1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileBroker.hpp"
30#include "compiler/compileLog.hpp"
31#include "memory/resourceArea.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "opto/addnode.hpp"
34#include "opto/arraycopynode.hpp"
35#include "opto/c2compiler.hpp"
36#include "opto/callGenerator.hpp"
37#include "opto/castnode.hpp"
38#include "opto/cfgnode.hpp"
39#include "opto/convertnode.hpp"
40#include "opto/countbitsnode.hpp"
41#include "opto/intrinsicnode.hpp"
42#include "opto/idealKit.hpp"
43#include "opto/mathexactnode.hpp"
44#include "opto/movenode.hpp"
45#include "opto/mulnode.hpp"
46#include "opto/narrowptrnode.hpp"
47#include "opto/opaquenode.hpp"
48#include "opto/parse.hpp"
49#include "opto/runtime.hpp"
50#include "opto/rootnode.hpp"
51#include "opto/subnode.hpp"
52#include "prims/nativeLookup.hpp"
53#include "prims/unsafe.hpp"
54#include "runtime/sharedRuntime.hpp"
55#ifdef TRACE_HAVE_INTRINSICS
56#include "trace/traceMacros.hpp"
57#endif
58
59class LibraryIntrinsic : public InlineCallGenerator {
60  // Extend the set of intrinsics known to the runtime:
61 public:
62 private:
63  bool             _is_virtual;
64  bool             _does_virtual_dispatch;
65  int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
66  int8_t           _last_predicate; // Last generated predicate
67  vmIntrinsics::ID _intrinsic_id;
68
69 public:
70  LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
71    : InlineCallGenerator(m),
72      _is_virtual(is_virtual),
73      _does_virtual_dispatch(does_virtual_dispatch),
74      _predicates_count((int8_t)predicates_count),
75      _last_predicate((int8_t)-1),
76      _intrinsic_id(id)
77  {
78  }
79  virtual bool is_intrinsic() const { return true; }
80  virtual bool is_virtual()   const { return _is_virtual; }
81  virtual bool is_predicated() const { return _predicates_count > 0; }
82  virtual int  predicates_count() const { return _predicates_count; }
83  virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
84  virtual JVMState* generate(JVMState* jvms);
85  virtual Node* generate_predicate(JVMState* jvms, int predicate);
86  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
87};
88
89
90// Local helper class for LibraryIntrinsic:
91class LibraryCallKit : public GraphKit {
92 private:
93  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
94  Node*             _result;        // the result node, if any
95  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
96
97  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
98
99 public:
100  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
101    : GraphKit(jvms),
102      _intrinsic(intrinsic),
103      _result(NULL)
104  {
105    // Check if this is a root compile.  In that case we don't have a caller.
106    if (!jvms->has_method()) {
107      _reexecute_sp = sp();
108    } else {
109      // Find out how many arguments the interpreter needs when deoptimizing
110      // and save the stack pointer value so it can used by uncommon_trap.
111      // We find the argument count by looking at the declared signature.
112      bool ignored_will_link;
113      ciSignature* declared_signature = NULL;
114      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
115      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
116      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
117    }
118  }
119
120  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
121
122  ciMethod*         caller()    const    { return jvms()->method(); }
123  int               bci()       const    { return jvms()->bci(); }
124  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
125  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
126  ciMethod*         callee()    const    { return _intrinsic->method(); }
127
128  bool  try_to_inline(int predicate);
129  Node* try_to_predicate(int predicate);
130
131  void push_result() {
132    // Push the result onto the stack.
133    if (!stopped() && result() != NULL) {
134      BasicType bt = result()->bottom_type()->basic_type();
135      push_node(bt, result());
136    }
137  }
138
139 private:
140  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
141    fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
142  }
143
144  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
145  void  set_result(RegionNode* region, PhiNode* value);
146  Node*     result() { return _result; }
147
148  virtual int reexecute_sp() { return _reexecute_sp; }
149
150  // Helper functions to inline natives
151  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
152  Node* generate_slow_guard(Node* test, RegionNode* region);
153  Node* generate_fair_guard(Node* test, RegionNode* region);
154  Node* generate_negative_guard(Node* index, RegionNode* region,
155                                // resulting CastII of index:
156                                Node* *pos_index = NULL);
157  Node* generate_limit_guard(Node* offset, Node* subseq_length,
158                             Node* array_length,
159                             RegionNode* region);
160  void  generate_string_range_check(Node* array, Node* offset,
161                                    Node* length, bool char_count);
162  Node* generate_current_thread(Node* &tls_output);
163  Node* load_mirror_from_klass(Node* klass);
164  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
165                                      RegionNode* region, int null_path,
166                                      int offset);
167  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
168                               RegionNode* region, int null_path) {
169    int offset = java_lang_Class::klass_offset_in_bytes();
170    return load_klass_from_mirror_common(mirror, never_see_null,
171                                         region, null_path,
172                                         offset);
173  }
174  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
175                                     RegionNode* region, int null_path) {
176    int offset = java_lang_Class::array_klass_offset_in_bytes();
177    return load_klass_from_mirror_common(mirror, never_see_null,
178                                         region, null_path,
179                                         offset);
180  }
181  Node* generate_access_flags_guard(Node* kls,
182                                    int modifier_mask, int modifier_bits,
183                                    RegionNode* region);
184  Node* generate_interface_guard(Node* kls, RegionNode* region);
185  Node* generate_array_guard(Node* kls, RegionNode* region) {
186    return generate_array_guard_common(kls, region, false, false);
187  }
188  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
189    return generate_array_guard_common(kls, region, false, true);
190  }
191  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
192    return generate_array_guard_common(kls, region, true, false);
193  }
194  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
195    return generate_array_guard_common(kls, region, true, true);
196  }
197  Node* generate_array_guard_common(Node* kls, RegionNode* region,
198                                    bool obj_array, bool not_array);
199  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
200  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
201                                     bool is_virtual = false, bool is_static = false);
202  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
203    return generate_method_call(method_id, false, true);
204  }
205  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
206    return generate_method_call(method_id, true, false);
207  }
208  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
209  Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
210
211  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
212  bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
213  bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
214  bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
215  Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
216                          RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
217  bool inline_string_indexOfChar();
218  bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
219  bool inline_string_toBytesU();
220  bool inline_string_getCharsU();
221  bool inline_string_copy(bool compress);
222  bool inline_string_char_access(bool is_store);
223  Node* round_double_node(Node* n);
224  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
225  bool inline_math_native(vmIntrinsics::ID id);
226  bool inline_math(vmIntrinsics::ID id);
227  template <typename OverflowOp>
228  bool inline_math_overflow(Node* arg1, Node* arg2);
229  void inline_math_mathExact(Node* math, Node* test);
230  bool inline_math_addExactI(bool is_increment);
231  bool inline_math_addExactL(bool is_increment);
232  bool inline_math_multiplyExactI();
233  bool inline_math_multiplyExactL();
234  bool inline_math_negateExactI();
235  bool inline_math_negateExactL();
236  bool inline_math_subtractExactI(bool is_decrement);
237  bool inline_math_subtractExactL(bool is_decrement);
238  bool inline_min_max(vmIntrinsics::ID id);
239  bool inline_notify(vmIntrinsics::ID id);
240  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
241  // This returns Type::AnyPtr, RawPtr, or OopPtr.
242  int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
243  Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
244  // Helper for inline_unsafe_access.
245  // Generates the guards that check whether the result of
246  // Unsafe.getObject should be recorded in an SATB log buffer.
247  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
248
249  typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
250  bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
251  static bool klass_needs_init_guard(Node* kls);
252  bool inline_unsafe_allocate();
253  bool inline_unsafe_newArray(bool uninitialized);
254  bool inline_unsafe_copyMemory();
255  bool inline_native_currentThread();
256
257  bool inline_native_time_funcs(address method, const char* funcName);
258#ifdef TRACE_HAVE_INTRINSICS
259  bool inline_native_classID();
260  bool inline_native_getBufferWriter();
261#endif
262  bool inline_native_isInterrupted();
263  bool inline_native_Class_query(vmIntrinsics::ID id);
264  bool inline_native_subtype_check();
265  bool inline_native_getLength();
266  bool inline_array_copyOf(bool is_copyOfRange);
267  bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
268  bool inline_preconditions_checkIndex();
269  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
270  bool inline_native_clone(bool is_virtual);
271  bool inline_native_Reflection_getCallerClass();
272  // Helper function for inlining native object hash method
273  bool inline_native_hashcode(bool is_virtual, bool is_static);
274  bool inline_native_getClass();
275
276  // Helper functions for inlining arraycopy
277  bool inline_arraycopy();
278  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
279                                                RegionNode* slow_region);
280  JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
281  void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
282                                      uint new_idx);
283
284  typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
285  MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
286  MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
287  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
288  bool inline_unsafe_fence(vmIntrinsics::ID id);
289  bool inline_onspinwait();
290  bool inline_fp_conversions(vmIntrinsics::ID id);
291  bool inline_number_methods(vmIntrinsics::ID id);
292  bool inline_reference_get();
293  bool inline_Class_cast();
294  bool inline_aescrypt_Block(vmIntrinsics::ID id);
295  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
296  bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
297  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
298  Node* inline_counterMode_AESCrypt_predicate();
299  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
300  Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
301  bool inline_ghash_processBlocks();
302  bool inline_sha_implCompress(vmIntrinsics::ID id);
303  bool inline_digestBase_implCompressMB(int predicate);
304  bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
305                                 bool long_state, address stubAddr, const char *stubName,
306                                 Node* src_start, Node* ofs, Node* limit);
307  Node* get_state_from_sha_object(Node *sha_object);
308  Node* get_state_from_sha5_object(Node *sha_object);
309  Node* inline_digestBase_implCompressMB_predicate(int predicate);
310  bool inline_encodeISOArray();
311  bool inline_updateCRC32();
312  bool inline_updateBytesCRC32();
313  bool inline_updateByteBufferCRC32();
314  Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
315  bool inline_updateBytesCRC32C();
316  bool inline_updateDirectByteBufferCRC32C();
317  bool inline_updateBytesAdler32();
318  bool inline_updateByteBufferAdler32();
319  bool inline_multiplyToLen();
320  bool inline_hasNegatives();
321  bool inline_squareToLen();
322  bool inline_mulAdd();
323  bool inline_montgomeryMultiply();
324  bool inline_montgomerySquare();
325  bool inline_vectorizedMismatch();
326  bool inline_fma(vmIntrinsics::ID id);
327
328  bool inline_profileBoolean();
329  bool inline_isCompileConstant();
330};
331
332//---------------------------make_vm_intrinsic----------------------------
333CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
334  vmIntrinsics::ID id = m->intrinsic_id();
335  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
336
337  if (!m->is_loaded()) {
338    // Do not attempt to inline unloaded methods.
339    return NULL;
340  }
341
342  C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
343  bool is_available = false;
344
345  {
346    // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
347    // the compiler must transition to '_thread_in_vm' state because both
348    // methods access VM-internal data.
349    VM_ENTRY_MARK;
350    methodHandle mh(THREAD, m->get_Method());
351    is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
352                   !C->directive()->is_intrinsic_disabled(mh) &&
353                   !vmIntrinsics::is_disabled_by_flags(mh);
354
355  }
356
357  if (is_available) {
358    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
359    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
360    return new LibraryIntrinsic(m, is_virtual,
361                                vmIntrinsics::predicates_needed(id),
362                                vmIntrinsics::does_virtual_dispatch(id),
363                                (vmIntrinsics::ID) id);
364  } else {
365    return NULL;
366  }
367}
368
369//----------------------register_library_intrinsics-----------------------
370// Initialize this file's data structures, for each Compile instance.
371void Compile::register_library_intrinsics() {
372  // Nothing to do here.
373}
374
375JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
376  LibraryCallKit kit(jvms, this);
377  Compile* C = kit.C;
378  int nodes = C->unique();
379#ifndef PRODUCT
380  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
381    char buf[1000];
382    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
383    tty->print_cr("Intrinsic %s", str);
384  }
385#endif
386  ciMethod* callee = kit.callee();
387  const int bci    = kit.bci();
388
389  // Try to inline the intrinsic.
390  if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
391      kit.try_to_inline(_last_predicate)) {
392    const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
393                                          : "(intrinsic)";
394    CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
395    if (C->print_intrinsics() || C->print_inlining()) {
396      C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
397    }
398    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
399    if (C->log()) {
400      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
401                     vmIntrinsics::name_at(intrinsic_id()),
402                     (is_virtual() ? " virtual='1'" : ""),
403                     C->unique() - nodes);
404    }
405    // Push the result from the inlined method onto the stack.
406    kit.push_result();
407    C->print_inlining_update(this);
408    return kit.transfer_exceptions_into_jvms();
409  }
410
411  // The intrinsic bailed out
412  if (jvms->has_method()) {
413    // Not a root compile.
414    const char* msg;
415    if (callee->intrinsic_candidate()) {
416      msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
417    } else {
418      msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
419                         : "failed to inline (intrinsic), method not annotated";
420    }
421    CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
422    if (C->print_intrinsics() || C->print_inlining()) {
423      C->print_inlining(callee, jvms->depth() - 1, bci, msg);
424    }
425  } else {
426    // Root compile
427    ResourceMark rm;
428    stringStream msg_stream;
429    msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
430                     vmIntrinsics::name_at(intrinsic_id()),
431                     is_virtual() ? " (virtual)" : "", bci);
432    const char *msg = msg_stream.as_string();
433    log_debug(jit, inlining)("%s", msg);
434    if (C->print_intrinsics() || C->print_inlining()) {
435      tty->print("%s", msg);
436    }
437  }
438  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
439  C->print_inlining_update(this);
440  return NULL;
441}
442
443Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
444  LibraryCallKit kit(jvms, this);
445  Compile* C = kit.C;
446  int nodes = C->unique();
447  _last_predicate = predicate;
448#ifndef PRODUCT
449  assert(is_predicated() && predicate < predicates_count(), "sanity");
450  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
451    char buf[1000];
452    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
453    tty->print_cr("Predicate for intrinsic %s", str);
454  }
455#endif
456  ciMethod* callee = kit.callee();
457  const int bci    = kit.bci();
458
459  Node* slow_ctl = kit.try_to_predicate(predicate);
460  if (!kit.failing()) {
461    const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
462                                          : "(intrinsic, predicate)";
463    CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
464    if (C->print_intrinsics() || C->print_inlining()) {
465      C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
466    }
467    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
468    if (C->log()) {
469      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
470                     vmIntrinsics::name_at(intrinsic_id()),
471                     (is_virtual() ? " virtual='1'" : ""),
472                     C->unique() - nodes);
473    }
474    return slow_ctl; // Could be NULL if the check folds.
475  }
476
477  // The intrinsic bailed out
478  if (jvms->has_method()) {
479    // Not a root compile.
480    const char* msg = "failed to generate predicate for intrinsic";
481    CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
482    if (C->print_intrinsics() || C->print_inlining()) {
483      C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
484    }
485  } else {
486    // Root compile
487    ResourceMark rm;
488    stringStream msg_stream;
489    msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
490                     vmIntrinsics::name_at(intrinsic_id()),
491                     is_virtual() ? " (virtual)" : "", bci);
492    const char *msg = msg_stream.as_string();
493    log_debug(jit, inlining)("%s", msg);
494    if (C->print_intrinsics() || C->print_inlining()) {
495      C->print_inlining_stream()->print("%s", msg);
496    }
497  }
498  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
499  return NULL;
500}
501
502bool LibraryCallKit::try_to_inline(int predicate) {
503  // Handle symbolic names for otherwise undistinguished boolean switches:
504  const bool is_store       = true;
505  const bool is_compress    = true;
506  const bool is_static      = true;
507  const bool is_volatile    = true;
508
509  if (!jvms()->has_method()) {
510    // Root JVMState has a null method.
511    assert(map()->memory()->Opcode() == Op_Parm, "");
512    // Insert the memory aliasing node
513    set_all_memory(reset_memory());
514  }
515  assert(merged_memory(), "");
516
517
518  switch (intrinsic_id()) {
519  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
520  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
521  case vmIntrinsics::_getClass:                 return inline_native_getClass();
522
523  case vmIntrinsics::_dsin:
524  case vmIntrinsics::_dcos:
525  case vmIntrinsics::_dtan:
526  case vmIntrinsics::_dabs:
527  case vmIntrinsics::_datan2:
528  case vmIntrinsics::_dsqrt:
529  case vmIntrinsics::_dexp:
530  case vmIntrinsics::_dlog:
531  case vmIntrinsics::_dlog10:
532  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
533
534  case vmIntrinsics::_min:
535  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
536
537  case vmIntrinsics::_notify:
538  case vmIntrinsics::_notifyAll:
539    if (InlineNotify) {
540      return inline_notify(intrinsic_id());
541    }
542    return false;
543
544  case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
545  case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
546  case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
547  case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
548  case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
549  case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
550  case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
551  case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
552  case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
553  case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
554  case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
555  case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
556
557  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
558
559  case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
560  case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
561  case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
562  case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
563
564  case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
565  case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
566  case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
567  case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
568  case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
569  case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
570  case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
571
572  case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
573  case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
574
575  case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
576  case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
577  case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
578  case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
579
580  case vmIntrinsics::_compressStringC:
581  case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
582  case vmIntrinsics::_inflateStringC:
583  case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
584
585  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
586  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
587  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
588  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
589  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
590  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
591  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
592  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
593  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
594
595  case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
596  case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
597  case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
598  case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
599  case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
600  case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
601  case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
602  case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
603  case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
604
605  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
606  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
607  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
608  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
609  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
610  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
611  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
612  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
613  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
614
615  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
616  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
617  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
618  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
619  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
620  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
621  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
622  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
623  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
624
625  case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
626  case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
627  case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
628  case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
629
630  case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
631  case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
632  case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
633  case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
634
635  case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
636  case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
637  case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
638  case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
639  case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
640  case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
641  case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
642  case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
643  case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
644
645  case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
646  case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
647  case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
648  case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
649  case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
650  case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
651  case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
652  case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
653  case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
654
655  case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
656  case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
657  case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
658  case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
659  case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
660  case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
661  case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
662  case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
663  case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
664
665  case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
666  case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
667  case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
668  case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
669  case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
670  case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
671  case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
672  case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
673  case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
674
675  case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
676  case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
677  case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
678  case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
679  case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
680
681  case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
682  case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
683  case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
684  case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
685  case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
686  case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
687  case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
688  case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
689  case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
690  case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
691  case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
692  case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
693  case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
694  case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
695  case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
696  case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
697  case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
698  case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
699  case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
700  case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
701
702  case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
703  case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
704  case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
705  case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
706  case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
707  case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
708  case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
709  case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
710  case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
711  case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
712  case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
713  case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
714  case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
715  case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
716  case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
717
718  case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
719  case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
720  case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
721  case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
722
723  case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
724  case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
725  case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
726  case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
727  case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
728
729  case vmIntrinsics::_loadFence:
730  case vmIntrinsics::_storeFence:
731  case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
732
733  case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
734
735  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
736  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
737
738#ifdef TRACE_HAVE_INTRINSICS
739  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
740  case vmIntrinsics::_getClassId:               return inline_native_classID();
741  case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
742#endif
743  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
744  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
745  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
746  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
747  case vmIntrinsics::_getLength:                return inline_native_getLength();
748  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
749  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
750  case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
751  case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
752  case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
753  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
754
755  case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
756  case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
757
758  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
759
760  case vmIntrinsics::_isInstance:
761  case vmIntrinsics::_getModifiers:
762  case vmIntrinsics::_isInterface:
763  case vmIntrinsics::_isArray:
764  case vmIntrinsics::_isPrimitive:
765  case vmIntrinsics::_getSuperclass:
766  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
767
768  case vmIntrinsics::_floatToRawIntBits:
769  case vmIntrinsics::_floatToIntBits:
770  case vmIntrinsics::_intBitsToFloat:
771  case vmIntrinsics::_doubleToRawLongBits:
772  case vmIntrinsics::_doubleToLongBits:
773  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
774
775  case vmIntrinsics::_numberOfLeadingZeros_i:
776  case vmIntrinsics::_numberOfLeadingZeros_l:
777  case vmIntrinsics::_numberOfTrailingZeros_i:
778  case vmIntrinsics::_numberOfTrailingZeros_l:
779  case vmIntrinsics::_bitCount_i:
780  case vmIntrinsics::_bitCount_l:
781  case vmIntrinsics::_reverseBytes_i:
782  case vmIntrinsics::_reverseBytes_l:
783  case vmIntrinsics::_reverseBytes_s:
784  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
785
786  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
787
788  case vmIntrinsics::_Reference_get:            return inline_reference_get();
789
790  case vmIntrinsics::_Class_cast:               return inline_Class_cast();
791
792  case vmIntrinsics::_aescrypt_encryptBlock:
793  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
794
795  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
796  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
797    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
798
799  case vmIntrinsics::_counterMode_AESCrypt:
800    return inline_counterMode_AESCrypt(intrinsic_id());
801
802  case vmIntrinsics::_sha_implCompress:
803  case vmIntrinsics::_sha2_implCompress:
804  case vmIntrinsics::_sha5_implCompress:
805    return inline_sha_implCompress(intrinsic_id());
806
807  case vmIntrinsics::_digestBase_implCompressMB:
808    return inline_digestBase_implCompressMB(predicate);
809
810  case vmIntrinsics::_multiplyToLen:
811    return inline_multiplyToLen();
812
813  case vmIntrinsics::_squareToLen:
814    return inline_squareToLen();
815
816  case vmIntrinsics::_mulAdd:
817    return inline_mulAdd();
818
819  case vmIntrinsics::_montgomeryMultiply:
820    return inline_montgomeryMultiply();
821  case vmIntrinsics::_montgomerySquare:
822    return inline_montgomerySquare();
823
824  case vmIntrinsics::_vectorizedMismatch:
825    return inline_vectorizedMismatch();
826
827  case vmIntrinsics::_ghash_processBlocks:
828    return inline_ghash_processBlocks();
829
830  case vmIntrinsics::_encodeISOArray:
831  case vmIntrinsics::_encodeByteISOArray:
832    return inline_encodeISOArray();
833
834  case vmIntrinsics::_updateCRC32:
835    return inline_updateCRC32();
836  case vmIntrinsics::_updateBytesCRC32:
837    return inline_updateBytesCRC32();
838  case vmIntrinsics::_updateByteBufferCRC32:
839    return inline_updateByteBufferCRC32();
840
841  case vmIntrinsics::_updateBytesCRC32C:
842    return inline_updateBytesCRC32C();
843  case vmIntrinsics::_updateDirectByteBufferCRC32C:
844    return inline_updateDirectByteBufferCRC32C();
845
846  case vmIntrinsics::_updateBytesAdler32:
847    return inline_updateBytesAdler32();
848  case vmIntrinsics::_updateByteBufferAdler32:
849    return inline_updateByteBufferAdler32();
850
851  case vmIntrinsics::_profileBoolean:
852    return inline_profileBoolean();
853  case vmIntrinsics::_isCompileConstant:
854    return inline_isCompileConstant();
855
856  case vmIntrinsics::_hasNegatives:
857    return inline_hasNegatives();
858
859  case vmIntrinsics::_fmaD:
860  case vmIntrinsics::_fmaF:
861    return inline_fma(intrinsic_id());
862
863  default:
864    // If you get here, it may be that someone has added a new intrinsic
865    // to the list in vmSymbols.hpp without implementing it here.
866#ifndef PRODUCT
867    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
868      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
869                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
870    }
871#endif
872    return false;
873  }
874}
875
876Node* LibraryCallKit::try_to_predicate(int predicate) {
877  if (!jvms()->has_method()) {
878    // Root JVMState has a null method.
879    assert(map()->memory()->Opcode() == Op_Parm, "");
880    // Insert the memory aliasing node
881    set_all_memory(reset_memory());
882  }
883  assert(merged_memory(), "");
884
885  switch (intrinsic_id()) {
886  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
887    return inline_cipherBlockChaining_AESCrypt_predicate(false);
888  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
889    return inline_cipherBlockChaining_AESCrypt_predicate(true);
890  case vmIntrinsics::_counterMode_AESCrypt:
891    return inline_counterMode_AESCrypt_predicate();
892  case vmIntrinsics::_digestBase_implCompressMB:
893    return inline_digestBase_implCompressMB_predicate(predicate);
894
895  default:
896    // If you get here, it may be that someone has added a new intrinsic
897    // to the list in vmSymbols.hpp without implementing it here.
898#ifndef PRODUCT
899    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
900      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
901                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
902    }
903#endif
904    Node* slow_ctl = control();
905    set_control(top()); // No fast path instrinsic
906    return slow_ctl;
907  }
908}
909
910//------------------------------set_result-------------------------------
911// Helper function for finishing intrinsics.
912void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
913  record_for_igvn(region);
914  set_control(_gvn.transform(region));
915  set_result( _gvn.transform(value));
916  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
917}
918
919//------------------------------generate_guard---------------------------
920// Helper function for generating guarded fast-slow graph structures.
921// The given 'test', if true, guards a slow path.  If the test fails
922// then a fast path can be taken.  (We generally hope it fails.)
923// In all cases, GraphKit::control() is updated to the fast path.
924// The returned value represents the control for the slow path.
925// The return value is never 'top'; it is either a valid control
926// or NULL if it is obvious that the slow path can never be taken.
927// Also, if region and the slow control are not NULL, the slow edge
928// is appended to the region.
929Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
930  if (stopped()) {
931    // Already short circuited.
932    return NULL;
933  }
934
935  // Build an if node and its projections.
936  // If test is true we take the slow path, which we assume is uncommon.
937  if (_gvn.type(test) == TypeInt::ZERO) {
938    // The slow branch is never taken.  No need to build this guard.
939    return NULL;
940  }
941
942  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
943
944  Node* if_slow = _gvn.transform(new IfTrueNode(iff));
945  if (if_slow == top()) {
946    // The slow branch is never taken.  No need to build this guard.
947    return NULL;
948  }
949
950  if (region != NULL)
951    region->add_req(if_slow);
952
953  Node* if_fast = _gvn.transform(new IfFalseNode(iff));
954  set_control(if_fast);
955
956  return if_slow;
957}
958
959inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
960  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
961}
962inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
963  return generate_guard(test, region, PROB_FAIR);
964}
965
966inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
967                                                     Node* *pos_index) {
968  if (stopped())
969    return NULL;                // already stopped
970  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
971    return NULL;                // index is already adequately typed
972  Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
973  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
974  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
975  if (is_neg != NULL && pos_index != NULL) {
976    // Emulate effect of Parse::adjust_map_after_if.
977    Node* ccast = new CastIINode(index, TypeInt::POS);
978    ccast->set_req(0, control());
979    (*pos_index) = _gvn.transform(ccast);
980  }
981  return is_neg;
982}
983
984// Make sure that 'position' is a valid limit index, in [0..length].
985// There are two equivalent plans for checking this:
986//   A. (offset + copyLength)  unsigned<=  arrayLength
987//   B. offset  <=  (arrayLength - copyLength)
988// We require that all of the values above, except for the sum and
989// difference, are already known to be non-negative.
990// Plan A is robust in the face of overflow, if offset and copyLength
991// are both hugely positive.
992//
993// Plan B is less direct and intuitive, but it does not overflow at
994// all, since the difference of two non-negatives is always
995// representable.  Whenever Java methods must perform the equivalent
996// check they generally use Plan B instead of Plan A.
997// For the moment we use Plan A.
998inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
999                                                  Node* subseq_length,
1000                                                  Node* array_length,
1001                                                  RegionNode* region) {
1002  if (stopped())
1003    return NULL;                // already stopped
1004  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1005  if (zero_offset && subseq_length->eqv_uncast(array_length))
1006    return NULL;                // common case of whole-array copy
1007  Node* last = subseq_length;
1008  if (!zero_offset)             // last += offset
1009    last = _gvn.transform(new AddINode(last, offset));
1010  Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1011  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1012  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1013  return is_over;
1014}
1015
1016// Emit range checks for the given String.value byte array
1017void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1018  if (stopped()) {
1019    return; // already stopped
1020  }
1021  RegionNode* bailout = new RegionNode(1);
1022  record_for_igvn(bailout);
1023  if (char_count) {
1024    // Convert char count to byte count
1025    count = _gvn.transform(new LShiftINode(count, intcon(1)));
1026  }
1027
1028  // Offset and count must not be negative
1029  generate_negative_guard(offset, bailout);
1030  generate_negative_guard(count, bailout);
1031  // Offset + count must not exceed length of array
1032  generate_limit_guard(offset, count, load_array_length(array), bailout);
1033
1034  if (bailout->req() > 1) {
1035    PreserveJVMState pjvms(this);
1036    set_control(_gvn.transform(bailout));
1037    uncommon_trap(Deoptimization::Reason_intrinsic,
1038                  Deoptimization::Action_maybe_recompile);
1039  }
1040}
1041
1042//--------------------------generate_current_thread--------------------
1043Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1044  ciKlass*    thread_klass = env()->Thread_klass();
1045  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1046  Node* thread = _gvn.transform(new ThreadLocalNode());
1047  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1048  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1049  tls_output = thread;
1050  return threadObj;
1051}
1052
1053
1054//------------------------------make_string_method_node------------------------
1055// Helper method for String intrinsic functions. This version is called with
1056// str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1057// characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1058// containing the lengths of str1 and str2.
1059Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1060  Node* result = NULL;
1061  switch (opcode) {
1062  case Op_StrIndexOf:
1063    result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1064                                str1_start, cnt1, str2_start, cnt2, ae);
1065    break;
1066  case Op_StrComp:
1067    result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1068                             str1_start, cnt1, str2_start, cnt2, ae);
1069    break;
1070  case Op_StrEquals:
1071    // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1072    // Use the constant length if there is one because optimized match rule may exist.
1073    result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1074                               str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1075    break;
1076  default:
1077    ShouldNotReachHere();
1078    return NULL;
1079  }
1080
1081  // All these intrinsics have checks.
1082  C->set_has_split_ifs(true); // Has chance for split-if optimization
1083
1084  return _gvn.transform(result);
1085}
1086
1087//------------------------------inline_string_compareTo------------------------
1088bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1089  Node* arg1 = argument(0);
1090  Node* arg2 = argument(1);
1091
1092  // Get start addr and length of first argument
1093  Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1094  Node* arg1_cnt    = load_array_length(arg1);
1095
1096  // Get start addr and length of second argument
1097  Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1098  Node* arg2_cnt    = load_array_length(arg2);
1099
1100  Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1101  set_result(result);
1102  return true;
1103}
1104
1105//------------------------------inline_string_equals------------------------
1106bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1107  Node* arg1 = argument(0);
1108  Node* arg2 = argument(1);
1109
1110  // paths (plus control) merge
1111  RegionNode* region = new RegionNode(3);
1112  Node* phi = new PhiNode(region, TypeInt::BOOL);
1113
1114  if (!stopped()) {
1115    // Get start addr and length of first argument
1116    Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1117    Node* arg1_cnt    = load_array_length(arg1);
1118
1119    // Get start addr and length of second argument
1120    Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1121    Node* arg2_cnt    = load_array_length(arg2);
1122
1123    // Check for arg1_cnt != arg2_cnt
1124    Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1125    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1126    Node* if_ne = generate_slow_guard(bol, NULL);
1127    if (if_ne != NULL) {
1128      phi->init_req(2, intcon(0));
1129      region->init_req(2, if_ne);
1130    }
1131
1132    // Check for count == 0 is done by assembler code for StrEquals.
1133
1134    if (!stopped()) {
1135      Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1136      phi->init_req(1, equals);
1137      region->init_req(1, control());
1138    }
1139  }
1140
1141  // post merge
1142  set_control(_gvn.transform(region));
1143  record_for_igvn(region);
1144
1145  set_result(_gvn.transform(phi));
1146  return true;
1147}
1148
1149//------------------------------inline_array_equals----------------------------
1150bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1151  assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1152  Node* arg1 = argument(0);
1153  Node* arg2 = argument(1);
1154
1155  const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1156  set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1157  return true;
1158}
1159
1160//------------------------------inline_hasNegatives------------------------------
1161bool LibraryCallKit::inline_hasNegatives() {
1162  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1163    return false;
1164  }
1165
1166  assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1167  // no receiver since it is static method
1168  Node* ba         = argument(0);
1169  Node* offset     = argument(1);
1170  Node* len        = argument(2);
1171
1172  // Range checks
1173  generate_string_range_check(ba, offset, len, false);
1174  if (stopped()) {
1175    return true;
1176  }
1177  Node* ba_start = array_element_address(ba, offset, T_BYTE);
1178  Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1179  set_result(_gvn.transform(result));
1180  return true;
1181}
1182
1183bool LibraryCallKit::inline_preconditions_checkIndex() {
1184  Node* index = argument(0);
1185  Node* length = argument(1);
1186  if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1187    return false;
1188  }
1189
1190  Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1191  Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1192
1193  {
1194    BuildCutout unless(this, len_pos_bol, PROB_MAX);
1195    uncommon_trap(Deoptimization::Reason_intrinsic,
1196                  Deoptimization::Action_make_not_entrant);
1197  }
1198
1199  if (stopped()) {
1200    return false;
1201  }
1202
1203  Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1204  BoolTest::mask btest = BoolTest::lt;
1205  Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1206  RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1207  _gvn.set_type(rc, rc->Value(&_gvn));
1208  if (!rc_bool->is_Con()) {
1209    record_for_igvn(rc);
1210  }
1211  set_control(_gvn.transform(new IfTrueNode(rc)));
1212  {
1213    PreserveJVMState pjvms(this);
1214    set_control(_gvn.transform(new IfFalseNode(rc)));
1215    uncommon_trap(Deoptimization::Reason_range_check,
1216                  Deoptimization::Action_make_not_entrant);
1217  }
1218
1219  if (stopped()) {
1220    return false;
1221  }
1222
1223  Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1224  result->set_req(0, control());
1225  result = _gvn.transform(result);
1226  set_result(result);
1227  replace_in_map(index, result);
1228  return true;
1229}
1230
1231//------------------------------inline_string_indexOf------------------------
1232bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1233  if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1234    return false;
1235  }
1236  Node* src = argument(0);
1237  Node* tgt = argument(1);
1238
1239  // Make the merge point
1240  RegionNode* result_rgn = new RegionNode(4);
1241  Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1242
1243  // Get start addr and length of source string
1244  Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1245  Node* src_count = load_array_length(src);
1246
1247  // Get start addr and length of substring
1248  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1249  Node* tgt_count = load_array_length(tgt);
1250
1251  if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1252    // Divide src size by 2 if String is UTF16 encoded
1253    src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1254  }
1255  if (ae == StrIntrinsicNode::UU) {
1256    // Divide substring size by 2 if String is UTF16 encoded
1257    tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1258  }
1259
1260  Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1261  if (result != NULL) {
1262    result_phi->init_req(3, result);
1263    result_rgn->init_req(3, control());
1264  }
1265  set_control(_gvn.transform(result_rgn));
1266  record_for_igvn(result_rgn);
1267  set_result(_gvn.transform(result_phi));
1268
1269  return true;
1270}
1271
1272//-----------------------------inline_string_indexOf-----------------------
1273bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1274  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1275    return false;
1276  }
1277  if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1278    return false;
1279  }
1280  assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1281  Node* src         = argument(0); // byte[]
1282  Node* src_count   = argument(1); // char count
1283  Node* tgt         = argument(2); // byte[]
1284  Node* tgt_count   = argument(3); // char count
1285  Node* from_index  = argument(4); // char index
1286
1287  // Multiply byte array index by 2 if String is UTF16 encoded
1288  Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1289  src_count = _gvn.transform(new SubINode(src_count, from_index));
1290  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1291  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1292
1293  // Range checks
1294  generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1295  generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1296  if (stopped()) {
1297    return true;
1298  }
1299
1300  RegionNode* region = new RegionNode(5);
1301  Node* phi = new PhiNode(region, TypeInt::INT);
1302
1303  Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1304  if (result != NULL) {
1305    // The result is index relative to from_index if substring was found, -1 otherwise.
1306    // Generate code which will fold into cmove.
1307    Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1308    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1309
1310    Node* if_lt = generate_slow_guard(bol, NULL);
1311    if (if_lt != NULL) {
1312      // result == -1
1313      phi->init_req(3, result);
1314      region->init_req(3, if_lt);
1315    }
1316    if (!stopped()) {
1317      result = _gvn.transform(new AddINode(result, from_index));
1318      phi->init_req(4, result);
1319      region->init_req(4, control());
1320    }
1321  }
1322
1323  set_control(_gvn.transform(region));
1324  record_for_igvn(region);
1325  set_result(_gvn.transform(phi));
1326
1327  return true;
1328}
1329
1330// Create StrIndexOfNode with fast path checks
1331Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1332                                        RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1333  // Check for substr count > string count
1334  Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1335  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1336  Node* if_gt = generate_slow_guard(bol, NULL);
1337  if (if_gt != NULL) {
1338    phi->init_req(1, intcon(-1));
1339    region->init_req(1, if_gt);
1340  }
1341  if (!stopped()) {
1342    // Check for substr count == 0
1343    cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1344    bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1345    Node* if_zero = generate_slow_guard(bol, NULL);
1346    if (if_zero != NULL) {
1347      phi->init_req(2, intcon(0));
1348      region->init_req(2, if_zero);
1349    }
1350  }
1351  if (!stopped()) {
1352    return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1353  }
1354  return NULL;
1355}
1356
1357//-----------------------------inline_string_indexOfChar-----------------------
1358bool LibraryCallKit::inline_string_indexOfChar() {
1359  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1360    return false;
1361  }
1362  if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1363    return false;
1364  }
1365  assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1366  Node* src         = argument(0); // byte[]
1367  Node* tgt         = argument(1); // tgt is int ch
1368  Node* from_index  = argument(2);
1369  Node* max         = argument(3);
1370
1371  Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1372  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1373  Node* src_count = _gvn.transform(new SubINode(max, from_index));
1374
1375  // Range checks
1376  generate_string_range_check(src, src_offset, src_count, true);
1377  if (stopped()) {
1378    return true;
1379  }
1380
1381  RegionNode* region = new RegionNode(3);
1382  Node* phi = new PhiNode(region, TypeInt::INT);
1383
1384  Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1385  C->set_has_split_ifs(true); // Has chance for split-if optimization
1386  _gvn.transform(result);
1387
1388  Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1389  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1390
1391  Node* if_lt = generate_slow_guard(bol, NULL);
1392  if (if_lt != NULL) {
1393    // result == -1
1394    phi->init_req(2, result);
1395    region->init_req(2, if_lt);
1396  }
1397  if (!stopped()) {
1398    result = _gvn.transform(new AddINode(result, from_index));
1399    phi->init_req(1, result);
1400    region->init_req(1, control());
1401  }
1402  set_control(_gvn.transform(region));
1403  record_for_igvn(region);
1404  set_result(_gvn.transform(phi));
1405
1406  return true;
1407}
1408//---------------------------inline_string_copy---------------------
1409// compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1410//   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1411//   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1412// compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1413//   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1414//   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1415bool LibraryCallKit::inline_string_copy(bool compress) {
1416  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1417    return false;
1418  }
1419  int nargs = 5;  // 2 oops, 3 ints
1420  assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1421
1422  Node* src         = argument(0);
1423  Node* src_offset  = argument(1);
1424  Node* dst         = argument(2);
1425  Node* dst_offset  = argument(3);
1426  Node* length      = argument(4);
1427
1428  // Check for allocation before we add nodes that would confuse
1429  // tightly_coupled_allocation()
1430  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1431
1432  // Figure out the size and type of the elements we will be copying.
1433  const Type* src_type = src->Value(&_gvn);
1434  const Type* dst_type = dst->Value(&_gvn);
1435  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1436  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1437  assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1438         (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1439         "Unsupported array types for inline_string_copy");
1440
1441  // Convert char[] offsets to byte[] offsets
1442  bool convert_src = (compress && src_elem == T_BYTE);
1443  bool convert_dst = (!compress && dst_elem == T_BYTE);
1444  if (convert_src) {
1445    src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1446  } else if (convert_dst) {
1447    dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1448  }
1449
1450  // Range checks
1451  generate_string_range_check(src, src_offset, length, convert_src);
1452  generate_string_range_check(dst, dst_offset, length, convert_dst);
1453  if (stopped()) {
1454    return true;
1455  }
1456
1457  Node* src_start = array_element_address(src, src_offset, src_elem);
1458  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1459  // 'src_start' points to src array + scaled offset
1460  // 'dst_start' points to dst array + scaled offset
1461  Node* count = NULL;
1462  if (compress) {
1463    count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1464  } else {
1465    inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1466  }
1467
1468  if (alloc != NULL) {
1469    if (alloc->maybe_set_complete(&_gvn)) {
1470      // "You break it, you buy it."
1471      InitializeNode* init = alloc->initialization();
1472      assert(init->is_complete(), "we just did this");
1473      init->set_complete_with_arraycopy();
1474      assert(dst->is_CheckCastPP(), "sanity");
1475      assert(dst->in(0)->in(0) == init, "dest pinned");
1476    }
1477    // Do not let stores that initialize this object be reordered with
1478    // a subsequent store that would make this object accessible by
1479    // other threads.
1480    // Record what AllocateNode this StoreStore protects so that
1481    // escape analysis can go from the MemBarStoreStoreNode to the
1482    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1483    // based on the escape status of the AllocateNode.
1484    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1485  }
1486  if (compress) {
1487    set_result(_gvn.transform(count));
1488  }
1489  return true;
1490}
1491
1492#ifdef _LP64
1493#define XTOP ,top() /*additional argument*/
1494#else  //_LP64
1495#define XTOP        /*no additional argument*/
1496#endif //_LP64
1497
1498//------------------------inline_string_toBytesU--------------------------
1499// public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1500bool LibraryCallKit::inline_string_toBytesU() {
1501  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1502    return false;
1503  }
1504  // Get the arguments.
1505  Node* value     = argument(0);
1506  Node* offset    = argument(1);
1507  Node* length    = argument(2);
1508
1509  Node* newcopy = NULL;
1510
1511  // Set the original stack and the reexecute bit for the interpreter to reexecute
1512  // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1513  { PreserveReexecuteState preexecs(this);
1514    jvms()->set_should_reexecute(true);
1515
1516    // Check if a null path was taken unconditionally.
1517    value = null_check(value);
1518
1519    RegionNode* bailout = new RegionNode(1);
1520    record_for_igvn(bailout);
1521
1522    // Range checks
1523    generate_negative_guard(offset, bailout);
1524    generate_negative_guard(length, bailout);
1525    generate_limit_guard(offset, length, load_array_length(value), bailout);
1526    // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1527    generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1528
1529    if (bailout->req() > 1) {
1530      PreserveJVMState pjvms(this);
1531      set_control(_gvn.transform(bailout));
1532      uncommon_trap(Deoptimization::Reason_intrinsic,
1533                    Deoptimization::Action_maybe_recompile);
1534    }
1535    if (stopped()) {
1536      return true;
1537    }
1538
1539    Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1540    Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1541    newcopy = new_array(klass_node, size, 0);  // no arguments to push
1542    AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1543
1544    // Calculate starting addresses.
1545    Node* src_start = array_element_address(value, offset, T_CHAR);
1546    Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1547
1548    // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1549    const TypeInt* toffset = gvn().type(offset)->is_int();
1550    bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1551
1552    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1553    const char* copyfunc_name = "arraycopy";
1554    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1555    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1556                      OptoRuntime::fast_arraycopy_Type(),
1557                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1558                      src_start, dst_start, ConvI2X(length) XTOP);
1559    // Do not let reads from the cloned object float above the arraycopy.
1560    if (alloc != NULL) {
1561      if (alloc->maybe_set_complete(&_gvn)) {
1562        // "You break it, you buy it."
1563        InitializeNode* init = alloc->initialization();
1564        assert(init->is_complete(), "we just did this");
1565        init->set_complete_with_arraycopy();
1566        assert(newcopy->is_CheckCastPP(), "sanity");
1567        assert(newcopy->in(0)->in(0) == init, "dest pinned");
1568      }
1569      // Do not let stores that initialize this object be reordered with
1570      // a subsequent store that would make this object accessible by
1571      // other threads.
1572      // Record what AllocateNode this StoreStore protects so that
1573      // escape analysis can go from the MemBarStoreStoreNode to the
1574      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1575      // based on the escape status of the AllocateNode.
1576      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1577    } else {
1578      insert_mem_bar(Op_MemBarCPUOrder);
1579    }
1580  } // original reexecute is set back here
1581
1582  C->set_has_split_ifs(true); // Has chance for split-if optimization
1583  if (!stopped()) {
1584    set_result(newcopy);
1585  }
1586  return true;
1587}
1588
1589//------------------------inline_string_getCharsU--------------------------
1590// public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1591bool LibraryCallKit::inline_string_getCharsU() {
1592  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1593    return false;
1594  }
1595
1596  // Get the arguments.
1597  Node* src       = argument(0);
1598  Node* src_begin = argument(1);
1599  Node* src_end   = argument(2); // exclusive offset (i < src_end)
1600  Node* dst       = argument(3);
1601  Node* dst_begin = argument(4);
1602
1603  // Check for allocation before we add nodes that would confuse
1604  // tightly_coupled_allocation()
1605  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1606
1607  // Check if a null path was taken unconditionally.
1608  src = null_check(src);
1609  dst = null_check(dst);
1610  if (stopped()) {
1611    return true;
1612  }
1613
1614  // Get length and convert char[] offset to byte[] offset
1615  Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1616  src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1617
1618  // Range checks
1619  generate_string_range_check(src, src_begin, length, true);
1620  generate_string_range_check(dst, dst_begin, length, false);
1621  if (stopped()) {
1622    return true;
1623  }
1624
1625  if (!stopped()) {
1626    // Calculate starting addresses.
1627    Node* src_start = array_element_address(src, src_begin, T_BYTE);
1628    Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1629
1630    // Check if array addresses are aligned to HeapWordSize
1631    const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1632    const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1633    bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1634                   tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1635
1636    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1637    const char* copyfunc_name = "arraycopy";
1638    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1639    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1640                      OptoRuntime::fast_arraycopy_Type(),
1641                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1642                      src_start, dst_start, ConvI2X(length) XTOP);
1643    // Do not let reads from the cloned object float above the arraycopy.
1644    if (alloc != NULL) {
1645      if (alloc->maybe_set_complete(&_gvn)) {
1646        // "You break it, you buy it."
1647        InitializeNode* init = alloc->initialization();
1648        assert(init->is_complete(), "we just did this");
1649        init->set_complete_with_arraycopy();
1650        assert(dst->is_CheckCastPP(), "sanity");
1651        assert(dst->in(0)->in(0) == init, "dest pinned");
1652      }
1653      // Do not let stores that initialize this object be reordered with
1654      // a subsequent store that would make this object accessible by
1655      // other threads.
1656      // Record what AllocateNode this StoreStore protects so that
1657      // escape analysis can go from the MemBarStoreStoreNode to the
1658      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1659      // based on the escape status of the AllocateNode.
1660      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1661    } else {
1662      insert_mem_bar(Op_MemBarCPUOrder);
1663    }
1664  }
1665
1666  C->set_has_split_ifs(true); // Has chance for split-if optimization
1667  return true;
1668}
1669
1670//----------------------inline_string_char_access----------------------------
1671// Store/Load char to/from byte[] array.
1672// static void StringUTF16.putChar(byte[] val, int index, int c)
1673// static char StringUTF16.getChar(byte[] val, int index)
1674bool LibraryCallKit::inline_string_char_access(bool is_store) {
1675  Node* value  = argument(0);
1676  Node* index  = argument(1);
1677  Node* ch = is_store ? argument(2) : NULL;
1678
1679  // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1680  // correctly requires matched array shapes.
1681  assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1682          "sanity: byte[] and char[] bases agree");
1683  assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1684          "sanity: byte[] and char[] scales agree");
1685
1686  // Bail when getChar over constants is requested: constant folding would
1687  // reject folding mismatched char access over byte[]. A normal inlining for getChar
1688  // Java method would constant fold nicely instead.
1689  if (!is_store && value->is_Con() && index->is_Con()) {
1690    return false;
1691  }
1692
1693  Node* adr = array_element_address(value, index, T_CHAR);
1694  if (adr->is_top()) {
1695    return false;
1696  }
1697  if (is_store) {
1698    (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1699                           false, false, true /* mismatched */);
1700  } else {
1701    ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1702                   LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1703    set_result(ch);
1704  }
1705  return true;
1706}
1707
1708//--------------------------round_double_node--------------------------------
1709// Round a double node if necessary.
1710Node* LibraryCallKit::round_double_node(Node* n) {
1711  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1712    n = _gvn.transform(new RoundDoubleNode(0, n));
1713  return n;
1714}
1715
1716//------------------------------inline_math-----------------------------------
1717// public static double Math.abs(double)
1718// public static double Math.sqrt(double)
1719// public static double Math.log(double)
1720// public static double Math.log10(double)
1721bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1722  Node* arg = round_double_node(argument(0));
1723  Node* n = NULL;
1724  switch (id) {
1725  case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1726  case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1727  default:  fatal_unexpected_iid(id);  break;
1728  }
1729  set_result(_gvn.transform(n));
1730  return true;
1731}
1732
1733//------------------------------runtime_math-----------------------------
1734bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1735  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1736         "must be (DD)D or (D)D type");
1737
1738  // Inputs
1739  Node* a = round_double_node(argument(0));
1740  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1741
1742  const TypePtr* no_memory_effects = NULL;
1743  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1744                                 no_memory_effects,
1745                                 a, top(), b, b ? top() : NULL);
1746  Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1747#ifdef ASSERT
1748  Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1749  assert(value_top == top(), "second value must be top");
1750#endif
1751
1752  set_result(value);
1753  return true;
1754}
1755
1756//------------------------------inline_math_native-----------------------------
1757bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1758#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1759  switch (id) {
1760    // These intrinsics are not properly supported on all hardware
1761  case vmIntrinsics::_dsin:
1762    return StubRoutines::dsin() != NULL ?
1763      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1764      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1765  case vmIntrinsics::_dcos:
1766    return StubRoutines::dcos() != NULL ?
1767      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1768      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1769  case vmIntrinsics::_dtan:
1770    return StubRoutines::dtan() != NULL ?
1771      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1772      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1773  case vmIntrinsics::_dlog:
1774    return StubRoutines::dlog() != NULL ?
1775      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1776      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1777  case vmIntrinsics::_dlog10:
1778    return StubRoutines::dlog10() != NULL ?
1779      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1780      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1781
1782    // These intrinsics are supported on all hardware
1783  case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1784  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1785
1786  case vmIntrinsics::_dexp:
1787    return StubRoutines::dexp() != NULL ?
1788      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1789      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1790  case vmIntrinsics::_dpow:
1791    return StubRoutines::dpow() != NULL ?
1792      runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1793      runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1794#undef FN_PTR
1795
1796   // These intrinsics are not yet correctly implemented
1797  case vmIntrinsics::_datan2:
1798    return false;
1799
1800  default:
1801    fatal_unexpected_iid(id);
1802    return false;
1803  }
1804}
1805
1806static bool is_simple_name(Node* n) {
1807  return (n->req() == 1         // constant
1808          || (n->is_Type() && n->as_Type()->type()->singleton())
1809          || n->is_Proj()       // parameter or return value
1810          || n->is_Phi()        // local of some sort
1811          );
1812}
1813
1814//----------------------------inline_notify-----------------------------------*
1815bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1816  const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1817  address func;
1818  if (id == vmIntrinsics::_notify) {
1819    func = OptoRuntime::monitor_notify_Java();
1820  } else {
1821    func = OptoRuntime::monitor_notifyAll_Java();
1822  }
1823  Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1824  make_slow_call_ex(call, env()->Throwable_klass(), false);
1825  return true;
1826}
1827
1828
1829//----------------------------inline_min_max-----------------------------------
1830bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1831  set_result(generate_min_max(id, argument(0), argument(1)));
1832  return true;
1833}
1834
1835void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1836  Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1837  IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1838  Node* fast_path = _gvn.transform( new IfFalseNode(check));
1839  Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1840
1841  {
1842    PreserveJVMState pjvms(this);
1843    PreserveReexecuteState preexecs(this);
1844    jvms()->set_should_reexecute(true);
1845
1846    set_control(slow_path);
1847    set_i_o(i_o());
1848
1849    uncommon_trap(Deoptimization::Reason_intrinsic,
1850                  Deoptimization::Action_none);
1851  }
1852
1853  set_control(fast_path);
1854  set_result(math);
1855}
1856
1857template <typename OverflowOp>
1858bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1859  typedef typename OverflowOp::MathOp MathOp;
1860
1861  MathOp* mathOp = new MathOp(arg1, arg2);
1862  Node* operation = _gvn.transform( mathOp );
1863  Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1864  inline_math_mathExact(operation, ofcheck);
1865  return true;
1866}
1867
1868bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1869  return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1870}
1871
1872bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1873  return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1874}
1875
1876bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1877  return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1878}
1879
1880bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1881  return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1882}
1883
1884bool LibraryCallKit::inline_math_negateExactI() {
1885  return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1886}
1887
1888bool LibraryCallKit::inline_math_negateExactL() {
1889  return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1890}
1891
1892bool LibraryCallKit::inline_math_multiplyExactI() {
1893  return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1894}
1895
1896bool LibraryCallKit::inline_math_multiplyExactL() {
1897  return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1898}
1899
1900Node*
1901LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1902  // These are the candidate return value:
1903  Node* xvalue = x0;
1904  Node* yvalue = y0;
1905
1906  if (xvalue == yvalue) {
1907    return xvalue;
1908  }
1909
1910  bool want_max = (id == vmIntrinsics::_max);
1911
1912  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1913  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1914  if (txvalue == NULL || tyvalue == NULL)  return top();
1915  // This is not really necessary, but it is consistent with a
1916  // hypothetical MaxINode::Value method:
1917  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1918
1919  // %%% This folding logic should (ideally) be in a different place.
1920  // Some should be inside IfNode, and there to be a more reliable
1921  // transformation of ?: style patterns into cmoves.  We also want
1922  // more powerful optimizations around cmove and min/max.
1923
1924  // Try to find a dominating comparison of these guys.
1925  // It can simplify the index computation for Arrays.copyOf
1926  // and similar uses of System.arraycopy.
1927  // First, compute the normalized version of CmpI(x, y).
1928  int   cmp_op = Op_CmpI;
1929  Node* xkey = xvalue;
1930  Node* ykey = yvalue;
1931  Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1932  if (ideal_cmpxy->is_Cmp()) {
1933    // E.g., if we have CmpI(length - offset, count),
1934    // it might idealize to CmpI(length, count + offset)
1935    cmp_op = ideal_cmpxy->Opcode();
1936    xkey = ideal_cmpxy->in(1);
1937    ykey = ideal_cmpxy->in(2);
1938  }
1939
1940  // Start by locating any relevant comparisons.
1941  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1942  Node* cmpxy = NULL;
1943  Node* cmpyx = NULL;
1944  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1945    Node* cmp = start_from->fast_out(k);
1946    if (cmp->outcnt() > 0 &&            // must have prior uses
1947        cmp->in(0) == NULL &&           // must be context-independent
1948        cmp->Opcode() == cmp_op) {      // right kind of compare
1949      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1950      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1951    }
1952  }
1953
1954  const int NCMPS = 2;
1955  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1956  int cmpn;
1957  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1958    if (cmps[cmpn] != NULL)  break;     // find a result
1959  }
1960  if (cmpn < NCMPS) {
1961    // Look for a dominating test that tells us the min and max.
1962    int depth = 0;                // Limit search depth for speed
1963    Node* dom = control();
1964    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1965      if (++depth >= 100)  break;
1966      Node* ifproj = dom;
1967      if (!ifproj->is_Proj())  continue;
1968      Node* iff = ifproj->in(0);
1969      if (!iff->is_If())  continue;
1970      Node* bol = iff->in(1);
1971      if (!bol->is_Bool())  continue;
1972      Node* cmp = bol->in(1);
1973      if (cmp == NULL)  continue;
1974      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1975        if (cmps[cmpn] == cmp)  break;
1976      if (cmpn == NCMPS)  continue;
1977      BoolTest::mask btest = bol->as_Bool()->_test._test;
1978      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1979      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1980      // At this point, we know that 'x btest y' is true.
1981      switch (btest) {
1982      case BoolTest::eq:
1983        // They are proven equal, so we can collapse the min/max.
1984        // Either value is the answer.  Choose the simpler.
1985        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1986          return yvalue;
1987        return xvalue;
1988      case BoolTest::lt:          // x < y
1989      case BoolTest::le:          // x <= y
1990        return (want_max ? yvalue : xvalue);
1991      case BoolTest::gt:          // x > y
1992      case BoolTest::ge:          // x >= y
1993        return (want_max ? xvalue : yvalue);
1994      default:
1995        break;
1996      }
1997    }
1998  }
1999
2000  // We failed to find a dominating test.
2001  // Let's pick a test that might GVN with prior tests.
2002  Node*          best_bol   = NULL;
2003  BoolTest::mask best_btest = BoolTest::illegal;
2004  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2005    Node* cmp = cmps[cmpn];
2006    if (cmp == NULL)  continue;
2007    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2008      Node* bol = cmp->fast_out(j);
2009      if (!bol->is_Bool())  continue;
2010      BoolTest::mask btest = bol->as_Bool()->_test._test;
2011      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2012      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2013      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2014        best_bol   = bol->as_Bool();
2015        best_btest = btest;
2016      }
2017    }
2018  }
2019
2020  Node* answer_if_true  = NULL;
2021  Node* answer_if_false = NULL;
2022  switch (best_btest) {
2023  default:
2024    if (cmpxy == NULL)
2025      cmpxy = ideal_cmpxy;
2026    best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2027    // and fall through:
2028  case BoolTest::lt:          // x < y
2029  case BoolTest::le:          // x <= y
2030    answer_if_true  = (want_max ? yvalue : xvalue);
2031    answer_if_false = (want_max ? xvalue : yvalue);
2032    break;
2033  case BoolTest::gt:          // x > y
2034  case BoolTest::ge:          // x >= y
2035    answer_if_true  = (want_max ? xvalue : yvalue);
2036    answer_if_false = (want_max ? yvalue : xvalue);
2037    break;
2038  }
2039
2040  jint hi, lo;
2041  if (want_max) {
2042    // We can sharpen the minimum.
2043    hi = MAX2(txvalue->_hi, tyvalue->_hi);
2044    lo = MAX2(txvalue->_lo, tyvalue->_lo);
2045  } else {
2046    // We can sharpen the maximum.
2047    hi = MIN2(txvalue->_hi, tyvalue->_hi);
2048    lo = MIN2(txvalue->_lo, tyvalue->_lo);
2049  }
2050
2051  // Use a flow-free graph structure, to avoid creating excess control edges
2052  // which could hinder other optimizations.
2053  // Since Math.min/max is often used with arraycopy, we want
2054  // tightly_coupled_allocation to be able to see beyond min/max expressions.
2055  Node* cmov = CMoveNode::make(NULL, best_bol,
2056                               answer_if_false, answer_if_true,
2057                               TypeInt::make(lo, hi, widen));
2058
2059  return _gvn.transform(cmov);
2060
2061  /*
2062  // This is not as desirable as it may seem, since Min and Max
2063  // nodes do not have a full set of optimizations.
2064  // And they would interfere, anyway, with 'if' optimizations
2065  // and with CMoveI canonical forms.
2066  switch (id) {
2067  case vmIntrinsics::_min:
2068    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2069  case vmIntrinsics::_max:
2070    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2071  default:
2072    ShouldNotReachHere();
2073  }
2074  */
2075}
2076
2077inline int
2078LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2079  const TypePtr* base_type = TypePtr::NULL_PTR;
2080  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2081  if (base_type == NULL) {
2082    // Unknown type.
2083    return Type::AnyPtr;
2084  } else if (base_type == TypePtr::NULL_PTR) {
2085    // Since this is a NULL+long form, we have to switch to a rawptr.
2086    base   = _gvn.transform(new CastX2PNode(offset));
2087    offset = MakeConX(0);
2088    return Type::RawPtr;
2089  } else if (base_type->base() == Type::RawPtr) {
2090    return Type::RawPtr;
2091  } else if (base_type->isa_oopptr()) {
2092    // Base is never null => always a heap address.
2093    if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2094      return Type::OopPtr;
2095    }
2096    // Offset is small => always a heap address.
2097    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2098    if (offset_type != NULL &&
2099        base_type->offset() == 0 &&     // (should always be?)
2100        offset_type->_lo >= 0 &&
2101        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2102      return Type::OopPtr;
2103    } else if (type == T_OBJECT) {
2104      // off heap access to an oop doesn't make any sense. Has to be on
2105      // heap.
2106      return Type::OopPtr;
2107    }
2108    // Otherwise, it might either be oop+off or NULL+addr.
2109    return Type::AnyPtr;
2110  } else {
2111    // No information:
2112    return Type::AnyPtr;
2113  }
2114}
2115
2116inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2117  Node* uncasted_base = base;
2118  int kind = classify_unsafe_addr(uncasted_base, offset, type);
2119  if (kind == Type::RawPtr) {
2120    return basic_plus_adr(top(), uncasted_base, offset);
2121  } else if (kind == Type::AnyPtr) {
2122    assert(base == uncasted_base, "unexpected base change");
2123    if (can_cast) {
2124      if (!_gvn.type(base)->speculative_maybe_null() &&
2125          !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2126        // According to profiling, this access is always on
2127        // heap. Casting the base to not null and thus avoiding membars
2128        // around the access should allow better optimizations
2129        Node* null_ctl = top();
2130        base = null_check_oop(base, &null_ctl, true, true, true);
2131        assert(null_ctl->is_top(), "no null control here");
2132        return basic_plus_adr(base, offset);
2133      } else if (_gvn.type(base)->speculative_always_null() &&
2134                 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2135        // According to profiling, this access is always off
2136        // heap.
2137        base = null_assert(base);
2138        Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2139        offset = MakeConX(0);
2140        return basic_plus_adr(top(), raw_base, offset);
2141      }
2142    }
2143    // We don't know if it's an on heap or off heap access. Fall back
2144    // to raw memory access.
2145    Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2146    return basic_plus_adr(top(), raw, offset);
2147  } else {
2148    assert(base == uncasted_base, "unexpected base change");
2149    // We know it's an on heap access so base can't be null
2150    if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2151      base = must_be_not_null(base, true);
2152    }
2153    return basic_plus_adr(base, offset);
2154  }
2155}
2156
2157//--------------------------inline_number_methods-----------------------------
2158// inline int     Integer.numberOfLeadingZeros(int)
2159// inline int        Long.numberOfLeadingZeros(long)
2160//
2161// inline int     Integer.numberOfTrailingZeros(int)
2162// inline int        Long.numberOfTrailingZeros(long)
2163//
2164// inline int     Integer.bitCount(int)
2165// inline int        Long.bitCount(long)
2166//
2167// inline char  Character.reverseBytes(char)
2168// inline short     Short.reverseBytes(short)
2169// inline int     Integer.reverseBytes(int)
2170// inline long       Long.reverseBytes(long)
2171bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2172  Node* arg = argument(0);
2173  Node* n = NULL;
2174  switch (id) {
2175  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2176  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2177  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2178  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2179  case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2180  case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2181  case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2182  case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2183  case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2184  case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2185  default:  fatal_unexpected_iid(id);  break;
2186  }
2187  set_result(_gvn.transform(n));
2188  return true;
2189}
2190
2191//----------------------------inline_unsafe_access----------------------------
2192
2193// Helper that guards and inserts a pre-barrier.
2194void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2195                                        Node* pre_val, bool need_mem_bar) {
2196  // We could be accessing the referent field of a reference object. If so, when G1
2197  // is enabled, we need to log the value in the referent field in an SATB buffer.
2198  // This routine performs some compile time filters and generates suitable
2199  // runtime filters that guard the pre-barrier code.
2200  // Also add memory barrier for non volatile load from the referent field
2201  // to prevent commoning of loads across safepoint.
2202  if (!UseG1GC && !need_mem_bar)
2203    return;
2204
2205  // Some compile time checks.
2206
2207  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2208  const TypeX* otype = offset->find_intptr_t_type();
2209  if (otype != NULL && otype->is_con() &&
2210      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2211    // Constant offset but not the reference_offset so just return
2212    return;
2213  }
2214
2215  // We only need to generate the runtime guards for instances.
2216  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2217  if (btype != NULL) {
2218    if (btype->isa_aryptr()) {
2219      // Array type so nothing to do
2220      return;
2221    }
2222
2223    const TypeInstPtr* itype = btype->isa_instptr();
2224    if (itype != NULL) {
2225      // Can the klass of base_oop be statically determined to be
2226      // _not_ a sub-class of Reference and _not_ Object?
2227      ciKlass* klass = itype->klass();
2228      if ( klass->is_loaded() &&
2229          !klass->is_subtype_of(env()->Reference_klass()) &&
2230          !env()->Object_klass()->is_subtype_of(klass)) {
2231        return;
2232      }
2233    }
2234  }
2235
2236  // The compile time filters did not reject base_oop/offset so
2237  // we need to generate the following runtime filters
2238  //
2239  // if (offset == java_lang_ref_Reference::_reference_offset) {
2240  //   if (instance_of(base, java.lang.ref.Reference)) {
2241  //     pre_barrier(_, pre_val, ...);
2242  //   }
2243  // }
2244
2245  float likely   = PROB_LIKELY(  0.999);
2246  float unlikely = PROB_UNLIKELY(0.999);
2247
2248  IdealKit ideal(this);
2249#define __ ideal.
2250
2251  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2252
2253  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2254      // Update graphKit memory and control from IdealKit.
2255      sync_kit(ideal);
2256
2257      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2258      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2259
2260      // Update IdealKit memory and control from graphKit.
2261      __ sync_kit(this);
2262
2263      Node* one = __ ConI(1);
2264      // is_instof == 0 if base_oop == NULL
2265      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2266
2267        // Update graphKit from IdeakKit.
2268        sync_kit(ideal);
2269
2270        // Use the pre-barrier to record the value in the referent field
2271        pre_barrier(false /* do_load */,
2272                    __ ctrl(),
2273                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2274                    pre_val /* pre_val */,
2275                    T_OBJECT);
2276        if (need_mem_bar) {
2277          // Add memory barrier to prevent commoning reads from this field
2278          // across safepoint since GC can change its value.
2279          insert_mem_bar(Op_MemBarCPUOrder);
2280        }
2281        // Update IdealKit from graphKit.
2282        __ sync_kit(this);
2283
2284      } __ end_if(); // _ref_type != ref_none
2285  } __ end_if(); // offset == referent_offset
2286
2287  // Final sync IdealKit and GraphKit.
2288  final_sync(ideal);
2289#undef __
2290}
2291
2292
2293const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2294  // Attempt to infer a sharper value type from the offset and base type.
2295  ciKlass* sharpened_klass = NULL;
2296
2297  // See if it is an instance field, with an object type.
2298  if (alias_type->field() != NULL) {
2299    if (alias_type->field()->type()->is_klass()) {
2300      sharpened_klass = alias_type->field()->type()->as_klass();
2301    }
2302  }
2303
2304  // See if it is a narrow oop array.
2305  if (adr_type->isa_aryptr()) {
2306    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2307      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2308      if (elem_type != NULL) {
2309        sharpened_klass = elem_type->klass();
2310      }
2311    }
2312  }
2313
2314  // The sharpened class might be unloaded if there is no class loader
2315  // contraint in place.
2316  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2317    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2318
2319#ifndef PRODUCT
2320    if (C->print_intrinsics() || C->print_inlining()) {
2321      tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2322      tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2323    }
2324#endif
2325    // Sharpen the value type.
2326    return tjp;
2327  }
2328  return NULL;
2329}
2330
2331bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2332  if (callee()->is_static())  return false;  // caller must have the capability!
2333  guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2334  guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2335  assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2336
2337#ifndef PRODUCT
2338  {
2339    ResourceMark rm;
2340    // Check the signatures.
2341    ciSignature* sig = callee()->signature();
2342#ifdef ASSERT
2343    if (!is_store) {
2344      // Object getObject(Object base, int/long offset), etc.
2345      BasicType rtype = sig->return_type()->basic_type();
2346      assert(rtype == type, "getter must return the expected value");
2347      assert(sig->count() == 2, "oop getter has 2 arguments");
2348      assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2349      assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2350    } else {
2351      // void putObject(Object base, int/long offset, Object x), etc.
2352      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2353      assert(sig->count() == 3, "oop putter has 3 arguments");
2354      assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2355      assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2356      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2357      assert(vtype == type, "putter must accept the expected value");
2358    }
2359#endif // ASSERT
2360 }
2361#endif //PRODUCT
2362
2363  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2364
2365  Node* receiver = argument(0);  // type: oop
2366
2367  // Build address expression.
2368  Node* adr;
2369  Node* heap_base_oop = top();
2370  Node* offset = top();
2371  Node* val;
2372
2373  // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2374  Node* base = argument(1);  // type: oop
2375  // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2376  offset = argument(2);  // type: long
2377  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2378  // to be plain byte offsets, which are also the same as those accepted
2379  // by oopDesc::field_base.
2380  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2381         "fieldOffset must be byte-scaled");
2382  // 32-bit machines ignore the high half!
2383  offset = ConvL2X(offset);
2384  adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2385
2386  if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2387    heap_base_oop = base;
2388  } else if (type == T_OBJECT) {
2389    return false; // off-heap oop accesses are not supported
2390  }
2391
2392  // Can base be NULL? Otherwise, always on-heap access.
2393  bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2394
2395  val = is_store ? argument(4) : NULL;
2396
2397  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2398
2399  // Try to categorize the address.
2400  Compile::AliasType* alias_type = C->alias_type(adr_type);
2401  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2402
2403  if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2404      alias_type->adr_type() == TypeAryPtr::RANGE) {
2405    return false; // not supported
2406  }
2407
2408  bool mismatched = false;
2409  BasicType bt = alias_type->basic_type();
2410  if (bt != T_ILLEGAL) {
2411    assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2412    if (bt == T_BYTE && adr_type->isa_aryptr()) {
2413      // Alias type doesn't differentiate between byte[] and boolean[]).
2414      // Use address type to get the element type.
2415      bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2416    }
2417    if (bt == T_ARRAY || bt == T_NARROWOOP) {
2418      // accessing an array field with getObject is not a mismatch
2419      bt = T_OBJECT;
2420    }
2421    if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2422      // Don't intrinsify mismatched object accesses
2423      return false;
2424    }
2425    mismatched = (bt != type);
2426  } else if (alias_type->adr_type()->isa_oopptr()) {
2427    mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2428  }
2429
2430  assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2431
2432  // First guess at the value type.
2433  const Type *value_type = Type::get_const_basic_type(type);
2434
2435  // We will need memory barriers unless we can determine a unique
2436  // alias category for this reference.  (Note:  If for some reason
2437  // the barriers get omitted and the unsafe reference begins to "pollute"
2438  // the alias analysis of the rest of the graph, either Compile::can_alias
2439  // or Compile::must_alias will throw a diagnostic assert.)
2440  bool need_mem_bar = false;
2441  switch (kind) {
2442      case Relaxed:
2443          need_mem_bar = (mismatched && !adr_type->isa_aryptr()) || can_access_non_heap;
2444          break;
2445      case Opaque:
2446          // Opaque uses CPUOrder membars for protection against code movement.
2447      case Acquire:
2448      case Release:
2449      case Volatile:
2450          need_mem_bar = true;
2451          break;
2452      default:
2453          ShouldNotReachHere();
2454  }
2455
2456  // Some accesses require access atomicity for all types, notably longs and doubles.
2457  // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2458  bool requires_atomic_access = false;
2459  switch (kind) {
2460      case Relaxed:
2461          requires_atomic_access = AlwaysAtomicAccesses;
2462          break;
2463      case Opaque:
2464          // Opaque accesses are atomic.
2465      case Acquire:
2466      case Release:
2467      case Volatile:
2468          requires_atomic_access = true;
2469          break;
2470      default:
2471          ShouldNotReachHere();
2472  }
2473
2474  // Figure out the memory ordering.
2475  // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2476  MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2477
2478  // If we are reading the value of the referent field of a Reference
2479  // object (either by using Unsafe directly or through reflection)
2480  // then, if G1 is enabled, we need to record the referent in an
2481  // SATB log buffer using the pre-barrier mechanism.
2482  // Also we need to add memory barrier to prevent commoning reads
2483  // from this field across safepoint since GC can change its value.
2484  bool need_read_barrier = !is_store &&
2485                           offset != top() && heap_base_oop != top();
2486
2487  if (!is_store && type == T_OBJECT) {
2488    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2489    if (tjp != NULL) {
2490      value_type = tjp;
2491    }
2492  }
2493
2494  receiver = null_check(receiver);
2495  if (stopped()) {
2496    return true;
2497  }
2498  // Heap pointers get a null-check from the interpreter,
2499  // as a courtesy.  However, this is not guaranteed by Unsafe,
2500  // and it is not possible to fully distinguish unintended nulls
2501  // from intended ones in this API.
2502
2503  // We need to emit leading and trailing CPU membars (see below) in
2504  // addition to memory membars for special access modes. This is a little
2505  // too strong, but avoids the need to insert per-alias-type
2506  // volatile membars (for stores; compare Parse::do_put_xxx), which
2507  // we cannot do effectively here because we probably only have a
2508  // rough approximation of type.
2509
2510  switch(kind) {
2511    case Relaxed:
2512    case Opaque:
2513    case Acquire:
2514      break;
2515    case Release:
2516    case Volatile:
2517      if (is_store) {
2518        insert_mem_bar(Op_MemBarRelease);
2519      } else {
2520        if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2521          insert_mem_bar(Op_MemBarVolatile);
2522        }
2523      }
2524      break;
2525    default:
2526      ShouldNotReachHere();
2527  }
2528
2529  // Memory barrier to prevent normal and 'unsafe' accesses from
2530  // bypassing each other.  Happens after null checks, so the
2531  // exception paths do not take memory state from the memory barrier,
2532  // so there's no problems making a strong assert about mixing users
2533  // of safe & unsafe memory.
2534  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2535
2536  if (!is_store) {
2537    Node* p = NULL;
2538    // Try to constant fold a load from a constant field
2539    ciField* field = alias_type->field();
2540    if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2541      // final or stable field
2542      p = make_constant_from_field(field, heap_base_oop);
2543    }
2544    if (p == NULL) {
2545      // To be valid, unsafe loads may depend on other conditions than
2546      // the one that guards them: pin the Load node
2547      LoadNode::ControlDependency dep = LoadNode::Pinned;
2548      Node* ctrl = control();
2549      if (adr_type->isa_instptr()) {
2550        assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
2551        intptr_t offset = Type::OffsetBot;
2552        AddPNode::Ideal_base_and_offset(adr, &_gvn, offset);
2553        if (offset >= 0) {
2554          int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
2555          if (offset < s) {
2556            // Guaranteed to be a valid access, no need to pin it
2557            dep = LoadNode::DependsOnlyOnTest;
2558            ctrl = NULL;
2559          }
2560        }
2561      }
2562      p = make_load(ctrl, adr, value_type, type, adr_type, mo, dep, requires_atomic_access, unaligned, mismatched);
2563      // load value
2564      switch (type) {
2565      case T_BOOLEAN:
2566      {
2567        // Normalize the value returned by getBoolean in the following cases
2568        if (mismatched ||
2569            heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2570            (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2571                                                                 //   and the unsafe access is made to large offset
2572                                                                 //   (i.e., larger than the maximum offset necessary for any
2573                                                                 //   field access)
2574            ) {
2575          IdealKit ideal = IdealKit(this);
2576#define __ ideal.
2577          IdealVariable normalized_result(ideal);
2578          __ declarations_done();
2579          __ set(normalized_result, p);
2580          __ if_then(p, BoolTest::ne, ideal.ConI(0));
2581          __ set(normalized_result, ideal.ConI(1));
2582          ideal.end_if();
2583          final_sync(ideal);
2584          p = __ value(normalized_result);
2585#undef __
2586        }
2587      }
2588      case T_CHAR:
2589      case T_BYTE:
2590      case T_SHORT:
2591      case T_INT:
2592      case T_LONG:
2593      case T_FLOAT:
2594      case T_DOUBLE:
2595        break;
2596      case T_OBJECT:
2597        if (need_read_barrier) {
2598          // We do not require a mem bar inside pre_barrier if need_mem_bar
2599          // is set: the barriers would be emitted by us.
2600          insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2601        }
2602        break;
2603      case T_ADDRESS:
2604        // Cast to an int type.
2605        p = _gvn.transform(new CastP2XNode(NULL, p));
2606        p = ConvX2UL(p);
2607        break;
2608      default:
2609        fatal("unexpected type %d: %s", type, type2name(type));
2610        break;
2611      }
2612    }
2613    // The load node has the control of the preceding MemBarCPUOrder.  All
2614    // following nodes will have the control of the MemBarCPUOrder inserted at
2615    // the end of this method.  So, pushing the load onto the stack at a later
2616    // point is fine.
2617    set_result(p);
2618  } else {
2619    // place effect of store into memory
2620    switch (type) {
2621    case T_DOUBLE:
2622      val = dstore_rounding(val);
2623      break;
2624    case T_ADDRESS:
2625      // Repackage the long as a pointer.
2626      val = ConvL2X(val);
2627      val = _gvn.transform(new CastX2PNode(val));
2628      break;
2629    default:
2630      break;
2631    }
2632
2633    if (type == T_OBJECT) {
2634      store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2635    } else {
2636      store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2637    }
2638  }
2639
2640  switch(kind) {
2641    case Relaxed:
2642    case Opaque:
2643    case Release:
2644      break;
2645    case Acquire:
2646    case Volatile:
2647      if (!is_store) {
2648        insert_mem_bar(Op_MemBarAcquire);
2649      } else {
2650        if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2651          insert_mem_bar(Op_MemBarVolatile);
2652        }
2653      }
2654      break;
2655    default:
2656      ShouldNotReachHere();
2657  }
2658
2659  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2660
2661  return true;
2662}
2663
2664//----------------------------inline_unsafe_load_store----------------------------
2665// This method serves a couple of different customers (depending on LoadStoreKind):
2666//
2667// LS_cmp_swap:
2668//
2669//   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2670//   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2671//   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2672//
2673// LS_cmp_swap_weak:
2674//
2675//   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2676//   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2677//   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2678//   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2679//
2680//   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2681//   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2682//   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2683//   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2684//
2685//   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2686//   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2687//   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2688//   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2689//
2690// LS_cmp_exchange:
2691//
2692//   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2693//   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2694//   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2695//
2696//   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2697//   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2698//   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2699//
2700//   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2701//   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2702//   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2703//
2704// LS_get_add:
2705//
2706//   int  getAndAddInt( Object o, long offset, int  delta)
2707//   long getAndAddLong(Object o, long offset, long delta)
2708//
2709// LS_get_set:
2710//
2711//   int    getAndSet(Object o, long offset, int    newValue)
2712//   long   getAndSet(Object o, long offset, long   newValue)
2713//   Object getAndSet(Object o, long offset, Object newValue)
2714//
2715bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2716  // This basic scheme here is the same as inline_unsafe_access, but
2717  // differs in enough details that combining them would make the code
2718  // overly confusing.  (This is a true fact! I originally combined
2719  // them, but even I was confused by it!) As much code/comments as
2720  // possible are retained from inline_unsafe_access though to make
2721  // the correspondences clearer. - dl
2722
2723  if (callee()->is_static())  return false;  // caller must have the capability!
2724
2725#ifndef PRODUCT
2726  BasicType rtype;
2727  {
2728    ResourceMark rm;
2729    // Check the signatures.
2730    ciSignature* sig = callee()->signature();
2731    rtype = sig->return_type()->basic_type();
2732    switch(kind) {
2733      case LS_get_add:
2734      case LS_get_set: {
2735      // Check the signatures.
2736#ifdef ASSERT
2737      assert(rtype == type, "get and set must return the expected type");
2738      assert(sig->count() == 3, "get and set has 3 arguments");
2739      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2740      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2741      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2742      assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2743#endif // ASSERT
2744        break;
2745      }
2746      case LS_cmp_swap:
2747      case LS_cmp_swap_weak: {
2748      // Check the signatures.
2749#ifdef ASSERT
2750      assert(rtype == T_BOOLEAN, "CAS must return boolean");
2751      assert(sig->count() == 4, "CAS has 4 arguments");
2752      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2753      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2754#endif // ASSERT
2755        break;
2756      }
2757      case LS_cmp_exchange: {
2758      // Check the signatures.
2759#ifdef ASSERT
2760      assert(rtype == type, "CAS must return the expected type");
2761      assert(sig->count() == 4, "CAS has 4 arguments");
2762      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2763      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2764#endif // ASSERT
2765        break;
2766      }
2767      default:
2768        ShouldNotReachHere();
2769    }
2770  }
2771#endif //PRODUCT
2772
2773  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2774
2775  // Get arguments:
2776  Node* receiver = NULL;
2777  Node* base     = NULL;
2778  Node* offset   = NULL;
2779  Node* oldval   = NULL;
2780  Node* newval   = NULL;
2781  switch(kind) {
2782    case LS_cmp_swap:
2783    case LS_cmp_swap_weak:
2784    case LS_cmp_exchange: {
2785      const bool two_slot_type = type2size[type] == 2;
2786      receiver = argument(0);  // type: oop
2787      base     = argument(1);  // type: oop
2788      offset   = argument(2);  // type: long
2789      oldval   = argument(4);  // type: oop, int, or long
2790      newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2791      break;
2792    }
2793    case LS_get_add:
2794    case LS_get_set: {
2795      receiver = argument(0);  // type: oop
2796      base     = argument(1);  // type: oop
2797      offset   = argument(2);  // type: long
2798      oldval   = NULL;
2799      newval   = argument(4);  // type: oop, int, or long
2800      break;
2801    }
2802    default:
2803      ShouldNotReachHere();
2804  }
2805
2806  // Build field offset expression.
2807  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2808  // to be plain byte offsets, which are also the same as those accepted
2809  // by oopDesc::field_base.
2810  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2811  // 32-bit machines ignore the high half of long offsets
2812  offset = ConvL2X(offset);
2813  Node* adr = make_unsafe_address(base, offset, type, false);
2814  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2815
2816  Compile::AliasType* alias_type = C->alias_type(adr_type);
2817  BasicType bt = alias_type->basic_type();
2818  if (bt != T_ILLEGAL &&
2819      ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2820    // Don't intrinsify mismatched object accesses.
2821    return false;
2822  }
2823
2824  // For CAS, unlike inline_unsafe_access, there seems no point in
2825  // trying to refine types. Just use the coarse types here.
2826  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2827  const Type *value_type = Type::get_const_basic_type(type);
2828
2829  switch (kind) {
2830    case LS_get_set:
2831    case LS_cmp_exchange: {
2832      if (type == T_OBJECT) {
2833        const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2834        if (tjp != NULL) {
2835          value_type = tjp;
2836        }
2837      }
2838      break;
2839    }
2840    case LS_cmp_swap:
2841    case LS_cmp_swap_weak:
2842    case LS_get_add:
2843      break;
2844    default:
2845      ShouldNotReachHere();
2846  }
2847
2848  // Null check receiver.
2849  receiver = null_check(receiver);
2850  if (stopped()) {
2851    return true;
2852  }
2853
2854  int alias_idx = C->get_alias_index(adr_type);
2855
2856  // Memory-model-wise, a LoadStore acts like a little synchronized
2857  // block, so needs barriers on each side.  These don't translate
2858  // into actual barriers on most machines, but we still need rest of
2859  // compiler to respect ordering.
2860
2861  switch (access_kind) {
2862    case Relaxed:
2863    case Acquire:
2864      break;
2865    case Release:
2866      insert_mem_bar(Op_MemBarRelease);
2867      break;
2868    case Volatile:
2869      if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2870        insert_mem_bar(Op_MemBarVolatile);
2871      } else {
2872        insert_mem_bar(Op_MemBarRelease);
2873      }
2874      break;
2875    default:
2876      ShouldNotReachHere();
2877  }
2878  insert_mem_bar(Op_MemBarCPUOrder);
2879
2880  // Figure out the memory ordering.
2881  MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2882
2883  // 4984716: MemBars must be inserted before this
2884  //          memory node in order to avoid a false
2885  //          dependency which will confuse the scheduler.
2886  Node *mem = memory(alias_idx);
2887
2888  // For now, we handle only those cases that actually exist: ints,
2889  // longs, and Object. Adding others should be straightforward.
2890  Node* load_store = NULL;
2891  switch(type) {
2892  case T_BYTE:
2893    switch(kind) {
2894      case LS_get_add:
2895        load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2896        break;
2897      case LS_get_set:
2898        load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2899        break;
2900      case LS_cmp_swap_weak:
2901        load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2902        break;
2903      case LS_cmp_swap:
2904        load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2905        break;
2906      case LS_cmp_exchange:
2907        load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2908        break;
2909      default:
2910        ShouldNotReachHere();
2911    }
2912    break;
2913  case T_SHORT:
2914    switch(kind) {
2915      case LS_get_add:
2916        load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2917        break;
2918      case LS_get_set:
2919        load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2920        break;
2921      case LS_cmp_swap_weak:
2922        load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2923        break;
2924      case LS_cmp_swap:
2925        load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2926        break;
2927      case LS_cmp_exchange:
2928        load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2929        break;
2930      default:
2931        ShouldNotReachHere();
2932    }
2933    break;
2934  case T_INT:
2935    switch(kind) {
2936      case LS_get_add:
2937        load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2938        break;
2939      case LS_get_set:
2940        load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2941        break;
2942      case LS_cmp_swap_weak:
2943        load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2944        break;
2945      case LS_cmp_swap:
2946        load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2947        break;
2948      case LS_cmp_exchange:
2949        load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2950        break;
2951      default:
2952        ShouldNotReachHere();
2953    }
2954    break;
2955  case T_LONG:
2956    switch(kind) {
2957      case LS_get_add:
2958        load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2959        break;
2960      case LS_get_set:
2961        load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2962        break;
2963      case LS_cmp_swap_weak:
2964        load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2965        break;
2966      case LS_cmp_swap:
2967        load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2968        break;
2969      case LS_cmp_exchange:
2970        load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2971        break;
2972      default:
2973        ShouldNotReachHere();
2974    }
2975    break;
2976  case T_OBJECT:
2977    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2978    // could be delayed during Parse (for example, in adjust_map_after_if()).
2979    // Execute transformation here to avoid barrier generation in such case.
2980    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2981      newval = _gvn.makecon(TypePtr::NULL_PTR);
2982
2983    // Reference stores need a store barrier.
2984    switch(kind) {
2985      case LS_get_set: {
2986        // If pre-barrier must execute before the oop store, old value will require do_load here.
2987        if (!can_move_pre_barrier()) {
2988          pre_barrier(true /* do_load*/,
2989                      control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2990                      NULL /* pre_val*/,
2991                      T_OBJECT);
2992        } // Else move pre_barrier to use load_store value, see below.
2993        break;
2994      }
2995      case LS_cmp_swap_weak:
2996      case LS_cmp_swap:
2997      case LS_cmp_exchange: {
2998        // Same as for newval above:
2999        if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3000          oldval = _gvn.makecon(TypePtr::NULL_PTR);
3001        }
3002        // The only known value which might get overwritten is oldval.
3003        pre_barrier(false /* do_load */,
3004                    control(), NULL, NULL, max_juint, NULL, NULL,
3005                    oldval /* pre_val */,
3006                    T_OBJECT);
3007        break;
3008      }
3009      default:
3010        ShouldNotReachHere();
3011    }
3012
3013#ifdef _LP64
3014    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3015      Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3016
3017      switch(kind) {
3018        case LS_get_set:
3019          load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
3020          break;
3021        case LS_cmp_swap_weak: {
3022          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3023          load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3024          break;
3025        }
3026        case LS_cmp_swap: {
3027          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3028          load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3029          break;
3030        }
3031        case LS_cmp_exchange: {
3032          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3033          load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
3034          break;
3035        }
3036        default:
3037          ShouldNotReachHere();
3038      }
3039    } else
3040#endif
3041    switch (kind) {
3042      case LS_get_set:
3043        load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3044        break;
3045      case LS_cmp_swap_weak:
3046        load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3047        break;
3048      case LS_cmp_swap:
3049        load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3050        break;
3051      case LS_cmp_exchange:
3052        load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3053        break;
3054      default:
3055        ShouldNotReachHere();
3056    }
3057
3058    // Emit the post barrier only when the actual store happened. This makes sense
3059    // to check only for LS_cmp_* that can fail to set the value.
3060    // LS_cmp_exchange does not produce any branches by default, so there is no
3061    // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3062    // CompareAndExchange and move branches here, it would make sense to conditionalize
3063    // post_barriers for LS_cmp_exchange as well.
3064    //
3065    // CAS success path is marked more likely since we anticipate this is a performance
3066    // critical path, while CAS failure path can use the penalty for going through unlikely
3067    // path as backoff. Which is still better than doing a store barrier there.
3068    switch (kind) {
3069      case LS_get_set:
3070      case LS_cmp_exchange: {
3071        post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3072        break;
3073      }
3074      case LS_cmp_swap_weak:
3075      case LS_cmp_swap: {
3076        IdealKit ideal(this);
3077        ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3078          sync_kit(ideal);
3079          post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3080          ideal.sync_kit(this);
3081        } ideal.end_if();
3082        final_sync(ideal);
3083        break;
3084      }
3085      default:
3086        ShouldNotReachHere();
3087    }
3088    break;
3089  default:
3090    fatal("unexpected type %d: %s", type, type2name(type));
3091    break;
3092  }
3093
3094  // SCMemProjNodes represent the memory state of a LoadStore. Their
3095  // main role is to prevent LoadStore nodes from being optimized away
3096  // when their results aren't used.
3097  Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3098  set_memory(proj, alias_idx);
3099
3100  if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3101#ifdef _LP64
3102    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3103      load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3104    }
3105#endif
3106    if (can_move_pre_barrier() && kind == LS_get_set) {
3107      // Don't need to load pre_val. The old value is returned by load_store.
3108      // The pre_barrier can execute after the xchg as long as no safepoint
3109      // gets inserted between them.
3110      pre_barrier(false /* do_load */,
3111                  control(), NULL, NULL, max_juint, NULL, NULL,
3112                  load_store /* pre_val */,
3113                  T_OBJECT);
3114    }
3115  }
3116
3117  // Add the trailing membar surrounding the access
3118  insert_mem_bar(Op_MemBarCPUOrder);
3119
3120  switch (access_kind) {
3121    case Relaxed:
3122    case Release:
3123      break; // do nothing
3124    case Acquire:
3125    case Volatile:
3126      insert_mem_bar(Op_MemBarAcquire);
3127      // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3128      break;
3129    default:
3130      ShouldNotReachHere();
3131  }
3132
3133  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3134  set_result(load_store);
3135  return true;
3136}
3137
3138MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3139  MemNode::MemOrd mo = MemNode::unset;
3140  switch(kind) {
3141    case Opaque:
3142    case Relaxed:  mo = MemNode::unordered; break;
3143    case Acquire:  mo = MemNode::acquire;   break;
3144    case Release:  mo = MemNode::release;   break;
3145    case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3146    default:
3147      ShouldNotReachHere();
3148  }
3149  guarantee(mo != MemNode::unset, "Should select memory ordering");
3150  return mo;
3151}
3152
3153MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3154  MemNode::MemOrd mo = MemNode::unset;
3155  switch(kind) {
3156    case Opaque:
3157    case Relaxed:  mo = MemNode::unordered; break;
3158    case Acquire:  mo = MemNode::acquire;   break;
3159    case Release:  mo = MemNode::release;   break;
3160    case Volatile: mo = MemNode::seqcst;    break;
3161    default:
3162      ShouldNotReachHere();
3163  }
3164  guarantee(mo != MemNode::unset, "Should select memory ordering");
3165  return mo;
3166}
3167
3168bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3169  // Regardless of form, don't allow previous ld/st to move down,
3170  // then issue acquire, release, or volatile mem_bar.
3171  insert_mem_bar(Op_MemBarCPUOrder);
3172  switch(id) {
3173    case vmIntrinsics::_loadFence:
3174      insert_mem_bar(Op_LoadFence);
3175      return true;
3176    case vmIntrinsics::_storeFence:
3177      insert_mem_bar(Op_StoreFence);
3178      return true;
3179    case vmIntrinsics::_fullFence:
3180      insert_mem_bar(Op_MemBarVolatile);
3181      return true;
3182    default:
3183      fatal_unexpected_iid(id);
3184      return false;
3185  }
3186}
3187
3188bool LibraryCallKit::inline_onspinwait() {
3189  insert_mem_bar(Op_OnSpinWait);
3190  return true;
3191}
3192
3193bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3194  if (!kls->is_Con()) {
3195    return true;
3196  }
3197  const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3198  if (klsptr == NULL) {
3199    return true;
3200  }
3201  ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3202  // don't need a guard for a klass that is already initialized
3203  return !ik->is_initialized();
3204}
3205
3206//----------------------------inline_unsafe_allocate---------------------------
3207// public native Object Unsafe.allocateInstance(Class<?> cls);
3208bool LibraryCallKit::inline_unsafe_allocate() {
3209  if (callee()->is_static())  return false;  // caller must have the capability!
3210
3211  null_check_receiver();  // null-check, then ignore
3212  Node* cls = null_check(argument(1));
3213  if (stopped())  return true;
3214
3215  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3216  kls = null_check(kls);
3217  if (stopped())  return true;  // argument was like int.class
3218
3219  Node* test = NULL;
3220  if (LibraryCallKit::klass_needs_init_guard(kls)) {
3221    // Note:  The argument might still be an illegal value like
3222    // Serializable.class or Object[].class.   The runtime will handle it.
3223    // But we must make an explicit check for initialization.
3224    Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3225    // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3226    // can generate code to load it as unsigned byte.
3227    Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3228    Node* bits = intcon(InstanceKlass::fully_initialized);
3229    test = _gvn.transform(new SubINode(inst, bits));
3230    // The 'test' is non-zero if we need to take a slow path.
3231  }
3232
3233  Node* obj = new_instance(kls, test);
3234  set_result(obj);
3235  return true;
3236}
3237
3238//------------------------inline_native_time_funcs--------------
3239// inline code for System.currentTimeMillis() and System.nanoTime()
3240// these have the same type and signature
3241bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3242  const TypeFunc* tf = OptoRuntime::void_long_Type();
3243  const TypePtr* no_memory_effects = NULL;
3244  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3245  Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3246#ifdef ASSERT
3247  Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3248  assert(value_top == top(), "second value must be top");
3249#endif
3250  set_result(value);
3251  return true;
3252}
3253
3254#ifdef TRACE_HAVE_INTRINSICS
3255
3256/*
3257* oop -> myklass
3258* myklass->trace_id |= USED
3259* return myklass->trace_id & ~0x3
3260*/
3261bool LibraryCallKit::inline_native_classID() {
3262  Node* cls = null_check(argument(0), T_OBJECT);
3263  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3264  kls = null_check(kls, T_OBJECT);
3265
3266  ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3267  Node* insp = basic_plus_adr(kls, in_bytes(offset));
3268  Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3269
3270  Node* clsused = longcon(0x01l); // set the class bit
3271  Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3272  const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3273  store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3274
3275#ifdef TRACE_ID_META_BITS
3276  Node* mbits = longcon(~TRACE_ID_META_BITS);
3277  tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3278#endif
3279#ifdef TRACE_ID_CLASS_SHIFT
3280  Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3281  tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3282#endif
3283
3284  set_result(tvalue);
3285  return true;
3286
3287}
3288
3289bool LibraryCallKit::inline_native_getBufferWriter() {
3290  Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3291
3292  Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3293                                  in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3294                                  );
3295
3296  Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3297
3298  Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3299  Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3300
3301  IfNode* iff_jobj_null =
3302    create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3303
3304  enum { _normal_path = 1,
3305         _null_path = 2,
3306         PATH_LIMIT };
3307
3308  RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3309  PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3310
3311  Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3312  result_rgn->init_req(_null_path, jobj_is_null);
3313  result_val->init_req(_null_path, null());
3314
3315  Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3316  result_rgn->init_req(_normal_path, jobj_is_not_null);
3317
3318  Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3319  result_val->init_req(_normal_path, res);
3320
3321  set_result(result_rgn, result_val);
3322
3323  return true;
3324}
3325
3326#endif
3327
3328//------------------------inline_native_currentThread------------------
3329bool LibraryCallKit::inline_native_currentThread() {
3330  Node* junk = NULL;
3331  set_result(generate_current_thread(junk));
3332  return true;
3333}
3334
3335//------------------------inline_native_isInterrupted------------------
3336// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3337bool LibraryCallKit::inline_native_isInterrupted() {
3338  // Add a fast path to t.isInterrupted(clear_int):
3339  //   (t == Thread.current() &&
3340  //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3341  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3342  // So, in the common case that the interrupt bit is false,
3343  // we avoid making a call into the VM.  Even if the interrupt bit
3344  // is true, if the clear_int argument is false, we avoid the VM call.
3345  // However, if the receiver is not currentThread, we must call the VM,
3346  // because there must be some locking done around the operation.
3347
3348  // We only go to the fast case code if we pass two guards.
3349  // Paths which do not pass are accumulated in the slow_region.
3350
3351  enum {
3352    no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3353    no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3354    slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3355    PATH_LIMIT
3356  };
3357
3358  // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3359  // out of the function.
3360  insert_mem_bar(Op_MemBarCPUOrder);
3361
3362  RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3363  PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3364
3365  RegionNode* slow_region = new RegionNode(1);
3366  record_for_igvn(slow_region);
3367
3368  // (a) Receiving thread must be the current thread.
3369  Node* rec_thr = argument(0);
3370  Node* tls_ptr = NULL;
3371  Node* cur_thr = generate_current_thread(tls_ptr);
3372  Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3373  Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3374
3375  generate_slow_guard(bol_thr, slow_region);
3376
3377  // (b) Interrupt bit on TLS must be false.
3378  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3379  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3380  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3381
3382  // Set the control input on the field _interrupted read to prevent it floating up.
3383  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3384  Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3385  Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3386
3387  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3388
3389  // First fast path:  if (!TLS._interrupted) return false;
3390  Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3391  result_rgn->init_req(no_int_result_path, false_bit);
3392  result_val->init_req(no_int_result_path, intcon(0));
3393
3394  // drop through to next case
3395  set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3396
3397#ifndef _WINDOWS
3398  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3399  Node* clr_arg = argument(1);
3400  Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3401  Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3402  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3403
3404  // Second fast path:  ... else if (!clear_int) return true;
3405  Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3406  result_rgn->init_req(no_clear_result_path, false_arg);
3407  result_val->init_req(no_clear_result_path, intcon(1));
3408
3409  // drop through to next case
3410  set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3411#else
3412  // To return true on Windows you must read the _interrupted field
3413  // and check the event state i.e. take the slow path.
3414#endif // _WINDOWS
3415
3416  // (d) Otherwise, go to the slow path.
3417  slow_region->add_req(control());
3418  set_control( _gvn.transform(slow_region));
3419
3420  if (stopped()) {
3421    // There is no slow path.
3422    result_rgn->init_req(slow_result_path, top());
3423    result_val->init_req(slow_result_path, top());
3424  } else {
3425    // non-virtual because it is a private non-static
3426    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3427
3428    Node* slow_val = set_results_for_java_call(slow_call);
3429    // this->control() comes from set_results_for_java_call
3430
3431    Node* fast_io  = slow_call->in(TypeFunc::I_O);
3432    Node* fast_mem = slow_call->in(TypeFunc::Memory);
3433
3434    // These two phis are pre-filled with copies of of the fast IO and Memory
3435    PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3436    PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3437
3438    result_rgn->init_req(slow_result_path, control());
3439    result_io ->init_req(slow_result_path, i_o());
3440    result_mem->init_req(slow_result_path, reset_memory());
3441    result_val->init_req(slow_result_path, slow_val);
3442
3443    set_all_memory(_gvn.transform(result_mem));
3444    set_i_o(       _gvn.transform(result_io));
3445  }
3446
3447  C->set_has_split_ifs(true); // Has chance for split-if optimization
3448  set_result(result_rgn, result_val);
3449  return true;
3450}
3451
3452//---------------------------load_mirror_from_klass----------------------------
3453// Given a klass oop, load its java mirror (a java.lang.Class oop).
3454Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3455  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3456  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3457}
3458
3459//-----------------------load_klass_from_mirror_common-------------------------
3460// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3461// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3462// and branch to the given path on the region.
3463// If never_see_null, take an uncommon trap on null, so we can optimistically
3464// compile for the non-null case.
3465// If the region is NULL, force never_see_null = true.
3466Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3467                                                    bool never_see_null,
3468                                                    RegionNode* region,
3469                                                    int null_path,
3470                                                    int offset) {
3471  if (region == NULL)  never_see_null = true;
3472  Node* p = basic_plus_adr(mirror, offset);
3473  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3474  Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3475  Node* null_ctl = top();
3476  kls = null_check_oop(kls, &null_ctl, never_see_null);
3477  if (region != NULL) {
3478    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3479    region->init_req(null_path, null_ctl);
3480  } else {
3481    assert(null_ctl == top(), "no loose ends");
3482  }
3483  return kls;
3484}
3485
3486//--------------------(inline_native_Class_query helpers)---------------------
3487// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3488// Fall through if (mods & mask) == bits, take the guard otherwise.
3489Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3490  // Branch around if the given klass has the given modifier bit set.
3491  // Like generate_guard, adds a new path onto the region.
3492  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3493  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3494  Node* mask = intcon(modifier_mask);
3495  Node* bits = intcon(modifier_bits);
3496  Node* mbit = _gvn.transform(new AndINode(mods, mask));
3497  Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3498  Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3499  return generate_fair_guard(bol, region);
3500}
3501Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3502  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3503}
3504
3505//-------------------------inline_native_Class_query-------------------
3506bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3507  const Type* return_type = TypeInt::BOOL;
3508  Node* prim_return_value = top();  // what happens if it's a primitive class?
3509  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3510  bool expect_prim = false;     // most of these guys expect to work on refs
3511
3512  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3513
3514  Node* mirror = argument(0);
3515  Node* obj    = top();
3516
3517  switch (id) {
3518  case vmIntrinsics::_isInstance:
3519    // nothing is an instance of a primitive type
3520    prim_return_value = intcon(0);
3521    obj = argument(1);
3522    break;
3523  case vmIntrinsics::_getModifiers:
3524    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3525    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3526    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3527    break;
3528  case vmIntrinsics::_isInterface:
3529    prim_return_value = intcon(0);
3530    break;
3531  case vmIntrinsics::_isArray:
3532    prim_return_value = intcon(0);
3533    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3534    break;
3535  case vmIntrinsics::_isPrimitive:
3536    prim_return_value = intcon(1);
3537    expect_prim = true;  // obviously
3538    break;
3539  case vmIntrinsics::_getSuperclass:
3540    prim_return_value = null();
3541    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3542    break;
3543  case vmIntrinsics::_getClassAccessFlags:
3544    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3545    return_type = TypeInt::INT;  // not bool!  6297094
3546    break;
3547  default:
3548    fatal_unexpected_iid(id);
3549    break;
3550  }
3551
3552  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3553  if (mirror_con == NULL)  return false;  // cannot happen?
3554
3555#ifndef PRODUCT
3556  if (C->print_intrinsics() || C->print_inlining()) {
3557    ciType* k = mirror_con->java_mirror_type();
3558    if (k) {
3559      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3560      k->print_name();
3561      tty->cr();
3562    }
3563  }
3564#endif
3565
3566  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3567  RegionNode* region = new RegionNode(PATH_LIMIT);
3568  record_for_igvn(region);
3569  PhiNode* phi = new PhiNode(region, return_type);
3570
3571  // The mirror will never be null of Reflection.getClassAccessFlags, however
3572  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3573  // if it is. See bug 4774291.
3574
3575  // For Reflection.getClassAccessFlags(), the null check occurs in
3576  // the wrong place; see inline_unsafe_access(), above, for a similar
3577  // situation.
3578  mirror = null_check(mirror);
3579  // If mirror or obj is dead, only null-path is taken.
3580  if (stopped())  return true;
3581
3582  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3583
3584  // Now load the mirror's klass metaobject, and null-check it.
3585  // Side-effects region with the control path if the klass is null.
3586  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3587  // If kls is null, we have a primitive mirror.
3588  phi->init_req(_prim_path, prim_return_value);
3589  if (stopped()) { set_result(region, phi); return true; }
3590  bool safe_for_replace = (region->in(_prim_path) == top());
3591
3592  Node* p;  // handy temp
3593  Node* null_ctl;
3594
3595  // Now that we have the non-null klass, we can perform the real query.
3596  // For constant classes, the query will constant-fold in LoadNode::Value.
3597  Node* query_value = top();
3598  switch (id) {
3599  case vmIntrinsics::_isInstance:
3600    // nothing is an instance of a primitive type
3601    query_value = gen_instanceof(obj, kls, safe_for_replace);
3602    break;
3603
3604  case vmIntrinsics::_getModifiers:
3605    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3606    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3607    break;
3608
3609  case vmIntrinsics::_isInterface:
3610    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3611    if (generate_interface_guard(kls, region) != NULL)
3612      // A guard was added.  If the guard is taken, it was an interface.
3613      phi->add_req(intcon(1));
3614    // If we fall through, it's a plain class.
3615    query_value = intcon(0);
3616    break;
3617
3618  case vmIntrinsics::_isArray:
3619    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3620    if (generate_array_guard(kls, region) != NULL)
3621      // A guard was added.  If the guard is taken, it was an array.
3622      phi->add_req(intcon(1));
3623    // If we fall through, it's a plain class.
3624    query_value = intcon(0);
3625    break;
3626
3627  case vmIntrinsics::_isPrimitive:
3628    query_value = intcon(0); // "normal" path produces false
3629    break;
3630
3631  case vmIntrinsics::_getSuperclass:
3632    // The rules here are somewhat unfortunate, but we can still do better
3633    // with random logic than with a JNI call.
3634    // Interfaces store null or Object as _super, but must report null.
3635    // Arrays store an intermediate super as _super, but must report Object.
3636    // Other types can report the actual _super.
3637    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3638    if (generate_interface_guard(kls, region) != NULL)
3639      // A guard was added.  If the guard is taken, it was an interface.
3640      phi->add_req(null());
3641    if (generate_array_guard(kls, region) != NULL)
3642      // A guard was added.  If the guard is taken, it was an array.
3643      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3644    // If we fall through, it's a plain class.  Get its _super.
3645    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3646    kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3647    null_ctl = top();
3648    kls = null_check_oop(kls, &null_ctl);
3649    if (null_ctl != top()) {
3650      // If the guard is taken, Object.superClass is null (both klass and mirror).
3651      region->add_req(null_ctl);
3652      phi   ->add_req(null());
3653    }
3654    if (!stopped()) {
3655      query_value = load_mirror_from_klass(kls);
3656    }
3657    break;
3658
3659  case vmIntrinsics::_getClassAccessFlags:
3660    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3661    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3662    break;
3663
3664  default:
3665    fatal_unexpected_iid(id);
3666    break;
3667  }
3668
3669  // Fall-through is the normal case of a query to a real class.
3670  phi->init_req(1, query_value);
3671  region->init_req(1, control());
3672
3673  C->set_has_split_ifs(true); // Has chance for split-if optimization
3674  set_result(region, phi);
3675  return true;
3676}
3677
3678//-------------------------inline_Class_cast-------------------
3679bool LibraryCallKit::inline_Class_cast() {
3680  Node* mirror = argument(0); // Class
3681  Node* obj    = argument(1);
3682  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3683  if (mirror_con == NULL) {
3684    return false;  // dead path (mirror->is_top()).
3685  }
3686  if (obj == NULL || obj->is_top()) {
3687    return false;  // dead path
3688  }
3689  const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3690
3691  // First, see if Class.cast() can be folded statically.
3692  // java_mirror_type() returns non-null for compile-time Class constants.
3693  ciType* tm = mirror_con->java_mirror_type();
3694  if (tm != NULL && tm->is_klass() &&
3695      tp != NULL && tp->klass() != NULL) {
3696    if (!tp->klass()->is_loaded()) {
3697      // Don't use intrinsic when class is not loaded.
3698      return false;
3699    } else {
3700      int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3701      if (static_res == Compile::SSC_always_true) {
3702        // isInstance() is true - fold the code.
3703        set_result(obj);
3704        return true;
3705      } else if (static_res == Compile::SSC_always_false) {
3706        // Don't use intrinsic, have to throw ClassCastException.
3707        // If the reference is null, the non-intrinsic bytecode will
3708        // be optimized appropriately.
3709        return false;
3710      }
3711    }
3712  }
3713
3714  // Bailout intrinsic and do normal inlining if exception path is frequent.
3715  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3716    return false;
3717  }
3718
3719  // Generate dynamic checks.
3720  // Class.cast() is java implementation of _checkcast bytecode.
3721  // Do checkcast (Parse::do_checkcast()) optimizations here.
3722
3723  mirror = null_check(mirror);
3724  // If mirror is dead, only null-path is taken.
3725  if (stopped()) {
3726    return true;
3727  }
3728
3729  // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3730  enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3731  RegionNode* region = new RegionNode(PATH_LIMIT);
3732  record_for_igvn(region);
3733
3734  // Now load the mirror's klass metaobject, and null-check it.
3735  // If kls is null, we have a primitive mirror and
3736  // nothing is an instance of a primitive type.
3737  Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3738
3739  Node* res = top();
3740  if (!stopped()) {
3741    Node* bad_type_ctrl = top();
3742    // Do checkcast optimizations.
3743    res = gen_checkcast(obj, kls, &bad_type_ctrl);
3744    region->init_req(_bad_type_path, bad_type_ctrl);
3745  }
3746  if (region->in(_prim_path) != top() ||
3747      region->in(_bad_type_path) != top()) {
3748    // Let Interpreter throw ClassCastException.
3749    PreserveJVMState pjvms(this);
3750    set_control(_gvn.transform(region));
3751    uncommon_trap(Deoptimization::Reason_intrinsic,
3752                  Deoptimization::Action_maybe_recompile);
3753  }
3754  if (!stopped()) {
3755    set_result(res);
3756  }
3757  return true;
3758}
3759
3760
3761//--------------------------inline_native_subtype_check------------------------
3762// This intrinsic takes the JNI calls out of the heart of
3763// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3764bool LibraryCallKit::inline_native_subtype_check() {
3765  // Pull both arguments off the stack.
3766  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3767  args[0] = argument(0);
3768  args[1] = argument(1);
3769  Node* klasses[2];             // corresponding Klasses: superk, subk
3770  klasses[0] = klasses[1] = top();
3771
3772  enum {
3773    // A full decision tree on {superc is prim, subc is prim}:
3774    _prim_0_path = 1,           // {P,N} => false
3775                                // {P,P} & superc!=subc => false
3776    _prim_same_path,            // {P,P} & superc==subc => true
3777    _prim_1_path,               // {N,P} => false
3778    _ref_subtype_path,          // {N,N} & subtype check wins => true
3779    _both_ref_path,             // {N,N} & subtype check loses => false
3780    PATH_LIMIT
3781  };
3782
3783  RegionNode* region = new RegionNode(PATH_LIMIT);
3784  Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3785  record_for_igvn(region);
3786
3787  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3788  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3789  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3790
3791  // First null-check both mirrors and load each mirror's klass metaobject.
3792  int which_arg;
3793  for (which_arg = 0; which_arg <= 1; which_arg++) {
3794    Node* arg = args[which_arg];
3795    arg = null_check(arg);
3796    if (stopped())  break;
3797    args[which_arg] = arg;
3798
3799    Node* p = basic_plus_adr(arg, class_klass_offset);
3800    Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3801    klasses[which_arg] = _gvn.transform(kls);
3802  }
3803
3804  // Having loaded both klasses, test each for null.
3805  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3806  for (which_arg = 0; which_arg <= 1; which_arg++) {
3807    Node* kls = klasses[which_arg];
3808    Node* null_ctl = top();
3809    kls = null_check_oop(kls, &null_ctl, never_see_null);
3810    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3811    region->init_req(prim_path, null_ctl);
3812    if (stopped())  break;
3813    klasses[which_arg] = kls;
3814  }
3815
3816  if (!stopped()) {
3817    // now we have two reference types, in klasses[0..1]
3818    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3819    Node* superk = klasses[0];  // the receiver
3820    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3821    // now we have a successful reference subtype check
3822    region->set_req(_ref_subtype_path, control());
3823  }
3824
3825  // If both operands are primitive (both klasses null), then
3826  // we must return true when they are identical primitives.
3827  // It is convenient to test this after the first null klass check.
3828  set_control(region->in(_prim_0_path)); // go back to first null check
3829  if (!stopped()) {
3830    // Since superc is primitive, make a guard for the superc==subc case.
3831    Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3832    Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3833    generate_guard(bol_eq, region, PROB_FAIR);
3834    if (region->req() == PATH_LIMIT+1) {
3835      // A guard was added.  If the added guard is taken, superc==subc.
3836      region->swap_edges(PATH_LIMIT, _prim_same_path);
3837      region->del_req(PATH_LIMIT);
3838    }
3839    region->set_req(_prim_0_path, control()); // Not equal after all.
3840  }
3841
3842  // these are the only paths that produce 'true':
3843  phi->set_req(_prim_same_path,   intcon(1));
3844  phi->set_req(_ref_subtype_path, intcon(1));
3845
3846  // pull together the cases:
3847  assert(region->req() == PATH_LIMIT, "sane region");
3848  for (uint i = 1; i < region->req(); i++) {
3849    Node* ctl = region->in(i);
3850    if (ctl == NULL || ctl == top()) {
3851      region->set_req(i, top());
3852      phi   ->set_req(i, top());
3853    } else if (phi->in(i) == NULL) {
3854      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3855    }
3856  }
3857
3858  set_control(_gvn.transform(region));
3859  set_result(_gvn.transform(phi));
3860  return true;
3861}
3862
3863//---------------------generate_array_guard_common------------------------
3864Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3865                                                  bool obj_array, bool not_array) {
3866
3867  if (stopped()) {
3868    return NULL;
3869  }
3870
3871  // If obj_array/non_array==false/false:
3872  // Branch around if the given klass is in fact an array (either obj or prim).
3873  // If obj_array/non_array==false/true:
3874  // Branch around if the given klass is not an array klass of any kind.
3875  // If obj_array/non_array==true/true:
3876  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3877  // If obj_array/non_array==true/false:
3878  // Branch around if the kls is an oop array (Object[] or subtype)
3879  //
3880  // Like generate_guard, adds a new path onto the region.
3881  jint  layout_con = 0;
3882  Node* layout_val = get_layout_helper(kls, layout_con);
3883  if (layout_val == NULL) {
3884    bool query = (obj_array
3885                  ? Klass::layout_helper_is_objArray(layout_con)
3886                  : Klass::layout_helper_is_array(layout_con));
3887    if (query == not_array) {
3888      return NULL;                       // never a branch
3889    } else {                             // always a branch
3890      Node* always_branch = control();
3891      if (region != NULL)
3892        region->add_req(always_branch);
3893      set_control(top());
3894      return always_branch;
3895    }
3896  }
3897  // Now test the correct condition.
3898  jint  nval = (obj_array
3899                ? (jint)(Klass::_lh_array_tag_type_value
3900                   <<    Klass::_lh_array_tag_shift)
3901                : Klass::_lh_neutral_value);
3902  Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3903  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3904  // invert the test if we are looking for a non-array
3905  if (not_array)  btest = BoolTest(btest).negate();
3906  Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3907  return generate_fair_guard(bol, region);
3908}
3909
3910
3911//-----------------------inline_native_newArray--------------------------
3912// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3913// private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3914bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3915  Node* mirror;
3916  Node* count_val;
3917  if (uninitialized) {
3918    mirror    = argument(1);
3919    count_val = argument(2);
3920  } else {
3921    mirror    = argument(0);
3922    count_val = argument(1);
3923  }
3924
3925  mirror = null_check(mirror);
3926  // If mirror or obj is dead, only null-path is taken.
3927  if (stopped())  return true;
3928
3929  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3930  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3931  PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3932  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3933  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3934
3935  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3936  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3937                                                  result_reg, _slow_path);
3938  Node* normal_ctl   = control();
3939  Node* no_array_ctl = result_reg->in(_slow_path);
3940
3941  // Generate code for the slow case.  We make a call to newArray().
3942  set_control(no_array_ctl);
3943  if (!stopped()) {
3944    // Either the input type is void.class, or else the
3945    // array klass has not yet been cached.  Either the
3946    // ensuing call will throw an exception, or else it
3947    // will cache the array klass for next time.
3948    PreserveJVMState pjvms(this);
3949    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3950    Node* slow_result = set_results_for_java_call(slow_call);
3951    // this->control() comes from set_results_for_java_call
3952    result_reg->set_req(_slow_path, control());
3953    result_val->set_req(_slow_path, slow_result);
3954    result_io ->set_req(_slow_path, i_o());
3955    result_mem->set_req(_slow_path, reset_memory());
3956  }
3957
3958  set_control(normal_ctl);
3959  if (!stopped()) {
3960    // Normal case:  The array type has been cached in the java.lang.Class.
3961    // The following call works fine even if the array type is polymorphic.
3962    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3963    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3964    result_reg->init_req(_normal_path, control());
3965    result_val->init_req(_normal_path, obj);
3966    result_io ->init_req(_normal_path, i_o());
3967    result_mem->init_req(_normal_path, reset_memory());
3968
3969    if (uninitialized) {
3970      // Mark the allocation so that zeroing is skipped
3971      AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3972      alloc->maybe_set_complete(&_gvn);
3973    }
3974  }
3975
3976  // Return the combined state.
3977  set_i_o(        _gvn.transform(result_io)  );
3978  set_all_memory( _gvn.transform(result_mem));
3979
3980  C->set_has_split_ifs(true); // Has chance for split-if optimization
3981  set_result(result_reg, result_val);
3982  return true;
3983}
3984
3985//----------------------inline_native_getLength--------------------------
3986// public static native int java.lang.reflect.Array.getLength(Object array);
3987bool LibraryCallKit::inline_native_getLength() {
3988  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3989
3990  Node* array = null_check(argument(0));
3991  // If array is dead, only null-path is taken.
3992  if (stopped())  return true;
3993
3994  // Deoptimize if it is a non-array.
3995  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3996
3997  if (non_array != NULL) {
3998    PreserveJVMState pjvms(this);
3999    set_control(non_array);
4000    uncommon_trap(Deoptimization::Reason_intrinsic,
4001                  Deoptimization::Action_maybe_recompile);
4002  }
4003
4004  // If control is dead, only non-array-path is taken.
4005  if (stopped())  return true;
4006
4007  // The works fine even if the array type is polymorphic.
4008  // It could be a dynamic mix of int[], boolean[], Object[], etc.
4009  Node* result = load_array_length(array);
4010
4011  C->set_has_split_ifs(true);  // Has chance for split-if optimization
4012  set_result(result);
4013  return true;
4014}
4015
4016//------------------------inline_array_copyOf----------------------------
4017// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4018// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4019bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4020  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4021
4022  // Get the arguments.
4023  Node* original          = argument(0);
4024  Node* start             = is_copyOfRange? argument(1): intcon(0);
4025  Node* end               = is_copyOfRange? argument(2): argument(1);
4026  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4027
4028  Node* newcopy = NULL;
4029
4030  // Set the original stack and the reexecute bit for the interpreter to reexecute
4031  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4032  { PreserveReexecuteState preexecs(this);
4033    jvms()->set_should_reexecute(true);
4034
4035    array_type_mirror = null_check(array_type_mirror);
4036    original          = null_check(original);
4037
4038    // Check if a null path was taken unconditionally.
4039    if (stopped())  return true;
4040
4041    Node* orig_length = load_array_length(original);
4042
4043    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4044    klass_node = null_check(klass_node);
4045
4046    RegionNode* bailout = new RegionNode(1);
4047    record_for_igvn(bailout);
4048
4049    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4050    // Bail out if that is so.
4051    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4052    if (not_objArray != NULL) {
4053      // Improve the klass node's type from the new optimistic assumption:
4054      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4055      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4056      Node* cast = new CastPPNode(klass_node, akls);
4057      cast->init_req(0, control());
4058      klass_node = _gvn.transform(cast);
4059    }
4060
4061    // Bail out if either start or end is negative.
4062    generate_negative_guard(start, bailout, &start);
4063    generate_negative_guard(end,   bailout, &end);
4064
4065    Node* length = end;
4066    if (_gvn.type(start) != TypeInt::ZERO) {
4067      length = _gvn.transform(new SubINode(end, start));
4068    }
4069
4070    // Bail out if length is negative.
4071    // Without this the new_array would throw
4072    // NegativeArraySizeException but IllegalArgumentException is what
4073    // should be thrown
4074    generate_negative_guard(length, bailout, &length);
4075
4076    if (bailout->req() > 1) {
4077      PreserveJVMState pjvms(this);
4078      set_control(_gvn.transform(bailout));
4079      uncommon_trap(Deoptimization::Reason_intrinsic,
4080                    Deoptimization::Action_maybe_recompile);
4081    }
4082
4083    if (!stopped()) {
4084      // How many elements will we copy from the original?
4085      // The answer is MinI(orig_length - start, length).
4086      Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4087      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4088
4089      // Generate a direct call to the right arraycopy function(s).
4090      // We know the copy is disjoint but we might not know if the
4091      // oop stores need checking.
4092      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4093      // This will fail a store-check if x contains any non-nulls.
4094
4095      // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4096      // loads/stores but it is legal only if we're sure the
4097      // Arrays.copyOf would succeed. So we need all input arguments
4098      // to the copyOf to be validated, including that the copy to the
4099      // new array won't trigger an ArrayStoreException. That subtype
4100      // check can be optimized if we know something on the type of
4101      // the input array from type speculation.
4102      if (_gvn.type(klass_node)->singleton()) {
4103        ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4104        ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4105
4106        int test = C->static_subtype_check(superk, subk);
4107        if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4108          const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4109          if (t_original->speculative_type() != NULL) {
4110            original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4111          }
4112        }
4113      }
4114
4115      bool validated = false;
4116      // Reason_class_check rather than Reason_intrinsic because we
4117      // want to intrinsify even if this traps.
4118      if (!too_many_traps(Deoptimization::Reason_class_check)) {
4119        Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4120                                                   klass_node);
4121
4122        if (not_subtype_ctrl != top()) {
4123          PreserveJVMState pjvms(this);
4124          set_control(not_subtype_ctrl);
4125          uncommon_trap(Deoptimization::Reason_class_check,
4126                        Deoptimization::Action_make_not_entrant);
4127          assert(stopped(), "Should be stopped");
4128        }
4129        validated = true;
4130      }
4131
4132      if (!stopped()) {
4133        newcopy = new_array(klass_node, length, 0);  // no arguments to push
4134
4135        ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4136                                                load_object_klass(original), klass_node);
4137        if (!is_copyOfRange) {
4138          ac->set_copyof(validated);
4139        } else {
4140          ac->set_copyofrange(validated);
4141        }
4142        Node* n = _gvn.transform(ac);
4143        if (n == ac) {
4144          ac->connect_outputs(this);
4145        } else {
4146          assert(validated, "shouldn't transform if all arguments not validated");
4147          set_all_memory(n);
4148        }
4149      }
4150    }
4151  } // original reexecute is set back here
4152
4153  C->set_has_split_ifs(true); // Has chance for split-if optimization
4154  if (!stopped()) {
4155    set_result(newcopy);
4156  }
4157  return true;
4158}
4159
4160
4161//----------------------generate_virtual_guard---------------------------
4162// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4163Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4164                                             RegionNode* slow_region) {
4165  ciMethod* method = callee();
4166  int vtable_index = method->vtable_index();
4167  assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4168         "bad index %d", vtable_index);
4169  // Get the Method* out of the appropriate vtable entry.
4170  int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4171                     vtable_index*vtableEntry::size_in_bytes() +
4172                     vtableEntry::method_offset_in_bytes();
4173  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4174  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4175
4176  // Compare the target method with the expected method (e.g., Object.hashCode).
4177  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4178
4179  Node* native_call = makecon(native_call_addr);
4180  Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4181  Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4182
4183  return generate_slow_guard(test_native, slow_region);
4184}
4185
4186//-----------------------generate_method_call----------------------------
4187// Use generate_method_call to make a slow-call to the real
4188// method if the fast path fails.  An alternative would be to
4189// use a stub like OptoRuntime::slow_arraycopy_Java.
4190// This only works for expanding the current library call,
4191// not another intrinsic.  (E.g., don't use this for making an
4192// arraycopy call inside of the copyOf intrinsic.)
4193CallJavaNode*
4194LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4195  // When compiling the intrinsic method itself, do not use this technique.
4196  guarantee(callee() != C->method(), "cannot make slow-call to self");
4197
4198  ciMethod* method = callee();
4199  // ensure the JVMS we have will be correct for this call
4200  guarantee(method_id == method->intrinsic_id(), "must match");
4201
4202  const TypeFunc* tf = TypeFunc::make(method);
4203  CallJavaNode* slow_call;
4204  if (is_static) {
4205    assert(!is_virtual, "");
4206    slow_call = new CallStaticJavaNode(C, tf,
4207                           SharedRuntime::get_resolve_static_call_stub(),
4208                           method, bci());
4209  } else if (is_virtual) {
4210    null_check_receiver();
4211    int vtable_index = Method::invalid_vtable_index;
4212    if (UseInlineCaches) {
4213      // Suppress the vtable call
4214    } else {
4215      // hashCode and clone are not a miranda methods,
4216      // so the vtable index is fixed.
4217      // No need to use the linkResolver to get it.
4218       vtable_index = method->vtable_index();
4219       assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4220              "bad index %d", vtable_index);
4221    }
4222    slow_call = new CallDynamicJavaNode(tf,
4223                          SharedRuntime::get_resolve_virtual_call_stub(),
4224                          method, vtable_index, bci());
4225  } else {  // neither virtual nor static:  opt_virtual
4226    null_check_receiver();
4227    slow_call = new CallStaticJavaNode(C, tf,
4228                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
4229                                method, bci());
4230    slow_call->set_optimized_virtual(true);
4231  }
4232  set_arguments_for_java_call(slow_call);
4233  set_edges_for_java_call(slow_call);
4234  return slow_call;
4235}
4236
4237
4238/**
4239 * Build special case code for calls to hashCode on an object. This call may
4240 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4241 * slightly different code.
4242 */
4243bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4244  assert(is_static == callee()->is_static(), "correct intrinsic selection");
4245  assert(!(is_virtual && is_static), "either virtual, special, or static");
4246
4247  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4248
4249  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4250  PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4251  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4252  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4253  Node* obj = NULL;
4254  if (!is_static) {
4255    // Check for hashing null object
4256    obj = null_check_receiver();
4257    if (stopped())  return true;        // unconditionally null
4258    result_reg->init_req(_null_path, top());
4259    result_val->init_req(_null_path, top());
4260  } else {
4261    // Do a null check, and return zero if null.
4262    // System.identityHashCode(null) == 0
4263    obj = argument(0);
4264    Node* null_ctl = top();
4265    obj = null_check_oop(obj, &null_ctl);
4266    result_reg->init_req(_null_path, null_ctl);
4267    result_val->init_req(_null_path, _gvn.intcon(0));
4268  }
4269
4270  // Unconditionally null?  Then return right away.
4271  if (stopped()) {
4272    set_control( result_reg->in(_null_path));
4273    if (!stopped())
4274      set_result(result_val->in(_null_path));
4275    return true;
4276  }
4277
4278  // We only go to the fast case code if we pass a number of guards.  The
4279  // paths which do not pass are accumulated in the slow_region.
4280  RegionNode* slow_region = new RegionNode(1);
4281  record_for_igvn(slow_region);
4282
4283  // If this is a virtual call, we generate a funny guard.  We pull out
4284  // the vtable entry corresponding to hashCode() from the target object.
4285  // If the target method which we are calling happens to be the native
4286  // Object hashCode() method, we pass the guard.  We do not need this
4287  // guard for non-virtual calls -- the caller is known to be the native
4288  // Object hashCode().
4289  if (is_virtual) {
4290    // After null check, get the object's klass.
4291    Node* obj_klass = load_object_klass(obj);
4292    generate_virtual_guard(obj_klass, slow_region);
4293  }
4294
4295  // Get the header out of the object, use LoadMarkNode when available
4296  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4297  // The control of the load must be NULL. Otherwise, the load can move before
4298  // the null check after castPP removal.
4299  Node* no_ctrl = NULL;
4300  Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4301
4302  // Test the header to see if it is unlocked.
4303  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4304  Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4305  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4306  Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4307  Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4308
4309  generate_slow_guard(test_unlocked, slow_region);
4310
4311  // Get the hash value and check to see that it has been properly assigned.
4312  // We depend on hash_mask being at most 32 bits and avoid the use of
4313  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4314  // vm: see markOop.hpp.
4315  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4316  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4317  Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4318  // This hack lets the hash bits live anywhere in the mark object now, as long
4319  // as the shift drops the relevant bits into the low 32 bits.  Note that
4320  // Java spec says that HashCode is an int so there's no point in capturing
4321  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4322  hshifted_header      = ConvX2I(hshifted_header);
4323  Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4324
4325  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4326  Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4327  Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4328
4329  generate_slow_guard(test_assigned, slow_region);
4330
4331  Node* init_mem = reset_memory();
4332  // fill in the rest of the null path:
4333  result_io ->init_req(_null_path, i_o());
4334  result_mem->init_req(_null_path, init_mem);
4335
4336  result_val->init_req(_fast_path, hash_val);
4337  result_reg->init_req(_fast_path, control());
4338  result_io ->init_req(_fast_path, i_o());
4339  result_mem->init_req(_fast_path, init_mem);
4340
4341  // Generate code for the slow case.  We make a call to hashCode().
4342  set_control(_gvn.transform(slow_region));
4343  if (!stopped()) {
4344    // No need for PreserveJVMState, because we're using up the present state.
4345    set_all_memory(init_mem);
4346    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4347    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4348    Node* slow_result = set_results_for_java_call(slow_call);
4349    // this->control() comes from set_results_for_java_call
4350    result_reg->init_req(_slow_path, control());
4351    result_val->init_req(_slow_path, slow_result);
4352    result_io  ->set_req(_slow_path, i_o());
4353    result_mem ->set_req(_slow_path, reset_memory());
4354  }
4355
4356  // Return the combined state.
4357  set_i_o(        _gvn.transform(result_io)  );
4358  set_all_memory( _gvn.transform(result_mem));
4359
4360  set_result(result_reg, result_val);
4361  return true;
4362}
4363
4364//---------------------------inline_native_getClass----------------------------
4365// public final native Class<?> java.lang.Object.getClass();
4366//
4367// Build special case code for calls to getClass on an object.
4368bool LibraryCallKit::inline_native_getClass() {
4369  Node* obj = null_check_receiver();
4370  if (stopped())  return true;
4371  set_result(load_mirror_from_klass(load_object_klass(obj)));
4372  return true;
4373}
4374
4375//-----------------inline_native_Reflection_getCallerClass---------------------
4376// public static native Class<?> sun.reflect.Reflection.getCallerClass();
4377//
4378// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4379//
4380// NOTE: This code must perform the same logic as JVM_GetCallerClass
4381// in that it must skip particular security frames and checks for
4382// caller sensitive methods.
4383bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4384#ifndef PRODUCT
4385  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4386    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4387  }
4388#endif
4389
4390  if (!jvms()->has_method()) {
4391#ifndef PRODUCT
4392    if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4393      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4394    }
4395#endif
4396    return false;
4397  }
4398
4399  // Walk back up the JVM state to find the caller at the required
4400  // depth.
4401  JVMState* caller_jvms = jvms();
4402
4403  // Cf. JVM_GetCallerClass
4404  // NOTE: Start the loop at depth 1 because the current JVM state does
4405  // not include the Reflection.getCallerClass() frame.
4406  for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4407    ciMethod* m = caller_jvms->method();
4408    switch (n) {
4409    case 0:
4410      fatal("current JVM state does not include the Reflection.getCallerClass frame");
4411      break;
4412    case 1:
4413      // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4414      if (!m->caller_sensitive()) {
4415#ifndef PRODUCT
4416        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4417          tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4418        }
4419#endif
4420        return false;  // bail-out; let JVM_GetCallerClass do the work
4421      }
4422      break;
4423    default:
4424      if (!m->is_ignored_by_security_stack_walk()) {
4425        // We have reached the desired frame; return the holder class.
4426        // Acquire method holder as java.lang.Class and push as constant.
4427        ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4428        ciInstance* caller_mirror = caller_klass->java_mirror();
4429        set_result(makecon(TypeInstPtr::make(caller_mirror)));
4430
4431#ifndef PRODUCT
4432        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4433          tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4434          tty->print_cr("  JVM state at this point:");
4435          for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4436            ciMethod* m = jvms()->of_depth(i)->method();
4437            tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4438          }
4439        }
4440#endif
4441        return true;
4442      }
4443      break;
4444    }
4445  }
4446
4447#ifndef PRODUCT
4448  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4449    tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4450    tty->print_cr("  JVM state at this point:");
4451    for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4452      ciMethod* m = jvms()->of_depth(i)->method();
4453      tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4454    }
4455  }
4456#endif
4457
4458  return false;  // bail-out; let JVM_GetCallerClass do the work
4459}
4460
4461bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4462  Node* arg = argument(0);
4463  Node* result = NULL;
4464
4465  switch (id) {
4466  case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4467  case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4468  case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4469  case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4470
4471  case vmIntrinsics::_doubleToLongBits: {
4472    // two paths (plus control) merge in a wood
4473    RegionNode *r = new RegionNode(3);
4474    Node *phi = new PhiNode(r, TypeLong::LONG);
4475
4476    Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4477    // Build the boolean node
4478    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4479
4480    // Branch either way.
4481    // NaN case is less traveled, which makes all the difference.
4482    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4483    Node *opt_isnan = _gvn.transform(ifisnan);
4484    assert( opt_isnan->is_If(), "Expect an IfNode");
4485    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4486    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4487
4488    set_control(iftrue);
4489
4490    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4491    Node *slow_result = longcon(nan_bits); // return NaN
4492    phi->init_req(1, _gvn.transform( slow_result ));
4493    r->init_req(1, iftrue);
4494
4495    // Else fall through
4496    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4497    set_control(iffalse);
4498
4499    phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4500    r->init_req(2, iffalse);
4501
4502    // Post merge
4503    set_control(_gvn.transform(r));
4504    record_for_igvn(r);
4505
4506    C->set_has_split_ifs(true); // Has chance for split-if optimization
4507    result = phi;
4508    assert(result->bottom_type()->isa_long(), "must be");
4509    break;
4510  }
4511
4512  case vmIntrinsics::_floatToIntBits: {
4513    // two paths (plus control) merge in a wood
4514    RegionNode *r = new RegionNode(3);
4515    Node *phi = new PhiNode(r, TypeInt::INT);
4516
4517    Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4518    // Build the boolean node
4519    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4520
4521    // Branch either way.
4522    // NaN case is less traveled, which makes all the difference.
4523    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4524    Node *opt_isnan = _gvn.transform(ifisnan);
4525    assert( opt_isnan->is_If(), "Expect an IfNode");
4526    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4527    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4528
4529    set_control(iftrue);
4530
4531    static const jint nan_bits = 0x7fc00000;
4532    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4533    phi->init_req(1, _gvn.transform( slow_result ));
4534    r->init_req(1, iftrue);
4535
4536    // Else fall through
4537    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4538    set_control(iffalse);
4539
4540    phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4541    r->init_req(2, iffalse);
4542
4543    // Post merge
4544    set_control(_gvn.transform(r));
4545    record_for_igvn(r);
4546
4547    C->set_has_split_ifs(true); // Has chance for split-if optimization
4548    result = phi;
4549    assert(result->bottom_type()->isa_int(), "must be");
4550    break;
4551  }
4552
4553  default:
4554    fatal_unexpected_iid(id);
4555    break;
4556  }
4557  set_result(_gvn.transform(result));
4558  return true;
4559}
4560
4561//----------------------inline_unsafe_copyMemory-------------------------
4562// public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4563bool LibraryCallKit::inline_unsafe_copyMemory() {
4564  if (callee()->is_static())  return false;  // caller must have the capability!
4565  null_check_receiver();  // null-check receiver
4566  if (stopped())  return true;
4567
4568  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4569
4570  Node* src_ptr =         argument(1);   // type: oop
4571  Node* src_off = ConvL2X(argument(2));  // type: long
4572  Node* dst_ptr =         argument(4);   // type: oop
4573  Node* dst_off = ConvL2X(argument(5));  // type: long
4574  Node* size    = ConvL2X(argument(7));  // type: long
4575
4576  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4577         "fieldOffset must be byte-scaled");
4578
4579  Node* src = make_unsafe_address(src_ptr, src_off);
4580  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4581
4582  // Conservatively insert a memory barrier on all memory slices.
4583  // Do not let writes of the copy source or destination float below the copy.
4584  insert_mem_bar(Op_MemBarCPUOrder);
4585
4586  // Call it.  Note that the length argument is not scaled.
4587  make_runtime_call(RC_LEAF|RC_NO_FP,
4588                    OptoRuntime::fast_arraycopy_Type(),
4589                    StubRoutines::unsafe_arraycopy(),
4590                    "unsafe_arraycopy",
4591                    TypeRawPtr::BOTTOM,
4592                    src, dst, size XTOP);
4593
4594  // Do not let reads of the copy destination float above the copy.
4595  insert_mem_bar(Op_MemBarCPUOrder);
4596
4597  return true;
4598}
4599
4600//------------------------clone_coping-----------------------------------
4601// Helper function for inline_native_clone.
4602void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4603  assert(obj_size != NULL, "");
4604  Node* raw_obj = alloc_obj->in(1);
4605  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4606
4607  AllocateNode* alloc = NULL;
4608  if (ReduceBulkZeroing) {
4609    // We will be completely responsible for initializing this object -
4610    // mark Initialize node as complete.
4611    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4612    // The object was just allocated - there should be no any stores!
4613    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4614    // Mark as complete_with_arraycopy so that on AllocateNode
4615    // expansion, we know this AllocateNode is initialized by an array
4616    // copy and a StoreStore barrier exists after the array copy.
4617    alloc->initialization()->set_complete_with_arraycopy();
4618  }
4619
4620  // Copy the fastest available way.
4621  // TODO: generate fields copies for small objects instead.
4622  Node* src  = obj;
4623  Node* dest = alloc_obj;
4624  Node* size = _gvn.transform(obj_size);
4625
4626  // Exclude the header but include array length to copy by 8 bytes words.
4627  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4628  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4629                            instanceOopDesc::base_offset_in_bytes();
4630  // base_off:
4631  // 8  - 32-bit VM
4632  // 12 - 64-bit VM, compressed klass
4633  // 16 - 64-bit VM, normal klass
4634  if (base_off % BytesPerLong != 0) {
4635    assert(UseCompressedClassPointers, "");
4636    if (is_array) {
4637      // Exclude length to copy by 8 bytes words.
4638      base_off += sizeof(int);
4639    } else {
4640      // Include klass to copy by 8 bytes words.
4641      base_off = instanceOopDesc::klass_offset_in_bytes();
4642    }
4643    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4644  }
4645  src  = basic_plus_adr(src,  base_off);
4646  dest = basic_plus_adr(dest, base_off);
4647
4648  // Compute the length also, if needed:
4649  Node* countx = size;
4650  countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4651  countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4652
4653  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4654
4655  ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4656  ac->set_clonebasic();
4657  Node* n = _gvn.transform(ac);
4658  if (n == ac) {
4659    set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4660  } else {
4661    set_all_memory(n);
4662  }
4663
4664  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4665  if (card_mark) {
4666    assert(!is_array, "");
4667    // Put in store barrier for any and all oops we are sticking
4668    // into this object.  (We could avoid this if we could prove
4669    // that the object type contains no oop fields at all.)
4670    Node* no_particular_value = NULL;
4671    Node* no_particular_field = NULL;
4672    int raw_adr_idx = Compile::AliasIdxRaw;
4673    post_barrier(control(),
4674                 memory(raw_adr_type),
4675                 alloc_obj,
4676                 no_particular_field,
4677                 raw_adr_idx,
4678                 no_particular_value,
4679                 T_OBJECT,
4680                 false);
4681  }
4682
4683  // Do not let reads from the cloned object float above the arraycopy.
4684  if (alloc != NULL) {
4685    // Do not let stores that initialize this object be reordered with
4686    // a subsequent store that would make this object accessible by
4687    // other threads.
4688    // Record what AllocateNode this StoreStore protects so that
4689    // escape analysis can go from the MemBarStoreStoreNode to the
4690    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4691    // based on the escape status of the AllocateNode.
4692    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4693  } else {
4694    insert_mem_bar(Op_MemBarCPUOrder);
4695  }
4696}
4697
4698//------------------------inline_native_clone----------------------------
4699// protected native Object java.lang.Object.clone();
4700//
4701// Here are the simple edge cases:
4702//  null receiver => normal trap
4703//  virtual and clone was overridden => slow path to out-of-line clone
4704//  not cloneable or finalizer => slow path to out-of-line Object.clone
4705//
4706// The general case has two steps, allocation and copying.
4707// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4708//
4709// Copying also has two cases, oop arrays and everything else.
4710// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4711// Everything else uses the tight inline loop supplied by CopyArrayNode.
4712//
4713// These steps fold up nicely if and when the cloned object's klass
4714// can be sharply typed as an object array, a type array, or an instance.
4715//
4716bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4717  PhiNode* result_val;
4718
4719  // Set the reexecute bit for the interpreter to reexecute
4720  // the bytecode that invokes Object.clone if deoptimization happens.
4721  { PreserveReexecuteState preexecs(this);
4722    jvms()->set_should_reexecute(true);
4723
4724    Node* obj = null_check_receiver();
4725    if (stopped())  return true;
4726
4727    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4728
4729    // If we are going to clone an instance, we need its exact type to
4730    // know the number and types of fields to convert the clone to
4731    // loads/stores. Maybe a speculative type can help us.
4732    if (!obj_type->klass_is_exact() &&
4733        obj_type->speculative_type() != NULL &&
4734        obj_type->speculative_type()->is_instance_klass()) {
4735      ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4736      if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4737          !spec_ik->has_injected_fields()) {
4738        ciKlass* k = obj_type->klass();
4739        if (!k->is_instance_klass() ||
4740            k->as_instance_klass()->is_interface() ||
4741            k->as_instance_klass()->has_subklass()) {
4742          obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4743        }
4744      }
4745    }
4746
4747    Node* obj_klass = load_object_klass(obj);
4748    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4749    const TypeOopPtr*   toop   = ((tklass != NULL)
4750                                ? tklass->as_instance_type()
4751                                : TypeInstPtr::NOTNULL);
4752
4753    // Conservatively insert a memory barrier on all memory slices.
4754    // Do not let writes into the original float below the clone.
4755    insert_mem_bar(Op_MemBarCPUOrder);
4756
4757    // paths into result_reg:
4758    enum {
4759      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4760      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4761      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4762      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4763      PATH_LIMIT
4764    };
4765    RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4766    result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4767    PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4768    PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4769    record_for_igvn(result_reg);
4770
4771    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4772    int raw_adr_idx = Compile::AliasIdxRaw;
4773
4774    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4775    if (array_ctl != NULL) {
4776      // It's an array.
4777      PreserveJVMState pjvms(this);
4778      set_control(array_ctl);
4779      Node* obj_length = load_array_length(obj);
4780      Node* obj_size  = NULL;
4781      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4782
4783      if (!use_ReduceInitialCardMarks()) {
4784        // If it is an oop array, it requires very special treatment,
4785        // because card marking is required on each card of the array.
4786        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4787        if (is_obja != NULL) {
4788          PreserveJVMState pjvms2(this);
4789          set_control(is_obja);
4790          // Generate a direct call to the right arraycopy function(s).
4791          Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4792          ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4793          ac->set_cloneoop();
4794          Node* n = _gvn.transform(ac);
4795          assert(n == ac, "cannot disappear");
4796          ac->connect_outputs(this);
4797
4798          result_reg->init_req(_objArray_path, control());
4799          result_val->init_req(_objArray_path, alloc_obj);
4800          result_i_o ->set_req(_objArray_path, i_o());
4801          result_mem ->set_req(_objArray_path, reset_memory());
4802        }
4803      }
4804      // Otherwise, there are no card marks to worry about.
4805      // (We can dispense with card marks if we know the allocation
4806      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4807      //  causes the non-eden paths to take compensating steps to
4808      //  simulate a fresh allocation, so that no further
4809      //  card marks are required in compiled code to initialize
4810      //  the object.)
4811
4812      if (!stopped()) {
4813        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4814
4815        // Present the results of the copy.
4816        result_reg->init_req(_array_path, control());
4817        result_val->init_req(_array_path, alloc_obj);
4818        result_i_o ->set_req(_array_path, i_o());
4819        result_mem ->set_req(_array_path, reset_memory());
4820      }
4821    }
4822
4823    // We only go to the instance fast case code if we pass a number of guards.
4824    // The paths which do not pass are accumulated in the slow_region.
4825    RegionNode* slow_region = new RegionNode(1);
4826    record_for_igvn(slow_region);
4827    if (!stopped()) {
4828      // It's an instance (we did array above).  Make the slow-path tests.
4829      // If this is a virtual call, we generate a funny guard.  We grab
4830      // the vtable entry corresponding to clone() from the target object.
4831      // If the target method which we are calling happens to be the
4832      // Object clone() method, we pass the guard.  We do not need this
4833      // guard for non-virtual calls; the caller is known to be the native
4834      // Object clone().
4835      if (is_virtual) {
4836        generate_virtual_guard(obj_klass, slow_region);
4837      }
4838
4839      // The object must be easily cloneable and must not have a finalizer.
4840      // Both of these conditions may be checked in a single test.
4841      // We could optimize the test further, but we don't care.
4842      generate_access_flags_guard(obj_klass,
4843                                  // Test both conditions:
4844                                  JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4845                                  // Must be cloneable but not finalizer:
4846                                  JVM_ACC_IS_CLONEABLE_FAST,
4847                                  slow_region);
4848    }
4849
4850    if (!stopped()) {
4851      // It's an instance, and it passed the slow-path tests.
4852      PreserveJVMState pjvms(this);
4853      Node* obj_size  = NULL;
4854      // Need to deoptimize on exception from allocation since Object.clone intrinsic
4855      // is reexecuted if deoptimization occurs and there could be problems when merging
4856      // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4857      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4858
4859      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4860
4861      // Present the results of the slow call.
4862      result_reg->init_req(_instance_path, control());
4863      result_val->init_req(_instance_path, alloc_obj);
4864      result_i_o ->set_req(_instance_path, i_o());
4865      result_mem ->set_req(_instance_path, reset_memory());
4866    }
4867
4868    // Generate code for the slow case.  We make a call to clone().
4869    set_control(_gvn.transform(slow_region));
4870    if (!stopped()) {
4871      PreserveJVMState pjvms(this);
4872      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4873      Node* slow_result = set_results_for_java_call(slow_call);
4874      // this->control() comes from set_results_for_java_call
4875      result_reg->init_req(_slow_path, control());
4876      result_val->init_req(_slow_path, slow_result);
4877      result_i_o ->set_req(_slow_path, i_o());
4878      result_mem ->set_req(_slow_path, reset_memory());
4879    }
4880
4881    // Return the combined state.
4882    set_control(    _gvn.transform(result_reg));
4883    set_i_o(        _gvn.transform(result_i_o));
4884    set_all_memory( _gvn.transform(result_mem));
4885  } // original reexecute is set back here
4886
4887  set_result(_gvn.transform(result_val));
4888  return true;
4889}
4890
4891// If we have a tighly coupled allocation, the arraycopy may take care
4892// of the array initialization. If one of the guards we insert between
4893// the allocation and the arraycopy causes a deoptimization, an
4894// unitialized array will escape the compiled method. To prevent that
4895// we set the JVM state for uncommon traps between the allocation and
4896// the arraycopy to the state before the allocation so, in case of
4897// deoptimization, we'll reexecute the allocation and the
4898// initialization.
4899JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4900  if (alloc != NULL) {
4901    ciMethod* trap_method = alloc->jvms()->method();
4902    int trap_bci = alloc->jvms()->bci();
4903
4904    if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4905          !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4906      // Make sure there's no store between the allocation and the
4907      // arraycopy otherwise visible side effects could be rexecuted
4908      // in case of deoptimization and cause incorrect execution.
4909      bool no_interfering_store = true;
4910      Node* mem = alloc->in(TypeFunc::Memory);
4911      if (mem->is_MergeMem()) {
4912        for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4913          Node* n = mms.memory();
4914          if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4915            assert(n->is_Store(), "what else?");
4916            no_interfering_store = false;
4917            break;
4918          }
4919        }
4920      } else {
4921        for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4922          Node* n = mms.memory();
4923          if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4924            assert(n->is_Store(), "what else?");
4925            no_interfering_store = false;
4926            break;
4927          }
4928        }
4929      }
4930
4931      if (no_interfering_store) {
4932        JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4933        uint size = alloc->req();
4934        SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4935        old_jvms->set_map(sfpt);
4936        for (uint i = 0; i < size; i++) {
4937          sfpt->init_req(i, alloc->in(i));
4938        }
4939        // re-push array length for deoptimization
4940        sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4941        old_jvms->set_sp(old_jvms->sp()+1);
4942        old_jvms->set_monoff(old_jvms->monoff()+1);
4943        old_jvms->set_scloff(old_jvms->scloff()+1);
4944        old_jvms->set_endoff(old_jvms->endoff()+1);
4945        old_jvms->set_should_reexecute(true);
4946
4947        sfpt->set_i_o(map()->i_o());
4948        sfpt->set_memory(map()->memory());
4949        sfpt->set_control(map()->control());
4950
4951        JVMState* saved_jvms = jvms();
4952        saved_reexecute_sp = _reexecute_sp;
4953
4954        set_jvms(sfpt->jvms());
4955        _reexecute_sp = jvms()->sp();
4956
4957        return saved_jvms;
4958      }
4959    }
4960  }
4961  return NULL;
4962}
4963
4964// In case of a deoptimization, we restart execution at the
4965// allocation, allocating a new array. We would leave an uninitialized
4966// array in the heap that GCs wouldn't expect. Move the allocation
4967// after the traps so we don't allocate the array if we
4968// deoptimize. This is possible because tightly_coupled_allocation()
4969// guarantees there's no observer of the allocated array at this point
4970// and the control flow is simple enough.
4971void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4972                                                    int saved_reexecute_sp, uint new_idx) {
4973  if (saved_jvms != NULL && !stopped()) {
4974    assert(alloc != NULL, "only with a tightly coupled allocation");
4975    // restore JVM state to the state at the arraycopy
4976    saved_jvms->map()->set_control(map()->control());
4977    assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4978    assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4979    // If we've improved the types of some nodes (null check) while
4980    // emitting the guards, propagate them to the current state
4981    map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4982    set_jvms(saved_jvms);
4983    _reexecute_sp = saved_reexecute_sp;
4984
4985    // Remove the allocation from above the guards
4986    CallProjections callprojs;
4987    alloc->extract_projections(&callprojs, true);
4988    InitializeNode* init = alloc->initialization();
4989    Node* alloc_mem = alloc->in(TypeFunc::Memory);
4990    C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4991    C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4992    C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4993
4994    // move the allocation here (after the guards)
4995    _gvn.hash_delete(alloc);
4996    alloc->set_req(TypeFunc::Control, control());
4997    alloc->set_req(TypeFunc::I_O, i_o());
4998    Node *mem = reset_memory();
4999    set_all_memory(mem);
5000    alloc->set_req(TypeFunc::Memory, mem);
5001    set_control(init->proj_out(TypeFunc::Control));
5002    set_i_o(callprojs.fallthrough_ioproj);
5003
5004    // Update memory as done in GraphKit::set_output_for_allocation()
5005    const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5006    const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5007    if (ary_type->isa_aryptr() && length_type != NULL) {
5008      ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5009    }
5010    const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5011    int            elemidx  = C->get_alias_index(telemref);
5012    set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
5013    set_memory(init->proj_out(TypeFunc::Memory), elemidx);
5014
5015    Node* allocx = _gvn.transform(alloc);
5016    assert(allocx == alloc, "where has the allocation gone?");
5017    assert(dest->is_CheckCastPP(), "not an allocation result?");
5018
5019    _gvn.hash_delete(dest);
5020    dest->set_req(0, control());
5021    Node* destx = _gvn.transform(dest);
5022    assert(destx == dest, "where has the allocation result gone?");
5023  }
5024}
5025
5026
5027//------------------------------inline_arraycopy-----------------------
5028// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5029//                                                      Object dest, int destPos,
5030//                                                      int length);
5031bool LibraryCallKit::inline_arraycopy() {
5032  // Get the arguments.
5033  Node* src         = argument(0);  // type: oop
5034  Node* src_offset  = argument(1);  // type: int
5035  Node* dest        = argument(2);  // type: oop
5036  Node* dest_offset = argument(3);  // type: int
5037  Node* length      = argument(4);  // type: int
5038
5039  uint new_idx = C->unique();
5040
5041  // Check for allocation before we add nodes that would confuse
5042  // tightly_coupled_allocation()
5043  AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
5044
5045  int saved_reexecute_sp = -1;
5046  JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5047  // See arraycopy_restore_alloc_state() comment
5048  // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5049  // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5050  // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5051  bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5052
5053  // The following tests must be performed
5054  // (1) src and dest are arrays.
5055  // (2) src and dest arrays must have elements of the same BasicType
5056  // (3) src and dest must not be null.
5057  // (4) src_offset must not be negative.
5058  // (5) dest_offset must not be negative.
5059  // (6) length must not be negative.
5060  // (7) src_offset + length must not exceed length of src.
5061  // (8) dest_offset + length must not exceed length of dest.
5062  // (9) each element of an oop array must be assignable
5063
5064  // (3) src and dest must not be null.
5065  // always do this here because we need the JVM state for uncommon traps
5066  Node* null_ctl = top();
5067  src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5068  assert(null_ctl->is_top(), "no null control here");
5069  dest = null_check(dest, T_ARRAY);
5070
5071  if (!can_emit_guards) {
5072    // if saved_jvms == NULL and alloc != NULL, we don't emit any
5073    // guards but the arraycopy node could still take advantage of a
5074    // tightly allocated allocation. tightly_coupled_allocation() is
5075    // called again to make sure it takes the null check above into
5076    // account: the null check is mandatory and if it caused an
5077    // uncommon trap to be emitted then the allocation can't be
5078    // considered tightly coupled in this context.
5079    alloc = tightly_coupled_allocation(dest, NULL);
5080  }
5081
5082  bool validated = false;
5083
5084  const Type* src_type  = _gvn.type(src);
5085  const Type* dest_type = _gvn.type(dest);
5086  const TypeAryPtr* top_src  = src_type->isa_aryptr();
5087  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5088
5089  // Do we have the type of src?
5090  bool has_src = (top_src != NULL && top_src->klass() != NULL);
5091  // Do we have the type of dest?
5092  bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5093  // Is the type for src from speculation?
5094  bool src_spec = false;
5095  // Is the type for dest from speculation?
5096  bool dest_spec = false;
5097
5098  if ((!has_src || !has_dest) && can_emit_guards) {
5099    // We don't have sufficient type information, let's see if
5100    // speculative types can help. We need to have types for both src
5101    // and dest so that it pays off.
5102
5103    // Do we already have or could we have type information for src
5104    bool could_have_src = has_src;
5105    // Do we already have or could we have type information for dest
5106    bool could_have_dest = has_dest;
5107
5108    ciKlass* src_k = NULL;
5109    if (!has_src) {
5110      src_k = src_type->speculative_type_not_null();
5111      if (src_k != NULL && src_k->is_array_klass()) {
5112        could_have_src = true;
5113      }
5114    }
5115
5116    ciKlass* dest_k = NULL;
5117    if (!has_dest) {
5118      dest_k = dest_type->speculative_type_not_null();
5119      if (dest_k != NULL && dest_k->is_array_klass()) {
5120        could_have_dest = true;
5121      }
5122    }
5123
5124    if (could_have_src && could_have_dest) {
5125      // This is going to pay off so emit the required guards
5126      if (!has_src) {
5127        src = maybe_cast_profiled_obj(src, src_k, true);
5128        src_type  = _gvn.type(src);
5129        top_src  = src_type->isa_aryptr();
5130        has_src = (top_src != NULL && top_src->klass() != NULL);
5131        src_spec = true;
5132      }
5133      if (!has_dest) {
5134        dest = maybe_cast_profiled_obj(dest, dest_k, true);
5135        dest_type  = _gvn.type(dest);
5136        top_dest  = dest_type->isa_aryptr();
5137        has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5138        dest_spec = true;
5139      }
5140    }
5141  }
5142
5143  if (has_src && has_dest && can_emit_guards) {
5144    BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5145    BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5146    if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5147    if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5148
5149    if (src_elem == dest_elem && src_elem == T_OBJECT) {
5150      // If both arrays are object arrays then having the exact types
5151      // for both will remove the need for a subtype check at runtime
5152      // before the call and may make it possible to pick a faster copy
5153      // routine (without a subtype check on every element)
5154      // Do we have the exact type of src?
5155      bool could_have_src = src_spec;
5156      // Do we have the exact type of dest?
5157      bool could_have_dest = dest_spec;
5158      ciKlass* src_k = top_src->klass();
5159      ciKlass* dest_k = top_dest->klass();
5160      if (!src_spec) {
5161        src_k = src_type->speculative_type_not_null();
5162        if (src_k != NULL && src_k->is_array_klass()) {
5163          could_have_src = true;
5164        }
5165      }
5166      if (!dest_spec) {
5167        dest_k = dest_type->speculative_type_not_null();
5168        if (dest_k != NULL && dest_k->is_array_klass()) {
5169          could_have_dest = true;
5170        }
5171      }
5172      if (could_have_src && could_have_dest) {
5173        // If we can have both exact types, emit the missing guards
5174        if (could_have_src && !src_spec) {
5175          src = maybe_cast_profiled_obj(src, src_k, true);
5176        }
5177        if (could_have_dest && !dest_spec) {
5178          dest = maybe_cast_profiled_obj(dest, dest_k, true);
5179        }
5180      }
5181    }
5182  }
5183
5184  ciMethod* trap_method = method();
5185  int trap_bci = bci();
5186  if (saved_jvms != NULL) {
5187    trap_method = alloc->jvms()->method();
5188    trap_bci = alloc->jvms()->bci();
5189  }
5190
5191  bool negative_length_guard_generated = false;
5192
5193  if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5194      can_emit_guards &&
5195      !src->is_top() && !dest->is_top()) {
5196    // validate arguments: enables transformation the ArrayCopyNode
5197    validated = true;
5198
5199    RegionNode* slow_region = new RegionNode(1);
5200    record_for_igvn(slow_region);
5201
5202    // (1) src and dest are arrays.
5203    generate_non_array_guard(load_object_klass(src), slow_region);
5204    generate_non_array_guard(load_object_klass(dest), slow_region);
5205
5206    // (2) src and dest arrays must have elements of the same BasicType
5207    // done at macro expansion or at Ideal transformation time
5208
5209    // (4) src_offset must not be negative.
5210    generate_negative_guard(src_offset, slow_region);
5211
5212    // (5) dest_offset must not be negative.
5213    generate_negative_guard(dest_offset, slow_region);
5214
5215    // (7) src_offset + length must not exceed length of src.
5216    generate_limit_guard(src_offset, length,
5217                         load_array_length(src),
5218                         slow_region);
5219
5220    // (8) dest_offset + length must not exceed length of dest.
5221    generate_limit_guard(dest_offset, length,
5222                         load_array_length(dest),
5223                         slow_region);
5224
5225    // (6) length must not be negative.
5226    // This is also checked in generate_arraycopy() during macro expansion, but
5227    // we also have to check it here for the case where the ArrayCopyNode will
5228    // be eliminated by Escape Analysis.
5229    if (EliminateAllocations) {
5230      generate_negative_guard(length, slow_region);
5231      negative_length_guard_generated = true;
5232    }
5233
5234    // (9) each element of an oop array must be assignable
5235    Node* src_klass  = load_object_klass(src);
5236    Node* dest_klass = load_object_klass(dest);
5237    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5238
5239    if (not_subtype_ctrl != top()) {
5240      PreserveJVMState pjvms(this);
5241      set_control(not_subtype_ctrl);
5242      uncommon_trap(Deoptimization::Reason_intrinsic,
5243                    Deoptimization::Action_make_not_entrant);
5244      assert(stopped(), "Should be stopped");
5245    }
5246    {
5247      PreserveJVMState pjvms(this);
5248      set_control(_gvn.transform(slow_region));
5249      uncommon_trap(Deoptimization::Reason_intrinsic,
5250                    Deoptimization::Action_make_not_entrant);
5251      assert(stopped(), "Should be stopped");
5252    }
5253
5254    const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5255    const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
5256    src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5257  }
5258
5259  arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5260
5261  if (stopped()) {
5262    return true;
5263  }
5264
5265  ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5266                                          // Create LoadRange and LoadKlass nodes for use during macro expansion here
5267                                          // so the compiler has a chance to eliminate them: during macro expansion,
5268                                          // we have to set their control (CastPP nodes are eliminated).
5269                                          load_object_klass(src), load_object_klass(dest),
5270                                          load_array_length(src), load_array_length(dest));
5271
5272  ac->set_arraycopy(validated);
5273
5274  Node* n = _gvn.transform(ac);
5275  if (n == ac) {
5276    ac->connect_outputs(this);
5277  } else {
5278    assert(validated, "shouldn't transform if all arguments not validated");
5279    set_all_memory(n);
5280  }
5281
5282  return true;
5283}
5284
5285
5286// Helper function which determines if an arraycopy immediately follows
5287// an allocation, with no intervening tests or other escapes for the object.
5288AllocateArrayNode*
5289LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5290                                           RegionNode* slow_region) {
5291  if (stopped())             return NULL;  // no fast path
5292  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5293
5294  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5295  if (alloc == NULL)  return NULL;
5296
5297  Node* rawmem = memory(Compile::AliasIdxRaw);
5298  // Is the allocation's memory state untouched?
5299  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5300    // Bail out if there have been raw-memory effects since the allocation.
5301    // (Example:  There might have been a call or safepoint.)
5302    return NULL;
5303  }
5304  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5305  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5306    return NULL;
5307  }
5308
5309  // There must be no unexpected observers of this allocation.
5310  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5311    Node* obs = ptr->fast_out(i);
5312    if (obs != this->map()) {
5313      return NULL;
5314    }
5315  }
5316
5317  // This arraycopy must unconditionally follow the allocation of the ptr.
5318  Node* alloc_ctl = ptr->in(0);
5319  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5320
5321  Node* ctl = control();
5322  while (ctl != alloc_ctl) {
5323    // There may be guards which feed into the slow_region.
5324    // Any other control flow means that we might not get a chance
5325    // to finish initializing the allocated object.
5326    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5327      IfNode* iff = ctl->in(0)->as_If();
5328      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5329      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5330      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5331        ctl = iff->in(0);       // This test feeds the known slow_region.
5332        continue;
5333      }
5334      // One more try:  Various low-level checks bottom out in
5335      // uncommon traps.  If the debug-info of the trap omits
5336      // any reference to the allocation, as we've already
5337      // observed, then there can be no objection to the trap.
5338      bool found_trap = false;
5339      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5340        Node* obs = not_ctl->fast_out(j);
5341        if (obs->in(0) == not_ctl && obs->is_Call() &&
5342            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5343          found_trap = true; break;
5344        }
5345      }
5346      if (found_trap) {
5347        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5348        continue;
5349      }
5350    }
5351    return NULL;
5352  }
5353
5354  // If we get this far, we have an allocation which immediately
5355  // precedes the arraycopy, and we can take over zeroing the new object.
5356  // The arraycopy will finish the initialization, and provide
5357  // a new control state to which we will anchor the destination pointer.
5358
5359  return alloc;
5360}
5361
5362//-------------inline_encodeISOArray-----------------------------------
5363// encode char[] to byte[] in ISO_8859_1
5364bool LibraryCallKit::inline_encodeISOArray() {
5365  assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5366  // no receiver since it is static method
5367  Node *src         = argument(0);
5368  Node *src_offset  = argument(1);
5369  Node *dst         = argument(2);
5370  Node *dst_offset  = argument(3);
5371  Node *length      = argument(4);
5372
5373  const Type* src_type = src->Value(&_gvn);
5374  const Type* dst_type = dst->Value(&_gvn);
5375  const TypeAryPtr* top_src = src_type->isa_aryptr();
5376  const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5377  if (top_src  == NULL || top_src->klass()  == NULL ||
5378      top_dest == NULL || top_dest->klass() == NULL) {
5379    // failed array check
5380    return false;
5381  }
5382
5383  // Figure out the size and type of the elements we will be copying.
5384  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5385  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5386  if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5387    return false;
5388  }
5389
5390  Node* src_start = array_element_address(src, src_offset, T_CHAR);
5391  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5392  // 'src_start' points to src array + scaled offset
5393  // 'dst_start' points to dst array + scaled offset
5394
5395  const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5396  Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5397  enc = _gvn.transform(enc);
5398  Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5399  set_memory(res_mem, mtype);
5400  set_result(enc);
5401  return true;
5402}
5403
5404//-------------inline_multiplyToLen-----------------------------------
5405bool LibraryCallKit::inline_multiplyToLen() {
5406  assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5407
5408  address stubAddr = StubRoutines::multiplyToLen();
5409  if (stubAddr == NULL) {
5410    return false; // Intrinsic's stub is not implemented on this platform
5411  }
5412  const char* stubName = "multiplyToLen";
5413
5414  assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5415
5416  // no receiver because it is a static method
5417  Node* x    = argument(0);
5418  Node* xlen = argument(1);
5419  Node* y    = argument(2);
5420  Node* ylen = argument(3);
5421  Node* z    = argument(4);
5422
5423  const Type* x_type = x->Value(&_gvn);
5424  const Type* y_type = y->Value(&_gvn);
5425  const TypeAryPtr* top_x = x_type->isa_aryptr();
5426  const TypeAryPtr* top_y = y_type->isa_aryptr();
5427  if (top_x  == NULL || top_x->klass()  == NULL ||
5428      top_y == NULL || top_y->klass() == NULL) {
5429    // failed array check
5430    return false;
5431  }
5432
5433  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5434  BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5435  if (x_elem != T_INT || y_elem != T_INT) {
5436    return false;
5437  }
5438
5439  // Set the original stack and the reexecute bit for the interpreter to reexecute
5440  // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5441  // on the return from z array allocation in runtime.
5442  { PreserveReexecuteState preexecs(this);
5443    jvms()->set_should_reexecute(true);
5444
5445    Node* x_start = array_element_address(x, intcon(0), x_elem);
5446    Node* y_start = array_element_address(y, intcon(0), y_elem);
5447    // 'x_start' points to x array + scaled xlen
5448    // 'y_start' points to y array + scaled ylen
5449
5450    // Allocate the result array
5451    Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5452    ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5453    Node* klass_node = makecon(TypeKlassPtr::make(klass));
5454
5455    IdealKit ideal(this);
5456
5457#define __ ideal.
5458     Node* one = __ ConI(1);
5459     Node* zero = __ ConI(0);
5460     IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5461     __ set(need_alloc, zero);
5462     __ set(z_alloc, z);
5463     __ if_then(z, BoolTest::eq, null()); {
5464       __ increment (need_alloc, one);
5465     } __ else_(); {
5466       // Update graphKit memory and control from IdealKit.
5467       sync_kit(ideal);
5468       Node* zlen_arg = load_array_length(z);
5469       // Update IdealKit memory and control from graphKit.
5470       __ sync_kit(this);
5471       __ if_then(zlen_arg, BoolTest::lt, zlen); {
5472         __ increment (need_alloc, one);
5473       } __ end_if();
5474     } __ end_if();
5475
5476     __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5477       // Update graphKit memory and control from IdealKit.
5478       sync_kit(ideal);
5479       Node * narr = new_array(klass_node, zlen, 1);
5480       // Update IdealKit memory and control from graphKit.
5481       __ sync_kit(this);
5482       __ set(z_alloc, narr);
5483     } __ end_if();
5484
5485     sync_kit(ideal);
5486     z = __ value(z_alloc);
5487     // Can't use TypeAryPtr::INTS which uses Bottom offset.
5488     _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5489     // Final sync IdealKit and GraphKit.
5490     final_sync(ideal);
5491#undef __
5492
5493    Node* z_start = array_element_address(z, intcon(0), T_INT);
5494
5495    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5496                                   OptoRuntime::multiplyToLen_Type(),
5497                                   stubAddr, stubName, TypePtr::BOTTOM,
5498                                   x_start, xlen, y_start, ylen, z_start, zlen);
5499  } // original reexecute is set back here
5500
5501  C->set_has_split_ifs(true); // Has chance for split-if optimization
5502  set_result(z);
5503  return true;
5504}
5505
5506//-------------inline_squareToLen------------------------------------
5507bool LibraryCallKit::inline_squareToLen() {
5508  assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5509
5510  address stubAddr = StubRoutines::squareToLen();
5511  if (stubAddr == NULL) {
5512    return false; // Intrinsic's stub is not implemented on this platform
5513  }
5514  const char* stubName = "squareToLen";
5515
5516  assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5517
5518  Node* x    = argument(0);
5519  Node* len  = argument(1);
5520  Node* z    = argument(2);
5521  Node* zlen = argument(3);
5522
5523  const Type* x_type = x->Value(&_gvn);
5524  const Type* z_type = z->Value(&_gvn);
5525  const TypeAryPtr* top_x = x_type->isa_aryptr();
5526  const TypeAryPtr* top_z = z_type->isa_aryptr();
5527  if (top_x  == NULL || top_x->klass()  == NULL ||
5528      top_z  == NULL || top_z->klass()  == NULL) {
5529    // failed array check
5530    return false;
5531  }
5532
5533  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5534  BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5535  if (x_elem != T_INT || z_elem != T_INT) {
5536    return false;
5537  }
5538
5539
5540  Node* x_start = array_element_address(x, intcon(0), x_elem);
5541  Node* z_start = array_element_address(z, intcon(0), z_elem);
5542
5543  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5544                                  OptoRuntime::squareToLen_Type(),
5545                                  stubAddr, stubName, TypePtr::BOTTOM,
5546                                  x_start, len, z_start, zlen);
5547
5548  set_result(z);
5549  return true;
5550}
5551
5552//-------------inline_mulAdd------------------------------------------
5553bool LibraryCallKit::inline_mulAdd() {
5554  assert(UseMulAddIntrinsic, "not implemented on this platform");
5555
5556  address stubAddr = StubRoutines::mulAdd();
5557  if (stubAddr == NULL) {
5558    return false; // Intrinsic's stub is not implemented on this platform
5559  }
5560  const char* stubName = "mulAdd";
5561
5562  assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5563
5564  Node* out      = argument(0);
5565  Node* in       = argument(1);
5566  Node* offset   = argument(2);
5567  Node* len      = argument(3);
5568  Node* k        = argument(4);
5569
5570  const Type* out_type = out->Value(&_gvn);
5571  const Type* in_type = in->Value(&_gvn);
5572  const TypeAryPtr* top_out = out_type->isa_aryptr();
5573  const TypeAryPtr* top_in = in_type->isa_aryptr();
5574  if (top_out  == NULL || top_out->klass()  == NULL ||
5575      top_in == NULL || top_in->klass() == NULL) {
5576    // failed array check
5577    return false;
5578  }
5579
5580  BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5581  BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5582  if (out_elem != T_INT || in_elem != T_INT) {
5583    return false;
5584  }
5585
5586  Node* outlen = load_array_length(out);
5587  Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5588  Node* out_start = array_element_address(out, intcon(0), out_elem);
5589  Node* in_start = array_element_address(in, intcon(0), in_elem);
5590
5591  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5592                                  OptoRuntime::mulAdd_Type(),
5593                                  stubAddr, stubName, TypePtr::BOTTOM,
5594                                  out_start,in_start, new_offset, len, k);
5595  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5596  set_result(result);
5597  return true;
5598}
5599
5600//-------------inline_montgomeryMultiply-----------------------------------
5601bool LibraryCallKit::inline_montgomeryMultiply() {
5602  address stubAddr = StubRoutines::montgomeryMultiply();
5603  if (stubAddr == NULL) {
5604    return false; // Intrinsic's stub is not implemented on this platform
5605  }
5606
5607  assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5608  const char* stubName = "montgomery_multiply";
5609
5610  assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5611
5612  Node* a    = argument(0);
5613  Node* b    = argument(1);
5614  Node* n    = argument(2);
5615  Node* len  = argument(3);
5616  Node* inv  = argument(4);
5617  Node* m    = argument(6);
5618
5619  const Type* a_type = a->Value(&_gvn);
5620  const TypeAryPtr* top_a = a_type->isa_aryptr();
5621  const Type* b_type = b->Value(&_gvn);
5622  const TypeAryPtr* top_b = b_type->isa_aryptr();
5623  const Type* n_type = a->Value(&_gvn);
5624  const TypeAryPtr* top_n = n_type->isa_aryptr();
5625  const Type* m_type = a->Value(&_gvn);
5626  const TypeAryPtr* top_m = m_type->isa_aryptr();
5627  if (top_a  == NULL || top_a->klass()  == NULL ||
5628      top_b == NULL || top_b->klass()  == NULL ||
5629      top_n == NULL || top_n->klass()  == NULL ||
5630      top_m == NULL || top_m->klass()  == NULL) {
5631    // failed array check
5632    return false;
5633  }
5634
5635  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5636  BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5637  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5638  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5639  if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5640    return false;
5641  }
5642
5643  // Make the call
5644  {
5645    Node* a_start = array_element_address(a, intcon(0), a_elem);
5646    Node* b_start = array_element_address(b, intcon(0), b_elem);
5647    Node* n_start = array_element_address(n, intcon(0), n_elem);
5648    Node* m_start = array_element_address(m, intcon(0), m_elem);
5649
5650    Node* call = make_runtime_call(RC_LEAF,
5651                                   OptoRuntime::montgomeryMultiply_Type(),
5652                                   stubAddr, stubName, TypePtr::BOTTOM,
5653                                   a_start, b_start, n_start, len, inv, top(),
5654                                   m_start);
5655    set_result(m);
5656  }
5657
5658  return true;
5659}
5660
5661bool LibraryCallKit::inline_montgomerySquare() {
5662  address stubAddr = StubRoutines::montgomerySquare();
5663  if (stubAddr == NULL) {
5664    return false; // Intrinsic's stub is not implemented on this platform
5665  }
5666
5667  assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5668  const char* stubName = "montgomery_square";
5669
5670  assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5671
5672  Node* a    = argument(0);
5673  Node* n    = argument(1);
5674  Node* len  = argument(2);
5675  Node* inv  = argument(3);
5676  Node* m    = argument(5);
5677
5678  const Type* a_type = a->Value(&_gvn);
5679  const TypeAryPtr* top_a = a_type->isa_aryptr();
5680  const Type* n_type = a->Value(&_gvn);
5681  const TypeAryPtr* top_n = n_type->isa_aryptr();
5682  const Type* m_type = a->Value(&_gvn);
5683  const TypeAryPtr* top_m = m_type->isa_aryptr();
5684  if (top_a  == NULL || top_a->klass()  == NULL ||
5685      top_n == NULL || top_n->klass()  == NULL ||
5686      top_m == NULL || top_m->klass()  == NULL) {
5687    // failed array check
5688    return false;
5689  }
5690
5691  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5692  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5693  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5694  if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5695    return false;
5696  }
5697
5698  // Make the call
5699  {
5700    Node* a_start = array_element_address(a, intcon(0), a_elem);
5701    Node* n_start = array_element_address(n, intcon(0), n_elem);
5702    Node* m_start = array_element_address(m, intcon(0), m_elem);
5703
5704    Node* call = make_runtime_call(RC_LEAF,
5705                                   OptoRuntime::montgomerySquare_Type(),
5706                                   stubAddr, stubName, TypePtr::BOTTOM,
5707                                   a_start, n_start, len, inv, top(),
5708                                   m_start);
5709    set_result(m);
5710  }
5711
5712  return true;
5713}
5714
5715//-------------inline_vectorizedMismatch------------------------------
5716bool LibraryCallKit::inline_vectorizedMismatch() {
5717  assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5718
5719  address stubAddr = StubRoutines::vectorizedMismatch();
5720  if (stubAddr == NULL) {
5721    return false; // Intrinsic's stub is not implemented on this platform
5722  }
5723  const char* stubName = "vectorizedMismatch";
5724  int size_l = callee()->signature()->size();
5725  assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5726
5727  Node* obja = argument(0);
5728  Node* aoffset = argument(1);
5729  Node* objb = argument(3);
5730  Node* boffset = argument(4);
5731  Node* length = argument(6);
5732  Node* scale = argument(7);
5733
5734  const Type* a_type = obja->Value(&_gvn);
5735  const Type* b_type = objb->Value(&_gvn);
5736  const TypeAryPtr* top_a = a_type->isa_aryptr();
5737  const TypeAryPtr* top_b = b_type->isa_aryptr();
5738  if (top_a == NULL || top_a->klass() == NULL ||
5739    top_b == NULL || top_b->klass() == NULL) {
5740    // failed array check
5741    return false;
5742  }
5743
5744  Node* call;
5745  jvms()->set_should_reexecute(true);
5746
5747  Node* obja_adr = make_unsafe_address(obja, aoffset);
5748  Node* objb_adr = make_unsafe_address(objb, boffset);
5749
5750  call = make_runtime_call(RC_LEAF,
5751    OptoRuntime::vectorizedMismatch_Type(),
5752    stubAddr, stubName, TypePtr::BOTTOM,
5753    obja_adr, objb_adr, length, scale);
5754
5755  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5756  set_result(result);
5757  return true;
5758}
5759
5760/**
5761 * Calculate CRC32 for byte.
5762 * int java.util.zip.CRC32.update(int crc, int b)
5763 */
5764bool LibraryCallKit::inline_updateCRC32() {
5765  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5766  assert(callee()->signature()->size() == 2, "update has 2 parameters");
5767  // no receiver since it is static method
5768  Node* crc  = argument(0); // type: int
5769  Node* b    = argument(1); // type: int
5770
5771  /*
5772   *    int c = ~ crc;
5773   *    b = timesXtoThe32[(b ^ c) & 0xFF];
5774   *    b = b ^ (c >>> 8);
5775   *    crc = ~b;
5776   */
5777
5778  Node* M1 = intcon(-1);
5779  crc = _gvn.transform(new XorINode(crc, M1));
5780  Node* result = _gvn.transform(new XorINode(crc, b));
5781  result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5782
5783  Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5784  Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5785  Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5786  result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5787
5788  crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5789  result = _gvn.transform(new XorINode(crc, result));
5790  result = _gvn.transform(new XorINode(result, M1));
5791  set_result(result);
5792  return true;
5793}
5794
5795/**
5796 * Calculate CRC32 for byte[] array.
5797 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5798 */
5799bool LibraryCallKit::inline_updateBytesCRC32() {
5800  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5801  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5802  // no receiver since it is static method
5803  Node* crc     = argument(0); // type: int
5804  Node* src     = argument(1); // type: oop
5805  Node* offset  = argument(2); // type: int
5806  Node* length  = argument(3); // type: int
5807
5808  const Type* src_type = src->Value(&_gvn);
5809  const TypeAryPtr* top_src = src_type->isa_aryptr();
5810  if (top_src  == NULL || top_src->klass()  == NULL) {
5811    // failed array check
5812    return false;
5813  }
5814
5815  // Figure out the size and type of the elements we will be copying.
5816  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5817  if (src_elem != T_BYTE) {
5818    return false;
5819  }
5820
5821  // 'src_start' points to src array + scaled offset
5822  Node* src_start = array_element_address(src, offset, src_elem);
5823
5824  // We assume that range check is done by caller.
5825  // TODO: generate range check (offset+length < src.length) in debug VM.
5826
5827  // Call the stub.
5828  address stubAddr = StubRoutines::updateBytesCRC32();
5829  const char *stubName = "updateBytesCRC32";
5830
5831  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5832                                 stubAddr, stubName, TypePtr::BOTTOM,
5833                                 crc, src_start, length);
5834  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5835  set_result(result);
5836  return true;
5837}
5838
5839/**
5840 * Calculate CRC32 for ByteBuffer.
5841 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5842 */
5843bool LibraryCallKit::inline_updateByteBufferCRC32() {
5844  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5845  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5846  // no receiver since it is static method
5847  Node* crc     = argument(0); // type: int
5848  Node* src     = argument(1); // type: long
5849  Node* offset  = argument(3); // type: int
5850  Node* length  = argument(4); // type: int
5851
5852  src = ConvL2X(src);  // adjust Java long to machine word
5853  Node* base = _gvn.transform(new CastX2PNode(src));
5854  offset = ConvI2X(offset);
5855
5856  // 'src_start' points to src array + scaled offset
5857  Node* src_start = basic_plus_adr(top(), base, offset);
5858
5859  // Call the stub.
5860  address stubAddr = StubRoutines::updateBytesCRC32();
5861  const char *stubName = "updateBytesCRC32";
5862
5863  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5864                                 stubAddr, stubName, TypePtr::BOTTOM,
5865                                 crc, src_start, length);
5866  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5867  set_result(result);
5868  return true;
5869}
5870
5871//------------------------------get_table_from_crc32c_class-----------------------
5872Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5873  Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5874  assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5875
5876  return table;
5877}
5878
5879//------------------------------inline_updateBytesCRC32C-----------------------
5880//
5881// Calculate CRC32C for byte[] array.
5882// int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5883//
5884bool LibraryCallKit::inline_updateBytesCRC32C() {
5885  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5886  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5887  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5888  // no receiver since it is a static method
5889  Node* crc     = argument(0); // type: int
5890  Node* src     = argument(1); // type: oop
5891  Node* offset  = argument(2); // type: int
5892  Node* end     = argument(3); // type: int
5893
5894  Node* length = _gvn.transform(new SubINode(end, offset));
5895
5896  const Type* src_type = src->Value(&_gvn);
5897  const TypeAryPtr* top_src = src_type->isa_aryptr();
5898  if (top_src  == NULL || top_src->klass()  == NULL) {
5899    // failed array check
5900    return false;
5901  }
5902
5903  // Figure out the size and type of the elements we will be copying.
5904  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5905  if (src_elem != T_BYTE) {
5906    return false;
5907  }
5908
5909  // 'src_start' points to src array + scaled offset
5910  Node* src_start = array_element_address(src, offset, src_elem);
5911
5912  // static final int[] byteTable in class CRC32C
5913  Node* table = get_table_from_crc32c_class(callee()->holder());
5914  Node* table_start = array_element_address(table, intcon(0), T_INT);
5915
5916  // We assume that range check is done by caller.
5917  // TODO: generate range check (offset+length < src.length) in debug VM.
5918
5919  // Call the stub.
5920  address stubAddr = StubRoutines::updateBytesCRC32C();
5921  const char *stubName = "updateBytesCRC32C";
5922
5923  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5924                                 stubAddr, stubName, TypePtr::BOTTOM,
5925                                 crc, src_start, length, table_start);
5926  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5927  set_result(result);
5928  return true;
5929}
5930
5931//------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5932//
5933// Calculate CRC32C for DirectByteBuffer.
5934// int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5935//
5936bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5937  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5938  assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5939  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5940  // no receiver since it is a static method
5941  Node* crc     = argument(0); // type: int
5942  Node* src     = argument(1); // type: long
5943  Node* offset  = argument(3); // type: int
5944  Node* end     = argument(4); // type: int
5945
5946  Node* length = _gvn.transform(new SubINode(end, offset));
5947
5948  src = ConvL2X(src);  // adjust Java long to machine word
5949  Node* base = _gvn.transform(new CastX2PNode(src));
5950  offset = ConvI2X(offset);
5951
5952  // 'src_start' points to src array + scaled offset
5953  Node* src_start = basic_plus_adr(top(), base, offset);
5954
5955  // static final int[] byteTable in class CRC32C
5956  Node* table = get_table_from_crc32c_class(callee()->holder());
5957  Node* table_start = array_element_address(table, intcon(0), T_INT);
5958
5959  // Call the stub.
5960  address stubAddr = StubRoutines::updateBytesCRC32C();
5961  const char *stubName = "updateBytesCRC32C";
5962
5963  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5964                                 stubAddr, stubName, TypePtr::BOTTOM,
5965                                 crc, src_start, length, table_start);
5966  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5967  set_result(result);
5968  return true;
5969}
5970
5971//------------------------------inline_updateBytesAdler32----------------------
5972//
5973// Calculate Adler32 checksum for byte[] array.
5974// int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5975//
5976bool LibraryCallKit::inline_updateBytesAdler32() {
5977  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5978  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5979  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5980  // no receiver since it is static method
5981  Node* crc     = argument(0); // type: int
5982  Node* src     = argument(1); // type: oop
5983  Node* offset  = argument(2); // type: int
5984  Node* length  = argument(3); // type: int
5985
5986  const Type* src_type = src->Value(&_gvn);
5987  const TypeAryPtr* top_src = src_type->isa_aryptr();
5988  if (top_src  == NULL || top_src->klass()  == NULL) {
5989    // failed array check
5990    return false;
5991  }
5992
5993  // Figure out the size and type of the elements we will be copying.
5994  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5995  if (src_elem != T_BYTE) {
5996    return false;
5997  }
5998
5999  // 'src_start' points to src array + scaled offset
6000  Node* src_start = array_element_address(src, offset, src_elem);
6001
6002  // We assume that range check is done by caller.
6003  // TODO: generate range check (offset+length < src.length) in debug VM.
6004
6005  // Call the stub.
6006  address stubAddr = StubRoutines::updateBytesAdler32();
6007  const char *stubName = "updateBytesAdler32";
6008
6009  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6010                                 stubAddr, stubName, TypePtr::BOTTOM,
6011                                 crc, src_start, length);
6012  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6013  set_result(result);
6014  return true;
6015}
6016
6017//------------------------------inline_updateByteBufferAdler32---------------
6018//
6019// Calculate Adler32 checksum for DirectByteBuffer.
6020// int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6021//
6022bool LibraryCallKit::inline_updateByteBufferAdler32() {
6023  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6024  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6025  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6026  // no receiver since it is static method
6027  Node* crc     = argument(0); // type: int
6028  Node* src     = argument(1); // type: long
6029  Node* offset  = argument(3); // type: int
6030  Node* length  = argument(4); // type: int
6031
6032  src = ConvL2X(src);  // adjust Java long to machine word
6033  Node* base = _gvn.transform(new CastX2PNode(src));
6034  offset = ConvI2X(offset);
6035
6036  // 'src_start' points to src array + scaled offset
6037  Node* src_start = basic_plus_adr(top(), base, offset);
6038
6039  // Call the stub.
6040  address stubAddr = StubRoutines::updateBytesAdler32();
6041  const char *stubName = "updateBytesAdler32";
6042
6043  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6044                                 stubAddr, stubName, TypePtr::BOTTOM,
6045                                 crc, src_start, length);
6046
6047  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6048  set_result(result);
6049  return true;
6050}
6051
6052//----------------------------inline_reference_get----------------------------
6053// public T java.lang.ref.Reference.get();
6054bool LibraryCallKit::inline_reference_get() {
6055  const int referent_offset = java_lang_ref_Reference::referent_offset;
6056  guarantee(referent_offset > 0, "should have already been set");
6057
6058  // Get the argument:
6059  Node* reference_obj = null_check_receiver();
6060  if (stopped()) return true;
6061
6062  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6063
6064  ciInstanceKlass* klass = env()->Object_klass();
6065  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6066
6067  Node* no_ctrl = NULL;
6068  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6069
6070  // Use the pre-barrier to record the value in the referent field
6071  pre_barrier(false /* do_load */,
6072              control(),
6073              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6074              result /* pre_val */,
6075              T_OBJECT);
6076
6077  // Add memory barrier to prevent commoning reads from this field
6078  // across safepoint since GC can change its value.
6079  insert_mem_bar(Op_MemBarCPUOrder);
6080
6081  set_result(result);
6082  return true;
6083}
6084
6085
6086Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6087                                              bool is_exact=true, bool is_static=false,
6088                                              ciInstanceKlass * fromKls=NULL) {
6089  if (fromKls == NULL) {
6090    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6091    assert(tinst != NULL, "obj is null");
6092    assert(tinst->klass()->is_loaded(), "obj is not loaded");
6093    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6094    fromKls = tinst->klass()->as_instance_klass();
6095  } else {
6096    assert(is_static, "only for static field access");
6097  }
6098  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6099                                              ciSymbol::make(fieldTypeString),
6100                                              is_static);
6101
6102  assert (field != NULL, "undefined field");
6103  if (field == NULL) return (Node *) NULL;
6104
6105  if (is_static) {
6106    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6107    fromObj = makecon(tip);
6108  }
6109
6110  // Next code  copied from Parse::do_get_xxx():
6111
6112  // Compute address and memory type.
6113  int offset  = field->offset_in_bytes();
6114  bool is_vol = field->is_volatile();
6115  ciType* field_klass = field->type();
6116  assert(field_klass->is_loaded(), "should be loaded");
6117  const TypePtr* adr_type = C->alias_type(field)->adr_type();
6118  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6119  BasicType bt = field->layout_type();
6120
6121  // Build the resultant type of the load
6122  const Type *type;
6123  if (bt == T_OBJECT) {
6124    type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6125  } else {
6126    type = Type::get_const_basic_type(bt);
6127  }
6128
6129  if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6130    insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6131  }
6132  // Build the load.
6133  MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6134  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6135  // If reference is volatile, prevent following memory ops from
6136  // floating up past the volatile read.  Also prevents commoning
6137  // another volatile read.
6138  if (is_vol) {
6139    // Memory barrier includes bogus read of value to force load BEFORE membar
6140    insert_mem_bar(Op_MemBarAcquire, loadedField);
6141  }
6142  return loadedField;
6143}
6144
6145Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6146                                                 bool is_exact = true, bool is_static = false,
6147                                                 ciInstanceKlass * fromKls = NULL) {
6148  if (fromKls == NULL) {
6149    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6150    assert(tinst != NULL, "obj is null");
6151    assert(tinst->klass()->is_loaded(), "obj is not loaded");
6152    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6153    fromKls = tinst->klass()->as_instance_klass();
6154  }
6155  else {
6156    assert(is_static, "only for static field access");
6157  }
6158  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6159    ciSymbol::make(fieldTypeString),
6160    is_static);
6161
6162  assert(field != NULL, "undefined field");
6163  assert(!field->is_volatile(), "not defined for volatile fields");
6164
6165  if (is_static) {
6166    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6167    fromObj = makecon(tip);
6168  }
6169
6170  // Next code  copied from Parse::do_get_xxx():
6171
6172  // Compute address and memory type.
6173  int offset = field->offset_in_bytes();
6174  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6175
6176  return adr;
6177}
6178
6179//------------------------------inline_aescrypt_Block-----------------------
6180bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6181  address stubAddr = NULL;
6182  const char *stubName;
6183  assert(UseAES, "need AES instruction support");
6184
6185  switch(id) {
6186  case vmIntrinsics::_aescrypt_encryptBlock:
6187    stubAddr = StubRoutines::aescrypt_encryptBlock();
6188    stubName = "aescrypt_encryptBlock";
6189    break;
6190  case vmIntrinsics::_aescrypt_decryptBlock:
6191    stubAddr = StubRoutines::aescrypt_decryptBlock();
6192    stubName = "aescrypt_decryptBlock";
6193    break;
6194  default:
6195    break;
6196  }
6197  if (stubAddr == NULL) return false;
6198
6199  Node* aescrypt_object = argument(0);
6200  Node* src             = argument(1);
6201  Node* src_offset      = argument(2);
6202  Node* dest            = argument(3);
6203  Node* dest_offset     = argument(4);
6204
6205  // (1) src and dest are arrays.
6206  const Type* src_type = src->Value(&_gvn);
6207  const Type* dest_type = dest->Value(&_gvn);
6208  const TypeAryPtr* top_src = src_type->isa_aryptr();
6209  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6210  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6211
6212  // for the quick and dirty code we will skip all the checks.
6213  // we are just trying to get the call to be generated.
6214  Node* src_start  = src;
6215  Node* dest_start = dest;
6216  if (src_offset != NULL || dest_offset != NULL) {
6217    assert(src_offset != NULL && dest_offset != NULL, "");
6218    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6219    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6220  }
6221
6222  // now need to get the start of its expanded key array
6223  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6224  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6225  if (k_start == NULL) return false;
6226
6227  if (Matcher::pass_original_key_for_aes()) {
6228    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6229    // compatibility issues between Java key expansion and SPARC crypto instructions
6230    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6231    if (original_k_start == NULL) return false;
6232
6233    // Call the stub.
6234    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6235                      stubAddr, stubName, TypePtr::BOTTOM,
6236                      src_start, dest_start, k_start, original_k_start);
6237  } else {
6238    // Call the stub.
6239    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6240                      stubAddr, stubName, TypePtr::BOTTOM,
6241                      src_start, dest_start, k_start);
6242  }
6243
6244  return true;
6245}
6246
6247//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6248bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6249  address stubAddr = NULL;
6250  const char *stubName = NULL;
6251
6252  assert(UseAES, "need AES instruction support");
6253
6254  switch(id) {
6255  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6256    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6257    stubName = "cipherBlockChaining_encryptAESCrypt";
6258    break;
6259  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6260    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6261    stubName = "cipherBlockChaining_decryptAESCrypt";
6262    break;
6263  default:
6264    break;
6265  }
6266  if (stubAddr == NULL) return false;
6267
6268  Node* cipherBlockChaining_object = argument(0);
6269  Node* src                        = argument(1);
6270  Node* src_offset                 = argument(2);
6271  Node* len                        = argument(3);
6272  Node* dest                       = argument(4);
6273  Node* dest_offset                = argument(5);
6274
6275  // (1) src and dest are arrays.
6276  const Type* src_type = src->Value(&_gvn);
6277  const Type* dest_type = dest->Value(&_gvn);
6278  const TypeAryPtr* top_src = src_type->isa_aryptr();
6279  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6280  assert (top_src  != NULL && top_src->klass()  != NULL
6281          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6282
6283  // checks are the responsibility of the caller
6284  Node* src_start  = src;
6285  Node* dest_start = dest;
6286  if (src_offset != NULL || dest_offset != NULL) {
6287    assert(src_offset != NULL && dest_offset != NULL, "");
6288    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6289    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6290  }
6291
6292  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6293  // (because of the predicated logic executed earlier).
6294  // so we cast it here safely.
6295  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6296
6297  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6298  if (embeddedCipherObj == NULL) return false;
6299
6300  // cast it to what we know it will be at runtime
6301  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6302  assert(tinst != NULL, "CBC obj is null");
6303  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6304  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6305  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6306
6307  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6308  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6309  const TypeOopPtr* xtype = aklass->as_instance_type();
6310  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6311  aescrypt_object = _gvn.transform(aescrypt_object);
6312
6313  // we need to get the start of the aescrypt_object's expanded key array
6314  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6315  if (k_start == NULL) return false;
6316
6317  // similarly, get the start address of the r vector
6318  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6319  if (objRvec == NULL) return false;
6320  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6321
6322  Node* cbcCrypt;
6323  if (Matcher::pass_original_key_for_aes()) {
6324    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6325    // compatibility issues between Java key expansion and SPARC crypto instructions
6326    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6327    if (original_k_start == NULL) return false;
6328
6329    // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6330    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6331                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6332                                 stubAddr, stubName, TypePtr::BOTTOM,
6333                                 src_start, dest_start, k_start, r_start, len, original_k_start);
6334  } else {
6335    // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6336    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6337                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6338                                 stubAddr, stubName, TypePtr::BOTTOM,
6339                                 src_start, dest_start, k_start, r_start, len);
6340  }
6341
6342  // return cipher length (int)
6343  Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6344  set_result(retvalue);
6345  return true;
6346}
6347
6348//------------------------------inline_counterMode_AESCrypt-----------------------
6349bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6350  assert(UseAES, "need AES instruction support");
6351  if (!UseAESCTRIntrinsics) return false;
6352
6353  address stubAddr = NULL;
6354  const char *stubName = NULL;
6355  if (id == vmIntrinsics::_counterMode_AESCrypt) {
6356    stubAddr = StubRoutines::counterMode_AESCrypt();
6357    stubName = "counterMode_AESCrypt";
6358  }
6359  if (stubAddr == NULL) return false;
6360
6361  Node* counterMode_object = argument(0);
6362  Node* src = argument(1);
6363  Node* src_offset = argument(2);
6364  Node* len = argument(3);
6365  Node* dest = argument(4);
6366  Node* dest_offset = argument(5);
6367
6368  // (1) src and dest are arrays.
6369  const Type* src_type = src->Value(&_gvn);
6370  const Type* dest_type = dest->Value(&_gvn);
6371  const TypeAryPtr* top_src = src_type->isa_aryptr();
6372  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6373  assert(top_src != NULL && top_src->klass() != NULL &&
6374         top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6375
6376  // checks are the responsibility of the caller
6377  Node* src_start = src;
6378  Node* dest_start = dest;
6379  if (src_offset != NULL || dest_offset != NULL) {
6380    assert(src_offset != NULL && dest_offset != NULL, "");
6381    src_start = array_element_address(src, src_offset, T_BYTE);
6382    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6383  }
6384
6385  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6386  // (because of the predicated logic executed earlier).
6387  // so we cast it here safely.
6388  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6389  Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6390  if (embeddedCipherObj == NULL) return false;
6391  // cast it to what we know it will be at runtime
6392  const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6393  assert(tinst != NULL, "CTR obj is null");
6394  assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6395  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6396  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6397  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6398  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6399  const TypeOopPtr* xtype = aklass->as_instance_type();
6400  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6401  aescrypt_object = _gvn.transform(aescrypt_object);
6402  // we need to get the start of the aescrypt_object's expanded key array
6403  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6404  if (k_start == NULL) return false;
6405  // similarly, get the start address of the r vector
6406  Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6407  if (obj_counter == NULL) return false;
6408  Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6409
6410  Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6411  if (saved_encCounter == NULL) return false;
6412  Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6413  Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6414
6415  Node* ctrCrypt;
6416  if (Matcher::pass_original_key_for_aes()) {
6417    // no SPARC version for AES/CTR intrinsics now.
6418    return false;
6419  }
6420  // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6421  ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6422                               OptoRuntime::counterMode_aescrypt_Type(),
6423                               stubAddr, stubName, TypePtr::BOTTOM,
6424                               src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6425
6426  // return cipher length (int)
6427  Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6428  set_result(retvalue);
6429  return true;
6430}
6431
6432//------------------------------get_key_start_from_aescrypt_object-----------------------
6433Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6434#if defined(PPC64) || defined(S390)
6435  // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6436  // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6437  // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6438  // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6439  Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6440  assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6441  if (objSessionK == NULL) {
6442    return (Node *) NULL;
6443  }
6444  Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6445#else
6446  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6447#endif // PPC64
6448  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6449  if (objAESCryptKey == NULL) return (Node *) NULL;
6450
6451  // now have the array, need to get the start address of the K array
6452  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6453  return k_start;
6454}
6455
6456//------------------------------get_original_key_start_from_aescrypt_object-----------------------
6457Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6458  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6459  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6460  if (objAESCryptKey == NULL) return (Node *) NULL;
6461
6462  // now have the array, need to get the start address of the lastKey array
6463  Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6464  return original_k_start;
6465}
6466
6467//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6468// Return node representing slow path of predicate check.
6469// the pseudo code we want to emulate with this predicate is:
6470// for encryption:
6471//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6472// for decryption:
6473//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6474//    note cipher==plain is more conservative than the original java code but that's OK
6475//
6476Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6477  // The receiver was checked for NULL already.
6478  Node* objCBC = argument(0);
6479
6480  // Load embeddedCipher field of CipherBlockChaining object.
6481  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6482
6483  // get AESCrypt klass for instanceOf check
6484  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6485  // will have same classloader as CipherBlockChaining object
6486  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6487  assert(tinst != NULL, "CBCobj is null");
6488  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6489
6490  // we want to do an instanceof comparison against the AESCrypt class
6491  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6492  if (!klass_AESCrypt->is_loaded()) {
6493    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6494    Node* ctrl = control();
6495    set_control(top()); // no regular fast path
6496    return ctrl;
6497  }
6498  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6499
6500  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6501  Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6502  Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6503
6504  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6505
6506  // for encryption, we are done
6507  if (!decrypting)
6508    return instof_false;  // even if it is NULL
6509
6510  // for decryption, we need to add a further check to avoid
6511  // taking the intrinsic path when cipher and plain are the same
6512  // see the original java code for why.
6513  RegionNode* region = new RegionNode(3);
6514  region->init_req(1, instof_false);
6515  Node* src = argument(1);
6516  Node* dest = argument(4);
6517  Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6518  Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6519  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6520  region->init_req(2, src_dest_conjoint);
6521
6522  record_for_igvn(region);
6523  return _gvn.transform(region);
6524}
6525
6526//----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6527// Return node representing slow path of predicate check.
6528// the pseudo code we want to emulate with this predicate is:
6529// for encryption:
6530//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6531// for decryption:
6532//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6533//    note cipher==plain is more conservative than the original java code but that's OK
6534//
6535
6536Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6537  // The receiver was checked for NULL already.
6538  Node* objCTR = argument(0);
6539
6540  // Load embeddedCipher field of CipherBlockChaining object.
6541  Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6542
6543  // get AESCrypt klass for instanceOf check
6544  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6545  // will have same classloader as CipherBlockChaining object
6546  const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6547  assert(tinst != NULL, "CTRobj is null");
6548  assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6549
6550  // we want to do an instanceof comparison against the AESCrypt class
6551  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6552  if (!klass_AESCrypt->is_loaded()) {
6553    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6554    Node* ctrl = control();
6555    set_control(top()); // no regular fast path
6556    return ctrl;
6557  }
6558
6559  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6560  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6561  Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6562  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6563  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6564
6565  return instof_false; // even if it is NULL
6566}
6567
6568//------------------------------inline_ghash_processBlocks
6569bool LibraryCallKit::inline_ghash_processBlocks() {
6570  address stubAddr;
6571  const char *stubName;
6572  assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6573
6574  stubAddr = StubRoutines::ghash_processBlocks();
6575  stubName = "ghash_processBlocks";
6576
6577  Node* data           = argument(0);
6578  Node* offset         = argument(1);
6579  Node* len            = argument(2);
6580  Node* state          = argument(3);
6581  Node* subkeyH        = argument(4);
6582
6583  Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6584  assert(state_start, "state is NULL");
6585  Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6586  assert(subkeyH_start, "subkeyH is NULL");
6587  Node* data_start  = array_element_address(data, offset, T_BYTE);
6588  assert(data_start, "data is NULL");
6589
6590  Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6591                                  OptoRuntime::ghash_processBlocks_Type(),
6592                                  stubAddr, stubName, TypePtr::BOTTOM,
6593                                  state_start, subkeyH_start, data_start, len);
6594  return true;
6595}
6596
6597//------------------------------inline_sha_implCompress-----------------------
6598//
6599// Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6600// void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6601//
6602// Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6603// void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6604//
6605// Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6606// void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6607//
6608bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6609  assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6610
6611  Node* sha_obj = argument(0);
6612  Node* src     = argument(1); // type oop
6613  Node* ofs     = argument(2); // type int
6614
6615  const Type* src_type = src->Value(&_gvn);
6616  const TypeAryPtr* top_src = src_type->isa_aryptr();
6617  if (top_src  == NULL || top_src->klass()  == NULL) {
6618    // failed array check
6619    return false;
6620  }
6621  // Figure out the size and type of the elements we will be copying.
6622  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6623  if (src_elem != T_BYTE) {
6624    return false;
6625  }
6626  // 'src_start' points to src array + offset
6627  Node* src_start = array_element_address(src, ofs, src_elem);
6628  Node* state = NULL;
6629  address stubAddr;
6630  const char *stubName;
6631
6632  switch(id) {
6633  case vmIntrinsics::_sha_implCompress:
6634    assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6635    state = get_state_from_sha_object(sha_obj);
6636    stubAddr = StubRoutines::sha1_implCompress();
6637    stubName = "sha1_implCompress";
6638    break;
6639  case vmIntrinsics::_sha2_implCompress:
6640    assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6641    state = get_state_from_sha_object(sha_obj);
6642    stubAddr = StubRoutines::sha256_implCompress();
6643    stubName = "sha256_implCompress";
6644    break;
6645  case vmIntrinsics::_sha5_implCompress:
6646    assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6647    state = get_state_from_sha5_object(sha_obj);
6648    stubAddr = StubRoutines::sha512_implCompress();
6649    stubName = "sha512_implCompress";
6650    break;
6651  default:
6652    fatal_unexpected_iid(id);
6653    return false;
6654  }
6655  if (state == NULL) return false;
6656
6657  // Call the stub.
6658  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6659                                 stubAddr, stubName, TypePtr::BOTTOM,
6660                                 src_start, state);
6661
6662  return true;
6663}
6664
6665//------------------------------inline_digestBase_implCompressMB-----------------------
6666//
6667// Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6668// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6669//
6670bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6671  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6672         "need SHA1/SHA256/SHA512 instruction support");
6673  assert((uint)predicate < 3, "sanity");
6674  assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6675
6676  Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6677  Node* src            = argument(1); // byte[] array
6678  Node* ofs            = argument(2); // type int
6679  Node* limit          = argument(3); // type int
6680
6681  const Type* src_type = src->Value(&_gvn);
6682  const TypeAryPtr* top_src = src_type->isa_aryptr();
6683  if (top_src  == NULL || top_src->klass()  == NULL) {
6684    // failed array check
6685    return false;
6686  }
6687  // Figure out the size and type of the elements we will be copying.
6688  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6689  if (src_elem != T_BYTE) {
6690    return false;
6691  }
6692  // 'src_start' points to src array + offset
6693  Node* src_start = array_element_address(src, ofs, src_elem);
6694
6695  const char* klass_SHA_name = NULL;
6696  const char* stub_name = NULL;
6697  address     stub_addr = NULL;
6698  bool        long_state = false;
6699
6700  switch (predicate) {
6701  case 0:
6702    if (UseSHA1Intrinsics) {
6703      klass_SHA_name = "sun/security/provider/SHA";
6704      stub_name = "sha1_implCompressMB";
6705      stub_addr = StubRoutines::sha1_implCompressMB();
6706    }
6707    break;
6708  case 1:
6709    if (UseSHA256Intrinsics) {
6710      klass_SHA_name = "sun/security/provider/SHA2";
6711      stub_name = "sha256_implCompressMB";
6712      stub_addr = StubRoutines::sha256_implCompressMB();
6713    }
6714    break;
6715  case 2:
6716    if (UseSHA512Intrinsics) {
6717      klass_SHA_name = "sun/security/provider/SHA5";
6718      stub_name = "sha512_implCompressMB";
6719      stub_addr = StubRoutines::sha512_implCompressMB();
6720      long_state = true;
6721    }
6722    break;
6723  default:
6724    fatal("unknown SHA intrinsic predicate: %d", predicate);
6725  }
6726  if (klass_SHA_name != NULL) {
6727    // get DigestBase klass to lookup for SHA klass
6728    const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6729    assert(tinst != NULL, "digestBase_obj is not instance???");
6730    assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6731
6732    ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6733    assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6734    ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6735    return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6736  }
6737  return false;
6738}
6739//------------------------------inline_sha_implCompressMB-----------------------
6740bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6741                                               bool long_state, address stubAddr, const char *stubName,
6742                                               Node* src_start, Node* ofs, Node* limit) {
6743  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6744  const TypeOopPtr* xtype = aklass->as_instance_type();
6745  Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6746  sha_obj = _gvn.transform(sha_obj);
6747
6748  Node* state;
6749  if (long_state) {
6750    state = get_state_from_sha5_object(sha_obj);
6751  } else {
6752    state = get_state_from_sha_object(sha_obj);
6753  }
6754  if (state == NULL) return false;
6755
6756  // Call the stub.
6757  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6758                                 OptoRuntime::digestBase_implCompressMB_Type(),
6759                                 stubAddr, stubName, TypePtr::BOTTOM,
6760                                 src_start, state, ofs, limit);
6761  // return ofs (int)
6762  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6763  set_result(result);
6764
6765  return true;
6766}
6767
6768//------------------------------get_state_from_sha_object-----------------------
6769Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6770  Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6771  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6772  if (sha_state == NULL) return (Node *) NULL;
6773
6774  // now have the array, need to get the start address of the state array
6775  Node* state = array_element_address(sha_state, intcon(0), T_INT);
6776  return state;
6777}
6778
6779//------------------------------get_state_from_sha5_object-----------------------
6780Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6781  Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6782  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6783  if (sha_state == NULL) return (Node *) NULL;
6784
6785  // now have the array, need to get the start address of the state array
6786  Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6787  return state;
6788}
6789
6790//----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6791// Return node representing slow path of predicate check.
6792// the pseudo code we want to emulate with this predicate is:
6793//    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6794//
6795Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6796  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6797         "need SHA1/SHA256/SHA512 instruction support");
6798  assert((uint)predicate < 3, "sanity");
6799
6800  // The receiver was checked for NULL already.
6801  Node* digestBaseObj = argument(0);
6802
6803  // get DigestBase klass for instanceOf check
6804  const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6805  assert(tinst != NULL, "digestBaseObj is null");
6806  assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6807
6808  const char* klass_SHA_name = NULL;
6809  switch (predicate) {
6810  case 0:
6811    if (UseSHA1Intrinsics) {
6812      // we want to do an instanceof comparison against the SHA class
6813      klass_SHA_name = "sun/security/provider/SHA";
6814    }
6815    break;
6816  case 1:
6817    if (UseSHA256Intrinsics) {
6818      // we want to do an instanceof comparison against the SHA2 class
6819      klass_SHA_name = "sun/security/provider/SHA2";
6820    }
6821    break;
6822  case 2:
6823    if (UseSHA512Intrinsics) {
6824      // we want to do an instanceof comparison against the SHA5 class
6825      klass_SHA_name = "sun/security/provider/SHA5";
6826    }
6827    break;
6828  default:
6829    fatal("unknown SHA intrinsic predicate: %d", predicate);
6830  }
6831
6832  ciKlass* klass_SHA = NULL;
6833  if (klass_SHA_name != NULL) {
6834    klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6835  }
6836  if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6837    // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6838    Node* ctrl = control();
6839    set_control(top()); // no intrinsic path
6840    return ctrl;
6841  }
6842  ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6843
6844  Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6845  Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6846  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6847  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6848
6849  return instof_false;  // even if it is NULL
6850}
6851
6852//-------------inline_fma-----------------------------------
6853bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6854  Node *a = NULL;
6855  Node *b = NULL;
6856  Node *c = NULL;
6857  Node* result = NULL;
6858  switch (id) {
6859  case vmIntrinsics::_fmaD:
6860    assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6861    // no receiver since it is static method
6862    a = round_double_node(argument(0));
6863    b = round_double_node(argument(2));
6864    c = round_double_node(argument(4));
6865    result = _gvn.transform(new FmaDNode(control(), a, b, c));
6866    break;
6867  case vmIntrinsics::_fmaF:
6868    assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6869    a = argument(0);
6870    b = argument(1);
6871    c = argument(2);
6872    result = _gvn.transform(new FmaFNode(control(), a, b, c));
6873    break;
6874  default:
6875    fatal_unexpected_iid(id);  break;
6876  }
6877  set_result(result);
6878  return true;
6879}
6880
6881bool LibraryCallKit::inline_profileBoolean() {
6882  Node* counts = argument(1);
6883  const TypeAryPtr* ary = NULL;
6884  ciArray* aobj = NULL;
6885  if (counts->is_Con()
6886      && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6887      && (aobj = ary->const_oop()->as_array()) != NULL
6888      && (aobj->length() == 2)) {
6889    // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6890    jint false_cnt = aobj->element_value(0).as_int();
6891    jint  true_cnt = aobj->element_value(1).as_int();
6892
6893    if (C->log() != NULL) {
6894      C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6895                     false_cnt, true_cnt);
6896    }
6897
6898    if (false_cnt + true_cnt == 0) {
6899      // According to profile, never executed.
6900      uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6901                          Deoptimization::Action_reinterpret);
6902      return true;
6903    }
6904
6905    // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6906    // is a number of each value occurrences.
6907    Node* result = argument(0);
6908    if (false_cnt == 0 || true_cnt == 0) {
6909      // According to profile, one value has been never seen.
6910      int expected_val = (false_cnt == 0) ? 1 : 0;
6911
6912      Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6913      Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6914
6915      IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6916      Node* fast_path = _gvn.transform(new IfTrueNode(check));
6917      Node* slow_path = _gvn.transform(new IfFalseNode(check));
6918
6919      { // Slow path: uncommon trap for never seen value and then reexecute
6920        // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6921        // the value has been seen at least once.
6922        PreserveJVMState pjvms(this);
6923        PreserveReexecuteState preexecs(this);
6924        jvms()->set_should_reexecute(true);
6925
6926        set_control(slow_path);
6927        set_i_o(i_o());
6928
6929        uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6930                            Deoptimization::Action_reinterpret);
6931      }
6932      // The guard for never seen value enables sharpening of the result and
6933      // returning a constant. It allows to eliminate branches on the same value
6934      // later on.
6935      set_control(fast_path);
6936      result = intcon(expected_val);
6937    }
6938    // Stop profiling.
6939    // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6940    // By replacing method body with profile data (represented as ProfileBooleanNode
6941    // on IR level) we effectively disable profiling.
6942    // It enables full speed execution once optimized code is generated.
6943    Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6944    C->record_for_igvn(profile);
6945    set_result(profile);
6946    return true;
6947  } else {
6948    // Continue profiling.
6949    // Profile data isn't available at the moment. So, execute method's bytecode version.
6950    // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6951    // is compiled and counters aren't available since corresponding MethodHandle
6952    // isn't a compile-time constant.
6953    return false;
6954  }
6955}
6956
6957bool LibraryCallKit::inline_isCompileConstant() {
6958  Node* n = argument(0);
6959  set_result(n->is_Con() ? intcon(1) : intcon(0));
6960  return true;
6961}
6962