adr = make_unsafe_address(base, offset);
2939  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2940  const Type *value_type = Type::get_const_basic_type(type);
2941  Compile::AliasType* alias_type = C->alias_type(adr_type);
2942
2943  insert_mem_bar(Op_MemBarRelease);
2944  insert_mem_bar(Op_MemBarCPUOrder);
2945  // Ensure that the store is atomic for longs:
2946  const bool require_atomic_access = true;
2947  Node* store;
2948  if (type == T_OBJECT) // reference stores need a store barrier.
2949    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
2950  else {
2951    store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
2952  }
2953  insert_mem_bar(Op_MemBarCPUOrder);
2954  return true;
2955}
2956
2957bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2958  // Regardless of form, don't allow previous ld/st to move down,
2959  // then issue acquire, release, or volatile mem_bar.
2960  insert_mem_bar(Op_MemBarCPUOrder);
2961  switch(id) {
2962    case vmIntrinsics::_loadFence:
2963      insert_mem_bar(Op_LoadFence);
2964      return true;
2965    case vmIntrinsics::_storeFence:
2966      insert_mem_bar(Op_StoreFence);
2967      return true;
2968    case vmIntrinsics::_fullFence:
2969      insert_mem_bar(Op_MemBarVolatile);
2970      return true;
2971    default:
2972      fatal_unexpected_iid(id);
2973      return false;
2974  }
2975}
2976
2977bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2978  if (!kls->is_Con()) {
2979    return true;
2980  }
2981  const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2982  if (klsptr == NULL) {
2983    return true;
2984  }
2985  ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2986  // don't need a guard for a klass that is already initialized
2987  return !ik->is_initialized();
2988}
2989
2990//----------------------------inline_unsafe_allocate---------------------------
2991// public native Object Unsafe.allocateInstance(Class<?> cls);
2992bool LibraryCallKit::inline_unsafe_allocate() {
2993  if (callee()->is_static())  return false;  // caller must have the capability!
2994
2995  null_check_receiver();  // null-check, then ignore
2996  Node* cls = null_check(argument(1));
2997  if (stopped())  return true;
2998
2999  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3000  kls = null_check(kls);
3001  if (stopped())  return true;  // argument was like int.class
3002
3003  Node* test = NULL;
3004  if (LibraryCallKit::klass_needs_init_guard(kls)) {
3005    // Note:  The argument might still be an illegal value like
3006    // Serializable.class or Object[].class.   The runtime will handle it.
3007    // But we must make an explicit check for initialization.
3008    Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3009    // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3010    // can generate code to load it as unsigned byte.
3011    Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3012    Node* bits = intcon(InstanceKlass::fully_initialized);
3013    test = _gvn.transform(new SubINode(inst, bits));
3014    // The 'test' is non-zero if we need to take a slow path.
3015  }
3016
3017  Node* obj = new_instance(kls, test);
3018  set_result(obj);
3019  return true;
3020}
3021
3022#ifdef TRACE_HAVE_INTRINSICS
3023/*
3024 * oop -> myklass
3025 * myklass->trace_id |= USED
3026 * return myklass->trace_id & ~0x3
3027 */
3028bool LibraryCallKit::inline_native_classID() {
3029  null_check_receiver();  // null-check, then ignore
3030  Node* cls = null_check(argument(1), T_OBJECT);
3031  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3032  kls = null_check(kls, T_OBJECT);
3033  ByteSize offset = TRACE_ID_OFFSET;
3034  Node* insp = basic_plus_adr(kls, in_bytes(offset));
3035  Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3036  Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3037  Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3038  Node* clsused = longcon(0x01l); // set the class bit
3039  Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3040
3041  const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3042  store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3043  set_result(andl);
3044  return true;
3045}
3046
3047bool LibraryCallKit::inline_native_threadID() {
3048  Node* tls_ptr = NULL;
3049  Node* cur_thr = generate_current_thread(tls_ptr);
3050  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3051  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3052  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3053
3054  Node* threadid = NULL;
3055  size_t thread_id_size = OSThread::thread_id_size();
3056  if (thread_id_size == (size_t) BytesPerLong) {
3057    threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3058  } else if (thread_id_size == (size_t) BytesPerInt) {
3059    threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3060  } else {
3061    ShouldNotReachHere();
3062  }
3063  set_result(threadid);
3064  return true;
3065}
3066#endif
3067
3068//------------------------inline_native_time_funcs--------------
3069// inline code for System.currentTimeMillis() and System.nanoTime()
3070// these have the same type and signature
3071bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3072  const TypeFunc* tf = OptoRuntime::void_long_Type();
3073  const TypePtr* no_memory_effects = NULL;
3074  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3075  Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3076#ifdef ASSERT
3077  Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3078  assert(value_top == top(), "second value must be top");
3079#endif
3080  set_result(value);
3081  return true;
3082}
3083
3084//------------------------inline_native_currentThread------------------
3085bool LibraryCallKit::inline_native_currentThread() {
3086  Node* junk = NULL;
3087  set_result(generate_current_thread(junk));
3088  return true;
3089}
3090
3091//------------------------inline_native_isInterrupted------------------
3092// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3093bool LibraryCallKit::inline_native_isInterrupted() {
3094  // Add a fast path to t.isInterrupted(clear_int):
3095  //   (t == Thread.current() &&
3096  //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3097  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3098  // So, in the common case that the interrupt bit is false,
3099  // we avoid making a call into the VM.  Even if the interrupt bit
3100  // is true, if the clear_int argument is false, we avoid the VM call.
3101  // However, if the receiver is not currentThread, we must call the VM,
3102  // because there must be some locking done around the operation.
3103
3104  // We only go to the fast case code if we pass two guards.
3105  // Paths which do not pass are accumulated in the slow_region.
3106
3107  enum {
3108    no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3109    no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3110    slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3111    PATH_LIMIT
3112  };
3113
3114  // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3115  // out of the function.
3116  insert_mem_bar(Op_MemBarCPUOrder);
3117
3118  RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3119  PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3120
3121  RegionNode* slow_region = new RegionNode(1);
3122  record_for_igvn(slow_region);
3123
3124  // (a) Receiving thread must be the current thread.
3125  Node* rec_thr = argument(0);
3126  Node* tls_ptr = NULL;
3127  Node* cur_thr = generate_current_thread(tls_ptr);
3128  Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3129  Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3130
3131  generate_slow_guard(bol_thr, slow_region);
3132
3133  // (b) Interrupt bit on TLS must be false.
3134  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3135  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3136  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3137
3138  // Set the control input on the field _interrupted read to prevent it floating up.
3139  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3140  Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3141  Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3142
3143  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3144
3145  // First fast path:  if (!TLS._interrupted) return false;
3146  Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3147  result_rgn->init_req(no_int_result_path, false_bit);
3148  result_val->init_req(no_int_result_path, intcon(0));
3149
3150  // drop through to next case
3151  set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3152
3153#ifndef TARGET_OS_FAMILY_windows
3154  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3155  Node* clr_arg = argument(1);
3156  Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3157  Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3158  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3159
3160  // Second fast path:  ... else if (!clear_int) return true;
3161  Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3162  result_rgn->init_req(no_clear_result_path, false_arg);
3163  result_val->init_req(no_clear_result_path, intcon(1));
3164
3165  // drop through to next case
3166  set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3167#else
3168  // To return true on Windows you must read the _interrupted field
3169  // and check the the event state i.e. take the slow path.
3170#endif // TARGET_OS_FAMILY_windows
3171
3172  // (d) Otherwise, go to the slow path.
3173  slow_region->add_req(control());
3174  set_control( _gvn.transform(slow_region));
3175
3176  if (stopped()) {
3177    // There is no slow path.
3178    result_rgn->init_req(slow_result_path, top());
3179    result_val->init_req(slow_result_path, top());
3180  } else {
3181    // non-virtual because it is a private non-static
3182    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3183
3184    Node* slow_val = set_results_for_java_call(slow_call);
3185    // this->control() comes from set_results_for_java_call
3186
3187    Node* fast_io  = slow_call->in(TypeFunc::I_O);
3188    Node* fast_mem = slow_call->in(TypeFunc::Memory);
3189
3190    // These two phis are pre-filled with copies of of the fast IO and Memory
3191    PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3192    PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3193
3194    result_rgn->init_req(slow_result_path, control());
3195    result_io ->init_req(slow_result_path, i_o());
3196    result_mem->init_req(slow_result_path, reset_memory());
3197    result_val->init_req(slow_result_path, slow_val);
3198
3199    set_all_memory(_gvn.transform(result_mem));
3200    set_i_o(       _gvn.transform(result_io));
3201  }
3202
3203  C->set_has_split_ifs(true); // Has chance for split-if optimization
3204  set_result(result_rgn, result_val);
3205  return true;
3206}
3207
3208//---------------------------load_mirror_from_klass----------------------------
3209// Given a klass oop, load its java mirror (a java.lang.Class oop).
3210Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3211  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3212  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3213}
3214
3215//-----------------------load_klass_from_mirror_common-------------------------
3216// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3217// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3218// and branch to the given path on the region.
3219// If never_see_null, take an uncommon trap on null, so we can optimistically
3220// compile for the non-null case.
3221// If the region is NULL, force never_see_null = true.
3222Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3223                                                    bool never_see_null,
3224                                                    RegionNode* region,
3225                                                    int null_path,
3226                                                    int offset) {
3227  if (region == NULL)  never_see_null = true;
3228  Node* p = basic_plus_adr(mirror, offset);
3229  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3230  Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3231  Node* null_ctl = top();
3232  kls = null_check_oop(kls, &null_ctl, never_see_null);
3233  if (region != NULL) {
3234    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3235    region->init_req(null_path, null_ctl);
3236  } else {
3237    assert(null_ctl == top(), "no loose ends");
3238  }
3239  return kls;
3240}
3241
3242//--------------------(inline_native_Class_query helpers)---------------------
3243// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3244// Fall through if (mods & mask) == bits, take the guard otherwise.
3245Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3246  // Branch around if the given klass has the given modifier bit set.
3247  // Like generate_guard, adds a new path onto the region.
3248  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3249  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3250  Node* mask = intcon(modifier_mask);
3251  Node* bits = intcon(modifier_bits);
3252  Node* mbit = _gvn.transform(new AndINode(mods, mask));
3253  Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3254  Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3255  return generate_fair_guard(bol, region);
3256}
3257Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3258  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3259}
3260
3261//-------------------------inline_native_Class_query-------------------
3262bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3263  const Type* return_type = TypeInt::BOOL;
3264  Node* prim_return_value = top();  // what happens if it's a primitive class?
3265  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3266  bool expect_prim = false;     // most of these guys expect to work on refs
3267
3268  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3269
3270  Node* mirror = argument(0);
3271  Node* obj    = top();
3272
3273  switch (id) {
3274  case vmIntrinsics::_isInstance:
3275    // nothing is an instance of a primitive type
3276    prim_return_value = intcon(0);
3277    obj = argument(1);
3278    break;
3279  case vmIntrinsics::_getModifiers:
3280    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3281    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3282    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3283    break;
3284  case vmIntrinsics::_isInterface:
3285    prim_return_value = intcon(0);
3286    break;
3287  case vmIntrinsics::_isArray:
3288    prim_return_value = intcon(0);
3289    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3290    break;
3291  case vmIntrinsics::_isPrimitive:
3292    prim_return_value = intcon(1);
3293    expect_prim = true;  // obviously
3294    break;
3295  case vmIntrinsics::_getSuperclass:
3296    prim_return_value = null();
3297    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3298    break;
3299  case vmIntrinsics::_getClassAccessFlags:
3300    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3301    return_type = TypeInt::INT;  // not bool!  6297094
3302    break;
3303  default:
3304    fatal_unexpected_iid(id);
3305    break;
3306  }
3307
3308  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3309  if (mirror_con == NULL)  return false;  // cannot happen?
3310
3311#ifndef PRODUCT
3312  if (C->print_intrinsics() || C->print_inlining()) {
3313    ciType* k = mirror_con->java_mirror_type();
3314    if (k) {
3315      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3316      k->print_name();
3317      tty->cr();
3318    }
3319  }
3320#endif
3321
3322  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3323  RegionNode* region = new RegionNode(PATH_LIMIT);
3324  record_for_igvn(region);
3325  PhiNode* phi = new PhiNode(region, return_type);
3326
3327  // The mirror will never be null of Reflection.getClassAccessFlags, however
3328  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3329  // if it is. See bug 4774291.
3330
3331  // For Reflection.getClassAccessFlags(), the null check occurs in
3332  // the wrong place; see inline_unsafe_access(), above, for a similar
3333  // situation.
3334  mirror = null_check(mirror);
3335  // If mirror or obj is dead, only null-path is taken.
3336  if (stopped())  return true;
3337
3338  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3339
3340  // Now load the mirror's klass metaobject, and null-check it.
3341  // Side-effects region with the control path if the klass is null.
3342  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3343  // If kls is null, we have a primitive mirror.
3344  phi->init_req(_prim_path, prim_return_value);
3345  if (stopped()) { set_result(region, phi); return true; }
3346  bool safe_for_replace = (region->in(_prim_path) == top());
3347
3348  Node* p;  // handy temp
3349  Node* null_ctl;
3350
3351  // Now that we have the non-null klass, we can perform the real query.
3352  // For constant classes, the query will constant-fold in LoadNode::Value.
3353  Node* query_value = top();
3354  switch (id) {
3355  case vmIntrinsics::_isInstance:
3356    // nothing is an instance of a primitive type
3357    query_value = gen_instanceof(obj, kls, safe_for_replace);
3358    break;
3359
3360  case vmIntrinsics::_getModifiers:
3361    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3362    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3363    break;
3364
3365  case vmIntrinsics::_isInterface:
3366    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3367    if (generate_interface_guard(kls, region) != NULL)
3368      // A guard was added.  If the guard is taken, it was an interface.
3369      phi->add_req(intcon(1));
3370    // If we fall through, it's a plain class.
3371    query_value = intcon(0);
3372    break;
3373
3374  case vmIntrinsics::_isArray:
3375    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3376    if (generate_array_guard(kls, region) != NULL)
3377      // A guard was added.  If the guard is taken, it was an array.
3378      phi->add_req(intcon(1));
3379    // If we fall through, it's a plain class.
3380    query_value = intcon(0);
3381    break;
3382
3383  case vmIntrinsics::_isPrimitive:
3384    query_value = intcon(0); // "normal" path produces false
3385    break;
3386
3387  case vmIntrinsics::_getSuperclass:
3388    // The rules here are somewhat unfortunate, but we can still do better
3389    // with random logic than with a JNI call.
3390    // Interfaces store null or Object as _super, but must report null.
3391    // Arrays store an intermediate super as _super, but must report Object.
3392    // Other types can report the actual _super.
3393    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3394    if (generate_interface_guard(kls, region) != NULL)
3395      // A guard was added.  If the guard is taken, it was an interface.
3396      phi->add_req(null());
3397    if (generate_array_guard(kls, region) != NULL)
3398      // A guard was added.  If the guard is taken, it was an array.
3399      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3400    // If we fall through, it's a plain class.  Get its _super.
3401    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3402    kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3403    null_ctl = top();
3404    kls = null_check_oop(kls, &null_ctl);
3405    if (null_ctl != top()) {
3406      // If the guard is taken, Object.superClass is null (both klass and mirror).
3407      region->add_req(null_ctl);
3408      phi   ->add_req(null());
3409    }
3410    if (!stopped()) {
3411      query_value = load_mirror_from_klass(kls);
3412    }
3413    break;
3414
3415  case vmIntrinsics::_getClassAccessFlags:
3416    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3417    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3418    break;
3419
3420  default:
3421    fatal_unexpected_iid(id);
3422    break;
3423  }
3424
3425  // Fall-through is the normal case of a query to a real class.
3426  phi->init_req(1, query_value);
3427  region->init_req(1, control());
3428
3429  C->set_has_split_ifs(true); // Has chance for split-if optimization
3430  set_result(region, phi);
3431  return true;
3432}
3433
3434//-------------------------inline_Class_cast-------------------
3435bool LibraryCallKit::inline_Class_cast() {
3436  Node* mirror = argument(0); // Class
3437  Node* obj    = argument(1);
3438  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3439  if (mirror_con == NULL) {
3440    return false;  // dead path (mirror->is_top()).
3441  }
3442  if (obj == NULL || obj->is_top()) {
3443    return false;  // dead path
3444  }
3445  const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3446
3447  // First, see if Class.cast() can be folded statically.
3448  // java_mirror_type() returns non-null for compile-time Class constants.
3449  ciType* tm = mirror_con->java_mirror_type();
3450  if (tm != NULL && tm->is_klass() &&
3451      tp != NULL && tp->klass() != NULL) {
3452    if (!tp->klass()->is_loaded()) {
3453      // Don't use intrinsic when class is not loaded.
3454      return false;
3455    } else {
3456      int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3457      if (static_res == Compile::SSC_always_true) {
3458        // isInstance() is true - fold the code.
3459        set_result(obj);
3460        return true;
3461      } else if (static_res == Compile::SSC_always_false) {
3462        // Don't use intrinsic, have to throw ClassCastException.
3463        // If the reference is null, the non-intrinsic bytecode will
3464        // be optimized appropriately.
3465        return false;
3466      }
3467    }
3468  }
3469
3470  // Bailout intrinsic and do normal inlining if exception path is frequent.
3471  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3472    return false;
3473  }
3474
3475  // Generate dynamic checks.
3476  // Class.cast() is java implementation of _checkcast bytecode.
3477  // Do checkcast (Parse::do_checkcast()) optimizations here.
3478
3479  mirror = null_check(mirror);
3480  // If mirror is dead, only null-path is taken.
3481  if (stopped()) {
3482    return true;
3483  }
3484
3485  // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3486  enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3487  RegionNode* region = new RegionNode(PATH_LIMIT);
3488  record_for_igvn(region);
3489
3490  // Now load the mirror's klass metaobject, and null-check it.
3491  // If kls is null, we have a primitive mirror and
3492  // nothing is an instance of a primitive type.
3493  Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3494
3495  Node* res = top();
3496  if (!stopped()) {
3497    Node* bad_type_ctrl = top();
3498    // Do checkcast optimizations.
3499    res = gen_checkcast(obj, kls, &bad_type_ctrl);
3500    region->init_req(_bad_type_path, bad_type_ctrl);
3501  }
3502  if (region->in(_prim_path) != top() ||
3503      region->in(_bad_type_path) != top()) {
3504    // Let Interpreter throw ClassCastException.
3505    PreserveJVMState pjvms(this);
3506    set_control(_gvn.transform(region));
3507    uncommon_trap(Deoptimization::Reason_intrinsic,
3508                  Deoptimization::Action_maybe_recompile);
3509  }
3510  if (!stopped()) {
3511    set_result(res);
3512  }
3513  return true;
3514}
3515
3516
3517//--------------------------inline_native_subtype_check------------------------
3518// This intrinsic takes the JNI calls out of the heart of
3519// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3520bool LibraryCallKit::inline_native_subtype_check() {
3521  // Pull both arguments off the stack.
3522  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3523  args[0] = argument(0);
3524  args[1] = argument(1);
3525  Node* klasses[2];             // corresponding Klasses: superk, subk
3526  klasses[0] = klasses[1] = top();
3527
3528  enum {
3529    // A full decision tree on {superc is prim, subc is prim}:
3530    _prim_0_path = 1,           // {P,N} => false
3531                                // {P,P} & superc!=subc => false
3532    _prim_same_path,            // {P,P} & superc==subc => true
3533    _prim_1_path,               // {N,P} => false
3534    _ref_subtype_path,          // {N,N} & subtype check wins => true
3535    _both_ref_path,             // {N,N} & subtype check loses => false
3536    PATH_LIMIT
3537  };
3538
3539  RegionNode* region = new RegionNode(PATH_LIMIT);
3540  Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3541  record_for_igvn(region);
3542
3543  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3544  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3545  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3546
3547  // First null-check both mirrors and load each mirror's klass metaobject.
3548  int which_arg;
3549  for (which_arg = 0; which_arg <= 1; which_arg++) {
3550    Node* arg = args[which_arg];
3551    arg = null_check(arg);
3552    if (stopped())  break;
3553    args[which_arg] = arg;
3554
3555    Node* p = basic_plus_adr(arg, class_klass_offset);
3556    Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3557    klasses[which_arg] = _gvn.transform(kls);
3558  }
3559
3560  // Having loaded both klasses, test each for null.
3561  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3562  for (which_arg = 0; which_arg <= 1; which_arg++) {
3563    Node* kls = klasses[which_arg];
3564    Node* null_ctl = top();
3565    kls = null_check_oop(kls, &null_ctl, never_see_null);
3566    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3567    region->init_req(prim_path, null_ctl);
3568    if (stopped())  break;
3569    klasses[which_arg] = kls;
3570  }
3571
3572  if (!stopped()) {
3573    // now we have two reference types, in klasses[0..1]
3574    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3575    Node* superk = klasses[0];  // the receiver
3576    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3577    // now we have a successful reference subtype check
3578    region->set_req(_ref_subtype_path, control());
3579  }
3580
3581  // If both operands are primitive (both klasses null), then
3582  // we must return true when they are identical primitives.
3583  // It is convenient to test this after the first null klass check.
3584  set_control(region->in(_prim_0_path)); // go back to first null check
3585  if (!stopped()) {
3586    // Since superc is primitive, make a guard for the superc==subc case.
3587    Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3588    Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3589    generate_guard(bol_eq, region, PROB_FAIR);
3590    if (region->req() == PATH_LIMIT+1) {
3591      // A guard was added.  If the added guard is taken, superc==subc.
3592      region->swap_edges(PATH_LIMIT, _prim_same_path);
3593      region->del_req(PATH_LIMIT);
3594    }
3595    region->set_req(_prim_0_path, control()); // Not equal after all.
3596  }
3597
3598  // these are the only paths that produce 'true':
3599  phi->set_req(_prim_same_path,   intcon(1));
3600  phi->set_req(_ref_subtype_path, intcon(1));
3601
3602  // pull together the cases:
3603  assert(region->req() == PATH_LIMIT, "sane region");
3604  for (uint i = 1; i < region->req(); i++) {
3605    Node* ctl = region->in(i);
3606    if (ctl == NULL || ctl == top()) {
3607      region->set_req(i, top());
3608      phi   ->set_req(i, top());
3609    } else if (phi->in(i) == NULL) {
3610      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3611    }
3612  }
3613
3614  set_control(_gvn.transform(region));
3615  set_result(_gvn.transform(phi));
3616  return true;
3617}
3618
3619//---------------------generate_array_guard_common------------------------
3620Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3621                                                  bool obj_array, bool not_array) {
3622
3623  if (stopped()) {
3624    return NULL;
3625  }
3626
3627  // If obj_array/non_array==false/false:
3628  // Branch around if the given klass is in fact an array (either obj or prim).
3629  // If obj_array/non_array==false/true:
3630  // Branch around if the given klass is not an array klass of any kind.
3631  // If obj_array/non_array==true/true:
3632  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3633  // If obj_array/non_array==true/false:
3634  // Branch around if the kls is an oop array (Object[] or subtype)
3635  //
3636  // Like generate_guard, adds a new path onto the region.
3637  jint  layout_con = 0;
3638  Node* layout_val = get_layout_helper(kls, layout_con);
3639  if (layout_val == NULL) {
3640    bool query = (obj_array
3641                  ? Klass::layout_helper_is_objArray(layout_con)
3642                  : Klass::layout_helper_is_array(layout_con));
3643    if (query == not_array) {
3644      return NULL;                       // never a branch
3645    } else {                             // always a branch
3646      Node* always_branch = control();
3647      if (region != NULL)
3648        region->add_req(always_branch);
3649      set_control(top());
3650      return always_branch;
3651    }
3652  }
3653  // Now test the correct condition.
3654  jint  nval = (obj_array
3655                ? ((jint)Klass::_lh_array_tag_type_value
3656                   <<    Klass::_lh_array_tag_shift)
3657                : Klass::_lh_neutral_value);
3658  Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3659  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3660  // invert the test if we are looking for a non-array
3661  if (not_array)  btest = BoolTest(btest).negate();
3662  Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3663  return generate_fair_guard(bol, region);
3664}
3665
3666
3667//-----------------------inline_native_newArray--------------------------
3668// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3669bool LibraryCallKit::inline_native_newArray() {
3670  Node* mirror    = argument(0);
3671  Node* count_val = argument(1);
3672
3673  mirror = null_check(mirror);
3674  // If mirror or obj is dead, only null-path is taken.
3675  if (stopped())  return true;
3676
3677  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3678  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3679  PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3680  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3681  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3682
3683  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3684  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3685                                                  result_reg, _slow_path);
3686  Node* normal_ctl   = control();
3687  Node* no_array_ctl = result_reg->in(_slow_path);
3688
3689  // Generate code for the slow case.  We make a call to newArray().
3690  set_control(no_array_ctl);
3691  if (!stopped()) {
3692    // Either the input type is void.class, or else the
3693    // array klass has not yet been cached.  Either the
3694    // ensuing call will throw an exception, or else it
3695    // will cache the array klass for next time.
3696    PreserveJVMState pjvms(this);
3697    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3698    Node* slow_result = set_results_for_java_call(slow_call);
3699    // this->control() comes from set_results_for_java_call
3700    result_reg->set_req(_slow_path, control());
3701    result_val->set_req(_slow_path, slow_result);
3702    result_io ->set_req(_slow_path, i_o());
3703    result_mem->set_req(_slow_path, reset_memory());
3704  }
3705
3706  set_control(normal_ctl);
3707  if (!stopped()) {
3708    // Normal case:  The array type has been cached in the java.lang.Class.
3709    // The following call works fine even if the array type is polymorphic.
3710    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3711    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3712    result_reg->init_req(_normal_path, control());
3713    result_val->init_req(_normal_path, obj);
3714    result_io ->init_req(_normal_path, i_o());
3715    result_mem->init_req(_normal_path, reset_memory());
3716  }
3717
3718  // Return the combined state.
3719  set_i_o(        _gvn.transform(result_io)  );
3720  set_all_memory( _gvn.transform(result_mem));
3721
3722  C->set_has_split_ifs(true); // Has chance for split-if optimization
3723  set_result(result_reg, result_val);
3724  return true;
3725}
3726
3727//----------------------inline_native_getLength--------------------------
3728// public static native int java.lang.reflect.Array.getLength(Object array);
3729bool LibraryCallKit::inline_native_getLength() {
3730  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3731
3732  Node* array = null_check(argument(0));
3733  // If array is dead, only null-path is taken.
3734  if (stopped())  return true;
3735
3736  // Deoptimize if it is a non-array.
3737  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3738
3739  if (non_array != NULL) {
3740    PreserveJVMState pjvms(this);
3741    set_control(non_array);
3742    uncommon_trap(Deoptimization::Reason_intrinsic,
3743                  Deoptimization::Action_maybe_recompile);
3744  }
3745
3746  // If control is dead, only non-array-path is taken.
3747  if (stopped())  return true;
3748
3749  // The works fine even if the array type is polymorphic.
3750  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3751  Node* result = load_array_length(array);
3752
3753  C->set_has_split_ifs(true);  // Has chance for split-if optimization
3754  set_result(result);
3755  return true;
3756}
3757
3758//------------------------inline_array_copyOf----------------------------
3759// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3760// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3761bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3762  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3763
3764  // Get the arguments.
3765  Node* original          = argument(0);
3766  Node* start             = is_copyOfRange? argument(1): intcon(0);
3767  Node* end               = is_copyOfRange? argument(2): argument(1);
3768  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3769
3770  Node* newcopy = NULL;
3771
3772  // Set the original stack and the reexecute bit for the interpreter to reexecute
3773  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3774  { PreserveReexecuteState preexecs(this);
3775    jvms()->set_should_reexecute(true);
3776
3777    array_type_mirror = null_check(array_type_mirror);
3778    original          = null_check(original);
3779
3780    // Check if a null path was taken unconditionally.
3781    if (stopped())  return true;
3782
3783    Node* orig_length = load_array_length(original);
3784
3785    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3786    klass_node = null_check(klass_node);
3787
3788    RegionNode* bailout = new RegionNode(1);
3789    record_for_igvn(bailout);
3790
3791    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3792    // Bail out if that is so.
3793    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3794    if (not_objArray != NULL) {
3795      // Improve the klass node's type from the new optimistic assumption:
3796      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3797      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3798      Node* cast = new CastPPNode(klass_node, akls);
3799      cast->init_req(0, control());
3800      klass_node = _gvn.transform(cast);
3801    }
3802
3803    // Bail out if either start or end is negative.
3804    generate_negative_guard(start, bailout, &start);
3805    generate_negative_guard(end,   bailout, &end);
3806
3807    Node* length = end;
3808    if (_gvn.type(start) != TypeInt::ZERO) {
3809      length = _gvn.transform(new SubINode(end, start));
3810    }
3811
3812    // Bail out if length is negative.
3813    // Without this the new_array would throw
3814    // NegativeArraySizeException but IllegalArgumentException is what
3815    // should be thrown
3816    generate_negative_guard(length, bailout, &length);
3817
3818    if (bailout->req() > 1) {
3819      PreserveJVMState pjvms(this);
3820      set_control(_gvn.transform(bailout));
3821      uncommon_trap(Deoptimization::Reason_intrinsic,
3822                    Deoptimization::Action_maybe_recompile);
3823    }
3824
3825    if (!stopped()) {
3826      // How many elements will we copy from the original?
3827      // The answer is MinI(orig_length - start, length).
3828      Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3829      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3830
3831      // Generate a direct call to the right arraycopy function(s).
3832      // We know the copy is disjoint but we might not know if the
3833      // oop stores need checking.
3834      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3835      // This will fail a store-check if x contains any non-nulls.
3836
3837      // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3838      // loads/stores but it is legal only if we're sure the
3839      // Arrays.copyOf would succeed. So we need all input arguments
3840      // to the copyOf to be validated, including that the copy to the
3841      // new array won't trigger an ArrayStoreException. That subtype
3842      // check can be optimized if we know something on the type of
3843      // the input array from type speculation.
3844      if (_gvn.type(klass_node)->singleton()) {
3845        ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3846        ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3847
3848        int test = C->static_subtype_check(superk, subk);
3849        if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3850          const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3851          if (t_original->speculative_type() != NULL) {
3852            original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3853          }
3854        }
3855      }
3856
3857      bool validated = false;
3858      // Reason_class_check rather than Reason_intrinsic because we
3859      // want to intrinsify even if this traps.
3860      if (!too_many_traps(Deoptimization::Reason_class_check)) {
3861        Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3862                                                   klass_node);
3863
3864        if (not_subtype_ctrl != top()) {
3865          PreserveJVMState pjvms(this);
3866          set_control(not_subtype_ctrl);
3867          uncommon_trap(Deoptimization::Reason_class_check,
3868                        Deoptimization::Action_make_not_entrant);
3869          assert(stopped(), "Should be stopped");
3870        }
3871        validated = true;
3872      }
3873
3874      if (!stopped()) {
3875        newcopy = new_array(klass_node, length, 0);  // no arguments to push
3876
3877        ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3878                                                load_object_klass(original), klass_node);
3879        if (!is_copyOfRange) {
3880          ac->set_copyof(validated);
3881        } else {
3882          ac->set_copyofrange(validated);
3883        }
3884        Node* n = _gvn.transform(ac);
3885        if (n == ac) {
3886          ac->connect_outputs(this);
3887        } else {
3888          assert(validated, "shouldn't transform if all arguments not validated");
3889          set_all_memory(n);
3890        }
3891      }
3892    }
3893  } // original reexecute is set back here
3894
3895  C->set_has_split_ifs(true); // Has chance for split-if optimization
3896  if (!stopped()) {
3897    set_result(newcopy);
3898  }
3899  return true;
3900}
3901
3902
3903//----------------------generate_virtual_guard---------------------------
3904// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3905Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3906                                             RegionNode* slow_region) {
3907  ciMethod* method = callee();
3908  int vtable_index = method->vtable_index();
3909  assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3910         "bad index %d", vtable_index);
3911  // Get the Method* out of the appropriate vtable entry.
3912  int entry_offset  = (InstanceKlass::vtable_start_offset() +
3913                     vtable_index*vtableEntry::size()) * wordSize +
3914                     vtableEntry::method_offset_in_bytes();
3915  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3916  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3917
3918  // Compare the target method with the expected method (e.g., Object.hashCode).
3919  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3920
3921  Node* native_call = makecon(native_call_addr);
3922  Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3923  Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3924
3925  return generate_slow_guard(test_native, slow_region);
3926}
3927
3928//-----------------------generate_method_call----------------------------
3929// Use generate_method_call to make a slow-call to the real
3930// method if the fast path fails.  An alternative would be to
3931// use a stub like OptoRuntime::slow_arraycopy_Java.
3932// This only works for expanding the current library call,
3933// not another intrinsic.  (E.g., don't use this for making an
3934// arraycopy call inside of the copyOf intrinsic.)
3935CallJavaNode*
3936LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3937  // When compiling the intrinsic method itself, do not use this technique.
3938  guarantee(callee() != C->method(), "cannot make slow-call to self");
3939
3940  ciMethod* method = callee();
3941  // ensure the JVMS we have will be correct for this call
3942  guarantee(method_id == method->intrinsic_id(), "must match");
3943
3944  const TypeFunc* tf = TypeFunc::make(method);
3945  CallJavaNode* slow_call;
3946  if (is_static) {
3947    assert(!is_virtual, "");
3948    slow_call = new CallStaticJavaNode(C, tf,
3949                           SharedRuntime::get_resolve_static_call_stub(),
3950                           method, bci());
3951  } else if (is_virtual) {
3952    null_check_receiver();
3953    int vtable_index = Method::invalid_vtable_index;
3954    if (UseInlineCaches) {
3955      // Suppress the vtable call
3956    } else {
3957      // hashCode and clone are not a miranda methods,
3958      // so the vtable index is fixed.
3959      // No need to use the linkResolver to get it.
3960       vtable_index = method->vtable_index();
3961       assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3962              "bad index %d", vtable_index);
3963    }
3964    slow_call = new CallDynamicJavaNode(tf,
3965                          SharedRuntime::get_resolve_virtual_call_stub(),
3966                          method, vtable_index, bci());
3967  } else {  // neither virtual nor static:  opt_virtual
3968    null_check_receiver();
3969    slow_call = new CallStaticJavaNode(C, tf,
3970                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
3971                                method, bci());
3972    slow_call->set_optimized_virtual(true);
3973  }
3974  set_arguments_for_java_call(slow_call);
3975  set_edges_for_java_call(slow_call);
3976  return slow_call;
3977}
3978
3979
3980/**
3981 * Build special case code for calls to hashCode on an object. This call may
3982 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3983 * slightly different code.
3984 */
3985bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3986  assert(is_static == callee()->is_static(), "correct intrinsic selection");
3987  assert(!(is_virtual && is_static), "either virtual, special, or static");
3988
3989  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3990
3991  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3992  PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3993  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3994  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3995  Node* obj = NULL;
3996  if (!is_static) {
3997    // Check for hashing null object
3998    obj = null_check_receiver();
3999    if (stopped())  return true;        // unconditionally null
4000    result_reg->init_req(_null_path, top());
4001    result_val->init_req(_null_path, top());
4002  } else {
4003    // Do a null check, and return zero if null.
4004    // System.identityHashCode(null) == 0
4005    obj = argument(0);
4006    Node* null_ctl = top();
4007    obj = null_check_oop(obj, &null_ctl);
4008    result_reg->init_req(_null_path, null_ctl);
4009    result_val->init_req(_null_path, _gvn.intcon(0));
4010  }
4011
4012  // Unconditionally null?  Then return right away.
4013  if (stopped()) {
4014    set_control( result_reg->in(_null_path));
4015    if (!stopped())
4016      set_result(result_val->in(_null_path));
4017    return true;
4018  }
4019
4020  // We only go to the fast case code if we pass a number of guards.  The
4021  // paths which do not pass are accumulated in the slow_region.
4022  RegionNode* slow_region = new RegionNode(1);
4023  record_for_igvn(slow_region);
4024
4025  // If this is a virtual call, we generate a funny guard.  We pull out
4026  // the vtable entry corresponding to hashCode() from the target object.
4027  // If the target method which we are calling happens to be the native
4028  // Object hashCode() method, we pass the guard.  We do not need this
4029  // guard for non-virtual calls -- the caller is known to be the native
4030  // Object hashCode().
4031  if (is_virtual) {
4032    // After null check, get the object's klass.
4033    Node* obj_klass = load_object_klass(obj);
4034    generate_virtual_guard(obj_klass, slow_region);
4035  }
4036
4037  // Get the header out of the object, use LoadMarkNode when available
4038  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4039  // The control of the load must be NULL. Otherwise, the load can move before
4040  // the null check after castPP removal.
4041  Node* no_ctrl = NULL;
4042  Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4043
4044  // Test the header to see if it is unlocked.
4045  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4046  Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4047  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4048  Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4049  Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4050
4051  generate_slow_guard(test_unlocked, slow_region);
4052
4053  // Get the hash value and check to see that it has been properly assigned.
4054  // We depend on hash_mask being at most 32 bits and avoid the use of
4055  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4056  // vm: see markOop.hpp.
4057  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4058  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4059  Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4060  // This hack lets the hash bits live anywhere in the mark object now, as long
4061  // as the shift drops the relevant bits into the low 32 bits.  Note that
4062  // Java spec says that HashCode is an int so there's no point in capturing
4063  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4064  hshifted_header      = ConvX2I(hshifted_header);
4065  Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4066
4067  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4068  Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4069  Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4070
4071  generate_slow_guard(test_assigned, slow_region);
4072
4073  Node* init_mem = reset_memory();
4074  // fill in the rest of the null path:
4075  result_io ->init_req(_null_path, i_o());
4076  result_mem->init_req(_null_path, init_mem);
4077
4078  result_val->init_req(_fast_path, hash_val);
4079  result_reg->init_req(_fast_path, control());
4080  result_io ->init_req(_fast_path, i_o());
4081  result_mem->init_req(_fast_path, init_mem);
4082
4083  // Generate code for the slow case.  We make a call to hashCode().
4084  set_control(_gvn.transform(slow_region));
4085  if (!stopped()) {
4086    // No need for PreserveJVMState, because we're using up the present state.
4087    set_all_memory(init_mem);
4088    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4089    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4090    Node* slow_result = set_results_for_java_call(slow_call);
4091    // this->control() comes from set_results_for_java_call
4092    result_reg->init_req(_slow_path, control());
4093    result_val->init_req(_slow_path, slow_result);
4094    result_io  ->set_req(_slow_path, i_o());
4095    result_mem ->set_req(_slow_path, reset_memory());
4096  }
4097
4098  // Return the combined state.
4099  set_i_o(        _gvn.transform(result_io)  );
4100  set_all_memory( _gvn.transform(result_mem));
4101
4102  set_result(result_reg, result_val);
4103  return true;
4104}
4105
4106//---------------------------inline_native_getClass----------------------------
4107// public final native Class<?> java.lang.Object.getClass();
4108//
4109// Build special case code for calls to getClass on an object.
4110bool LibraryCallKit::inline_native_getClass() {
4111  Node* obj = null_check_receiver();
4112  if (stopped())  return true;
4113  set_result(load_mirror_from_klass(load_object_klass(obj)));
4114  return true;
4115}
4116
4117//-----------------inline_native_Reflection_getCallerClass---------------------
4118// public static native Class<?> sun.reflect.Reflection.getCallerClass();
4119//
4120// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4121//
4122// NOTE: This code must perform the same logic as JVM_GetCallerClass
4123// in that it must skip particular security frames and checks for
4124// caller sensitive methods.
4125bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4126#ifndef PRODUCT
4127  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4128    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4129  }
4130#endif
4131
4132  if (!jvms()->has_method()) {
4133#ifndef PRODUCT
4134    if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4135      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4136    }
4137#endif
4138    return false;
4139  }
4140
4141  // Walk back up the JVM state to find the caller at the required
4142  // depth.
4143  JVMState* caller_jvms = jvms();
4144
4145  // Cf. JVM_GetCallerClass
4146  // NOTE: Start the loop at depth 1 because the current JVM state does
4147  // not include the Reflection.getCallerClass() frame.
4148  for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4149    ciMethod* m = caller_jvms->method();
4150    switch (n) {
4151    case 0:
4152      fatal("current JVM state does not include the Reflection.getCallerClass frame");
4153      break;
4154    case 1:
4155      // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4156      if (!m->caller_sensitive()) {
4157#ifndef PRODUCT
4158        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4159          tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4160        }
4161#endif
4162        return false;  // bail-out; let JVM_GetCallerClass do the work
4163      }
4164      break;
4165    default:
4166      if (!m->is_ignored_by_security_stack_walk()) {
4167        // We have reached the desired frame; return the holder class.
4168        // Acquire method holder as java.lang.Class and push as constant.
4169        ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4170        ciInstance* caller_mirror = caller_klass->java_mirror();
4171        set_result(makecon(TypeInstPtr::make(caller_mirror)));
4172
4173#ifndef PRODUCT
4174        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4175          tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4176          tty->print_cr("  JVM state at this point:");
4177          for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4178            ciMethod* m = jvms()->of_depth(i)->method();
4179            tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4180          }
4181        }
4182#endif
4183        return true;
4184      }
4185      break;
4186    }
4187  }
4188
4189#ifndef PRODUCT
4190  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4191    tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4192    tty->print_cr("  JVM state at this point:");
4193    for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4194      ciMethod* m = jvms()->of_depth(i)->method();
4195      tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4196    }
4197  }
4198#endif
4199
4200  return false;  // bail-out; let JVM_GetCallerClass do the work
4201}
4202
4203bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4204  Node* arg = argument(0);
4205  Node* result = NULL;
4206
4207  switch (id) {
4208  case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4209  case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4210  case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4211  case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4212
4213  case vmIntrinsics::_doubleToLongBits: {
4214    // two paths (plus control) merge in a wood
4215    RegionNode *r = new RegionNode(3);
4216    Node *phi = new PhiNode(r, TypeLong::LONG);
4217
4218    Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4219    // Build the boolean node
4220    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4221
4222    // Branch either way.
4223    // NaN case is less traveled, which makes all the difference.
4224    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4225    Node *opt_isnan = _gvn.transform(ifisnan);
4226    assert( opt_isnan->is_If(), "Expect an IfNode");
4227    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4228    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4229
4230    set_control(iftrue);
4231
4232    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4233    Node *slow_result = longcon(nan_bits); // return NaN
4234    phi->init_req(1, _gvn.transform( slow_result ));
4235    r->init_req(1, iftrue);
4236
4237    // Else fall through
4238    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4239    set_control(iffalse);
4240
4241    phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4242    r->init_req(2, iffalse);
4243
4244    // Post merge
4245    set_control(_gvn.transform(r));
4246    record_for_igvn(r);
4247
4248    C->set_has_split_ifs(true); // Has chance for split-if optimization
4249    result = phi;
4250    assert(result->bottom_type()->isa_long(), "must be");
4251    break;
4252  }
4253
4254  case vmIntrinsics::_floatToIntBits: {
4255    // two paths (plus control) merge in a wood
4256    RegionNode *r = new RegionNode(3);
4257    Node *phi = new PhiNode(r, TypeInt::INT);
4258
4259    Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4260    // Build the boolean node
4261    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4262
4263    // Branch either way.
4264    // NaN case is less traveled, which makes all the difference.
4265    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4266    Node *opt_isnan = _gvn.transform(ifisnan);
4267    assert( opt_isnan->is_If(), "Expect an IfNode");
4268    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4269    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4270
4271    set_control(iftrue);
4272
4273    static const jint nan_bits = 0x7fc00000;
4274    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4275    phi->init_req(1, _gvn.transform( slow_result ));
4276    r->init_req(1, iftrue);
4277
4278    // Else fall through
4279    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4280    set_control(iffalse);
4281
4282    phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4283    r->init_req(2, iffalse);
4284
4285    // Post merge
4286    set_control(_gvn.transform(r));
4287    record_for_igvn(r);
4288
4289    C->set_has_split_ifs(true); // Has chance for split-if optimization
4290    result = phi;
4291    assert(result->bottom_type()->isa_int(), "must be");
4292    break;
4293  }
4294
4295  default:
4296    fatal_unexpected_iid(id);
4297    break;
4298  }
4299  set_result(_gvn.transform(result));
4300  return true;
4301}
4302
4303//----------------------inline_unsafe_copyMemory-------------------------
4304// public native void Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4305bool LibraryCallKit::inline_unsafe_copyMemory() {
4306  if (callee()->is_static())  return false;  // caller must have the capability!
4307  null_check_receiver();  // null-check receiver
4308  if (stopped())  return true;
4309
4310  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4311
4312  Node* src_ptr =         argument(1);   // type: oop
4313  Node* src_off = ConvL2X(argument(2));  // type: long
4314  Node* dst_ptr =         argument(4);   // type: oop
4315  Node* dst_off = ConvL2X(argument(5));  // type: long
4316  Node* size    = ConvL2X(argument(7));  // type: long
4317
4318  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4319         "fieldOffset must be byte-scaled");
4320
4321  Node* src = make_unsafe_address(src_ptr, src_off);
4322  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4323
4324  // Conservatively insert a memory barrier on all memory slices.
4325  // Do not let writes of the copy source or destination float below the copy.
4326  insert_mem_bar(Op_MemBarCPUOrder);
4327
4328  // Call it.  Note that the length argument is not scaled.
4329  make_runtime_call(RC_LEAF|RC_NO_FP,
4330                    OptoRuntime::fast_arraycopy_Type(),
4331                    StubRoutines::unsafe_arraycopy(),
4332                    "unsafe_arraycopy",
4333                    TypeRawPtr::BOTTOM,
4334                    src, dst, size XTOP);
4335
4336  // Do not let reads of the copy destination float above the copy.
4337  insert_mem_bar(Op_MemBarCPUOrder);
4338
4339  return true;
4340}
4341
4342//------------------------clone_coping-----------------------------------
4343// Helper function for inline_native_clone.
4344void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4345  assert(obj_size != NULL, "");
4346  Node* raw_obj = alloc_obj->in(1);
4347  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4348
4349  AllocateNode* alloc = NULL;
4350  if (ReduceBulkZeroing) {
4351    // We will be completely responsible for initializing this object -
4352    // mark Initialize node as complete.
4353    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4354    // The object was just allocated - there should be no any stores!
4355    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4356    // Mark as complete_with_arraycopy so that on AllocateNode
4357    // expansion, we know this AllocateNode is initialized by an array
4358    // copy and a StoreStore barrier exists after the array copy.
4359    alloc->initialization()->set_complete_with_arraycopy();
4360  }
4361
4362  // Copy the fastest available way.
4363  // TODO: generate fields copies for small objects instead.
4364  Node* src  = obj;
4365  Node* dest = alloc_obj;
4366  Node* size = _gvn.transform(obj_size);
4367
4368  // Exclude the header but include array length to copy by 8 bytes words.
4369  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4370  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4371                            instanceOopDesc::base_offset_in_bytes();
4372  // base_off:
4373  // 8  - 32-bit VM
4374  // 12 - 64-bit VM, compressed klass
4375  // 16 - 64-bit VM, normal klass
4376  if (base_off % BytesPerLong != 0) {
4377    assert(UseCompressedClassPointers, "");
4378    if (is_array) {
4379      // Exclude length to copy by 8 bytes words.
4380      base_off += sizeof(int);
4381    } else {
4382      // Include klass to copy by 8 bytes words.
4383      base_off = instanceOopDesc::klass_offset_in_bytes();
4384    }
4385    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4386  }
4387  src  = basic_plus_adr(src,  base_off);
4388  dest = basic_plus_adr(dest, base_off);
4389
4390  // Compute the length also, if needed:
4391  Node* countx = size;
4392  countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4393  countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4394
4395  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4396
4397  ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4398  ac->set_clonebasic();
4399  Node* n = _gvn.transform(ac);
4400  if (n == ac) {
4401    set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4402  } else {
4403    set_all_memory(n);
4404  }
4405
4406  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4407  if (card_mark) {
4408    assert(!is_array, "");
4409    // Put in store barrier for any and all oops we are sticking
4410    // into this object.  (We could avoid this if we could prove
4411    // that the object type contains no oop fields at all.)
4412    Node* no_particular_value = NULL;
4413    Node* no_particular_field = NULL;
4414    int raw_adr_idx = Compile::AliasIdxRaw;
4415    post_barrier(control(),
4416                 memory(raw_adr_type),
4417                 alloc_obj,
4418                 no_particular_field,
4419                 raw_adr_idx,
4420                 no_particular_value,
4421                 T_OBJECT,
4422                 false);
4423  }
4424
4425  // Do not let reads from the cloned object float above the arraycopy.
4426  if (alloc != NULL) {
4427    // Do not let stores that initialize this object be reordered with
4428    // a subsequent store that would make this object accessible by
4429    // other threads.
4430    // Record what AllocateNode this StoreStore protects so that
4431    // escape analysis can go from the MemBarStoreStoreNode to the
4432    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4433    // based on the escape status of the AllocateNode.
4434    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4435  } else {
4436    insert_mem_bar(Op_MemBarCPUOrder);
4437  }
4438}
4439
4440//------------------------inline_native_clone----------------------------
4441// protected native Object java.lang.Object.clone();
4442//
4443// Here are the simple edge cases:
4444//  null receiver => normal trap
4445//  virtual and clone was overridden => slow path to out-of-line clone
4446//  not cloneable or finalizer => slow path to out-of-line Object.clone
4447//
4448// The general case has two steps, allocation and copying.
4449// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4450//
4451// Copying also has two cases, oop arrays and everything else.
4452// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4453// Everything else uses the tight inline loop supplied by CopyArrayNode.
4454//
4455// These steps fold up nicely if and when the cloned object's klass
4456// can be sharply typed as an object array, a type array, or an instance.
4457//
4458bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4459  PhiNode* result_val;
4460
4461  // Set the reexecute bit for the interpreter to reexecute
4462  // the bytecode that invokes Object.clone if deoptimization happens.
4463  { PreserveReexecuteState preexecs(this);
4464    jvms()->set_should_reexecute(true);
4465
4466    Node* obj = null_check_receiver();
4467    if (stopped())  return true;
4468
4469    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4470
4471    // If we are going to clone an instance, we need its exact type to
4472    // know the number and types of fields to convert the clone to
4473    // loads/stores. Maybe a speculative type can help us.
4474    if (!obj_type->klass_is_exact() &&
4475        obj_type->speculative_type() != NULL &&
4476        obj_type->speculative_type()->is_instance_klass()) {
4477      ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4478      if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4479          !spec_ik->has_injected_fields()) {
4480        ciKlass* k = obj_type->klass();
4481        if (!k->is_instance_klass() ||
4482            k->as_instance_klass()->is_interface() ||
4483            k->as_instance_klass()->has_subklass()) {
4484          obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4485        }
4486      }
4487    }
4488
4489    Node* obj_klass = load_object_klass(obj);
4490    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4491    const TypeOopPtr*   toop   = ((tklass != NULL)
4492                                ? tklass->as_instance_type()
4493                                : TypeInstPtr::NOTNULL);
4494
4495    // Conservatively insert a memory barrier on all memory slices.
4496    // Do not let writes into the original float below the clone.
4497    insert_mem_bar(Op_MemBarCPUOrder);
4498
4499    // paths into result_reg:
4500    enum {
4501      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4502      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4503      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4504      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4505      PATH_LIMIT
4506    };
4507    RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4508    result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4509    PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4510    PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4511    record_for_igvn(result_reg);
4512
4513    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4514    int raw_adr_idx = Compile::AliasIdxRaw;
4515
4516    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4517    if (array_ctl != NULL) {
4518      // It's an array.
4519      PreserveJVMState pjvms(this);
4520      set_control(array_ctl);
4521      Node* obj_length = load_array_length(obj);
4522      Node* obj_size  = NULL;
4523      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4524
4525      if (!use_ReduceInitialCardMarks()) {
4526        // If it is an oop array, it requires very special treatment,
4527        // because card marking is required on each card of the array.
4528        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4529        if (is_obja != NULL) {
4530          PreserveJVMState pjvms2(this);
4531          set_control(is_obja);
4532          // Generate a direct call to the right arraycopy function(s).
4533          Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4534          ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4535          ac->set_cloneoop();
4536          Node* n = _gvn.transform(ac);
4537          assert(n == ac, "cannot disappear");
4538          ac->connect_outputs(this);
4539
4540          result_reg->init_req(_objArray_path, control());
4541          result_val->init_req(_objArray_path, alloc_obj);
4542          result_i_o ->set_req(_objArray_path, i_o());
4543          result_mem ->set_req(_objArray_path, reset_memory());
4544        }
4545      }
4546      // Otherwise, there are no card marks to worry about.
4547      // (We can dispense with card marks if we know the allocation
4548      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4549      //  causes the non-eden paths to take compensating steps to
4550      //  simulate a fresh allocation, so that no further
4551      //  card marks are required in compiled code to initialize
4552      //  the object.)
4553
4554      if (!stopped()) {
4555        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4556
4557        // Present the results of the copy.
4558        result_reg->init_req(_array_path, control());
4559        result_val->init_req(_array_path, alloc_obj);
4560        result_i_o ->set_req(_array_path, i_o());
4561        result_mem ->set_req(_array_path, reset_memory());
4562      }
4563    }
4564
4565    // We only go to the instance fast case code if we pass a number of guards.
4566    // The paths which do not pass are accumulated in the slow_region.
4567    RegionNode* slow_region = new RegionNode(1);
4568    record_for_igvn(slow_region);
4569    if (!stopped()) {
4570      // It's an instance (we did array above).  Make the slow-path tests.
4571      // If this is a virtual call, we generate a funny guard.  We grab
4572      // the vtable entry corresponding to clone() from the target object.
4573      // If the target method which we are calling happens to be the
4574      // Object clone() method, we pass the guard.  We do not need this
4575      // guard for non-virtual calls; the caller is known to be the native
4576      // Object clone().
4577      if (is_virtual) {
4578        generate_virtual_guard(obj_klass, slow_region);
4579      }
4580
4581      // The object must be cloneable and must not have a finalizer.
4582      // Both of these conditions may be checked in a single test.
4583      // We could optimize the cloneable test further, but we don't care.
4584      generate_access_flags_guard(obj_klass,
4585                                  // Test both conditions:
4586                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4587                                  // Must be cloneable but not finalizer:
4588                                  JVM_ACC_IS_CLONEABLE,
4589                                  slow_region);
4590    }
4591
4592    if (!stopped()) {
4593      // It's an instance, and it passed the slow-path tests.
4594      PreserveJVMState pjvms(this);
4595      Node* obj_size  = NULL;
4596      // Need to deoptimize on exception from allocation since Object.clone intrinsic
4597      // is reexecuted if deoptimization occurs and there could be problems when merging
4598      // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4599      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4600
4601      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4602
4603      // Present the results of the slow call.
4604      result_reg->init_req(_instance_path, control());
4605      result_val->init_req(_instance_path, alloc_obj);
4606      result_i_o ->set_req(_instance_path, i_o());
4607      result_mem ->set_req(_instance_path, reset_memory());
4608    }
4609
4610    // Generate code for the slow case.  We make a call to clone().
4611    set_control(_gvn.transform(slow_region));
4612    if (!stopped()) {
4613      PreserveJVMState pjvms(this);
4614      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4615      Node* slow_result = set_results_for_java_call(slow_call);
4616      // this->control() comes from set_results_for_java_call
4617      result_reg->init_req(_slow_path, control());
4618      result_val->init_req(_slow_path, slow_result);
4619      result_i_o ->set_req(_slow_path, i_o());
4620      result_mem ->set_req(_slow_path, reset_memory());
4621    }
4622
4623    // Return the combined state.
4624    set_control(    _gvn.transform(result_reg));
4625    set_i_o(        _gvn.transform(result_i_o));
4626    set_all_memory( _gvn.transform(result_mem));
4627  } // original reexecute is set back here
4628
4629  set_result(_gvn.transform(result_val));
4630  return true;
4631}
4632
4633// If we have a tighly coupled allocation, the arraycopy may take care
4634// of the array initialization. If one of the guards we insert between
4635// the allocation and the arraycopy causes a deoptimization, an
4636// unitialized array will escape the compiled method. To prevent that
4637// we set the JVM state for uncommon traps between the allocation and
4638// the arraycopy to the state before the allocation so, in case of
4639// deoptimization, we'll reexecute the allocation and the
4640// initialization.
4641JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4642  if (alloc != NULL) {
4643    ciMethod* trap_method = alloc->jvms()->method();
4644    int trap_bci = alloc->jvms()->bci();
4645
4646    if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4647          !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4648      // Make sure there's no store between the allocation and the
4649      // arraycopy otherwise visible side effects could be rexecuted
4650      // in case of deoptimization and cause incorrect execution.
4651      bool no_interfering_store = true;
4652      Node* mem = alloc->in(TypeFunc::Memory);
4653      if (mem->is_MergeMem()) {
4654        for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4655          Node* n = mms.memory();
4656          if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4657            assert(n->is_Store(), "what else?");
4658            no_interfering_store = false;
4659            break;
4660          }
4661        }
4662      } else {
4663        for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4664          Node* n = mms.memory();
4665          if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4666            assert(n->is_Store(), "what else?");
4667            no_interfering_store = false;
4668            break;
4669          }
4670        }
4671      }
4672
4673      if (no_interfering_store) {
4674        JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4675        uint size = alloc->req();
4676        SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4677        old_jvms->set_map(sfpt);
4678        for (uint i = 0; i < size; i++) {
4679          sfpt->init_req(i, alloc->in(i));
4680        }
4681        // re-push array length for deoptimization
4682        sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4683        old_jvms->set_sp(old_jvms->sp()+1);
4684        old_jvms->set_monoff(old_jvms->monoff()+1);
4685        old_jvms->set_scloff(old_jvms->scloff()+1);
4686        old_jvms->set_endoff(old_jvms->endoff()+1);
4687        old_jvms->set_should_reexecute(true);
4688
4689        sfpt->set_i_o(map()->i_o());
4690        sfpt->set_memory(map()->memory());
4691        sfpt->set_control(map()->control());
4692
4693        JVMState* saved_jvms = jvms();
4694        saved_reexecute_sp = _reexecute_sp;
4695
4696        set_jvms(sfpt->jvms());
4697        _reexecute_sp = jvms()->sp();
4698
4699        return saved_jvms;
4700      }
4701    }
4702  }
4703  return NULL;
4704}
4705
4706// In case of a deoptimization, we restart execution at the
4707// allocation, allocating a new array. We would leave an uninitialized
4708// array in the heap that GCs wouldn't expect. Move the allocation
4709// after the traps so we don't allocate the array if we
4710// deoptimize. This is possible because tightly_coupled_allocation()
4711// guarantees there's no observer of the allocated array at this point
4712// and the control flow is simple enough.
4713void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4714  if (saved_jvms != NULL && !stopped()) {
4715    assert(alloc != NULL, "only with a tightly coupled allocation");
4716    // restore JVM state to the state at the arraycopy
4717    saved_jvms->map()->set_control(map()->control());
4718    assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4719    assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4720    // If we've improved the types of some nodes (null check) while
4721    // emitting the guards, propagate them to the current state
4722    map()->replaced_nodes().apply(saved_jvms->map());
4723    set_jvms(saved_jvms);
4724    _reexecute_sp = saved_reexecute_sp;
4725
4726    // Remove the allocation from above the guards
4727    CallProjections callprojs;
4728    alloc->extract_projections(&callprojs, true);
4729    InitializeNode* init = alloc->initialization();
4730    Node* alloc_mem = alloc->in(TypeFunc::Memory);
4731    C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4732    C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4733    C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4734
4735    // move the allocation here (after the guards)
4736    _gvn.hash_delete(alloc);
4737    alloc->set_req(TypeFunc::Control, control());
4738    alloc->set_req(TypeFunc::I_O, i_o());
4739    Node *mem = reset_memory();
4740    set_all_memory(mem);
4741    alloc->set_req(TypeFunc::Memory, mem);
4742    set_control(init->proj_out(TypeFunc::Control));
4743    set_i_o(callprojs.fallthrough_ioproj);
4744
4745    // Update memory as done in GraphKit::set_output_for_allocation()
4746    const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4747    const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4748    if (ary_type->isa_aryptr() && length_type != NULL) {
4749      ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4750    }
4751    const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4752    int            elemidx  = C->get_alias_index(telemref);
4753    set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4754    set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4755
4756    Node* allocx = _gvn.transform(alloc);
4757    assert(allocx == alloc, "where has the allocation gone?");
4758    assert(dest->is_CheckCastPP(), "not an allocation result?");
4759
4760    _gvn.hash_delete(dest);
4761    dest->set_req(0, control());
4762    Node* destx = _gvn.transform(dest);
4763    assert(destx == dest, "where has the allocation result gone?");
4764  }
4765}
4766
4767
4768//------------------------------inline_arraycopy-----------------------
4769// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4770//                                                      Object dest, int destPos,
4771//                                                      int length);
4772bool LibraryCallKit::inline_arraycopy() {
4773  // Get the arguments.
4774  Node* src         = argument(0);  // type: oop
4775  Node* src_offset  = argument(1);  // type: int
4776  Node* dest        = argument(2);  // type: oop
4777  Node* dest_offset = argument(3);  // type: int
4778  Node* length      = argument(4);  // type: int
4779
4780
4781  // Check for allocation before we add nodes that would confuse
4782  // tightly_coupled_allocation()
4783  AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4784
4785  int saved_reexecute_sp = -1;
4786  JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4787  // See arraycopy_restore_alloc_state() comment
4788  // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4789  // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4790  // if saved_jvms == NULL and alloc != NULL, we can���t emit any guards
4791  bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4792
4793  // The following tests must be performed
4794  // (1) src and dest are arrays.
4795  // (2) src and dest arrays must have elements of the same BasicType
4796  // (3) src and dest must not be null.
4797  // (4) src_offset must not be negative.
4798  // (5) dest_offset must not be negative.
4799  // (6) length must not be negative.
4800  // (7) src_offset + length must not exceed length of src.
4801  // (8) dest_offset + length must not exceed length of dest.
4802  // (9) each element of an oop array must be assignable
4803
4804  // (3) src and dest must not be null.
4805  // always do this here because we need the JVM state for uncommon traps
4806  Node* null_ctl = top();
4807  src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4808  assert(null_ctl->is_top(), "no null control here");
4809  dest = null_check(dest, T_ARRAY);
4810
4811  if (!can_emit_guards) {
4812    // if saved_jvms == NULL and alloc != NULL, we don't emit any
4813    // guards but the arraycopy node could still take advantage of a
4814    // tightly allocated allocation. tightly_coupled_allocation() is
4815    // called again to make sure it takes the null check above into
4816    // account: the null check is mandatory and if it caused an
4817    // uncommon trap to be emitted then the allocation can't be
4818    // considered tightly coupled in this context.
4819    alloc = tightly_coupled_allocation(dest, NULL);
4820  }
4821
4822  bool validated = false;
4823
4824  const Type* src_type  = _gvn.type(src);
4825  const Type* dest_type = _gvn.type(dest);
4826  const TypeAryPtr* top_src  = src_type->isa_aryptr();
4827  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4828
4829  // Do we have the type of src?
4830  bool has_src = (top_src != NULL && top_src->klass() != NULL);
4831  // Do we have the type of dest?
4832  bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4833  // Is the type for src from speculation?
4834  bool src_spec = false;
4835  // Is the type for dest from speculation?
4836  bool dest_spec = false;
4837
4838  if ((!has_src || !has_dest) && can_emit_guards) {
4839    // We don't have sufficient type information, let's see if
4840    // speculative types can help. We need to have types for both src
4841    // and dest so that it pays off.
4842
4843    // Do we already have or could we have type information for src
4844    bool could_have_src = has_src;
4845    // Do we already have or could we have type information for dest
4846    bool could_have_dest = has_dest;
4847
4848    ciKlass* src_k = NULL;
4849    if (!has_src) {
4850      src_k = src_type->speculative_type_not_null();
4851      if (src_k != NULL && src_k->is_array_klass()) {
4852        could_have_src = true;
4853      }
4854    }
4855
4856    ciKlass* dest_k = NULL;
4857    if (!has_dest) {
4858      dest_k = dest_type->speculative_type_not_null();
4859      if (dest_k != NULL && dest_k->is_array_klass()) {
4860        could_have_dest = true;
4861      }
4862    }
4863
4864    if (could_have_src && could_have_dest) {
4865      // This is going to pay off so emit the required guards
4866      if (!has_src) {
4867        src = maybe_cast_profiled_obj(src, src_k, true);
4868        src_type  = _gvn.type(src);
4869        top_src  = src_type->isa_aryptr();
4870        has_src = (top_src != NULL && top_src->klass() != NULL);
4871        src_spec = true;
4872      }
4873      if (!has_dest) {
4874        dest = maybe_cast_profiled_obj(dest, dest_k, true);
4875        dest_type  = _gvn.type(dest);
4876        top_dest  = dest_type->isa_aryptr();
4877        has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4878        dest_spec = true;
4879      }
4880    }
4881  }
4882
4883  if (has_src && has_dest && can_emit_guards) {
4884    BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4885    BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4886    if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4887    if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4888
4889    if (src_elem == dest_elem && src_elem == T_OBJECT) {
4890      // If both arrays are object arrays then having the exact types
4891      // for both will remove the need for a subtype check at runtime
4892      // before the call and may make it possible to pick a faster copy
4893      // routine (without a subtype check on every element)
4894      // Do we have the exact type of src?
4895      bool could_have_src = src_spec;
4896      // Do we have the exact type of dest?
4897      bool could_have_dest = dest_spec;
4898      ciKlass* src_k = top_src->klass();
4899      ciKlass* dest_k = top_dest->klass();
4900      if (!src_spec) {
4901        src_k = src_type->speculative_type_not_null();
4902        if (src_k != NULL && src_k->is_array_klass()) {
4903          could_have_src = true;
4904        }
4905      }
4906      if (!dest_spec) {
4907        dest_k = dest_type->speculative_type_not_null();
4908        if (dest_k != NULL && dest_k->is_array_klass()) {
4909          could_have_dest = true;
4910        }
4911      }
4912      if (could_have_src && could_have_dest) {
4913        // If we can have both exact types, emit the missing guards
4914        if (could_have_src && !src_spec) {
4915          src = maybe_cast_profiled_obj(src, src_k, true);
4916        }
4917        if (could_have_dest && !dest_spec) {
4918          dest = maybe_cast_profiled_obj(dest, dest_k, true);
4919        }
4920      }
4921    }
4922  }
4923
4924  ciMethod* trap_method = method();
4925  int trap_bci = bci();
4926  if (saved_jvms != NULL) {
4927    trap_method = alloc->jvms()->method();
4928    trap_bci = alloc->jvms()->bci();
4929  }
4930
4931  if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4932      can_emit_guards &&
4933      !src->is_top() && !dest->is_top()) {
4934    // validate arguments: enables transformation the ArrayCopyNode
4935    validated = true;
4936
4937    RegionNode* slow_region = new RegionNode(1);
4938    record_for_igvn(slow_region);
4939
4940    // (1) src and dest are arrays.
4941    generate_non_array_guard(load_object_klass(src), slow_region);
4942    generate_non_array_guard(load_object_klass(dest), slow_region);
4943
4944    // (2) src and dest arrays must have elements of the same BasicType
4945    // done at macro expansion or at Ideal transformation time
4946
4947    // (4) src_offset must not be negative.
4948    generate_negative_guard(src_offset, slow_region);
4949
4950    // (5) dest_offset must not be negative.
4951    generate_negative_guard(dest_offset, slow_region);
4952
4953    // (7) src_offset + length must not exceed length of src.
4954    generate_limit_guard(src_offset, length,
4955                         load_array_length(src),
4956                         slow_region);
4957
4958    // (8) dest_offset + length must not exceed length of dest.
4959    generate_limit_guard(dest_offset, length,
4960                         load_array_length(dest),
4961                         slow_region);
4962
4963    // (9) each element of an oop array must be assignable
4964    Node* src_klass  = load_object_klass(src);
4965    Node* dest_klass = load_object_klass(dest);
4966    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4967
4968    if (not_subtype_ctrl != top()) {
4969      PreserveJVMState pjvms(this);
4970      set_control(not_subtype_ctrl);
4971      uncommon_trap(Deoptimization::Reason_intrinsic,
4972                    Deoptimization::Action_make_not_entrant);
4973      assert(stopped(), "Should be stopped");
4974    }
4975    {
4976      PreserveJVMState pjvms(this);
4977      set_control(_gvn.transform(slow_region));
4978      uncommon_trap(Deoptimization::Reason_intrinsic,
4979                    Deoptimization::Action_make_not_entrant);
4980      assert(stopped(), "Should be stopped");
4981    }
4982  }
4983
4984  arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
4985
4986  if (stopped()) {
4987    return true;
4988  }
4989
4990  ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4991                                          // Create LoadRange and LoadKlass nodes for use during macro expansion here
4992                                          // so the compiler has a chance to eliminate them: during macro expansion,
4993                                          // we have to set their control (CastPP nodes are eliminated).
4994                                          load_object_klass(src), load_object_klass(dest),
4995                                          load_array_length(src), load_array_length(dest));
4996
4997  ac->set_arraycopy(validated);
4998
4999  Node* n = _gvn.transform(ac);
5000  if (n == ac) {
5001    ac->connect_outputs(this);
5002  } else {
5003    assert(validated, "shouldn't transform if all arguments not validated");
5004    set_all_memory(n);
5005  }
5006
5007  return true;
5008}
5009
5010
5011// Helper function which determines if an arraycopy immediately follows
5012// an allocation, with no intervening tests or other escapes for the object.
5013AllocateArrayNode*
5014LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5015                                           RegionNode* slow_region) {
5016  if (stopped())             return NULL;  // no fast path
5017  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5018
5019  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5020  if (alloc == NULL)  return NULL;
5021
5022  Node* rawmem = memory(Compile::AliasIdxRaw);
5023  // Is the allocation's memory state untouched?
5024  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5025    // Bail out if there have been raw-memory effects since the allocation.
5026    // (Example:  There might have been a call or safepoint.)
5027    return NULL;
5028  }
5029  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5030  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5031    return NULL;
5032  }
5033
5034  // There must be no unexpected observers of this allocation.
5035  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5036    Node* obs = ptr->fast_out(i);
5037    if (obs != this->map()) {
5038      return NULL;
5039    }
5040  }
5041
5042  // This arraycopy must unconditionally follow the allocation of the ptr.
5043  Node* alloc_ctl = ptr->in(0);
5044  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5045
5046  Node* ctl = control();
5047  while (ctl != alloc_ctl) {
5048    // There may be guards which feed into the slow_region.
5049    // Any other control flow means that we might not get a chance
5050    // to finish initializing the allocated object.
5051    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5052      IfNode* iff = ctl->in(0)->as_If();
5053      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5054      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5055      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5056        ctl = iff->in(0);       // This test feeds the known slow_region.
5057        continue;
5058      }
5059      // One more try:  Various low-level checks bottom out in
5060      // uncommon traps.  If the debug-info of the trap omits
5061      // any reference to the allocation, as we've already
5062      // observed, then there can be no objection to the trap.
5063      bool found_trap = false;
5064      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5065        Node* obs = not_ctl->fast_out(j);
5066        if (obs->in(0) == not_ctl && obs->is_Call() &&
5067            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5068          found_trap = true; break;
5069        }
5070      }
5071      if (found_trap) {
5072        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5073        continue;
5074      }
5075    }
5076    return NULL;
5077  }
5078
5079  // If we get this far, we have an allocation which immediately
5080  // precedes the arraycopy, and we can take over zeroing the new object.
5081  // The arraycopy will finish the initialization, and provide
5082  // a new control state to which we will anchor the destination pointer.
5083
5084  return alloc;
5085}
5086
5087//-------------inline_encodeISOArray-----------------------------------
5088// encode char[] to byte[] in ISO_8859_1
5089bool LibraryCallKit::inline_encodeISOArray() {
5090  assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5091  // no receiver since it is static method
5092  Node *src         = argument(0);
5093  Node *src_offset  = argument(1);
5094  Node *dst         = argument(2);
5095  Node *dst_offset  = argument(3);
5096  Node *length      = argument(4);
5097
5098  const Type* src_type = src->Value(&_gvn);
5099  const Type* dst_type = dst->Value(&_gvn);
5100  const TypeAryPtr* top_src = src_type->isa_aryptr();
5101  const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5102  if (top_src  == NULL || top_src->klass()  == NULL ||
5103      top_dest == NULL || top_dest->klass() == NULL) {
5104    // failed array check
5105    return false;
5106  }
5107
5108  // Figure out the size and type of the elements we will be copying.
5109  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5110  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5111  if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5112    return false;
5113  }
5114
5115  Node* src_start = array_element_address(src, src_offset, T_CHAR);
5116  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5117  // 'src_start' points to src array + scaled offset
5118  // 'dst_start' points to dst array + scaled offset
5119
5120  const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5121  Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5122  enc = _gvn.transform(enc);
5123  Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5124  set_memory(res_mem, mtype);
5125  set_result(enc);
5126  return true;
5127}
5128
5129//-------------inline_multiplyToLen-----------------------------------
5130bool LibraryCallKit::inline_multiplyToLen() {
5131  assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5132
5133  address stubAddr = StubRoutines::multiplyToLen();
5134  if (stubAddr == NULL) {
5135    return false; // Intrinsic's stub is not implemented on this platform
5136  }
5137  const char* stubName = "multiplyToLen";
5138
5139  assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5140
5141  // no receiver because it is a static method
5142  Node* x    = argument(0);
5143  Node* xlen = argument(1);
5144  Node* y    = argument(2);
5145  Node* ylen = argument(3);
5146  Node* z    = argument(4);
5147
5148  const Type* x_type = x->Value(&_gvn);
5149  const Type* y_type = y->Value(&_gvn);
5150  const TypeAryPtr* top_x = x_type->isa_aryptr();
5151  const TypeAryPtr* top_y = y_type->isa_aryptr();
5152  if (top_x  == NULL || top_x->klass()  == NULL ||
5153      top_y == NULL || top_y->klass() == NULL) {
5154    // failed array check
5155    return false;
5156  }
5157
5158  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5159  BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5160  if (x_elem != T_INT || y_elem != T_INT) {
5161    return false;
5162  }
5163
5164  // Set the original stack and the reexecute bit for the interpreter to reexecute
5165  // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5166  // on the return from z array allocation in runtime.
5167  { PreserveReexecuteState preexecs(this);
5168    jvms()->set_should_reexecute(true);
5169
5170    Node* x_start = array_element_address(x, intcon(0), x_elem);
5171    Node* y_start = array_element_address(y, intcon(0), y_elem);
5172    // 'x_start' points to x array + scaled xlen
5173    // 'y_start' points to y array + scaled ylen
5174
5175    // Allocate the result array
5176    Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5177    ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5178    Node* klass_node = makecon(TypeKlassPtr::make(klass));
5179
5180    IdealKit ideal(this);
5181
5182#define __ ideal.
5183     Node* one = __ ConI(1);
5184     Node* zero = __ ConI(0);
5185     IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5186     __ set(need_alloc, zero);
5187     __ set(z_alloc, z);
5188     __ if_then(z, BoolTest::eq, null()); {
5189       __ increment (need_alloc, one);
5190     } __ else_(); {
5191       // Update graphKit memory and control from IdealKit.
5192       sync_kit(ideal);
5193       Node* zlen_arg = load_array_length(z);
5194       // Update IdealKit memory and control from graphKit.
5195       __ sync_kit(this);
5196       __ if_then(zlen_arg, BoolTest::lt, zlen); {
5197         __ increment (need_alloc, one);
5198       } __ end_if();
5199     } __ end_if();
5200
5201     __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5202       // Update graphKit memory and control from IdealKit.
5203       sync_kit(ideal);
5204       Node * narr = new_array(klass_node, zlen, 1);
5205       // Update IdealKit memory and control from graphKit.
5206       __ sync_kit(this);
5207       __ set(z_alloc, narr);
5208     } __ end_if();
5209
5210     sync_kit(ideal);
5211     z = __ value(z_alloc);
5212     // Can't use TypeAryPtr::INTS which uses Bottom offset.
5213     _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5214     // Final sync IdealKit and GraphKit.
5215     final_sync(ideal);
5216#undef __
5217
5218    Node* z_start = array_element_address(z, intcon(0), T_INT);
5219
5220    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5221                                   OptoRuntime::multiplyToLen_Type(),
5222                                   stubAddr, stubName, TypePtr::BOTTOM,
5223                                   x_start, xlen, y_start, ylen, z_start, zlen);
5224  } // original reexecute is set back here
5225
5226  C->set_has_split_ifs(true); // Has chance for split-if optimization
5227  set_result(z);
5228  return true;
5229}
5230
5231//-------------inline_squareToLen------------------------------------
5232bool LibraryCallKit::inline_squareToLen() {
5233  assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5234
5235  address stubAddr = StubRoutines::squareToLen();
5236  if (stubAddr == NULL) {
5237    return false; // Intrinsic's stub is not implemented on this platform
5238  }
5239  const char* stubName = "squareToLen";
5240
5241  assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5242
5243  Node* x    = argument(0);
5244  Node* len  = argument(1);
5245  Node* z    = argument(2);
5246  Node* zlen = argument(3);
5247
5248  const Type* x_type = x->Value(&_gvn);
5249  const Type* z_type = z->Value(&_gvn);
5250  const TypeAryPtr* top_x = x_type->isa_aryptr();
5251  const TypeAryPtr* top_z = z_type->isa_aryptr();
5252  if (top_x  == NULL || top_x->klass()  == NULL ||
5253      top_z  == NULL || top_z->klass()  == NULL) {
5254    // failed array check
5255    return false;
5256  }
5257
5258  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5259  BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5260  if (x_elem != T_INT || z_elem != T_INT) {
5261    return false;
5262  }
5263
5264
5265  Node* x_start = array_element_address(x, intcon(0), x_elem);
5266  Node* z_start = array_element_address(z, intcon(0), z_elem);
5267
5268  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5269                                  OptoRuntime::squareToLen_Type(),
5270                                  stubAddr, stubName, TypePtr::BOTTOM,
5271                                  x_start, len, z_start, zlen);
5272
5273  set_result(z);
5274  return true;
5275}
5276
5277//-------------inline_mulAdd------------------------------------------
5278bool LibraryCallKit::inline_mulAdd() {
5279  assert(UseMulAddIntrinsic, "not implemented on this platform");
5280
5281  address stubAddr = StubRoutines::mulAdd();
5282  if (stubAddr == NULL) {
5283    return false; // Intrinsic's stub is not implemented on this platform
5284  }
5285  const char* stubName = "mulAdd";
5286
5287  assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5288
5289  Node* out      = argument(0);
5290  Node* in       = argument(1);
5291  Node* offset   = argument(2);
5292  Node* len      = argument(3);
5293  Node* k        = argument(4);
5294
5295  const Type* out_type = out->Value(&_gvn);
5296  const Type* in_type = in->Value(&_gvn);
5297  const TypeAryPtr* top_out = out_type->isa_aryptr();
5298  const TypeAryPtr* top_in = in_type->isa_aryptr();
5299  if (top_out  == NULL || top_out->klass()  == NULL ||
5300      top_in == NULL || top_in->klass() == NULL) {
5301    // failed array check
5302    return false;
5303  }
5304
5305  BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5306  BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5307  if (out_elem != T_INT || in_elem != T_INT) {
5308    return false;
5309  }
5310
5311  Node* outlen = load_array_length(out);
5312  Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5313  Node* out_start = array_element_address(out, intcon(0), out_elem);
5314  Node* in_start = array_element_address(in, intcon(0), in_elem);
5315
5316  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5317                                  OptoRuntime::mulAdd_Type(),
5318                                  stubAddr, stubName, TypePtr::BOTTOM,
5319                                  out_start,in_start, new_offset, len, k);
5320  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5321  set_result(result);
5322  return true;
5323}
5324
5325//-------------inline_montgomeryMultiply-----------------------------------
5326bool LibraryCallKit::inline_montgomeryMultiply() {
5327  address stubAddr = StubRoutines::montgomeryMultiply();
5328  if (stubAddr == NULL) {
5329    return false; // Intrinsic's stub is not implemented on this platform
5330  }
5331
5332  assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5333  const char* stubName = "montgomery_square";
5334
5335  assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5336
5337  Node* a    = argument(0);
5338  Node* b    = argument(1);
5339  Node* n    = argument(2);
5340  Node* len  = argument(3);
5341  Node* inv  = argument(4);
5342  Node* m    = argument(6);
5343
5344  const Type* a_type = a->Value(&_gvn);
5345  const TypeAryPtr* top_a = a_type->isa_aryptr();
5346  const Type* b_type = b->Value(&_gvn);
5347  const TypeAryPtr* top_b = b_type->isa_aryptr();
5348  const Type* n_type = a->Value(&_gvn);
5349  const TypeAryPtr* top_n = n_type->isa_aryptr();
5350  const Type* m_type = a->Value(&_gvn);
5351  const TypeAryPtr* top_m = m_type->isa_aryptr();
5352  if (top_a  == NULL || top_a->klass()  == NULL ||
5353      top_b == NULL || top_b->klass()  == NULL ||
5354      top_n == NULL || top_n->klass()  == NULL ||
5355      top_m == NULL || top_m->klass()  == NULL) {
5356    // failed array check
5357    return false;
5358  }
5359
5360  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5361  BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5362  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5363  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5364  if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5365    return false;
5366  }
5367
5368  // Make the call
5369  {
5370    Node* a_start = array_element_address(a, intcon(0), a_elem);
5371    Node* b_start = array_element_address(b, intcon(0), b_elem);
5372    Node* n_start = array_element_address(n, intcon(0), n_elem);
5373    Node* m_start = array_element_address(m, intcon(0), m_elem);
5374
5375    Node* call = make_runtime_call(RC_LEAF,
5376                                   OptoRuntime::montgomeryMultiply_Type(),
5377                                   stubAddr, stubName, TypePtr::BOTTOM,
5378                                   a_start, b_start, n_start, len, inv, top(),
5379                                   m_start);
5380    set_result(m);
5381  }
5382
5383  return true;
5384}
5385
5386bool LibraryCallKit::inline_montgomerySquare() {
5387  address stubAddr = StubRoutines::montgomerySquare();
5388  if (stubAddr == NULL) {
5389    return false; // Intrinsic's stub is not implemented on this platform
5390  }
5391
5392  assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5393  const char* stubName = "montgomery_square";
5394
5395  assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5396
5397  Node* a    = argument(0);
5398  Node* n    = argument(1);
5399  Node* len  = argument(2);
5400  Node* inv  = argument(3);
5401  Node* m    = argument(5);
5402
5403  const Type* a_type = a->Value(&_gvn);
5404  const TypeAryPtr* top_a = a_type->isa_aryptr();
5405  const Type* n_type = a->Value(&_gvn);
5406  const TypeAryPtr* top_n = n_type->isa_aryptr();
5407  const Type* m_type = a->Value(&_gvn);
5408  const TypeAryPtr* top_m = m_type->isa_aryptr();
5409  if (top_a  == NULL || top_a->klass()  == NULL ||
5410      top_n == NULL || top_n->klass()  == NULL ||
5411      top_m == NULL || top_m->klass()  == NULL) {
5412    // failed array check
5413    return false;
5414  }
5415
5416  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5417  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5418  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5419  if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5420    return false;
5421  }
5422
5423  // Make the call
5424  {
5425    Node* a_start = array_element_address(a, intcon(0), a_elem);
5426    Node* n_start = array_element_address(n, intcon(0), n_elem);
5427    Node* m_start = array_element_address(m, intcon(0), m_elem);
5428
5429    Node* call = make_runtime_call(RC_LEAF,
5430                                   OptoRuntime::montgomerySquare_Type(),
5431                                   stubAddr, stubName, TypePtr::BOTTOM,
5432                                   a_start, n_start, len, inv, top(),
5433                                   m_start);
5434    set_result(m);
5435  }
5436
5437  return true;
5438}
5439
5440
5441/**
5442 * Calculate CRC32 for byte.
5443 * int java.util.zip.CRC32.update(int crc, int b)
5444 */
5445bool LibraryCallKit::inline_updateCRC32() {
5446  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5447  assert(callee()->signature()->size() == 2, "update has 2 parameters");
5448  // no receiver since it is static method
5449  Node* crc  = argument(0); // type: int
5450  Node* b    = argument(1); // type: int
5451
5452  /*
5453   *    int c = ~ crc;
5454   *    b = timesXtoThe32[(b ^ c) & 0xFF];
5455   *    b = b ^ (c >>> 8);
5456   *    crc = ~b;
5457   */
5458
5459  Node* M1 = intcon(-1);
5460  crc = _gvn.transform(new XorINode(crc, M1));
5461  Node* result = _gvn.transform(new XorINode(crc, b));
5462  result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5463
5464  Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5465  Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5466  Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5467  result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5468
5469  crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5470  result = _gvn.transform(new XorINode(crc, result));
5471  result = _gvn.transform(new XorINode(result, M1));
5472  set_result(result);
5473  return true;
5474}
5475
5476/**
5477 * Calculate CRC32 for byte[] array.
5478 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5479 */
5480bool LibraryCallKit::inline_updateBytesCRC32() {
5481  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5482  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5483  // no receiver since it is static method
5484  Node* crc     = argument(0); // type: int
5485  Node* src     = argument(1); // type: oop
5486  Node* offset  = argument(2); // type: int
5487  Node* length  = argument(3); // type: int
5488
5489  const Type* src_type = src->Value(&_gvn);
5490  const TypeAryPtr* top_src = src_type->isa_aryptr();
5491  if (top_src  == NULL || top_src->klass()  == NULL) {
5492    // failed array check
5493    return false;
5494  }
5495
5496  // Figure out the size and type of the elements we will be copying.
5497  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5498  if (src_elem != T_BYTE) {
5499    return false;
5500  }
5501
5502  // 'src_start' points to src array + scaled offset
5503  Node* src_start = array_element_address(src, offset, src_elem);
5504
5505  // We assume that range check is done by caller.
5506  // TODO: generate range check (offset+length < src.length) in debug VM.
5507
5508  // Call the stub.
5509  address stubAddr = StubRoutines::updateBytesCRC32();
5510  const char *stubName = "updateBytesCRC32";
5511
5512  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5513                                 stubAddr, stubName, TypePtr::BOTTOM,
5514                                 crc, src_start, length);
5515  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5516  set_result(result);
5517  return true;
5518}
5519
5520/**
5521 * Calculate CRC32 for ByteBuffer.
5522 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5523 */
5524bool LibraryCallKit::inline_updateByteBufferCRC32() {
5525  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5526  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5527  // no receiver since it is static method
5528  Node* crc     = argument(0); // type: int
5529  Node* src     = argument(1); // type: long
5530  Node* offset  = argument(3); // type: int
5531  Node* length  = argument(4); // type: int
5532
5533  src = ConvL2X(src);  // adjust Java long to machine word
5534  Node* base = _gvn.transform(new CastX2PNode(src));
5535  offset = ConvI2X(offset);
5536
5537  // 'src_start' points to src array + scaled offset
5538  Node* src_start = basic_plus_adr(top(), base, offset);
5539
5540  // Call the stub.
5541  address stubAddr = StubRoutines::updateBytesCRC32();
5542  const char *stubName = "updateBytesCRC32";
5543
5544  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5545                                 stubAddr, stubName, TypePtr::BOTTOM,
5546                                 crc, src_start, length);
5547  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5548  set_result(result);
5549  return true;
5550}
5551
5552//------------------------------get_table_from_crc32c_class-----------------------
5553Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5554  Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5555  assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5556
5557  return table;
5558}
5559
5560//------------------------------inline_updateBytesCRC32C-----------------------
5561//
5562// Calculate CRC32C for byte[] array.
5563// int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5564//
5565bool LibraryCallKit::inline_updateBytesCRC32C() {
5566  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5567  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5568  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5569  // no receiver since it is a static method
5570  Node* crc     = argument(0); // type: int
5571  Node* src     = argument(1); // type: oop
5572  Node* offset  = argument(2); // type: int
5573  Node* end     = argument(3); // type: int
5574
5575  Node* length = _gvn.transform(new SubINode(end, offset));
5576
5577  const Type* src_type = src->Value(&_gvn);
5578  const TypeAryPtr* top_src = src_type->isa_aryptr();
5579  if (top_src  == NULL || top_src->klass()  == NULL) {
5580    // failed array check
5581    return false;
5582  }
5583
5584  // Figure out the size and type of the elements we will be copying.
5585  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5586  if (src_elem != T_BYTE) {
5587    return false;
5588  }
5589
5590  // 'src_start' points to src array + scaled offset
5591  Node* src_start = array_element_address(src, offset, src_elem);
5592
5593  // static final int[] byteTable in class CRC32C
5594  Node* table = get_table_from_crc32c_class(callee()->holder());
5595  Node* table_start = array_element_address(table, intcon(0), T_INT);
5596
5597  // We assume that range check is done by caller.
5598  // TODO: generate range check (offset+length < src.length) in debug VM.
5599
5600  // Call the stub.
5601  address stubAddr = StubRoutines::updateBytesCRC32C();
5602  const char *stubName = "updateBytesCRC32C";
5603
5604  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5605                                 stubAddr, stubName, TypePtr::BOTTOM,
5606                                 crc, src_start, length, table_start);
5607  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5608  set_result(result);
5609  return true;
5610}
5611
5612//------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5613//
5614// Calculate CRC32C for DirectByteBuffer.
5615// int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5616//
5617bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5618  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5619  assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5620  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5621  // no receiver since it is a static method
5622  Node* crc     = argument(0); // type: int
5623  Node* src     = argument(1); // type: long
5624  Node* offset  = argument(3); // type: int
5625  Node* end     = argument(4); // type: int
5626
5627  Node* length = _gvn.transform(new SubINode(end, offset));
5628
5629  src = ConvL2X(src);  // adjust Java long to machine word
5630  Node* base = _gvn.transform(new CastX2PNode(src));
5631  offset = ConvI2X(offset);
5632
5633  // 'src_start' points to src array + scaled offset
5634  Node* src_start = basic_plus_adr(top(), base, offset);
5635
5636  // static final int[] byteTable in class CRC32C
5637  Node* table = get_table_from_crc32c_class(callee()->holder());
5638  Node* table_start = array_element_address(table, intcon(0), T_INT);
5639
5640  // Call the stub.
5641  address stubAddr = StubRoutines::updateBytesCRC32C();
5642  const char *stubName = "updateBytesCRC32C";
5643
5644  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5645                                 stubAddr, stubName, TypePtr::BOTTOM,
5646                                 crc, src_start, length, table_start);
5647  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5648  set_result(result);
5649  return true;
5650}
5651
5652//------------------------------inline_updateBytesAdler32----------------------
5653//
5654// Calculate Adler32 checksum for byte[] array.
5655// int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5656//
5657bool LibraryCallKit::inline_updateBytesAdler32() {
5658  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5659  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5660  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5661  // no receiver since it is static method
5662  Node* crc     = argument(0); // type: int
5663  Node* src     = argument(1); // type: oop
5664  Node* offset  = argument(2); // type: int
5665  Node* length  = argument(3); // type: int
5666
5667  const Type* src_type = src->Value(&_gvn);
5668  const TypeAryPtr* top_src = src_type->isa_aryptr();
5669  if (top_src  == NULL || top_src->klass()  == NULL) {
5670    // failed array check
5671    return false;
5672  }
5673
5674  // Figure out the size and type of the elements we will be copying.
5675  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5676  if (src_elem != T_BYTE) {
5677    return false;
5678  }
5679
5680  // 'src_start' points to src array + scaled offset
5681  Node* src_start = array_element_address(src, offset, src_elem);
5682
5683  // We assume that range check is done by caller.
5684  // TODO: generate range check (offset+length < src.length) in debug VM.
5685
5686  // Call the stub.
5687  address stubAddr = StubRoutines::updateBytesAdler32();
5688  const char *stubName = "updateBytesAdler32";
5689
5690  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5691                                 stubAddr, stubName, TypePtr::BOTTOM,
5692                                 crc, src_start, length);
5693  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5694  set_result(result);
5695  return true;
5696}
5697
5698//------------------------------inline_updateByteBufferAdler32---------------
5699//
5700// Calculate Adler32 checksum for DirectByteBuffer.
5701// int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5702//
5703bool LibraryCallKit::inline_updateByteBufferAdler32() {
5704  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5705  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5706  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5707  // no receiver since it is static method
5708  Node* crc     = argument(0); // type: int
5709  Node* src     = argument(1); // type: long
5710  Node* offset  = argument(3); // type: int
5711  Node* length  = argument(4); // type: int
5712
5713  src = ConvL2X(src);  // adjust Java long to machine word
5714  Node* base = _gvn.transform(new CastX2PNode(src));
5715  offset = ConvI2X(offset);
5716
5717  // 'src_start' points to src array + scaled offset
5718  Node* src_start = basic_plus_adr(top(), base, offset);
5719
5720  // Call the stub.
5721  address stubAddr = StubRoutines::updateBytesAdler32();
5722  const char *stubName = "updateBytesAdler32";
5723
5724  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5725                                 stubAddr, stubName, TypePtr::BOTTOM,
5726                                 crc, src_start, length);
5727
5728  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5729  set_result(result);
5730  return true;
5731}
5732
5733//----------------------------inline_reference_get----------------------------
5734// public T java.lang.ref.Reference.get();
5735bool LibraryCallKit::inline_reference_get() {
5736  const int referent_offset = java_lang_ref_Reference::referent_offset;
5737  guarantee(referent_offset > 0, "should have already been set");
5738
5739  // Get the argument:
5740  Node* reference_obj = null_check_receiver();
5741  if (stopped()) return true;
5742
5743  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5744
5745  ciInstanceKlass* klass = env()->Object_klass();
5746  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5747
5748  Node* no_ctrl = NULL;
5749  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5750
5751  // Use the pre-barrier to record the value in the referent field
5752  pre_barrier(false /* do_load */,
5753              control(),
5754              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5755              result /* pre_val */,
5756              T_OBJECT);
5757
5758  // Add memory barrier to prevent commoning reads from this field
5759  // across safepoint since GC can change its value.
5760  insert_mem_bar(Op_MemBarCPUOrder);
5761
5762  set_result(result);
5763  return true;
5764}
5765
5766
5767Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5768                                              bool is_exact=true, bool is_static=false,
5769                                              ciInstanceKlass * fromKls=NULL) {
5770  if (fromKls == NULL) {
5771    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5772    assert(tinst != NULL, "obj is null");
5773    assert(tinst->klass()->is_loaded(), "obj is not loaded");
5774    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5775    fromKls = tinst->klass()->as_instance_klass();
5776  } else {
5777    assert(is_static, "only for static field access");
5778  }
5779  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5780                                              ciSymbol::make(fieldTypeString),
5781                                              is_static);
5782
5783  assert (field != NULL, "undefined field");
5784  if (field == NULL) return (Node *) NULL;
5785
5786  if (is_static) {
5787    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5788    fromObj = makecon(tip);
5789  }
5790
5791  // Next code  copied from Parse::do_get_xxx():
5792
5793  // Compute address and memory type.
5794  int offset  = field->offset_in_bytes();
5795  bool is_vol = field->is_volatile();
5796  ciType* field_klass = field->type();
5797  assert(field_klass->is_loaded(), "should be loaded");
5798  const TypePtr* adr_type = C->alias_type(field)->adr_type();
5799  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5800  BasicType bt = field->layout_type();
5801
5802  // Build the resultant type of the load
5803  const Type *type;
5804  if (bt == T_OBJECT) {
5805    type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5806  } else {
5807    type = Type::get_const_basic_type(bt);
5808  }
5809
5810  if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5811    insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5812  }
5813  // Build the load.
5814  MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5815  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5816  // If reference is volatile, prevent following memory ops from
5817  // floating up past the volatile read.  Also prevents commoning
5818  // another volatile read.
5819  if (is_vol) {
5820    // Memory barrier includes bogus read of value to force load BEFORE membar
5821    insert_mem_bar(Op_MemBarAcquire, loadedField);
5822  }
5823  return loadedField;
5824}
5825
5826
5827//------------------------------inline_aescrypt_Block-----------------------
5828bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5829  address stubAddr = NULL;
5830  const char *stubName;
5831  assert(UseAES, "need AES instruction support");
5832
5833  switch(id) {
5834  case vmIntrinsics::_aescrypt_encryptBlock:
5835    stubAddr = StubRoutines::aescrypt_encryptBlock();
5836    stubName = "aescrypt_encryptBlock";
5837    break;
5838  case vmIntrinsics::_aescrypt_decryptBlock:
5839    stubAddr = StubRoutines::aescrypt_decryptBlock();
5840    stubName = "aescrypt_decryptBlock";
5841    break;
5842  }
5843  if (stubAddr == NULL) return false;
5844
5845  Node* aescrypt_object = argument(0);
5846  Node* src             = argument(1);
5847  Node* src_offset      = argument(2);
5848  Node* dest            = argument(3);
5849  Node* dest_offset     = argument(4);
5850
5851  // (1) src and dest are arrays.
5852  const Type* src_type = src->Value(&_gvn);
5853  const Type* dest_type = dest->Value(&_gvn);
5854  const TypeAryPtr* top_src = src_type->isa_aryptr();
5855  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5856  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5857
5858  // for the quick and dirty code we will skip all the checks.
5859  // we are just trying to get the call to be generated.
5860  Node* src_start  = src;
5861  Node* dest_start = dest;
5862  if (src_offset != NULL || dest_offset != NULL) {
5863    assert(src_offset != NULL && dest_offset != NULL, "");
5864    src_start  = array_element_address(src,  src_offset,  T_BYTE);
5865    dest_start = array_element_address(dest, dest_offset, T_BYTE);
5866  }
5867
5868  // now need to get the start of its expanded key array
5869  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5870  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5871  if (k_start == NULL) return false;
5872
5873  if (Matcher::pass_original_key_for_aes()) {
5874    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5875    // compatibility issues between Java key expansion and SPARC crypto instructions
5876    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5877    if (original_k_start == NULL) return false;
5878
5879    // Call the stub.
5880    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5881                      stubAddr, stubName, TypePtr::BOTTOM,
5882                      src_start, dest_start, k_start, original_k_start);
5883  } else {
5884    // Call the stub.
5885    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5886                      stubAddr, stubName, TypePtr::BOTTOM,
5887                      src_start, dest_start, k_start);
5888  }
5889
5890  return true;
5891}
5892
5893//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5894bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5895  address stubAddr = NULL;
5896  const char *stubName = NULL;
5897
5898  assert(UseAES, "need AES instruction support");
5899
5900  switch(id) {
5901  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5902    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5903    stubName = "cipherBlockChaining_encryptAESCrypt";
5904    break;
5905  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5906    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5907    stubName = "cipherBlockChaining_decryptAESCrypt";
5908    break;
5909  }
5910  if (stubAddr == NULL) return false;
5911
5912  Node* cipherBlockChaining_object = argument(0);
5913  Node* src                        = argument(1);
5914  Node* src_offset                 = argument(2);
5915  Node* len                        = argument(3);
5916  Node* dest                       = argument(4);
5917  Node* dest_offset                = argument(5);
5918
5919  // (1) src and dest are arrays.
5920  const Type* src_type = src->Value(&_gvn);
5921  const Type* dest_type = dest->Value(&_gvn);
5922  const TypeAryPtr* top_src = src_type->isa_aryptr();
5923  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5924  assert (top_src  != NULL && top_src->klass()  != NULL
5925          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5926
5927  // checks are the responsibility of the caller
5928  Node* src_start  = src;
5929  Node* dest_start = dest;
5930  if (src_offset != NULL || dest_offset != NULL) {
5931    assert(src_offset != NULL && dest_offset != NULL, "");
5932    src_start  = array_element_address(src,  src_offset,  T_BYTE);
5933    dest_start = array_element_address(dest, dest_offset, T_BYTE);
5934  }
5935
5936  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5937  // (because of the predicated logic executed earlier).
5938  // so we cast it here safely.
5939  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5940
5941  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5942  if (embeddedCipherObj == NULL) return false;
5943
5944  // cast it to what we know it will be at runtime
5945  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5946  assert(tinst != NULL, "CBC obj is null");
5947  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5948  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5949  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5950
5951  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5952  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5953  const TypeOopPtr* xtype = aklass->as_instance_type();
5954  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5955  aescrypt_object = _gvn.transform(aescrypt_object);
5956
5957  // we need to get the start of the aescrypt_object's expanded key array
5958  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5959  if (k_start == NULL) return false;
5960
5961  // similarly, get the start address of the r vector
5962  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5963  if (objRvec == NULL) return false;
5964  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5965
5966  Node* cbcCrypt;
5967  if (Matcher::pass_original_key_for_aes()) {
5968    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5969    // compatibility issues between Java key expansion and SPARC crypto instructions
5970    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5971    if (original_k_start == NULL) return false;
5972
5973    // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5974    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5975                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5976                                 stubAddr, stubName, TypePtr::BOTTOM,
5977                                 src_start, dest_start, k_start, r_start, len, original_k_start);
5978  } else {
5979    // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5980    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5981                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5982                                 stubAddr, stubName, TypePtr::BOTTOM,
5983                                 src_start, dest_start, k_start, r_start, len);
5984  }
5985
5986  // return cipher length (int)
5987  Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5988  set_result(retvalue);
5989  return true;
5990}
5991
5992//------------------------------get_key_start_from_aescrypt_object-----------------------
5993Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5994  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5995  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5996  if (objAESCryptKey == NULL) return (Node *) NULL;
5997
5998  // now have the array, need to get the start address of the K array
5999  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6000  return k_start;
6001}
6002
6003//------------------------------get_original_key_start_from_aescrypt_object-----------------------
6004Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6005  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6006  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6007  if (objAESCryptKey == NULL) return (Node *) NULL;
6008
6009  // now have the array, need to get the start address of the lastKey array
6010  Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6011  return original_k_start;
6012}
6013
6014//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6015// Return node representing slow path of predicate check.
6016// the pseudo code we want to emulate with this predicate is:
6017// for encryption:
6018//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6019// for decryption:
6020//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6021//    note cipher==plain is more conservative than the original java code but that's OK
6022//
6023Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6024  // The receiver was checked for NULL already.
6025  Node* objCBC = argument(0);
6026
6027  // Load embeddedCipher field of CipherBlockChaining object.
6028  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6029
6030  // get AESCrypt klass for instanceOf check
6031  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6032  // will have same classloader as CipherBlockChaining object
6033  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6034  assert(tinst != NULL, "CBCobj is null");
6035  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6036
6037  // we want to do an instanceof comparison against the AESCrypt class
6038  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6039  if (!klass_AESCrypt->is_loaded()) {
6040    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6041    Node* ctrl = control();
6042    set_control(top()); // no regular fast path
6043    return ctrl;
6044  }
6045  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6046
6047  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6048  Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6049  Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6050
6051  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6052
6053  // for encryption, we are done
6054  if (!decrypting)
6055    return instof_false;  // even if it is NULL
6056
6057  // for decryption, we need to add a further check to avoid
6058  // taking the intrinsic path when cipher and plain are the same
6059  // see the original java code for why.
6060  RegionNode* region = new RegionNode(3);
6061  region->init_req(1, instof_false);
6062  Node* src = argument(1);
6063  Node* dest = argument(4);
6064  Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6065  Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6066  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6067  region->init_req(2, src_dest_conjoint);
6068
6069  record_for_igvn(region);
6070  return _gvn.transform(region);
6071}
6072
6073//------------------------------inline_ghash_processBlocks
6074bool LibraryCallKit::inline_ghash_processBlocks() {
6075  address stubAddr;
6076  const char *stubName;
6077  assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6078
6079  stubAddr = StubRoutines::ghash_processBlocks();
6080  stubName = "ghash_processBlocks";
6081
6082  Node* data           = argument(0);
6083  Node* offset         = argument(1);
6084  Node* len            = argument(2);
6085  Node* state          = argument(3);
6086  Node* subkeyH        = argument(4);
6087
6088  Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6089  assert(state_start, "state is NULL");
6090  Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6091  assert(subkeyH_start, "subkeyH is NULL");
6092  Node* data_start  = array_element_address(data, offset, T_BYTE);
6093  assert(data_start, "data is NULL");
6094
6095  Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6096                                  OptoRuntime::ghash_processBlocks_Type(),
6097                                  stubAddr, stubName, TypePtr::BOTTOM,
6098                                  state_start, subkeyH_start, data_start, len);
6099  return true;
6100}
6101
6102//------------------------------inline_sha_implCompress-----------------------
6103//
6104// Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6105// void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6106//
6107// Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6108// void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6109//
6110// Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6111// void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6112//
6113bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6114  assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6115
6116  Node* sha_obj = argument(0);
6117  Node* src     = argument(1); // type oop
6118  Node* ofs     = argument(2); // type int
6119
6120  const Type* src_type = src->Value(&_gvn);
6121  const TypeAryPtr* top_src = src_type->isa_aryptr();
6122  if (top_src  == NULL || top_src->klass()  == NULL) {
6123    // failed array check
6124    return false;
6125  }
6126  // Figure out the size and type of the elements we will be copying.
6127  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6128  if (src_elem != T_BYTE) {
6129    return false;
6130  }
6131  // 'src_start' points to src array + offset
6132  Node* src_start = array_element_address(src, ofs, src_elem);
6133  Node* state = NULL;
6134  address stubAddr;
6135  const char *stubName;
6136
6137  switch(id) {
6138  case vmIntrinsics::_sha_implCompress:
6139    assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6140    state = get_state_from_sha_object(sha_obj);
6141    stubAddr = StubRoutines::sha1_implCompress();
6142    stubName = "sha1_implCompress";
6143    break;
6144  case vmIntrinsics::_sha2_implCompress:
6145    assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6146    state = get_state_from_sha_object(sha_obj);
6147    stubAddr = StubRoutines::sha256_implCompress();
6148    stubName = "sha256_implCompress";
6149    break;
6150  case vmIntrinsics::_sha5_implCompress:
6151    assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6152    state = get_state_from_sha5_object(sha_obj);
6153    stubAddr = StubRoutines::sha512_implCompress();
6154    stubName = "sha512_implCompress";
6155    break;
6156  default:
6157    fatal_unexpected_iid(id);
6158    return false;
6159  }
6160  if (state == NULL) return false;
6161
6162  // Call the stub.
6163  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6164                                 stubAddr, stubName, TypePtr::BOTTOM,
6165                                 src_start, state);
6166
6167  return true;
6168}
6169
6170//------------------------------inline_digestBase_implCompressMB-----------------------
6171//
6172// Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6173// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6174//
6175bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6176  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6177         "need SHA1/SHA256/SHA512 instruction support");
6178  assert((uint)predicate < 3, "sanity");
6179  assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6180
6181  Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6182  Node* src            = argument(1); // byte[] array
6183  Node* ofs            = argument(2); // type int
6184  Node* limit          = argument(3); // type int
6185
6186  const Type* src_type = src->Value(&_gvn);
6187  const TypeAryPtr* top_src = src_type->isa_aryptr();
6188  if (top_src  == NULL || top_src->klass()  == NULL) {
6189    // failed array check
6190    return false;
6191  }
6192  // Figure out the size and type of the elements we will be copying.
6193  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6194  if (src_elem != T_BYTE) {
6195    return false;
6196  }
6197  // 'src_start' points to src array + offset
6198  Node* src_start = array_element_address(src, ofs, src_elem);
6199
6200  const char* klass_SHA_name = NULL;
6201  const char* stub_name = NULL;
6202  address     stub_addr = NULL;
6203  bool        long_state = false;
6204
6205  switch (predicate) {
6206  case 0:
6207    if (UseSHA1Intrinsics) {
6208      klass_SHA_name = "sun/security/provider/SHA";
6209      stub_name = "sha1_implCompressMB";
6210      stub_addr = StubRoutines::sha1_implCompressMB();
6211    }
6212    break;
6213  case 1:
6214    if (UseSHA256Intrinsics) {
6215      klass_SHA_name = "sun/security/provider/SHA2";
6216      stub_name = "sha256_implCompressMB";
6217      stub_addr = StubRoutines::sha256_implCompressMB();
6218    }
6219    break;
6220  case 2:
6221    if (UseSHA512Intrinsics) {
6222      klass_SHA_name = "sun/security/provider/SHA5";
6223      stub_name = "sha512_implCompressMB";
6224      stub_addr = StubRoutines::sha512_implCompressMB();
6225      long_state = true;
6226    }
6227    break;
6228  default:
6229    fatal("unknown SHA intrinsic predicate: %d", predicate);
6230  }
6231  if (klass_SHA_name != NULL) {
6232    // get DigestBase klass to lookup for SHA klass
6233    const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6234    assert(tinst != NULL, "digestBase_obj is not instance???");
6235    assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6236
6237    ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6238    assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6239    ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6240    return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6241  }
6242  return false;
6243}
6244//------------------------------inline_sha_implCompressMB-----------------------
6245bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6246                                               bool long_state, address stubAddr, const char *stubName,
6247                                               Node* src_start, Node* ofs, Node* limit) {
6248  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6249  const TypeOopPtr* xtype = aklass->as_instance_type();
6250  Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6251  sha_obj = _gvn.transform(sha_obj);
6252
6253  Node* state;
6254  if (long_state) {
6255    state = get_state_from_sha5_object(sha_obj);
6256  } else {
6257    state = get_state_from_sha_object(sha_obj);
6258  }
6259  if (state == NULL) return false;
6260
6261  // Call the stub.
6262  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6263                                 OptoRuntime::digestBase_implCompressMB_Type(),
6264                                 stubAddr, stubName, TypePtr::BOTTOM,
6265                                 src_start, state, ofs, limit);
6266  // return ofs (int)
6267  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6268  set_result(result);
6269
6270  return true;
6271}
6272
6273//------------------------------get_state_from_sha_object-----------------------
6274Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6275  Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6276  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6277  if (sha_state == NULL) return (Node *) NULL;
6278
6279  // now have the array, need to get the start address of the state array
6280  Node* state = array_element_address(sha_state, intcon(0), T_INT);
6281  return state;
6282}
6283
6284//------------------------------get_state_from_sha5_object-----------------------
6285Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6286  Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6287  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6288  if (sha_state == NULL) return (Node *) NULL;
6289
6290  // now have the array, need to get the start address of the state array
6291  Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6292  return state;
6293}
6294
6295//----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6296// Return node representing slow path of predicate check.
6297// the pseudo code we want to emulate with this predicate is:
6298//    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6299//
6300Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6301  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6302         "need SHA1/SHA256/SHA512 instruction support");
6303  assert((uint)predicate < 3, "sanity");
6304
6305  // The receiver was checked for NULL already.
6306  Node* digestBaseObj = argument(0);
6307
6308  // get DigestBase klass for instanceOf check
6309  const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6310  assert(tinst != NULL, "digestBaseObj is null");
6311  assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6312
6313  const char* klass_SHA_name = NULL;
6314  switch (predicate) {
6315  case 0:
6316    if (UseSHA1Intrinsics) {
6317      // we want to do an instanceof comparison against the SHA class
6318      klass_SHA_name = "sun/security/provider/SHA";
6319    }
6320    break;
6321  case 1:
6322    if (UseSHA256Intrinsics) {
6323      // we want to do an instanceof comparison against the SHA2 class
6324      klass_SHA_name = "sun/security/provider/SHA2";
6325    }
6326    break;
6327  case 2:
6328    if (UseSHA512Intrinsics) {
6329      // we want to do an instanceof comparison against the SHA5 class
6330      klass_SHA_name = "sun/security/provider/SHA5";
6331    }
6332    break;
6333  default:
6334    fatal("unknown SHA intrinsic predicate: %d", predicate);
6335  }
6336
6337  ciKlass* klass_SHA = NULL;
6338  if (klass_SHA_name != NULL) {
6339    klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6340  }
6341  if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6342    // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6343    Node* ctrl = control();
6344    set_control(top()); // no intrinsic path
6345    return ctrl;
6346  }
6347  ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6348
6349  Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6350  Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6351  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6352  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6353
6354  return instof_false;  // even if it is NULL
6355}
6356
6357bool LibraryCallKit::inline_profileBoolean() {
6358  Node* counts = argument(1);
6359  const TypeAryPtr* ary = NULL;
6360  ciArray* aobj = NULL;
6361  if (counts->is_Con()
6362      && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6363      && (aobj = ary->const_oop()->as_array()) != NULL
6364      && (aobj->length() == 2)) {
6365    // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6366    jint false_cnt = aobj->element_value(0).as_int();
6367    jint  true_cnt = aobj->element_value(1).as_int();
6368
6369    if (C->log() != NULL) {
6370      C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6371                     false_cnt, true_cnt);
6372    }
6373
6374    if (false_cnt + true_cnt == 0) {
6375      // According to profile, never executed.
6376      uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6377                          Deoptimization::Action_reinterpret);
6378      return true;
6379    }
6380
6381    // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6382    // is a number of each value occurrences.
6383    Node* result = argument(0);
6384    if (false_cnt == 0 || true_cnt == 0) {
6385      // According to profile, one value has been never seen.
6386      int expected_val = (false_cnt == 0) ? 1 : 0;
6387
6388      Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6389      Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6390
6391      IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6392      Node* fast_path = _gvn.transform(new IfTrueNode(check));
6393      Node* slow_path = _gvn.transform(new IfFalseNode(check));
6394
6395      { // Slow path: uncommon trap for never seen value and then reexecute
6396        // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6397        // the value has been seen at least once.
6398        PreserveJVMState pjvms(this);
6399        PreserveReexecuteState preexecs(this);
6400        jvms()->set_should_reexecute(true);
6401
6402        set_control(slow_path);
6403        set_i_o(i_o());
6404
6405        uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6406                            Deoptimization::Action_reinterpret);
6407      }
6408      // The guard for never seen value enables sharpening of the result and
6409      // returning a constant. It allows to eliminate branches on the same value
6410      // later on.
6411      set_control(fast_path);
6412      result = intcon(expected_val);
6413    }
6414    // Stop profiling.
6415    // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6416    // By replacing method body with profile data (represented as ProfileBooleanNode
6417    // on IR level) we effectively disable profiling.
6418    // It enables full speed execution once optimized code is generated.
6419    Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6420    C->record_for_igvn(profile);
6421    set_result(profile);
6422    return true;
6423  } else {
6424    // Continue profiling.
6425    // Profile data isn't available at the moment. So, execute method's bytecode version.
6426    // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6427    // is compiled and counters aren't available since corresponding MethodHandle
6428    // isn't a compile-time constant.
6429    return false;
6430  }
6431}
6432
6433bool LibraryCallKit::inline_isCompileConstant() {
6434  Node* n = argument(0);
6435  set_result(n->is_Con() ? intcon(1) : intcon(0));
6436  return true;
6437}
6438