library_call.cpp revision 6017:0f19095fd8c1
1214501Srpaulo/*
2214501Srpaulo * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
3214501Srpaulo * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4214501Srpaulo *
5252726Srpaulo * This code is free software; you can redistribute it and/or modify it
6252726Srpaulo * under the terms of the GNU General Public License version 2 only, as
7214501Srpaulo * published by the Free Software Foundation.
8214501Srpaulo *
9214501Srpaulo * This code is distributed in the hope that it will be useful, but WITHOUT
10214501Srpaulo * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11214501Srpaulo * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12214501Srpaulo * version 2 for more details (a copy is included in the LICENSE file that
13214501Srpaulo * accompanied this code).
14214501Srpaulo *
15214501Srpaulo * You should have received a copy of the GNU General Public License version
16214501Srpaulo * 2 along with this work; if not, write to the Free Software Foundation,
17214501Srpaulo * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18214501Srpaulo *
19214501Srpaulo * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20214501Srpaulo * or visit www.oracle.com if you need additional information or have any
21214501Srpaulo * questions.
22252726Srpaulo *
23252726Srpaulo */
24252726Srpaulo
25252726Srpaulo#include "precompiled.hpp"
26252726Srpaulo#include "classfile/systemDictionary.hpp"
27214501Srpaulo#include "classfile/vmSymbols.hpp"
28214501Srpaulo#include "compiler/compileBroker.hpp"
29214501Srpaulo#include "compiler/compileLog.hpp"
30214501Srpaulo#include "oops/objArrayKlass.hpp"
31214501Srpaulo#include "opto/addnode.hpp"
32252726Srpaulo#include "opto/callGenerator.hpp"
33214501Srpaulo#include "opto/cfgnode.hpp"
34214501Srpaulo#include "opto/idealKit.hpp"
35214501Srpaulo#include "opto/mathexactnode.hpp"
36214501Srpaulo#include "opto/mulnode.hpp"
37214501Srpaulo#include "opto/parse.hpp"
38214501Srpaulo#include "opto/runtime.hpp"
39214501Srpaulo#include "opto/subnode.hpp"
40252726Srpaulo#include "prims/nativeLookup.hpp"
41252726Srpaulo#include "runtime/sharedRuntime.hpp"
42214501Srpaulo#include "trace/traceMacros.hpp"
43214501Srpaulo
44214501Srpauloclass LibraryIntrinsic : public InlineCallGenerator {
45214501Srpaulo  // Extend the set of intrinsics known to the runtime:
46252726Srpaulo public:
47214501Srpaulo private:
48214501Srpaulo  bool             _is_virtual;
49214501Srpaulo  bool             _is_predicted;
50214501Srpaulo  bool             _does_virtual_dispatch;
51214501Srpaulo  vmIntrinsics::ID _intrinsic_id;
52252726Srpaulo
53214501Srpaulo public:
54214501Srpaulo  LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
55214501Srpaulo    : InlineCallGenerator(m),
56214501Srpaulo      _is_virtual(is_virtual),
57214501Srpaulo      _is_predicted(is_predicted),
58252726Srpaulo      _does_virtual_dispatch(does_virtual_dispatch),
59214501Srpaulo      _intrinsic_id(id)
60214501Srpaulo  {
61214501Srpaulo  }
62214501Srpaulo  virtual bool is_intrinsic() const { return true; }
63214501Srpaulo  virtual bool is_virtual()   const { return _is_virtual; }
64214501Srpaulo  virtual bool is_predicted()   const { return _is_predicted; }
65214501Srpaulo  virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
66214501Srpaulo  virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
67214501Srpaulo  virtual Node* generate_predicate(JVMState* jvms);
68214501Srpaulo  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
69214501Srpaulo};
70214501Srpaulo
71214501Srpaulo
72214501Srpaulo// Local helper class for LibraryIntrinsic:
73214501Srpauloclass LibraryCallKit : public GraphKit {
74214501Srpaulo private:
75214501Srpaulo  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
76214501Srpaulo  Node*             _result;        // the result node, if any
77214501Srpaulo  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
78214501Srpaulo
79214501Srpaulo  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
80214501Srpaulo
81214501Srpaulo public:
82214501Srpaulo  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
83214501Srpaulo    : GraphKit(jvms),
84214501Srpaulo      _intrinsic(intrinsic),
85214501Srpaulo      _result(NULL)
86214501Srpaulo  {
87214501Srpaulo    // Check if this is a root compile.  In that case we don't have a caller.
88214501Srpaulo    if (!jvms->has_method()) {
89214501Srpaulo      _reexecute_sp = sp();
90214501Srpaulo    } else {
91214501Srpaulo      // Find out how many arguments the interpreter needs when deoptimizing
92214501Srpaulo      // and save the stack pointer value so it can used by uncommon_trap.
93214501Srpaulo      // We find the argument count by looking at the declared signature.
94214501Srpaulo      bool ignored_will_link;
95252726Srpaulo      ciSignature* declared_signature = NULL;
96214501Srpaulo      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
97214501Srpaulo      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
98252726Srpaulo      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
99214501Srpaulo    }
100214501Srpaulo  }
101214501Srpaulo
102214501Srpaulo  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
103214501Srpaulo
104214501Srpaulo  ciMethod*         caller()    const    { return jvms()->method(); }
105252726Srpaulo  int               bci()       const    { return jvms()->bci(); }
106252726Srpaulo  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
107214501Srpaulo  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
108214501Srpaulo  ciMethod*         callee()    const    { return _intrinsic->method(); }
109214501Srpaulo
110214501Srpaulo  bool try_to_inline();
111252726Srpaulo  Node* try_to_predicate();
112214501Srpaulo
113214501Srpaulo  void push_result() {
114214501Srpaulo    // Push the result onto the stack.
115214501Srpaulo    if (!stopped() && result() != NULL) {
116214501Srpaulo      BasicType bt = result()->bottom_type()->basic_type();
117214501Srpaulo      push_node(bt, result());
118252726Srpaulo    }
119252726Srpaulo  }
120252726Srpaulo
121214501Srpaulo private:
122214501Srpaulo  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
123214501Srpaulo    fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
124252726Srpaulo  }
125252726Srpaulo
126252726Srpaulo  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
127252726Srpaulo  void  set_result(RegionNode* region, PhiNode* value);
128252726Srpaulo  Node*     result() { return _result; }
129252726Srpaulo
130252726Srpaulo  virtual int reexecute_sp() { return _reexecute_sp; }
131252726Srpaulo
132252726Srpaulo  // Helper functions to inline natives
133214501Srpaulo  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
134214501Srpaulo  Node* generate_slow_guard(Node* test, RegionNode* region);
135214501Srpaulo  Node* generate_fair_guard(Node* test, RegionNode* region);
136252726Srpaulo  Node* generate_negative_guard(Node* index, RegionNode* region,
137214501Srpaulo                                // resulting CastII of index:
138214501Srpaulo                                Node* *pos_index = NULL);
139214501Srpaulo  Node* generate_nonpositive_guard(Node* index, bool never_negative,
140214501Srpaulo                                   // resulting CastII of index:
141214501Srpaulo                                   Node* *pos_index = NULL);
142214501Srpaulo  Node* generate_limit_guard(Node* offset, Node* subseq_length,
143214501Srpaulo                             Node* array_length,
144214501Srpaulo                             RegionNode* region);
145214501Srpaulo  Node* generate_current_thread(Node* &tls_output);
146214501Srpaulo  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
147214501Srpaulo                              bool disjoint_bases, const char* &name, bool dest_uninitialized);
148214501Srpaulo  Node* load_mirror_from_klass(Node* klass);
149252726Srpaulo  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
150252726Srpaulo                                      RegionNode* region, int null_path,
151252726Srpaulo                                      int offset);
152252726Srpaulo  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
153252726Srpaulo                               RegionNode* region, int null_path) {
154252726Srpaulo    int offset = java_lang_Class::klass_offset_in_bytes();
155252726Srpaulo    return load_klass_from_mirror_common(mirror, never_see_null,
156252726Srpaulo                                         region, null_path,
157214501Srpaulo                                         offset);
158214501Srpaulo  }
159214501Srpaulo  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
160214501Srpaulo                                     RegionNode* region, int null_path) {
161214501Srpaulo    int offset = java_lang_Class::array_klass_offset_in_bytes();
162214501Srpaulo    return load_klass_from_mirror_common(mirror, never_see_null,
163214501Srpaulo                                         region, null_path,
164214501Srpaulo                                         offset);
165214501Srpaulo  }
166214501Srpaulo  Node* generate_access_flags_guard(Node* kls,
167214501Srpaulo                                    int modifier_mask, int modifier_bits,
168214501Srpaulo                                    RegionNode* region);
169214501Srpaulo  Node* generate_interface_guard(Node* kls, RegionNode* region);
170214501Srpaulo  Node* generate_array_guard(Node* kls, RegionNode* region) {
171214501Srpaulo    return generate_array_guard_common(kls, region, false, false);
172214501Srpaulo  }
173214501Srpaulo  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
174214501Srpaulo    return generate_array_guard_common(kls, region, false, true);
175214501Srpaulo  }
176214501Srpaulo  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
177214501Srpaulo    return generate_array_guard_common(kls, region, true, false);
178214501Srpaulo  }
179214501Srpaulo  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
180214501Srpaulo    return generate_array_guard_common(kls, region, true, true);
181214501Srpaulo  }
182214501Srpaulo  Node* generate_array_guard_common(Node* kls, RegionNode* region,
183214501Srpaulo                                    bool obj_array, bool not_array);
184214501Srpaulo  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
185214501Srpaulo  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
186214501Srpaulo                                     bool is_virtual = false, bool is_static = false);
187214501Srpaulo  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
188214501Srpaulo    return generate_method_call(method_id, false, true);
189214501Srpaulo  }
190214501Srpaulo  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
191252726Srpaulo    return generate_method_call(method_id, true, false);
192252726Srpaulo  }
193252726Srpaulo  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
194252726Srpaulo
195252726Srpaulo  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
196252726Srpaulo  Node* make_string_method_node(int opcode, Node* str1, Node* str2);
197252726Srpaulo  bool inline_string_compareTo();
198252726Srpaulo  bool inline_string_indexOf();
199252726Srpaulo  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
200252726Srpaulo  bool inline_string_equals();
201252726Srpaulo  Node* round_double_node(Node* n);
202252726Srpaulo  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
203214501Srpaulo  bool inline_math_native(vmIntrinsics::ID id);
204252726Srpaulo  bool inline_trig(vmIntrinsics::ID id);
205252726Srpaulo  bool inline_math(vmIntrinsics::ID id);
206252726Srpaulo  void inline_math_mathExact(Node* math);
207252726Srpaulo  bool inline_math_addExactI(bool is_increment);
208252726Srpaulo  bool inline_math_addExactL(bool is_increment);
209252726Srpaulo  bool inline_math_multiplyExactI();
210252726Srpaulo  bool inline_math_multiplyExactL();
211252726Srpaulo  bool inline_math_negateExactI();
212214501Srpaulo  bool inline_math_negateExactL();
213214501Srpaulo  bool inline_math_subtractExactI(bool is_decrement);
214214501Srpaulo  bool inline_math_subtractExactL(bool is_decrement);
215214501Srpaulo  bool inline_exp();
216214501Srpaulo  bool inline_pow();
217214501Srpaulo  void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
218214501Srpaulo  bool inline_min_max(vmIntrinsics::ID id);
219214501Srpaulo  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
220214501Srpaulo  // This returns Type::AnyPtr, RawPtr, or OopPtr.
221214501Srpaulo  int classify_unsafe_addr(Node* &base, Node* &offset);
222214501Srpaulo  Node* make_unsafe_address(Node* base, Node* offset);
223214501Srpaulo  // Helper for inline_unsafe_access.
224214501Srpaulo  // Generates the guards that check whether the result of
225214501Srpaulo  // Unsafe.getObject should be recorded in an SATB log buffer.
226214501Srpaulo  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
227214501Srpaulo  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
228214501Srpaulo  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
229214501Srpaulo  static bool klass_needs_init_guard(Node* kls);
230214501Srpaulo  bool inline_unsafe_allocate();
231214501Srpaulo  bool inline_unsafe_copyMemory();
232214501Srpaulo  bool inline_native_currentThread();
233214501Srpaulo#ifdef TRACE_HAVE_INTRINSICS
234214501Srpaulo  bool inline_native_classID();
235214501Srpaulo  bool inline_native_threadID();
236252726Srpaulo#endif
237252726Srpaulo  bool inline_native_time_funcs(address method, const char* funcName);
238252726Srpaulo  bool inline_native_isInterrupted();
239252726Srpaulo  bool inline_native_Class_query(vmIntrinsics::ID id);
240214501Srpaulo  bool inline_native_subtype_check();
241214501Srpaulo
242214501Srpaulo  bool inline_native_newArray();
243214501Srpaulo  bool inline_native_getLength();
244214501Srpaulo  bool inline_array_copyOf(bool is_copyOfRange);
245214501Srpaulo  bool inline_array_equals();
246214501Srpaulo  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
247214501Srpaulo  bool inline_native_clone(bool is_virtual);
248214501Srpaulo  bool inline_native_Reflection_getCallerClass();
249214501Srpaulo  // Helper function for inlining native object hash method
250214501Srpaulo  bool inline_native_hashcode(bool is_virtual, bool is_static);
251214501Srpaulo  bool inline_native_getClass();
252214501Srpaulo
253214501Srpaulo  // Helper functions for inlining arraycopy
254214501Srpaulo  bool inline_arraycopy();
255214501Srpaulo  void generate_arraycopy(const TypePtr* adr_type,
256214501Srpaulo                          BasicType basic_elem_type,
257214501Srpaulo                          Node* src,  Node* src_offset,
258214501Srpaulo                          Node* dest, Node* dest_offset,
259214501Srpaulo                          Node* copy_length,
260214501Srpaulo                          bool disjoint_bases = false,
261214501Srpaulo                          bool length_never_negative = false,
262214501Srpaulo                          RegionNode* slow_region = NULL);
263214501Srpaulo  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
264214501Srpaulo                                                RegionNode* slow_region);
265214501Srpaulo  void generate_clear_array(const TypePtr* adr_type,
266214501Srpaulo                            Node* dest,
267214501Srpaulo                            BasicType basic_elem_type,
268214501Srpaulo                            Node* slice_off,
269252726Srpaulo                            Node* slice_len,
270252726Srpaulo                            Node* slice_end);
271252726Srpaulo  bool generate_block_arraycopy(const TypePtr* adr_type,
272252726Srpaulo                                BasicType basic_elem_type,
273252726Srpaulo                                AllocateNode* alloc,
274252726Srpaulo                                Node* src,  Node* src_offset,
275252726Srpaulo                                Node* dest, Node* dest_offset,
276252726Srpaulo                                Node* dest_size, bool dest_uninitialized);
277252726Srpaulo  void generate_slow_arraycopy(const TypePtr* adr_type,
278252726Srpaulo                               Node* src,  Node* src_offset,
279252726Srpaulo                               Node* dest, Node* dest_offset,
280252726Srpaulo                               Node* copy_length, bool dest_uninitialized);
281252726Srpaulo  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
282252726Srpaulo                                     Node* dest_elem_klass,
283252726Srpaulo                                     Node* src,  Node* src_offset,
284252726Srpaulo                                     Node* dest, Node* dest_offset,
285252726Srpaulo                                     Node* copy_length, bool dest_uninitialized);
286252726Srpaulo  Node* generate_generic_arraycopy(const TypePtr* adr_type,
287252726Srpaulo                                   Node* src,  Node* src_offset,
288252726Srpaulo                                   Node* dest, Node* dest_offset,
289252726Srpaulo                                   Node* copy_length, bool dest_uninitialized);
290252726Srpaulo  void generate_unchecked_arraycopy(const TypePtr* adr_type,
291252726Srpaulo                                    BasicType basic_elem_type,
292214501Srpaulo                                    bool disjoint_bases,
293214501Srpaulo                                    Node* src,  Node* src_offset,
294214501Srpaulo                                    Node* dest, Node* dest_offset,
295214501Srpaulo                                    Node* copy_length, bool dest_uninitialized);
296214501Srpaulo  typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
297214501Srpaulo  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
298214501Srpaulo  bool inline_unsafe_ordered_store(BasicType type);
299214501Srpaulo  bool inline_unsafe_fence(vmIntrinsics::ID id);
300214501Srpaulo  bool inline_fp_conversions(vmIntrinsics::ID id);
301214501Srpaulo  bool inline_number_methods(vmIntrinsics::ID id);
302214501Srpaulo  bool inline_reference_get();
303214501Srpaulo  bool inline_aescrypt_Block(vmIntrinsics::ID id);
304214501Srpaulo  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
305214501Srpaulo  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
306214501Srpaulo  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
307214501Srpaulo  Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
308214501Srpaulo  bool inline_encodeISOArray();
309214501Srpaulo  bool inline_updateCRC32();
310214501Srpaulo  bool inline_updateBytesCRC32();
311214501Srpaulo  bool inline_updateByteBufferCRC32();
312214501Srpaulo};
313252726Srpaulo
314214501Srpaulo
315214501Srpaulo//---------------------------make_vm_intrinsic----------------------------
316214501SrpauloCallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
317214501Srpaulo  vmIntrinsics::ID id = m->intrinsic_id();
318214501Srpaulo  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
319214501Srpaulo
320214501Srpaulo  if (DisableIntrinsic[0] != '\0'
321214501Srpaulo      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
322214501Srpaulo    // disabled by a user request on the command line:
323214501Srpaulo    // example: -XX:DisableIntrinsic=_hashCode,_getClass
324214501Srpaulo    return NULL;
325214501Srpaulo  }
326214501Srpaulo
327214501Srpaulo  if (!m->is_loaded()) {
328214501Srpaulo    // do not attempt to inline unloaded methods
329214501Srpaulo    return NULL;
330214501Srpaulo  }
331214501Srpaulo
332214501Srpaulo  // Only a few intrinsics implement a virtual dispatch.
333214501Srpaulo  // They are expensive calls which are also frequently overridden.
334214501Srpaulo  if (is_virtual) {
335214501Srpaulo    switch (id) {
336214501Srpaulo    case vmIntrinsics::_hashCode:
337214501Srpaulo    case vmIntrinsics::_clone:
338214501Srpaulo      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
339214501Srpaulo      break;
340214501Srpaulo    default:
341214501Srpaulo      return NULL;
342214501Srpaulo    }
343214501Srpaulo  }
344214501Srpaulo
345214501Srpaulo  // -XX:-InlineNatives disables nearly all intrinsics:
346214501Srpaulo  if (!InlineNatives) {
347214501Srpaulo    switch (id) {
348214501Srpaulo    case vmIntrinsics::_indexOf:
349214501Srpaulo    case vmIntrinsics::_compareTo:
350214501Srpaulo    case vmIntrinsics::_equals:
351214501Srpaulo    case vmIntrinsics::_equalsC:
352214501Srpaulo    case vmIntrinsics::_getAndAddInt:
353214501Srpaulo    case vmIntrinsics::_getAndAddLong:
354214501Srpaulo    case vmIntrinsics::_getAndSetInt:
355214501Srpaulo    case vmIntrinsics::_getAndSetLong:
356214501Srpaulo    case vmIntrinsics::_getAndSetObject:
357214501Srpaulo    case vmIntrinsics::_loadFence:
358214501Srpaulo    case vmIntrinsics::_storeFence:
359214501Srpaulo    case vmIntrinsics::_fullFence:
360214501Srpaulo      break;  // InlineNatives does not control String.compareTo
361214501Srpaulo    case vmIntrinsics::_Reference_get:
362214501Srpaulo      break;  // InlineNatives does not control Reference.get
363214501Srpaulo    default:
364214501Srpaulo      return NULL;
365214501Srpaulo    }
366214501Srpaulo  }
367214501Srpaulo
368214501Srpaulo  bool is_predicted = false;
369214501Srpaulo  bool does_virtual_dispatch = false;
370214501Srpaulo
371214501Srpaulo  switch (id) {
372214501Srpaulo  case vmIntrinsics::_compareTo:
373214501Srpaulo    if (!SpecialStringCompareTo)  return NULL;
374214501Srpaulo    if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
375214501Srpaulo    break;
376214501Srpaulo  case vmIntrinsics::_indexOf:
377214501Srpaulo    if (!SpecialStringIndexOf)  return NULL;
378214501Srpaulo    break;
379214501Srpaulo  case vmIntrinsics::_equals:
380214501Srpaulo    if (!SpecialStringEquals)  return NULL;
381214501Srpaulo    if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
382214501Srpaulo    break;
383214501Srpaulo  case vmIntrinsics::_equalsC:
384214501Srpaulo    if (!SpecialArraysEquals)  return NULL;
385214501Srpaulo    if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
386214501Srpaulo    break;
387214501Srpaulo  case vmIntrinsics::_arraycopy:
388214501Srpaulo    if (!InlineArrayCopy)  return NULL;
389214501Srpaulo    break;
390214501Srpaulo  case vmIntrinsics::_copyMemory:
391214501Srpaulo    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
392214501Srpaulo    if (!InlineArrayCopy)  return NULL;
393214501Srpaulo    break;
394214501Srpaulo  case vmIntrinsics::_hashCode:
395214501Srpaulo    if (!InlineObjectHash)  return NULL;
396214501Srpaulo    does_virtual_dispatch = true;
397214501Srpaulo    break;
398214501Srpaulo  case vmIntrinsics::_clone:
399214501Srpaulo    does_virtual_dispatch = true;
400214501Srpaulo  case vmIntrinsics::_copyOf:
401214501Srpaulo  case vmIntrinsics::_copyOfRange:
402214501Srpaulo    if (!InlineObjectCopy)  return NULL;
403214501Srpaulo    // These also use the arraycopy intrinsic mechanism:
404214501Srpaulo    if (!InlineArrayCopy)  return NULL;
405214501Srpaulo    break;
406214501Srpaulo  case vmIntrinsics::_encodeISOArray:
407214501Srpaulo    if (!SpecialEncodeISOArray)  return NULL;
408214501Srpaulo    if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
409214501Srpaulo    break;
410214501Srpaulo  case vmIntrinsics::_checkIndex:
411214501Srpaulo    // We do not intrinsify this.  The optimizer does fine with it.
412214501Srpaulo    return NULL;
413214501Srpaulo
414214501Srpaulo  case vmIntrinsics::_getCallerClass:
415214501Srpaulo    if (!UseNewReflection)  return NULL;
416214501Srpaulo    if (!InlineReflectionGetCallerClass)  return NULL;
417214501Srpaulo    if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
418214501Srpaulo    break;
419214501Srpaulo
420214501Srpaulo  case vmIntrinsics::_bitCount_i:
421214501Srpaulo    if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
422252726Srpaulo    break;
423252726Srpaulo
424252726Srpaulo  case vmIntrinsics::_bitCount_l:
425252726Srpaulo    if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
426252726Srpaulo    break;
427252726Srpaulo
428214501Srpaulo  case vmIntrinsics::_numberOfLeadingZeros_i:
429214501Srpaulo    if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
430214501Srpaulo    break;
431214501Srpaulo
432214501Srpaulo  case vmIntrinsics::_numberOfLeadingZeros_l:
433214501Srpaulo    if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
434252726Srpaulo    break;
435252726Srpaulo
436252726Srpaulo  case vmIntrinsics::_numberOfTrailingZeros_i:
437214501Srpaulo    if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
438214501Srpaulo    break;
439214501Srpaulo
440252726Srpaulo  case vmIntrinsics::_numberOfTrailingZeros_l:
441252726Srpaulo    if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
442252726Srpaulo    break;
443214501Srpaulo
444214501Srpaulo  case vmIntrinsics::_reverseBytes_c:
445214501Srpaulo    if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
446214501Srpaulo    break;
447214501Srpaulo  case vmIntrinsics::_reverseBytes_s:
448214501Srpaulo    if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
449214501Srpaulo    break;
450214501Srpaulo  case vmIntrinsics::_reverseBytes_i:
451214501Srpaulo    if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
452214501Srpaulo    break;
453214501Srpaulo  case vmIntrinsics::_reverseBytes_l:
454214501Srpaulo    if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
455252726Srpaulo    break;
456252726Srpaulo
457252726Srpaulo  case vmIntrinsics::_Reference_get:
458252726Srpaulo    // Use the intrinsic version of Reference.get() so that the value in
459214501Srpaulo    // the referent field can be registered by the G1 pre-barrier code.
460214501Srpaulo    // Also add memory barrier to prevent commoning reads from this field
461252726Srpaulo    // across safepoint since GC can change it value.
462252726Srpaulo    break;
463252726Srpaulo
464214501Srpaulo  case vmIntrinsics::_compareAndSwapObject:
465214501Srpaulo#ifdef _LP64
466214501Srpaulo    if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
467214501Srpaulo#endif
468214501Srpaulo    break;
469214501Srpaulo
470214501Srpaulo  case vmIntrinsics::_compareAndSwapLong:
471214501Srpaulo    if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
472214501Srpaulo    break;
473214501Srpaulo
474214501Srpaulo  case vmIntrinsics::_getAndAddInt:
475214501Srpaulo    if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
476214501Srpaulo    break;
477214501Srpaulo
478214501Srpaulo  case vmIntrinsics::_getAndAddLong:
479214501Srpaulo    if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
480214501Srpaulo    break;
481214501Srpaulo
482214501Srpaulo  case vmIntrinsics::_getAndSetInt:
483214501Srpaulo    if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
484214501Srpaulo    break;
485214501Srpaulo
486214501Srpaulo  case vmIntrinsics::_getAndSetLong:
487214501Srpaulo    if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
488214501Srpaulo    break;
489214501Srpaulo
490214501Srpaulo  case vmIntrinsics::_getAndSetObject:
491214501Srpaulo#ifdef _LP64
492214501Srpaulo    if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
493214501Srpaulo    if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
494214501Srpaulo    break;
495214501Srpaulo#else
496214501Srpaulo    if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
497214501Srpaulo    break;
498214501Srpaulo#endif
499214501Srpaulo
500252726Srpaulo  case vmIntrinsics::_aescrypt_encryptBlock:
501252726Srpaulo  case vmIntrinsics::_aescrypt_decryptBlock:
502252726Srpaulo    if (!UseAESIntrinsics) return NULL;
503252726Srpaulo    break;
504252726Srpaulo
505252726Srpaulo  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
506214501Srpaulo  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
507214501Srpaulo    if (!UseAESIntrinsics) return NULL;
508214501Srpaulo    // these two require the predicated logic
509214501Srpaulo    is_predicted = true;
510214501Srpaulo    break;
511214501Srpaulo
512214501Srpaulo  case vmIntrinsics::_updateCRC32:
513214501Srpaulo  case vmIntrinsics::_updateBytesCRC32:
514214501Srpaulo  case vmIntrinsics::_updateByteBufferCRC32:
515214501Srpaulo    if (!UseCRC32Intrinsics) return NULL;
516214501Srpaulo    break;
517214501Srpaulo
518214501Srpaulo  case vmIntrinsics::_incrementExactI:
519214501Srpaulo  case vmIntrinsics::_addExactI:
520214501Srpaulo    if (!Matcher::match_rule_supported(Op_AddExactI) || !UseMathExactIntrinsics) return NULL;
521214501Srpaulo    break;
522214501Srpaulo  case vmIntrinsics::_incrementExactL:
523214501Srpaulo  case vmIntrinsics::_addExactL:
524214501Srpaulo    if (!Matcher::match_rule_supported(Op_AddExactL) || !UseMathExactIntrinsics) return NULL;
525214501Srpaulo    break;
526214501Srpaulo  case vmIntrinsics::_decrementExactI:
527214501Srpaulo  case vmIntrinsics::_subtractExactI:
528214501Srpaulo    if (!Matcher::match_rule_supported(Op_SubExactI) || !UseMathExactIntrinsics) return NULL;
529214501Srpaulo    break;
530214501Srpaulo  case vmIntrinsics::_decrementExactL:
531214501Srpaulo  case vmIntrinsics::_subtractExactL:
532214501Srpaulo    if (!Matcher::match_rule_supported(Op_SubExactL) || !UseMathExactIntrinsics) return NULL;
533214501Srpaulo    break;
534214501Srpaulo  case vmIntrinsics::_negateExactI:
535214501Srpaulo    if (!Matcher::match_rule_supported(Op_NegExactI) || !UseMathExactIntrinsics) return NULL;
536214501Srpaulo    break;
537214501Srpaulo  case vmIntrinsics::_negateExactL:
538214501Srpaulo    if (!Matcher::match_rule_supported(Op_NegExactL) || !UseMathExactIntrinsics) return NULL;
539214501Srpaulo    break;
540214501Srpaulo  case vmIntrinsics::_multiplyExactI:
541214501Srpaulo    if (!Matcher::match_rule_supported(Op_MulExactI) || !UseMathExactIntrinsics) return NULL;
542214501Srpaulo    break;
543214501Srpaulo  case vmIntrinsics::_multiplyExactL:
544214501Srpaulo    if (!Matcher::match_rule_supported(Op_MulExactL) || !UseMathExactIntrinsics) return NULL;
545214501Srpaulo    break;
546214501Srpaulo
547214501Srpaulo default:
548214501Srpaulo    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
549214501Srpaulo    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
550214501Srpaulo    break;
551214501Srpaulo  }
552214501Srpaulo
553214501Srpaulo  // -XX:-InlineClassNatives disables natives from the Class class.
554214501Srpaulo  // The flag applies to all reflective calls, notably Array.newArray
555214501Srpaulo  // (visible to Java programmers as Array.newInstance).
556214501Srpaulo  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
557214501Srpaulo      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
558214501Srpaulo    if (!InlineClassNatives)  return NULL;
559214501Srpaulo  }
560214501Srpaulo
561214501Srpaulo  // -XX:-InlineThreadNatives disables natives from the Thread class.
562214501Srpaulo  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
563214501Srpaulo    if (!InlineThreadNatives)  return NULL;
564214501Srpaulo  }
565214501Srpaulo
566214501Srpaulo  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
567214501Srpaulo  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
568214501Srpaulo      m->holder()->name() == ciSymbol::java_lang_Float() ||
569252726Srpaulo      m->holder()->name() == ciSymbol::java_lang_Double()) {
570252726Srpaulo    if (!InlineMathNatives)  return NULL;
571214501Srpaulo  }
572214501Srpaulo
573214501Srpaulo  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
574214501Srpaulo  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
575214501Srpaulo    if (!InlineUnsafeOps)  return NULL;
576214501Srpaulo  }
577214501Srpaulo
578214501Srpaulo  return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
579214501Srpaulo}
580214501Srpaulo
581214501Srpaulo//----------------------register_library_intrinsics-----------------------
582214501Srpaulo// Initialize this file's data structures, for each Compile instance.
583214501Srpaulovoid Compile::register_library_intrinsics() {
584214501Srpaulo  // Nothing to do here.
585214501Srpaulo}
586214501Srpaulo
587214501SrpauloJVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
588214501Srpaulo  LibraryCallKit kit(jvms, this);
589214501Srpaulo  Compile* C = kit.C;
590214501Srpaulo  int nodes = C->unique();
591214501Srpaulo#ifndef PRODUCT
592214501Srpaulo  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
593214501Srpaulo    char buf[1000];
594214501Srpaulo    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
595214501Srpaulo    tty->print_cr("Intrinsic %s", str);
596214501Srpaulo  }
597214501Srpaulo#endif
598214501Srpaulo  ciMethod* callee = kit.callee();
599214501Srpaulo  const int bci    = kit.bci();
600214501Srpaulo
601214501Srpaulo  // Try to inline the intrinsic.
602214501Srpaulo  if (kit.try_to_inline()) {
603214501Srpaulo    if (C->print_intrinsics() || C->print_inlining()) {
604214501Srpaulo      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
605214501Srpaulo    }
606214501Srpaulo    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
607214501Srpaulo    if (C->log()) {
608214501Srpaulo      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
609214501Srpaulo                     vmIntrinsics::name_at(intrinsic_id()),
610214501Srpaulo                     (is_virtual() ? " virtual='1'" : ""),
611214501Srpaulo                     C->unique() - nodes);
612214501Srpaulo    }
613214501Srpaulo    // Push the result from the inlined method onto the stack.
614214501Srpaulo    kit.push_result();
615214501Srpaulo    return kit.transfer_exceptions_into_jvms();
616214501Srpaulo  }
617214501Srpaulo
618214501Srpaulo  // The intrinsic bailed out
619214501Srpaulo  if (C->print_intrinsics() || C->print_inlining()) {
620214501Srpaulo    if (jvms->has_method()) {
621214501Srpaulo      // Not a root compile.
622214501Srpaulo      const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
623214501Srpaulo      C->print_inlining(callee, jvms->depth() - 1, bci, msg);
624214501Srpaulo    } else {
625214501Srpaulo      // Root compile
626214501Srpaulo      tty->print("Did not generate intrinsic %s%s at bci:%d in",
627214501Srpaulo               vmIntrinsics::name_at(intrinsic_id()),
628214501Srpaulo               (is_virtual() ? " (virtual)" : ""), bci);
629214501Srpaulo    }
630214501Srpaulo  }
631214501Srpaulo  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
632214501Srpaulo  return NULL;
633214501Srpaulo}
634214501Srpaulo
635214501SrpauloNode* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
636214501Srpaulo  LibraryCallKit kit(jvms, this);
637214501Srpaulo  Compile* C = kit.C;
638214501Srpaulo  int nodes = C->unique();
639214501Srpaulo#ifndef PRODUCT
640214501Srpaulo  assert(is_predicted(), "sanity");
641214501Srpaulo  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
642214501Srpaulo    char buf[1000];
643214501Srpaulo    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
644214501Srpaulo    tty->print_cr("Predicate for intrinsic %s", str);
645214501Srpaulo  }
646214501Srpaulo#endif
647214501Srpaulo  ciMethod* callee = kit.callee();
648214501Srpaulo  const int bci    = kit.bci();
649214501Srpaulo
650214501Srpaulo  Node* slow_ctl = kit.try_to_predicate();
651214501Srpaulo  if (!kit.failing()) {
652214501Srpaulo    if (C->print_intrinsics() || C->print_inlining()) {
653214501Srpaulo      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
654214501Srpaulo    }
655214501Srpaulo    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
656214501Srpaulo    if (C->log()) {
657214501Srpaulo      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
658214501Srpaulo                     vmIntrinsics::name_at(intrinsic_id()),
659214501Srpaulo                     (is_virtual() ? " virtual='1'" : ""),
660214501Srpaulo                     C->unique() - nodes);
661214501Srpaulo    }
662214501Srpaulo    return slow_ctl; // Could be NULL if the check folds.
663214501Srpaulo  }
664214501Srpaulo
665214501Srpaulo  // The intrinsic bailed out
666214501Srpaulo  if (C->print_intrinsics() || C->print_inlining()) {
667214501Srpaulo    if (jvms->has_method()) {
668214501Srpaulo      // Not a root compile.
669214501Srpaulo      const char* msg = "failed to generate predicate for intrinsic";
670214501Srpaulo      C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
671214501Srpaulo    } else {
672214501Srpaulo      // Root compile
673214501Srpaulo      C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
674214501Srpaulo                                        vmIntrinsics::name_at(intrinsic_id()),
675214501Srpaulo                                        (is_virtual() ? " (virtual)" : ""), bci);
676214501Srpaulo    }
677214501Srpaulo  }
678214501Srpaulo  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
679214501Srpaulo  return NULL;
680214501Srpaulo}
681214501Srpaulo
682214501Srpaulobool LibraryCallKit::try_to_inline() {
683214501Srpaulo  // Handle symbolic names for otherwise undistinguished boolean switches:
684214501Srpaulo  const bool is_store       = true;
685214501Srpaulo  const bool is_native_ptr  = true;
686214501Srpaulo  const bool is_static      = true;
687214501Srpaulo  const bool is_volatile    = true;
688214501Srpaulo
689214501Srpaulo  if (!jvms()->has_method()) {
690214501Srpaulo    // Root JVMState has a null method.
691214501Srpaulo    assert(map()->memory()->Opcode() == Op_Parm, "");
692214501Srpaulo    // Insert the memory aliasing node
693214501Srpaulo    set_all_memory(reset_memory());
694214501Srpaulo  }
695214501Srpaulo  assert(merged_memory(), "");
696214501Srpaulo
697214501Srpaulo
698214501Srpaulo  switch (intrinsic_id()) {
699214501Srpaulo  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
700214501Srpaulo  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
701214501Srpaulo  case vmIntrinsics::_getClass:                 return inline_native_getClass();
702214501Srpaulo
703214501Srpaulo  case vmIntrinsics::_dsin:
704214501Srpaulo  case vmIntrinsics::_dcos:
705214501Srpaulo  case vmIntrinsics::_dtan:
706214501Srpaulo  case vmIntrinsics::_dabs:
707214501Srpaulo  case vmIntrinsics::_datan2:
708214501Srpaulo  case vmIntrinsics::_dsqrt:
709214501Srpaulo  case vmIntrinsics::_dexp:
710214501Srpaulo  case vmIntrinsics::_dlog:
711214501Srpaulo  case vmIntrinsics::_dlog10:
712214501Srpaulo  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
713214501Srpaulo
714214501Srpaulo  case vmIntrinsics::_min:
715214501Srpaulo  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
716214501Srpaulo
717214501Srpaulo  case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
718214501Srpaulo  case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
719214501Srpaulo  case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
720214501Srpaulo  case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
721214501Srpaulo  case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
722214501Srpaulo  case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
723214501Srpaulo  case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
724214501Srpaulo  case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
725214501Srpaulo  case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
726214501Srpaulo  case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
727214501Srpaulo  case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
728214501Srpaulo  case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
729214501Srpaulo
730214501Srpaulo  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
731214501Srpaulo
732214501Srpaulo  case vmIntrinsics::_compareTo:                return inline_string_compareTo();
733214501Srpaulo  case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
734214501Srpaulo  case vmIntrinsics::_equals:                   return inline_string_equals();
735214501Srpaulo
736214501Srpaulo  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
737214501Srpaulo  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
738214501Srpaulo  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
739214501Srpaulo  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
740214501Srpaulo  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
741214501Srpaulo  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
742214501Srpaulo  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
743214501Srpaulo  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
744214501Srpaulo  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
745214501Srpaulo
746214501Srpaulo  case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
747214501Srpaulo  case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
748214501Srpaulo  case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
749214501Srpaulo  case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
750214501Srpaulo  case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
751214501Srpaulo  case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
752214501Srpaulo  case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
753214501Srpaulo  case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
754214501Srpaulo  case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
755214501Srpaulo
756214501Srpaulo  case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
757214501Srpaulo  case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
758214501Srpaulo  case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
759214501Srpaulo  case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
760214501Srpaulo  case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
761214501Srpaulo  case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
762214501Srpaulo  case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
763214501Srpaulo  case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
764214501Srpaulo
765214501Srpaulo  case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
766214501Srpaulo  case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
767214501Srpaulo  case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
768214501Srpaulo  case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
769214501Srpaulo  case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
770214501Srpaulo  case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
771214501Srpaulo  case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
772214501Srpaulo  case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
773214501Srpaulo
774214501Srpaulo  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
775214501Srpaulo  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
776214501Srpaulo  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
777214501Srpaulo  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
778214501Srpaulo  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
779  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
780  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
781  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
782  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
783
784  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
785  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
786  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
787  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
788  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
789  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
790  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
791  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
792  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
793
794  case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
795  case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
796  case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
797  case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
798
799  case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
800  case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
801  case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
802
803  case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
804  case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
805  case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
806
807  case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
808  case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
809  case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
810  case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
811  case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
812
813  case vmIntrinsics::_loadFence:
814  case vmIntrinsics::_storeFence:
815  case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
816
817  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
818  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
819
820#ifdef TRACE_HAVE_INTRINSICS
821  case vmIntrinsics::_classID:                  return inline_native_classID();
822  case vmIntrinsics::_threadID:                 return inline_native_threadID();
823  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
824#endif
825  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
826  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
827  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
828  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
829  case vmIntrinsics::_newArray:                 return inline_native_newArray();
830  case vmIntrinsics::_getLength:                return inline_native_getLength();
831  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
832  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
833  case vmIntrinsics::_equalsC:                  return inline_array_equals();
834  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
835
836  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
837
838  case vmIntrinsics::_isInstance:
839  case vmIntrinsics::_getModifiers:
840  case vmIntrinsics::_isInterface:
841  case vmIntrinsics::_isArray:
842  case vmIntrinsics::_isPrimitive:
843  case vmIntrinsics::_getSuperclass:
844  case vmIntrinsics::_getComponentType:
845  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
846
847  case vmIntrinsics::_floatToRawIntBits:
848  case vmIntrinsics::_floatToIntBits:
849  case vmIntrinsics::_intBitsToFloat:
850  case vmIntrinsics::_doubleToRawLongBits:
851  case vmIntrinsics::_doubleToLongBits:
852  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
853
854  case vmIntrinsics::_numberOfLeadingZeros_i:
855  case vmIntrinsics::_numberOfLeadingZeros_l:
856  case vmIntrinsics::_numberOfTrailingZeros_i:
857  case vmIntrinsics::_numberOfTrailingZeros_l:
858  case vmIntrinsics::_bitCount_i:
859  case vmIntrinsics::_bitCount_l:
860  case vmIntrinsics::_reverseBytes_i:
861  case vmIntrinsics::_reverseBytes_l:
862  case vmIntrinsics::_reverseBytes_s:
863  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
864
865  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
866
867  case vmIntrinsics::_Reference_get:            return inline_reference_get();
868
869  case vmIntrinsics::_aescrypt_encryptBlock:
870  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
871
872  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
873  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
874    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
875
876  case vmIntrinsics::_encodeISOArray:
877    return inline_encodeISOArray();
878
879  case vmIntrinsics::_updateCRC32:
880    return inline_updateCRC32();
881  case vmIntrinsics::_updateBytesCRC32:
882    return inline_updateBytesCRC32();
883  case vmIntrinsics::_updateByteBufferCRC32:
884    return inline_updateByteBufferCRC32();
885
886  default:
887    // If you get here, it may be that someone has added a new intrinsic
888    // to the list in vmSymbols.hpp without implementing it here.
889#ifndef PRODUCT
890    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
891      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
892                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
893    }
894#endif
895    return false;
896  }
897}
898
899Node* LibraryCallKit::try_to_predicate() {
900  if (!jvms()->has_method()) {
901    // Root JVMState has a null method.
902    assert(map()->memory()->Opcode() == Op_Parm, "");
903    // Insert the memory aliasing node
904    set_all_memory(reset_memory());
905  }
906  assert(merged_memory(), "");
907
908  switch (intrinsic_id()) {
909  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
910    return inline_cipherBlockChaining_AESCrypt_predicate(false);
911  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
912    return inline_cipherBlockChaining_AESCrypt_predicate(true);
913
914  default:
915    // If you get here, it may be that someone has added a new intrinsic
916    // to the list in vmSymbols.hpp without implementing it here.
917#ifndef PRODUCT
918    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
919      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
920                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
921    }
922#endif
923    Node* slow_ctl = control();
924    set_control(top()); // No fast path instrinsic
925    return slow_ctl;
926  }
927}
928
929//------------------------------set_result-------------------------------
930// Helper function for finishing intrinsics.
931void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
932  record_for_igvn(region);
933  set_control(_gvn.transform(region));
934  set_result( _gvn.transform(value));
935  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
936}
937
938//------------------------------generate_guard---------------------------
939// Helper function for generating guarded fast-slow graph structures.
940// The given 'test', if true, guards a slow path.  If the test fails
941// then a fast path can be taken.  (We generally hope it fails.)
942// In all cases, GraphKit::control() is updated to the fast path.
943// The returned value represents the control for the slow path.
944// The return value is never 'top'; it is either a valid control
945// or NULL if it is obvious that the slow path can never be taken.
946// Also, if region and the slow control are not NULL, the slow edge
947// is appended to the region.
948Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
949  if (stopped()) {
950    // Already short circuited.
951    return NULL;
952  }
953
954  // Build an if node and its projections.
955  // If test is true we take the slow path, which we assume is uncommon.
956  if (_gvn.type(test) == TypeInt::ZERO) {
957    // The slow branch is never taken.  No need to build this guard.
958    return NULL;
959  }
960
961  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
962
963  Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
964  if (if_slow == top()) {
965    // The slow branch is never taken.  No need to build this guard.
966    return NULL;
967  }
968
969  if (region != NULL)
970    region->add_req(if_slow);
971
972  Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
973  set_control(if_fast);
974
975  return if_slow;
976}
977
978inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
979  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
980}
981inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
982  return generate_guard(test, region, PROB_FAIR);
983}
984
985inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
986                                                     Node* *pos_index) {
987  if (stopped())
988    return NULL;                // already stopped
989  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
990    return NULL;                // index is already adequately typed
991  Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
992  Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
993  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
994  if (is_neg != NULL && pos_index != NULL) {
995    // Emulate effect of Parse::adjust_map_after_if.
996    Node* ccast = new (C) CastIINode(index, TypeInt::POS);
997    ccast->set_req(0, control());
998    (*pos_index) = _gvn.transform(ccast);
999  }
1000  return is_neg;
1001}
1002
1003inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1004                                                        Node* *pos_index) {
1005  if (stopped())
1006    return NULL;                // already stopped
1007  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1008    return NULL;                // index is already adequately typed
1009  Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1010  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1011  Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1012  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1013  if (is_notp != NULL && pos_index != NULL) {
1014    // Emulate effect of Parse::adjust_map_after_if.
1015    Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1016    ccast->set_req(0, control());
1017    (*pos_index) = _gvn.transform(ccast);
1018  }
1019  return is_notp;
1020}
1021
1022// Make sure that 'position' is a valid limit index, in [0..length].
1023// There are two equivalent plans for checking this:
1024//   A. (offset + copyLength)  unsigned<=  arrayLength
1025//   B. offset  <=  (arrayLength - copyLength)
1026// We require that all of the values above, except for the sum and
1027// difference, are already known to be non-negative.
1028// Plan A is robust in the face of overflow, if offset and copyLength
1029// are both hugely positive.
1030//
1031// Plan B is less direct and intuitive, but it does not overflow at
1032// all, since the difference of two non-negatives is always
1033// representable.  Whenever Java methods must perform the equivalent
1034// check they generally use Plan B instead of Plan A.
1035// For the moment we use Plan A.
1036inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1037                                                  Node* subseq_length,
1038                                                  Node* array_length,
1039                                                  RegionNode* region) {
1040  if (stopped())
1041    return NULL;                // already stopped
1042  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1043  if (zero_offset && subseq_length->eqv_uncast(array_length))
1044    return NULL;                // common case of whole-array copy
1045  Node* last = subseq_length;
1046  if (!zero_offset)             // last += offset
1047    last = _gvn.transform(new (C) AddINode(last, offset));
1048  Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1049  Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1050  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1051  return is_over;
1052}
1053
1054
1055//--------------------------generate_current_thread--------------------
1056Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057  ciKlass*    thread_klass = env()->Thread_klass();
1058  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059  Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1060  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1062  tls_output = thread;
1063  return threadObj;
1064}
1065
1066
1067//------------------------------make_string_method_node------------------------
1068// Helper method for String intrinsic functions. This version is called
1069// with str1 and str2 pointing to String object nodes.
1070//
1071Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1072  Node* no_ctrl = NULL;
1073
1074  // Get start addr of string
1075  Node* str1_value   = load_String_value(no_ctrl, str1);
1076  Node* str1_offset  = load_String_offset(no_ctrl, str1);
1077  Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1078
1079  // Get length of string 1
1080  Node* str1_len  = load_String_length(no_ctrl, str1);
1081
1082  Node* str2_value   = load_String_value(no_ctrl, str2);
1083  Node* str2_offset  = load_String_offset(no_ctrl, str2);
1084  Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1085
1086  Node* str2_len = NULL;
1087  Node* result = NULL;
1088
1089  switch (opcode) {
1090  case Op_StrIndexOf:
1091    // Get length of string 2
1092    str2_len = load_String_length(no_ctrl, str2);
1093
1094    result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1095                                 str1_start, str1_len, str2_start, str2_len);
1096    break;
1097  case Op_StrComp:
1098    // Get length of string 2
1099    str2_len = load_String_length(no_ctrl, str2);
1100
1101    result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1102                                 str1_start, str1_len, str2_start, str2_len);
1103    break;
1104  case Op_StrEquals:
1105    result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1106                               str1_start, str2_start, str1_len);
1107    break;
1108  default:
1109    ShouldNotReachHere();
1110    return NULL;
1111  }
1112
1113  // All these intrinsics have checks.
1114  C->set_has_split_ifs(true); // Has chance for split-if optimization
1115
1116  return _gvn.transform(result);
1117}
1118
1119// Helper method for String intrinsic functions. This version is called
1120// with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1121// to Int nodes containing the lenghts of str1 and str2.
1122//
1123Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1124  Node* result = NULL;
1125  switch (opcode) {
1126  case Op_StrIndexOf:
1127    result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1128                                 str1_start, cnt1, str2_start, cnt2);
1129    break;
1130  case Op_StrComp:
1131    result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1132                                 str1_start, cnt1, str2_start, cnt2);
1133    break;
1134  case Op_StrEquals:
1135    result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1136                                 str1_start, str2_start, cnt1);
1137    break;
1138  default:
1139    ShouldNotReachHere();
1140    return NULL;
1141  }
1142
1143  // All these intrinsics have checks.
1144  C->set_has_split_ifs(true); // Has chance for split-if optimization
1145
1146  return _gvn.transform(result);
1147}
1148
1149//------------------------------inline_string_compareTo------------------------
1150// public int java.lang.String.compareTo(String anotherString);
1151bool LibraryCallKit::inline_string_compareTo() {
1152  Node* receiver = null_check(argument(0));
1153  Node* arg      = null_check(argument(1));
1154  if (stopped()) {
1155    return true;
1156  }
1157  set_result(make_string_method_node(Op_StrComp, receiver, arg));
1158  return true;
1159}
1160
1161//------------------------------inline_string_equals------------------------
1162bool LibraryCallKit::inline_string_equals() {
1163  Node* receiver = null_check_receiver();
1164  // NOTE: Do not null check argument for String.equals() because spec
1165  // allows to specify NULL as argument.
1166  Node* argument = this->argument(1);
1167  if (stopped()) {
1168    return true;
1169  }
1170
1171  // paths (plus control) merge
1172  RegionNode* region = new (C) RegionNode(5);
1173  Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1174
1175  // does source == target string?
1176  Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1177  Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1178
1179  Node* if_eq = generate_slow_guard(bol, NULL);
1180  if (if_eq != NULL) {
1181    // receiver == argument
1182    phi->init_req(2, intcon(1));
1183    region->init_req(2, if_eq);
1184  }
1185
1186  // get String klass for instanceOf
1187  ciInstanceKlass* klass = env()->String_klass();
1188
1189  if (!stopped()) {
1190    Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1191    Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1192    Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1193
1194    Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1195    //instanceOf == true, fallthrough
1196
1197    if (inst_false != NULL) {
1198      phi->init_req(3, intcon(0));
1199      region->init_req(3, inst_false);
1200    }
1201  }
1202
1203  if (!stopped()) {
1204    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205
1206    // Properly cast the argument to String
1207    argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1208    // This path is taken only when argument's type is String:NotNull.
1209    argument = cast_not_null(argument, false);
1210
1211    Node* no_ctrl = NULL;
1212
1213    // Get start addr of receiver
1214    Node* receiver_val    = load_String_value(no_ctrl, receiver);
1215    Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1216    Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1217
1218    // Get length of receiver
1219    Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1220
1221    // Get start addr of argument
1222    Node* argument_val    = load_String_value(no_ctrl, argument);
1223    Node* argument_offset = load_String_offset(no_ctrl, argument);
1224    Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1225
1226    // Get length of argument
1227    Node* argument_cnt  = load_String_length(no_ctrl, argument);
1228
1229    // Check for receiver count != argument count
1230    Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1231    Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1232    Node* if_ne = generate_slow_guard(bol, NULL);
1233    if (if_ne != NULL) {
1234      phi->init_req(4, intcon(0));
1235      region->init_req(4, if_ne);
1236    }
1237
1238    // Check for count == 0 is done by assembler code for StrEquals.
1239
1240    if (!stopped()) {
1241      Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1242      phi->init_req(1, equals);
1243      region->init_req(1, control());
1244    }
1245  }
1246
1247  // post merge
1248  set_control(_gvn.transform(region));
1249  record_for_igvn(region);
1250
1251  set_result(_gvn.transform(phi));
1252  return true;
1253}
1254
1255//------------------------------inline_array_equals----------------------------
1256bool LibraryCallKit::inline_array_equals() {
1257  Node* arg1 = argument(0);
1258  Node* arg2 = argument(1);
1259  set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1260  return true;
1261}
1262
1263// Java version of String.indexOf(constant string)
1264// class StringDecl {
1265//   StringDecl(char[] ca) {
1266//     offset = 0;
1267//     count = ca.length;
1268//     value = ca;
1269//   }
1270//   int offset;
1271//   int count;
1272//   char[] value;
1273// }
1274//
1275// static int string_indexOf_J(StringDecl string_object, char[] target_object,
1276//                             int targetOffset, int cache_i, int md2) {
1277//   int cache = cache_i;
1278//   int sourceOffset = string_object.offset;
1279//   int sourceCount = string_object.count;
1280//   int targetCount = target_object.length;
1281//
1282//   int targetCountLess1 = targetCount - 1;
1283//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1284//
1285//   char[] source = string_object.value;
1286//   char[] target = target_object;
1287//   int lastChar = target[targetCountLess1];
1288//
1289//  outer_loop:
1290//   for (int i = sourceOffset; i < sourceEnd; ) {
1291//     int src = source[i + targetCountLess1];
1292//     if (src == lastChar) {
1293//       // With random strings and a 4-character alphabet,
1294//       // reverse matching at this point sets up 0.8% fewer
1295//       // frames, but (paradoxically) makes 0.3% more probes.
1296//       // Since those probes are nearer the lastChar probe,
1297//       // there is may be a net D$ win with reverse matching.
1298//       // But, reversing loop inhibits unroll of inner loop
1299//       // for unknown reason.  So, does running outer loop from
1300//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1301//       for (int j = 0; j < targetCountLess1; j++) {
1302//         if (target[targetOffset + j] != source[i+j]) {
1303//           if ((cache & (1 << source[i+j])) == 0) {
1304//             if (md2 < j+1) {
1305//               i += j+1;
1306//               continue outer_loop;
1307//             }
1308//           }
1309//           i += md2;
1310//           continue outer_loop;
1311//         }
1312//       }
1313//       return i - sourceOffset;
1314//     }
1315//     if ((cache & (1 << src)) == 0) {
1316//       i += targetCountLess1;
1317//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1318//     i++;
1319//   }
1320//   return -1;
1321// }
1322
1323//------------------------------string_indexOf------------------------
1324Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1325                                     jint cache_i, jint md2_i) {
1326
1327  Node* no_ctrl  = NULL;
1328  float likely   = PROB_LIKELY(0.9);
1329  float unlikely = PROB_UNLIKELY(0.9);
1330
1331  const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1332
1333  Node* source        = load_String_value(no_ctrl, string_object);
1334  Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1335  Node* sourceCount   = load_String_length(no_ctrl, string_object);
1336
1337  Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1338  jint target_length = target_array->length();
1339  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1340  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1341
1342  // String.value field is known to be @Stable.
1343  if (UseImplicitStableValues) {
1344    target = cast_array_to_stable(target, target_type);
1345  }
1346
1347  IdealKit kit(this, false, true);
1348#define __ kit.
1349  Node* zero             = __ ConI(0);
1350  Node* one              = __ ConI(1);
1351  Node* cache            = __ ConI(cache_i);
1352  Node* md2              = __ ConI(md2_i);
1353  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1354  Node* targetCount      = __ ConI(target_length);
1355  Node* targetCountLess1 = __ ConI(target_length - 1);
1356  Node* targetOffset     = __ ConI(targetOffset_i);
1357  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1358
1359  IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1360  Node* outer_loop = __ make_label(2 /* goto */);
1361  Node* return_    = __ make_label(1);
1362
1363  __ set(rtn,__ ConI(-1));
1364  __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1365       Node* i2  = __ AddI(__ value(i), targetCountLess1);
1366       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1367       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1368       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1369         __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1370              Node* tpj = __ AddI(targetOffset, __ value(j));
1371              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1372              Node* ipj  = __ AddI(__ value(i), __ value(j));
1373              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1374              __ if_then(targ, BoolTest::ne, src2); {
1375                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1376                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1377                    __ increment(i, __ AddI(__ value(j), one));
1378                    __ goto_(outer_loop);
1379                  } __ end_if(); __ dead(j);
1380                }__ end_if(); __ dead(j);
1381                __ increment(i, md2);
1382                __ goto_(outer_loop);
1383              }__ end_if();
1384              __ increment(j, one);
1385         }__ end_loop(); __ dead(j);
1386         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1387         __ goto_(return_);
1388       }__ end_if();
1389       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1390         __ increment(i, targetCountLess1);
1391       }__ end_if();
1392       __ increment(i, one);
1393       __ bind(outer_loop);
1394  }__ end_loop(); __ dead(i);
1395  __ bind(return_);
1396
1397  // Final sync IdealKit and GraphKit.
1398  final_sync(kit);
1399  Node* result = __ value(rtn);
1400#undef __
1401  C->set_has_loops(true);
1402  return result;
1403}
1404
1405//------------------------------inline_string_indexOf------------------------
1406bool LibraryCallKit::inline_string_indexOf() {
1407  Node* receiver = argument(0);
1408  Node* arg      = argument(1);
1409
1410  Node* result;
1411  // Disable the use of pcmpestri until it can be guaranteed that
1412  // the load doesn't cross into the uncommited space.
1413  if (Matcher::has_match_rule(Op_StrIndexOf) &&
1414      UseSSE42Intrinsics) {
1415    // Generate SSE4.2 version of indexOf
1416    // We currently only have match rules that use SSE4.2
1417
1418    receiver = null_check(receiver);
1419    arg      = null_check(arg);
1420    if (stopped()) {
1421      return true;
1422    }
1423
1424    ciInstanceKlass* str_klass = env()->String_klass();
1425    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1426
1427    // Make the merge point
1428    RegionNode* result_rgn = new (C) RegionNode(4);
1429    Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1430    Node* no_ctrl  = NULL;
1431
1432    // Get start addr of source string
1433    Node* source = load_String_value(no_ctrl, receiver);
1434    Node* source_offset = load_String_offset(no_ctrl, receiver);
1435    Node* source_start = array_element_address(source, source_offset, T_CHAR);
1436
1437    // Get length of source string
1438    Node* source_cnt  = load_String_length(no_ctrl, receiver);
1439
1440    // Get start addr of substring
1441    Node* substr = load_String_value(no_ctrl, arg);
1442    Node* substr_offset = load_String_offset(no_ctrl, arg);
1443    Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1444
1445    // Get length of source string
1446    Node* substr_cnt  = load_String_length(no_ctrl, arg);
1447
1448    // Check for substr count > string count
1449    Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1450    Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1451    Node* if_gt = generate_slow_guard(bol, NULL);
1452    if (if_gt != NULL) {
1453      result_phi->init_req(2, intcon(-1));
1454      result_rgn->init_req(2, if_gt);
1455    }
1456
1457    if (!stopped()) {
1458      // Check for substr count == 0
1459      cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1460      bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1461      Node* if_zero = generate_slow_guard(bol, NULL);
1462      if (if_zero != NULL) {
1463        result_phi->init_req(3, intcon(0));
1464        result_rgn->init_req(3, if_zero);
1465      }
1466    }
1467
1468    if (!stopped()) {
1469      result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1470      result_phi->init_req(1, result);
1471      result_rgn->init_req(1, control());
1472    }
1473    set_control(_gvn.transform(result_rgn));
1474    record_for_igvn(result_rgn);
1475    result = _gvn.transform(result_phi);
1476
1477  } else { // Use LibraryCallKit::string_indexOf
1478    // don't intrinsify if argument isn't a constant string.
1479    if (!arg->is_Con()) {
1480     return false;
1481    }
1482    const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1483    if (str_type == NULL) {
1484      return false;
1485    }
1486    ciInstanceKlass* klass = env()->String_klass();
1487    ciObject* str_const = str_type->const_oop();
1488    if (str_const == NULL || str_const->klass() != klass) {
1489      return false;
1490    }
1491    ciInstance* str = str_const->as_instance();
1492    assert(str != NULL, "must be instance");
1493
1494    ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1495    ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1496
1497    int o;
1498    int c;
1499    if (java_lang_String::has_offset_field()) {
1500      o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1501      c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1502    } else {
1503      o = 0;
1504      c = pat->length();
1505    }
1506
1507    // constant strings have no offset and count == length which
1508    // simplifies the resulting code somewhat so lets optimize for that.
1509    if (o != 0 || c != pat->length()) {
1510     return false;
1511    }
1512
1513    receiver = null_check(receiver, T_OBJECT);
1514    // NOTE: No null check on the argument is needed since it's a constant String oop.
1515    if (stopped()) {
1516      return true;
1517    }
1518
1519    // The null string as a pattern always returns 0 (match at beginning of string)
1520    if (c == 0) {
1521      set_result(intcon(0));
1522      return true;
1523    }
1524
1525    // Generate default indexOf
1526    jchar lastChar = pat->char_at(o + (c - 1));
1527    int cache = 0;
1528    int i;
1529    for (i = 0; i < c - 1; i++) {
1530      assert(i < pat->length(), "out of range");
1531      cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1532    }
1533
1534    int md2 = c;
1535    for (i = 0; i < c - 1; i++) {
1536      assert(i < pat->length(), "out of range");
1537      if (pat->char_at(o + i) == lastChar) {
1538        md2 = (c - 1) - i;
1539      }
1540    }
1541
1542    result = string_indexOf(receiver, pat, o, cache, md2);
1543  }
1544  set_result(result);
1545  return true;
1546}
1547
1548//--------------------------round_double_node--------------------------------
1549// Round a double node if necessary.
1550Node* LibraryCallKit::round_double_node(Node* n) {
1551  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1552    n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1553  return n;
1554}
1555
1556//------------------------------inline_math-----------------------------------
1557// public static double Math.abs(double)
1558// public static double Math.sqrt(double)
1559// public static double Math.log(double)
1560// public static double Math.log10(double)
1561bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1562  Node* arg = round_double_node(argument(0));
1563  Node* n;
1564  switch (id) {
1565  case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1566  case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1567  case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1568  case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1569  default:  fatal_unexpected_iid(id);  break;
1570  }
1571  set_result(_gvn.transform(n));
1572  return true;
1573}
1574
1575//------------------------------inline_trig----------------------------------
1576// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1577// argument reduction which will turn into a fast/slow diamond.
1578bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1579  Node* arg = round_double_node(argument(0));
1580  Node* n = NULL;
1581
1582  switch (id) {
1583  case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1584  case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1585  case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1586  default:  fatal_unexpected_iid(id);  break;
1587  }
1588  n = _gvn.transform(n);
1589
1590  // Rounding required?  Check for argument reduction!
1591  if (Matcher::strict_fp_requires_explicit_rounding) {
1592    static const double     pi_4 =  0.7853981633974483;
1593    static const double neg_pi_4 = -0.7853981633974483;
1594    // pi/2 in 80-bit extended precision
1595    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1596    // -pi/2 in 80-bit extended precision
1597    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1598    // Cutoff value for using this argument reduction technique
1599    //static const double    pi_2_minus_epsilon =  1.564660403643354;
1600    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1601
1602    // Pseudocode for sin:
1603    // if (x <= Math.PI / 4.0) {
1604    //   if (x >= -Math.PI / 4.0) return  fsin(x);
1605    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1606    // } else {
1607    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1608    // }
1609    // return StrictMath.sin(x);
1610
1611    // Pseudocode for cos:
1612    // if (x <= Math.PI / 4.0) {
1613    //   if (x >= -Math.PI / 4.0) return  fcos(x);
1614    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1615    // } else {
1616    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1617    // }
1618    // return StrictMath.cos(x);
1619
1620    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1621    // requires a special machine instruction to load it.  Instead we'll try
1622    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1623    // probably do the math inside the SIN encoding.
1624
1625    // Make the merge point
1626    RegionNode* r = new (C) RegionNode(3);
1627    Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1628
1629    // Flatten arg so we need only 1 test
1630    Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1631    // Node for PI/4 constant
1632    Node *pi4 = makecon(TypeD::make(pi_4));
1633    // Check PI/4 : abs(arg)
1634    Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1635    // Check: If PI/4 < abs(arg) then go slow
1636    Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1637    // Branch either way
1638    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1639    set_control(opt_iff(r,iff));
1640
1641    // Set fast path result
1642    phi->init_req(2, n);
1643
1644    // Slow path - non-blocking leaf call
1645    Node* call = NULL;
1646    switch (id) {
1647    case vmIntrinsics::_dsin:
1648      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1649                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1650                               "Sin", NULL, arg, top());
1651      break;
1652    case vmIntrinsics::_dcos:
1653      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1654                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1655                               "Cos", NULL, arg, top());
1656      break;
1657    case vmIntrinsics::_dtan:
1658      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1659                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1660                               "Tan", NULL, arg, top());
1661      break;
1662    }
1663    assert(control()->in(0) == call, "");
1664    Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1665    r->init_req(1, control());
1666    phi->init_req(1, slow_result);
1667
1668    // Post-merge
1669    set_control(_gvn.transform(r));
1670    record_for_igvn(r);
1671    n = _gvn.transform(phi);
1672
1673    C->set_has_split_ifs(true); // Has chance for split-if optimization
1674  }
1675  set_result(n);
1676  return true;
1677}
1678
1679void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1680  //-------------------
1681  //result=(result.isNaN())? funcAddr():result;
1682  // Check: If isNaN() by checking result!=result? then either trap
1683  // or go to runtime
1684  Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1685  // Build the boolean node
1686  Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1687
1688  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1689    { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1690      // The pow or exp intrinsic returned a NaN, which requires a call
1691      // to the runtime.  Recompile with the runtime call.
1692      uncommon_trap(Deoptimization::Reason_intrinsic,
1693                    Deoptimization::Action_make_not_entrant);
1694    }
1695    set_result(result);
1696  } else {
1697    // If this inlining ever returned NaN in the past, we compile a call
1698    // to the runtime to properly handle corner cases
1699
1700    IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1701    Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1702    Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1703
1704    if (!if_slow->is_top()) {
1705      RegionNode* result_region = new (C) RegionNode(3);
1706      PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1707
1708      result_region->init_req(1, if_fast);
1709      result_val->init_req(1, result);
1710
1711      set_control(if_slow);
1712
1713      const TypePtr* no_memory_effects = NULL;
1714      Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1715                                   no_memory_effects,
1716                                   x, top(), y, y ? top() : NULL);
1717      Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1718#ifdef ASSERT
1719      Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1720      assert(value_top == top(), "second value must be top");
1721#endif
1722
1723      result_region->init_req(2, control());
1724      result_val->init_req(2, value);
1725      set_result(result_region, result_val);
1726    } else {
1727      set_result(result);
1728    }
1729  }
1730}
1731
1732//------------------------------inline_exp-------------------------------------
1733// Inline exp instructions, if possible.  The Intel hardware only misses
1734// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1735bool LibraryCallKit::inline_exp() {
1736  Node* arg = round_double_node(argument(0));
1737  Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1738
1739  finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1740
1741  C->set_has_split_ifs(true); // Has chance for split-if optimization
1742  return true;
1743}
1744
1745//------------------------------inline_pow-------------------------------------
1746// Inline power instructions, if possible.
1747bool LibraryCallKit::inline_pow() {
1748  // Pseudocode for pow
1749  // if (x <= 0.0) {
1750  //   long longy = (long)y;
1751  //   if ((double)longy == y) { // if y is long
1752  //     if (y + 1 == y) longy = 0; // huge number: even
1753  //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1754  //   } else {
1755  //     result = NaN;
1756  //   }
1757  // } else {
1758  //   result = DPow(x,y);
1759  // }
1760  // if (result != result)?  {
1761  //   result = uncommon_trap() or runtime_call();
1762  // }
1763  // return result;
1764
1765  Node* x = round_double_node(argument(0));
1766  Node* y = round_double_node(argument(2));
1767
1768  Node* result = NULL;
1769
1770  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1771    // Short form: skip the fancy tests and just check for NaN result.
1772    result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1773  } else {
1774    // If this inlining ever returned NaN in the past, include all
1775    // checks + call to the runtime.
1776
1777    // Set the merge point for If node with condition of (x <= 0.0)
1778    // There are four possible paths to region node and phi node
1779    RegionNode *r = new (C) RegionNode(4);
1780    Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1781
1782    // Build the first if node: if (x <= 0.0)
1783    // Node for 0 constant
1784    Node *zeronode = makecon(TypeD::ZERO);
1785    // Check x:0
1786    Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1787    // Check: If (x<=0) then go complex path
1788    Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1789    // Branch either way
1790    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1791    // Fast path taken; set region slot 3
1792    Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1793    r->init_req(3,fast_taken); // Capture fast-control
1794
1795    // Fast path not-taken, i.e. slow path
1796    Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1797
1798    // Set fast path result
1799    Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1800    phi->init_req(3, fast_result);
1801
1802    // Complex path
1803    // Build the second if node (if y is long)
1804    // Node for (long)y
1805    Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1806    // Node for (double)((long) y)
1807    Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1808    // Check (double)((long) y) : y
1809    Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1810    // Check if (y isn't long) then go to slow path
1811
1812    Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1813    // Branch either way
1814    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1815    Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1816
1817    Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1818
1819    // Calculate DPow(abs(x), y)*(1 & (long)y)
1820    // Node for constant 1
1821    Node *conone = longcon(1);
1822    // 1& (long)y
1823    Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1824
1825    // A huge number is always even. Detect a huge number by checking
1826    // if y + 1 == y and set integer to be tested for parity to 0.
1827    // Required for corner case:
1828    // (long)9.223372036854776E18 = max_jlong
1829    // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1830    // max_jlong is odd but 9.223372036854776E18 is even
1831    Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1832    Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1833    Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1834    Node* correctedsign = NULL;
1835    if (ConditionalMoveLimit != 0) {
1836      correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1837    } else {
1838      IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1839      RegionNode *r = new (C) RegionNode(3);
1840      Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1841      r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1842      r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1843      phi->init_req(1, signnode);
1844      phi->init_req(2, longcon(0));
1845      correctedsign = _gvn.transform(phi);
1846      ylong_path = _gvn.transform(r);
1847      record_for_igvn(r);
1848    }
1849
1850    // zero node
1851    Node *conzero = longcon(0);
1852    // Check (1&(long)y)==0?
1853    Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1854    // Check if (1&(long)y)!=0?, if so the result is negative
1855    Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1856    // abs(x)
1857    Node *absx=_gvn.transform(new (C) AbsDNode(x));
1858    // abs(x)^y
1859    Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1860    // -abs(x)^y
1861    Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1862    // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1863    Node *signresult = NULL;
1864    if (ConditionalMoveLimit != 0) {
1865      signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1866    } else {
1867      IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1868      RegionNode *r = new (C) RegionNode(3);
1869      Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1870      r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1871      r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1872      phi->init_req(1, absxpowy);
1873      phi->init_req(2, negabsxpowy);
1874      signresult = _gvn.transform(phi);
1875      ylong_path = _gvn.transform(r);
1876      record_for_igvn(r);
1877    }
1878    // Set complex path fast result
1879    r->init_req(2, ylong_path);
1880    phi->init_req(2, signresult);
1881
1882    static const jlong nan_bits = CONST64(0x7ff8000000000000);
1883    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1884    r->init_req(1,slow_path);
1885    phi->init_req(1,slow_result);
1886
1887    // Post merge
1888    set_control(_gvn.transform(r));
1889    record_for_igvn(r);
1890    result = _gvn.transform(phi);
1891  }
1892
1893  finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1894
1895  C->set_has_split_ifs(true); // Has chance for split-if optimization
1896  return true;
1897}
1898
1899//------------------------------runtime_math-----------------------------
1900bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1901  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1902         "must be (DD)D or (D)D type");
1903
1904  // Inputs
1905  Node* a = round_double_node(argument(0));
1906  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1907
1908  const TypePtr* no_memory_effects = NULL;
1909  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1910                                 no_memory_effects,
1911                                 a, top(), b, b ? top() : NULL);
1912  Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1913#ifdef ASSERT
1914  Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1915  assert(value_top == top(), "second value must be top");
1916#endif
1917
1918  set_result(value);
1919  return true;
1920}
1921
1922//------------------------------inline_math_native-----------------------------
1923bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1924#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1925  switch (id) {
1926    // These intrinsics are not properly supported on all hardware
1927  case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1928    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1929  case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1930    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1931  case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1932    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1933
1934  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1935    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1936  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1937    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1938
1939    // These intrinsics are supported on all hardware
1940  case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1941  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1942
1943  case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1944    runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1945  case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1946    runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1947#undef FN_PTR
1948
1949   // These intrinsics are not yet correctly implemented
1950  case vmIntrinsics::_datan2:
1951    return false;
1952
1953  default:
1954    fatal_unexpected_iid(id);
1955    return false;
1956  }
1957}
1958
1959static bool is_simple_name(Node* n) {
1960  return (n->req() == 1         // constant
1961          || (n->is_Type() && n->as_Type()->type()->singleton())
1962          || n->is_Proj()       // parameter or return value
1963          || n->is_Phi()        // local of some sort
1964          );
1965}
1966
1967//----------------------------inline_min_max-----------------------------------
1968bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1969  set_result(generate_min_max(id, argument(0), argument(1)));
1970  return true;
1971}
1972
1973void LibraryCallKit::inline_math_mathExact(Node* math) {
1974  // If we didn't get the expected opcode it means we have optimized
1975  // the node to something else and don't need the exception edge.
1976  if (!math->is_MathExact()) {
1977    set_result(math);
1978    return;
1979  }
1980
1981  Node* result = _gvn.transform( new(C) ProjNode(math, MathExactNode::result_proj_node));
1982  Node* flags = _gvn.transform( new(C) FlagsProjNode(math, MathExactNode::flags_proj_node));
1983
1984  Node* bol = _gvn.transform( new (C) BoolNode(flags, BoolTest::overflow) );
1985  IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1986  Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
1987  Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
1988
1989  {
1990    PreserveJVMState pjvms(this);
1991    PreserveReexecuteState preexecs(this);
1992    jvms()->set_should_reexecute(true);
1993
1994    set_control(slow_path);
1995    set_i_o(i_o());
1996
1997    uncommon_trap(Deoptimization::Reason_intrinsic,
1998                  Deoptimization::Action_none);
1999  }
2000
2001  set_control(fast_path);
2002  set_result(result);
2003}
2004
2005bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2006  Node* arg1 = argument(0);
2007  Node* arg2 = NULL;
2008
2009  if (is_increment) {
2010    arg2 = intcon(1);
2011  } else {
2012    arg2 = argument(1);
2013  }
2014
2015  Node* add = _gvn.transform( new(C) AddExactINode(NULL, arg1, arg2) );
2016  inline_math_mathExact(add);
2017  return true;
2018}
2019
2020bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2021  Node* arg1 = argument(0); // type long
2022  // argument(1) == TOP
2023  Node* arg2 = NULL;
2024
2025  if (is_increment) {
2026    arg2 = longcon(1);
2027  } else {
2028    arg2 = argument(2); // type long
2029    // argument(3) == TOP
2030  }
2031
2032  Node* add = _gvn.transform(new(C) AddExactLNode(NULL, arg1, arg2));
2033  inline_math_mathExact(add);
2034  return true;
2035}
2036
2037bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2038  Node* arg1 = argument(0);
2039  Node* arg2 = NULL;
2040
2041  if (is_decrement) {
2042    arg2 = intcon(1);
2043  } else {
2044    arg2 = argument(1);
2045  }
2046
2047  Node* sub = _gvn.transform(new(C) SubExactINode(NULL, arg1, arg2));
2048  inline_math_mathExact(sub);
2049  return true;
2050}
2051
2052bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2053  Node* arg1 = argument(0); // type long
2054  // argument(1) == TOP
2055  Node* arg2 = NULL;
2056
2057  if (is_decrement) {
2058    arg2 = longcon(1);
2059  } else {
2060    arg2 = argument(2); // type long
2061    // argument(3) == TOP
2062  }
2063
2064  Node* sub = _gvn.transform(new(C) SubExactLNode(NULL, arg1, arg2));
2065  inline_math_mathExact(sub);
2066  return true;
2067}
2068
2069bool LibraryCallKit::inline_math_negateExactI() {
2070  Node* arg1 = argument(0);
2071
2072  Node* neg = _gvn.transform(new(C) NegExactINode(NULL, arg1));
2073  inline_math_mathExact(neg);
2074  return true;
2075}
2076
2077bool LibraryCallKit::inline_math_negateExactL() {
2078  Node* arg1 = argument(0);
2079  // argument(1) == TOP
2080
2081  Node* neg = _gvn.transform(new(C) NegExactLNode(NULL, arg1));
2082  inline_math_mathExact(neg);
2083  return true;
2084}
2085
2086bool LibraryCallKit::inline_math_multiplyExactI() {
2087  Node* arg1 = argument(0);
2088  Node* arg2 = argument(1);
2089
2090  Node* mul = _gvn.transform(new(C) MulExactINode(NULL, arg1, arg2));
2091  inline_math_mathExact(mul);
2092  return true;
2093}
2094
2095bool LibraryCallKit::inline_math_multiplyExactL() {
2096  Node* arg1 = argument(0);
2097  // argument(1) == TOP
2098  Node* arg2 = argument(2);
2099  // argument(3) == TOP
2100
2101  Node* mul = _gvn.transform(new(C) MulExactLNode(NULL, arg1, arg2));
2102  inline_math_mathExact(mul);
2103  return true;
2104}
2105
2106Node*
2107LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2108  // These are the candidate return value:
2109  Node* xvalue = x0;
2110  Node* yvalue = y0;
2111
2112  if (xvalue == yvalue) {
2113    return xvalue;
2114  }
2115
2116  bool want_max = (id == vmIntrinsics::_max);
2117
2118  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2119  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2120  if (txvalue == NULL || tyvalue == NULL)  return top();
2121  // This is not really necessary, but it is consistent with a
2122  // hypothetical MaxINode::Value method:
2123  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2124
2125  // %%% This folding logic should (ideally) be in a different place.
2126  // Some should be inside IfNode, and there to be a more reliable
2127  // transformation of ?: style patterns into cmoves.  We also want
2128  // more powerful optimizations around cmove and min/max.
2129
2130  // Try to find a dominating comparison of these guys.
2131  // It can simplify the index computation for Arrays.copyOf
2132  // and similar uses of System.arraycopy.
2133  // First, compute the normalized version of CmpI(x, y).
2134  int   cmp_op = Op_CmpI;
2135  Node* xkey = xvalue;
2136  Node* ykey = yvalue;
2137  Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2138  if (ideal_cmpxy->is_Cmp()) {
2139    // E.g., if we have CmpI(length - offset, count),
2140    // it might idealize to CmpI(length, count + offset)
2141    cmp_op = ideal_cmpxy->Opcode();
2142    xkey = ideal_cmpxy->in(1);
2143    ykey = ideal_cmpxy->in(2);
2144  }
2145
2146  // Start by locating any relevant comparisons.
2147  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2148  Node* cmpxy = NULL;
2149  Node* cmpyx = NULL;
2150  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2151    Node* cmp = start_from->fast_out(k);
2152    if (cmp->outcnt() > 0 &&            // must have prior uses
2153        cmp->in(0) == NULL &&           // must be context-independent
2154        cmp->Opcode() == cmp_op) {      // right kind of compare
2155      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2156      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2157    }
2158  }
2159
2160  const int NCMPS = 2;
2161  Node* cmps[NCMPS] = { cmpxy, cmpyx };
2162  int cmpn;
2163  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2164    if (cmps[cmpn] != NULL)  break;     // find a result
2165  }
2166  if (cmpn < NCMPS) {
2167    // Look for a dominating test that tells us the min and max.
2168    int depth = 0;                // Limit search depth for speed
2169    Node* dom = control();
2170    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2171      if (++depth >= 100)  break;
2172      Node* ifproj = dom;
2173      if (!ifproj->is_Proj())  continue;
2174      Node* iff = ifproj->in(0);
2175      if (!iff->is_If())  continue;
2176      Node* bol = iff->in(1);
2177      if (!bol->is_Bool())  continue;
2178      Node* cmp = bol->in(1);
2179      if (cmp == NULL)  continue;
2180      for (cmpn = 0; cmpn < NCMPS; cmpn++)
2181        if (cmps[cmpn] == cmp)  break;
2182      if (cmpn == NCMPS)  continue;
2183      BoolTest::mask btest = bol->as_Bool()->_test._test;
2184      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2185      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2186      // At this point, we know that 'x btest y' is true.
2187      switch (btest) {
2188      case BoolTest::eq:
2189        // They are proven equal, so we can collapse the min/max.
2190        // Either value is the answer.  Choose the simpler.
2191        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2192          return yvalue;
2193        return xvalue;
2194      case BoolTest::lt:          // x < y
2195      case BoolTest::le:          // x <= y
2196        return (want_max ? yvalue : xvalue);
2197      case BoolTest::gt:          // x > y
2198      case BoolTest::ge:          // x >= y
2199        return (want_max ? xvalue : yvalue);
2200      }
2201    }
2202  }
2203
2204  // We failed to find a dominating test.
2205  // Let's pick a test that might GVN with prior tests.
2206  Node*          best_bol   = NULL;
2207  BoolTest::mask best_btest = BoolTest::illegal;
2208  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2209    Node* cmp = cmps[cmpn];
2210    if (cmp == NULL)  continue;
2211    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2212      Node* bol = cmp->fast_out(j);
2213      if (!bol->is_Bool())  continue;
2214      BoolTest::mask btest = bol->as_Bool()->_test._test;
2215      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2216      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2217      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2218        best_bol   = bol->as_Bool();
2219        best_btest = btest;
2220      }
2221    }
2222  }
2223
2224  Node* answer_if_true  = NULL;
2225  Node* answer_if_false = NULL;
2226  switch (best_btest) {
2227  default:
2228    if (cmpxy == NULL)
2229      cmpxy = ideal_cmpxy;
2230    best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2231    // and fall through:
2232  case BoolTest::lt:          // x < y
2233  case BoolTest::le:          // x <= y
2234    answer_if_true  = (want_max ? yvalue : xvalue);
2235    answer_if_false = (want_max ? xvalue : yvalue);
2236    break;
2237  case BoolTest::gt:          // x > y
2238  case BoolTest::ge:          // x >= y
2239    answer_if_true  = (want_max ? xvalue : yvalue);
2240    answer_if_false = (want_max ? yvalue : xvalue);
2241    break;
2242  }
2243
2244  jint hi, lo;
2245  if (want_max) {
2246    // We can sharpen the minimum.
2247    hi = MAX2(txvalue->_hi, tyvalue->_hi);
2248    lo = MAX2(txvalue->_lo, tyvalue->_lo);
2249  } else {
2250    // We can sharpen the maximum.
2251    hi = MIN2(txvalue->_hi, tyvalue->_hi);
2252    lo = MIN2(txvalue->_lo, tyvalue->_lo);
2253  }
2254
2255  // Use a flow-free graph structure, to avoid creating excess control edges
2256  // which could hinder other optimizations.
2257  // Since Math.min/max is often used with arraycopy, we want
2258  // tightly_coupled_allocation to be able to see beyond min/max expressions.
2259  Node* cmov = CMoveNode::make(C, NULL, best_bol,
2260                               answer_if_false, answer_if_true,
2261                               TypeInt::make(lo, hi, widen));
2262
2263  return _gvn.transform(cmov);
2264
2265  /*
2266  // This is not as desirable as it may seem, since Min and Max
2267  // nodes do not have a full set of optimizations.
2268  // And they would interfere, anyway, with 'if' optimizations
2269  // and with CMoveI canonical forms.
2270  switch (id) {
2271  case vmIntrinsics::_min:
2272    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2273  case vmIntrinsics::_max:
2274    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2275  default:
2276    ShouldNotReachHere();
2277  }
2278  */
2279}
2280
2281inline int
2282LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2283  const TypePtr* base_type = TypePtr::NULL_PTR;
2284  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2285  if (base_type == NULL) {
2286    // Unknown type.
2287    return Type::AnyPtr;
2288  } else if (base_type == TypePtr::NULL_PTR) {
2289    // Since this is a NULL+long form, we have to switch to a rawptr.
2290    base   = _gvn.transform(new (C) CastX2PNode(offset));
2291    offset = MakeConX(0);
2292    return Type::RawPtr;
2293  } else if (base_type->base() == Type::RawPtr) {
2294    return Type::RawPtr;
2295  } else if (base_type->isa_oopptr()) {
2296    // Base is never null => always a heap address.
2297    if (base_type->ptr() == TypePtr::NotNull) {
2298      return Type::OopPtr;
2299    }
2300    // Offset is small => always a heap address.
2301    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2302    if (offset_type != NULL &&
2303        base_type->offset() == 0 &&     // (should always be?)
2304        offset_type->_lo >= 0 &&
2305        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2306      return Type::OopPtr;
2307    }
2308    // Otherwise, it might either be oop+off or NULL+addr.
2309    return Type::AnyPtr;
2310  } else {
2311    // No information:
2312    return Type::AnyPtr;
2313  }
2314}
2315
2316inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2317  int kind = classify_unsafe_addr(base, offset);
2318  if (kind == Type::RawPtr) {
2319    return basic_plus_adr(top(), base, offset);
2320  } else {
2321    return basic_plus_adr(base, offset);
2322  }
2323}
2324
2325//--------------------------inline_number_methods-----------------------------
2326// inline int     Integer.numberOfLeadingZeros(int)
2327// inline int        Long.numberOfLeadingZeros(long)
2328//
2329// inline int     Integer.numberOfTrailingZeros(int)
2330// inline int        Long.numberOfTrailingZeros(long)
2331//
2332// inline int     Integer.bitCount(int)
2333// inline int        Long.bitCount(long)
2334//
2335// inline char  Character.reverseBytes(char)
2336// inline short     Short.reverseBytes(short)
2337// inline int     Integer.reverseBytes(int)
2338// inline long       Long.reverseBytes(long)
2339bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2340  Node* arg = argument(0);
2341  Node* n;
2342  switch (id) {
2343  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2344  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2345  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2346  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2347  case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2348  case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2349  case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2350  case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2351  case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2352  case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2353  default:  fatal_unexpected_iid(id);  break;
2354  }
2355  set_result(_gvn.transform(n));
2356  return true;
2357}
2358
2359//----------------------------inline_unsafe_access----------------------------
2360
2361const static BasicType T_ADDRESS_HOLDER = T_LONG;
2362
2363// Helper that guards and inserts a pre-barrier.
2364void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2365                                        Node* pre_val, bool need_mem_bar) {
2366  // We could be accessing the referent field of a reference object. If so, when G1
2367  // is enabled, we need to log the value in the referent field in an SATB buffer.
2368  // This routine performs some compile time filters and generates suitable
2369  // runtime filters that guard the pre-barrier code.
2370  // Also add memory barrier for non volatile load from the referent field
2371  // to prevent commoning of loads across safepoint.
2372  if (!UseG1GC && !need_mem_bar)
2373    return;
2374
2375  // Some compile time checks.
2376
2377  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2378  const TypeX* otype = offset->find_intptr_t_type();
2379  if (otype != NULL && otype->is_con() &&
2380      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2381    // Constant offset but not the reference_offset so just return
2382    return;
2383  }
2384
2385  // We only need to generate the runtime guards for instances.
2386  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2387  if (btype != NULL) {
2388    if (btype->isa_aryptr()) {
2389      // Array type so nothing to do
2390      return;
2391    }
2392
2393    const TypeInstPtr* itype = btype->isa_instptr();
2394    if (itype != NULL) {
2395      // Can the klass of base_oop be statically determined to be
2396      // _not_ a sub-class of Reference and _not_ Object?
2397      ciKlass* klass = itype->klass();
2398      if ( klass->is_loaded() &&
2399          !klass->is_subtype_of(env()->Reference_klass()) &&
2400          !env()->Object_klass()->is_subtype_of(klass)) {
2401        return;
2402      }
2403    }
2404  }
2405
2406  // The compile time filters did not reject base_oop/offset so
2407  // we need to generate the following runtime filters
2408  //
2409  // if (offset == java_lang_ref_Reference::_reference_offset) {
2410  //   if (instance_of(base, java.lang.ref.Reference)) {
2411  //     pre_barrier(_, pre_val, ...);
2412  //   }
2413  // }
2414
2415  float likely   = PROB_LIKELY(  0.999);
2416  float unlikely = PROB_UNLIKELY(0.999);
2417
2418  IdealKit ideal(this);
2419#define __ ideal.
2420
2421  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2422
2423  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2424      // Update graphKit memory and control from IdealKit.
2425      sync_kit(ideal);
2426
2427      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2428      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2429
2430      // Update IdealKit memory and control from graphKit.
2431      __ sync_kit(this);
2432
2433      Node* one = __ ConI(1);
2434      // is_instof == 0 if base_oop == NULL
2435      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2436
2437        // Update graphKit from IdeakKit.
2438        sync_kit(ideal);
2439
2440        // Use the pre-barrier to record the value in the referent field
2441        pre_barrier(false /* do_load */,
2442                    __ ctrl(),
2443                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2444                    pre_val /* pre_val */,
2445                    T_OBJECT);
2446        if (need_mem_bar) {
2447          // Add memory barrier to prevent commoning reads from this field
2448          // across safepoint since GC can change its value.
2449          insert_mem_bar(Op_MemBarCPUOrder);
2450        }
2451        // Update IdealKit from graphKit.
2452        __ sync_kit(this);
2453
2454      } __ end_if(); // _ref_type != ref_none
2455  } __ end_if(); // offset == referent_offset
2456
2457  // Final sync IdealKit and GraphKit.
2458  final_sync(ideal);
2459#undef __
2460}
2461
2462
2463// Interpret Unsafe.fieldOffset cookies correctly:
2464extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2465
2466const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2467  // Attempt to infer a sharper value type from the offset and base type.
2468  ciKlass* sharpened_klass = NULL;
2469
2470  // See if it is an instance field, with an object type.
2471  if (alias_type->field() != NULL) {
2472    assert(!is_native_ptr, "native pointer op cannot use a java address");
2473    if (alias_type->field()->type()->is_klass()) {
2474      sharpened_klass = alias_type->field()->type()->as_klass();
2475    }
2476  }
2477
2478  // See if it is a narrow oop array.
2479  if (adr_type->isa_aryptr()) {
2480    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2481      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2482      if (elem_type != NULL) {
2483        sharpened_klass = elem_type->klass();
2484      }
2485    }
2486  }
2487
2488  // The sharpened class might be unloaded if there is no class loader
2489  // contraint in place.
2490  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2491    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2492
2493#ifndef PRODUCT
2494    if (C->print_intrinsics() || C->print_inlining()) {
2495      tty->print("  from base type: ");  adr_type->dump();
2496      tty->print("  sharpened value: ");  tjp->dump();
2497    }
2498#endif
2499    // Sharpen the value type.
2500    return tjp;
2501  }
2502  return NULL;
2503}
2504
2505bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2506  if (callee()->is_static())  return false;  // caller must have the capability!
2507
2508#ifndef PRODUCT
2509  {
2510    ResourceMark rm;
2511    // Check the signatures.
2512    ciSignature* sig = callee()->signature();
2513#ifdef ASSERT
2514    if (!is_store) {
2515      // Object getObject(Object base, int/long offset), etc.
2516      BasicType rtype = sig->return_type()->basic_type();
2517      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2518          rtype = T_ADDRESS;  // it is really a C void*
2519      assert(rtype == type, "getter must return the expected value");
2520      if (!is_native_ptr) {
2521        assert(sig->count() == 2, "oop getter has 2 arguments");
2522        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2523        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2524      } else {
2525        assert(sig->count() == 1, "native getter has 1 argument");
2526        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2527      }
2528    } else {
2529      // void putObject(Object base, int/long offset, Object x), etc.
2530      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2531      if (!is_native_ptr) {
2532        assert(sig->count() == 3, "oop putter has 3 arguments");
2533        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2534        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2535      } else {
2536        assert(sig->count() == 2, "native putter has 2 arguments");
2537        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2538      }
2539      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2540      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2541        vtype = T_ADDRESS;  // it is really a C void*
2542      assert(vtype == type, "putter must accept the expected value");
2543    }
2544#endif // ASSERT
2545 }
2546#endif //PRODUCT
2547
2548  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2549
2550  Node* receiver = argument(0);  // type: oop
2551
2552  // Build address expression.  See the code in inline_unsafe_prefetch.
2553  Node* adr;
2554  Node* heap_base_oop = top();
2555  Node* offset = top();
2556  Node* val;
2557
2558  if (!is_native_ptr) {
2559    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2560    Node* base = argument(1);  // type: oop
2561    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2562    offset = argument(2);  // type: long
2563    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2564    // to be plain byte offsets, which are also the same as those accepted
2565    // by oopDesc::field_base.
2566    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2567           "fieldOffset must be byte-scaled");
2568    // 32-bit machines ignore the high half!
2569    offset = ConvL2X(offset);
2570    adr = make_unsafe_address(base, offset);
2571    heap_base_oop = base;
2572    val = is_store ? argument(4) : NULL;
2573  } else {
2574    Node* ptr = argument(1);  // type: long
2575    ptr = ConvL2X(ptr);  // adjust Java long to machine word
2576    adr = make_unsafe_address(NULL, ptr);
2577    val = is_store ? argument(3) : NULL;
2578  }
2579
2580  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2581
2582  // First guess at the value type.
2583  const Type *value_type = Type::get_const_basic_type(type);
2584
2585  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2586  // there was not enough information to nail it down.
2587  Compile::AliasType* alias_type = C->alias_type(adr_type);
2588  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2589
2590  // We will need memory barriers unless we can determine a unique
2591  // alias category for this reference.  (Note:  If for some reason
2592  // the barriers get omitted and the unsafe reference begins to "pollute"
2593  // the alias analysis of the rest of the graph, either Compile::can_alias
2594  // or Compile::must_alias will throw a diagnostic assert.)
2595  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2596
2597  // If we are reading the value of the referent field of a Reference
2598  // object (either by using Unsafe directly or through reflection)
2599  // then, if G1 is enabled, we need to record the referent in an
2600  // SATB log buffer using the pre-barrier mechanism.
2601  // Also we need to add memory barrier to prevent commoning reads
2602  // from this field across safepoint since GC can change its value.
2603  bool need_read_barrier = !is_native_ptr && !is_store &&
2604                           offset != top() && heap_base_oop != top();
2605
2606  if (!is_store && type == T_OBJECT) {
2607    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2608    if (tjp != NULL) {
2609      value_type = tjp;
2610    }
2611  }
2612
2613  receiver = null_check(receiver);
2614  if (stopped()) {
2615    return true;
2616  }
2617  // Heap pointers get a null-check from the interpreter,
2618  // as a courtesy.  However, this is not guaranteed by Unsafe,
2619  // and it is not possible to fully distinguish unintended nulls
2620  // from intended ones in this API.
2621
2622  if (is_volatile) {
2623    // We need to emit leading and trailing CPU membars (see below) in
2624    // addition to memory membars when is_volatile. This is a little
2625    // too strong, but avoids the need to insert per-alias-type
2626    // volatile membars (for stores; compare Parse::do_put_xxx), which
2627    // we cannot do effectively here because we probably only have a
2628    // rough approximation of type.
2629    need_mem_bar = true;
2630    // For Stores, place a memory ordering barrier now.
2631    if (is_store) {
2632      insert_mem_bar(Op_MemBarRelease);
2633    } else {
2634      if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2635        insert_mem_bar(Op_MemBarVolatile);
2636      }
2637    }
2638  }
2639
2640  // Memory barrier to prevent normal and 'unsafe' accesses from
2641  // bypassing each other.  Happens after null checks, so the
2642  // exception paths do not take memory state from the memory barrier,
2643  // so there's no problems making a strong assert about mixing users
2644  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2645  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2646  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2647
2648  if (!is_store) {
2649    Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2650    // load value
2651    switch (type) {
2652    case T_BOOLEAN:
2653    case T_CHAR:
2654    case T_BYTE:
2655    case T_SHORT:
2656    case T_INT:
2657    case T_LONG:
2658    case T_FLOAT:
2659    case T_DOUBLE:
2660      break;
2661    case T_OBJECT:
2662      if (need_read_barrier) {
2663        insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2664      }
2665      break;
2666    case T_ADDRESS:
2667      // Cast to an int type.
2668      p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2669      p = ConvX2L(p);
2670      break;
2671    default:
2672      fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2673      break;
2674    }
2675    // The load node has the control of the preceding MemBarCPUOrder.  All
2676    // following nodes will have the control of the MemBarCPUOrder inserted at
2677    // the end of this method.  So, pushing the load onto the stack at a later
2678    // point is fine.
2679    set_result(p);
2680  } else {
2681    // place effect of store into memory
2682    switch (type) {
2683    case T_DOUBLE:
2684      val = dstore_rounding(val);
2685      break;
2686    case T_ADDRESS:
2687      // Repackage the long as a pointer.
2688      val = ConvL2X(val);
2689      val = _gvn.transform(new (C) CastX2PNode(val));
2690      break;
2691    }
2692
2693    MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2694    if (type != T_OBJECT ) {
2695      (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2696    } else {
2697      // Possibly an oop being stored to Java heap or native memory
2698      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2699        // oop to Java heap.
2700        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2701      } else {
2702        // We can't tell at compile time if we are storing in the Java heap or outside
2703        // of it. So we need to emit code to conditionally do the proper type of
2704        // store.
2705
2706        IdealKit ideal(this);
2707#define __ ideal.
2708        // QQQ who knows what probability is here??
2709        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2710          // Sync IdealKit and graphKit.
2711          sync_kit(ideal);
2712          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2713          // Update IdealKit memory.
2714          __ sync_kit(this);
2715        } __ else_(); {
2716          __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2717        } __ end_if();
2718        // Final sync IdealKit and GraphKit.
2719        final_sync(ideal);
2720#undef __
2721      }
2722    }
2723  }
2724
2725  if (is_volatile) {
2726    if (!is_store) {
2727      insert_mem_bar(Op_MemBarAcquire);
2728    } else {
2729      if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2730        insert_mem_bar(Op_MemBarVolatile);
2731      }
2732    }
2733  }
2734
2735  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2736
2737  return true;
2738}
2739
2740//----------------------------inline_unsafe_prefetch----------------------------
2741
2742bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2743#ifndef PRODUCT
2744  {
2745    ResourceMark rm;
2746    // Check the signatures.
2747    ciSignature* sig = callee()->signature();
2748#ifdef ASSERT
2749    // Object getObject(Object base, int/long offset), etc.
2750    BasicType rtype = sig->return_type()->basic_type();
2751    if (!is_native_ptr) {
2752      assert(sig->count() == 2, "oop prefetch has 2 arguments");
2753      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2754      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2755    } else {
2756      assert(sig->count() == 1, "native prefetch has 1 argument");
2757      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2758    }
2759#endif // ASSERT
2760  }
2761#endif // !PRODUCT
2762
2763  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2764
2765  const int idx = is_static ? 0 : 1;
2766  if (!is_static) {
2767    null_check_receiver();
2768    if (stopped()) {
2769      return true;
2770    }
2771  }
2772
2773  // Build address expression.  See the code in inline_unsafe_access.
2774  Node *adr;
2775  if (!is_native_ptr) {
2776    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2777    Node* base   = argument(idx + 0);  // type: oop
2778    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2779    Node* offset = argument(idx + 1);  // type: long
2780    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2781    // to be plain byte offsets, which are also the same as those accepted
2782    // by oopDesc::field_base.
2783    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2784           "fieldOffset must be byte-scaled");
2785    // 32-bit machines ignore the high half!
2786    offset = ConvL2X(offset);
2787    adr = make_unsafe_address(base, offset);
2788  } else {
2789    Node* ptr = argument(idx + 0);  // type: long
2790    ptr = ConvL2X(ptr);  // adjust Java long to machine word
2791    adr = make_unsafe_address(NULL, ptr);
2792  }
2793
2794  // Generate the read or write prefetch
2795  Node *prefetch;
2796  if (is_store) {
2797    prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2798  } else {
2799    prefetch = new (C) PrefetchReadNode(i_o(), adr);
2800  }
2801  prefetch->init_req(0, control());
2802  set_i_o(_gvn.transform(prefetch));
2803
2804  return true;
2805}
2806
2807//----------------------------inline_unsafe_load_store----------------------------
2808// This method serves a couple of different customers (depending on LoadStoreKind):
2809//
2810// LS_cmpxchg:
2811//   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2812//   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2813//   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2814//
2815// LS_xadd:
2816//   public int  getAndAddInt( Object o, long offset, int  delta)
2817//   public long getAndAddLong(Object o, long offset, long delta)
2818//
2819// LS_xchg:
2820//   int    getAndSet(Object o, long offset, int    newValue)
2821//   long   getAndSet(Object o, long offset, long   newValue)
2822//   Object getAndSet(Object o, long offset, Object newValue)
2823//
2824bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2825  // This basic scheme here is the same as inline_unsafe_access, but
2826  // differs in enough details that combining them would make the code
2827  // overly confusing.  (This is a true fact! I originally combined
2828  // them, but even I was confused by it!) As much code/comments as
2829  // possible are retained from inline_unsafe_access though to make
2830  // the correspondences clearer. - dl
2831
2832  if (callee()->is_static())  return false;  // caller must have the capability!
2833
2834#ifndef PRODUCT
2835  BasicType rtype;
2836  {
2837    ResourceMark rm;
2838    // Check the signatures.
2839    ciSignature* sig = callee()->signature();
2840    rtype = sig->return_type()->basic_type();
2841    if (kind == LS_xadd || kind == LS_xchg) {
2842      // Check the signatures.
2843#ifdef ASSERT
2844      assert(rtype == type, "get and set must return the expected type");
2845      assert(sig->count() == 3, "get and set has 3 arguments");
2846      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2847      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2848      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2849#endif // ASSERT
2850    } else if (kind == LS_cmpxchg) {
2851      // Check the signatures.
2852#ifdef ASSERT
2853      assert(rtype == T_BOOLEAN, "CAS must return boolean");
2854      assert(sig->count() == 4, "CAS has 4 arguments");
2855      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2856      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2857#endif // ASSERT
2858    } else {
2859      ShouldNotReachHere();
2860    }
2861  }
2862#endif //PRODUCT
2863
2864  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2865
2866  // Get arguments:
2867  Node* receiver = NULL;
2868  Node* base     = NULL;
2869  Node* offset   = NULL;
2870  Node* oldval   = NULL;
2871  Node* newval   = NULL;
2872  if (kind == LS_cmpxchg) {
2873    const bool two_slot_type = type2size[type] == 2;
2874    receiver = argument(0);  // type: oop
2875    base     = argument(1);  // type: oop
2876    offset   = argument(2);  // type: long
2877    oldval   = argument(4);  // type: oop, int, or long
2878    newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2879  } else if (kind == LS_xadd || kind == LS_xchg){
2880    receiver = argument(0);  // type: oop
2881    base     = argument(1);  // type: oop
2882    offset   = argument(2);  // type: long
2883    oldval   = NULL;
2884    newval   = argument(4);  // type: oop, int, or long
2885  }
2886
2887  // Null check receiver.
2888  receiver = null_check(receiver);
2889  if (stopped()) {
2890    return true;
2891  }
2892
2893  // Build field offset expression.
2894  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2895  // to be plain byte offsets, which are also the same as those accepted
2896  // by oopDesc::field_base.
2897  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2898  // 32-bit machines ignore the high half of long offsets
2899  offset = ConvL2X(offset);
2900  Node* adr = make_unsafe_address(base, offset);
2901  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2902
2903  // For CAS, unlike inline_unsafe_access, there seems no point in
2904  // trying to refine types. Just use the coarse types here.
2905  const Type *value_type = Type::get_const_basic_type(type);
2906  Compile::AliasType* alias_type = C->alias_type(adr_type);
2907  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2908
2909  if (kind == LS_xchg && type == T_OBJECT) {
2910    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2911    if (tjp != NULL) {
2912      value_type = tjp;
2913    }
2914  }
2915
2916  int alias_idx = C->get_alias_index(adr_type);
2917
2918  // Memory-model-wise, a LoadStore acts like a little synchronized
2919  // block, so needs barriers on each side.  These don't translate
2920  // into actual barriers on most machines, but we still need rest of
2921  // compiler to respect ordering.
2922
2923  insert_mem_bar(Op_MemBarRelease);
2924  insert_mem_bar(Op_MemBarCPUOrder);
2925
2926  // 4984716: MemBars must be inserted before this
2927  //          memory node in order to avoid a false
2928  //          dependency which will confuse the scheduler.
2929  Node *mem = memory(alias_idx);
2930
2931  // For now, we handle only those cases that actually exist: ints,
2932  // longs, and Object. Adding others should be straightforward.
2933  Node* load_store;
2934  switch(type) {
2935  case T_INT:
2936    if (kind == LS_xadd) {
2937      load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2938    } else if (kind == LS_xchg) {
2939      load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2940    } else if (kind == LS_cmpxchg) {
2941      load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2942    } else {
2943      ShouldNotReachHere();
2944    }
2945    break;
2946  case T_LONG:
2947    if (kind == LS_xadd) {
2948      load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2949    } else if (kind == LS_xchg) {
2950      load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2951    } else if (kind == LS_cmpxchg) {
2952      load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2953    } else {
2954      ShouldNotReachHere();
2955    }
2956    break;
2957  case T_OBJECT:
2958    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2959    // could be delayed during Parse (for example, in adjust_map_after_if()).
2960    // Execute transformation here to avoid barrier generation in such case.
2961    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2962      newval = _gvn.makecon(TypePtr::NULL_PTR);
2963
2964    // Reference stores need a store barrier.
2965    if (kind == LS_xchg) {
2966      // If pre-barrier must execute before the oop store, old value will require do_load here.
2967      if (!can_move_pre_barrier()) {
2968        pre_barrier(true /* do_load*/,
2969                    control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2970                    NULL /* pre_val*/,
2971                    T_OBJECT);
2972      } // Else move pre_barrier to use load_store value, see below.
2973    } else if (kind == LS_cmpxchg) {
2974      // Same as for newval above:
2975      if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2976        oldval = _gvn.makecon(TypePtr::NULL_PTR);
2977      }
2978      // The only known value which might get overwritten is oldval.
2979      pre_barrier(false /* do_load */,
2980                  control(), NULL, NULL, max_juint, NULL, NULL,
2981                  oldval /* pre_val */,
2982                  T_OBJECT);
2983    } else {
2984      ShouldNotReachHere();
2985    }
2986
2987#ifdef _LP64
2988    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2989      Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2990      if (kind == LS_xchg) {
2991        load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2992                                                           newval_enc, adr_type, value_type->make_narrowoop()));
2993      } else {
2994        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2995        Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2996        load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2997                                                                newval_enc, oldval_enc));
2998      }
2999    } else
3000#endif
3001    {
3002      if (kind == LS_xchg) {
3003        load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3004      } else {
3005        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
3006        load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
3007      }
3008    }
3009    post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3010    break;
3011  default:
3012    fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
3013    break;
3014  }
3015
3016  // SCMemProjNodes represent the memory state of a LoadStore. Their
3017  // main role is to prevent LoadStore nodes from being optimized away
3018  // when their results aren't used.
3019  Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
3020  set_memory(proj, alias_idx);
3021
3022  if (type == T_OBJECT && kind == LS_xchg) {
3023#ifdef _LP64
3024    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3025      load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3026    }
3027#endif
3028    if (can_move_pre_barrier()) {
3029      // Don't need to load pre_val. The old value is returned by load_store.
3030      // The pre_barrier can execute after the xchg as long as no safepoint
3031      // gets inserted between them.
3032      pre_barrier(false /* do_load */,
3033                  control(), NULL, NULL, max_juint, NULL, NULL,
3034                  load_store /* pre_val */,
3035                  T_OBJECT);
3036    }
3037  }
3038
3039  // Add the trailing membar surrounding the access
3040  insert_mem_bar(Op_MemBarCPUOrder);
3041  insert_mem_bar(Op_MemBarAcquire);
3042
3043  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3044  set_result(load_store);
3045  return true;
3046}
3047
3048//----------------------------inline_unsafe_ordered_store----------------------
3049// public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3050// public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3051// public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3052bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3053  // This is another variant of inline_unsafe_access, differing in
3054  // that it always issues store-store ("release") barrier and ensures
3055  // store-atomicity (which only matters for "long").
3056
3057  if (callee()->is_static())  return false;  // caller must have the capability!
3058
3059#ifndef PRODUCT
3060  {
3061    ResourceMark rm;
3062    // Check the signatures.
3063    ciSignature* sig = callee()->signature();
3064#ifdef ASSERT
3065    BasicType rtype = sig->return_type()->basic_type();
3066    assert(rtype == T_VOID, "must return void");
3067    assert(sig->count() == 3, "has 3 arguments");
3068    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3069    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3070#endif // ASSERT
3071  }
3072#endif //PRODUCT
3073
3074  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3075
3076  // Get arguments:
3077  Node* receiver = argument(0);  // type: oop
3078  Node* base     = argument(1);  // type: oop
3079  Node* offset   = argument(2);  // type: long
3080  Node* val      = argument(4);  // type: oop, int, or long
3081
3082  // Null check receiver.
3083  receiver = null_check(receiver);
3084  if (stopped()) {
3085    return true;
3086  }
3087
3088  // Build field offset expression.
3089  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3090  // 32-bit machines ignore the high half of long offsets
3091  offset = ConvL2X(offset);
3092  Node* adr = make_unsafe_address(base, offset);
3093  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3094  const Type *value_type = Type::get_const_basic_type(type);
3095  Compile::AliasType* alias_type = C->alias_type(adr_type);
3096
3097  insert_mem_bar(Op_MemBarRelease);
3098  insert_mem_bar(Op_MemBarCPUOrder);
3099  // Ensure that the store is atomic for longs:
3100  const bool require_atomic_access = true;
3101  Node* store;
3102  if (type == T_OBJECT) // reference stores need a store barrier.
3103    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3104  else {
3105    store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3106  }
3107  insert_mem_bar(Op_MemBarCPUOrder);
3108  return true;
3109}
3110
3111bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3112  // Regardless of form, don't allow previous ld/st to move down,
3113  // then issue acquire, release, or volatile mem_bar.
3114  insert_mem_bar(Op_MemBarCPUOrder);
3115  switch(id) {
3116    case vmIntrinsics::_loadFence:
3117      insert_mem_bar(Op_LoadFence);
3118      return true;
3119    case vmIntrinsics::_storeFence:
3120      insert_mem_bar(Op_StoreFence);
3121      return true;
3122    case vmIntrinsics::_fullFence:
3123      insert_mem_bar(Op_MemBarVolatile);
3124      return true;
3125    default:
3126      fatal_unexpected_iid(id);
3127      return false;
3128  }
3129}
3130
3131bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3132  if (!kls->is_Con()) {
3133    return true;
3134  }
3135  const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3136  if (klsptr == NULL) {
3137    return true;
3138  }
3139  ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3140  // don't need a guard for a klass that is already initialized
3141  return !ik->is_initialized();
3142}
3143
3144//----------------------------inline_unsafe_allocate---------------------------
3145// public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3146bool LibraryCallKit::inline_unsafe_allocate() {
3147  if (callee()->is_static())  return false;  // caller must have the capability!
3148
3149  null_check_receiver();  // null-check, then ignore
3150  Node* cls = null_check(argument(1));
3151  if (stopped())  return true;
3152
3153  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3154  kls = null_check(kls);
3155  if (stopped())  return true;  // argument was like int.class
3156
3157  Node* test = NULL;
3158  if (LibraryCallKit::klass_needs_init_guard(kls)) {
3159    // Note:  The argument might still be an illegal value like
3160    // Serializable.class or Object[].class.   The runtime will handle it.
3161    // But we must make an explicit check for initialization.
3162    Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3163    // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3164    // can generate code to load it as unsigned byte.
3165    Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3166    Node* bits = intcon(InstanceKlass::fully_initialized);
3167    test = _gvn.transform(new (C) SubINode(inst, bits));
3168    // The 'test' is non-zero if we need to take a slow path.
3169  }
3170
3171  Node* obj = new_instance(kls, test);
3172  set_result(obj);
3173  return true;
3174}
3175
3176#ifdef TRACE_HAVE_INTRINSICS
3177/*
3178 * oop -> myklass
3179 * myklass->trace_id |= USED
3180 * return myklass->trace_id & ~0x3
3181 */
3182bool LibraryCallKit::inline_native_classID() {
3183  null_check_receiver();  // null-check, then ignore
3184  Node* cls = null_check(argument(1), T_OBJECT);
3185  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3186  kls = null_check(kls, T_OBJECT);
3187  ByteSize offset = TRACE_ID_OFFSET;
3188  Node* insp = basic_plus_adr(kls, in_bytes(offset));
3189  Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3190  Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3191  Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3192  Node* clsused = longcon(0x01l); // set the class bit
3193  Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3194
3195  const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3196  store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3197  set_result(andl);
3198  return true;
3199}
3200
3201bool LibraryCallKit::inline_native_threadID() {
3202  Node* tls_ptr = NULL;
3203  Node* cur_thr = generate_current_thread(tls_ptr);
3204  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3205  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3206  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3207
3208  Node* threadid = NULL;
3209  size_t thread_id_size = OSThread::thread_id_size();
3210  if (thread_id_size == (size_t) BytesPerLong) {
3211    threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3212  } else if (thread_id_size == (size_t) BytesPerInt) {
3213    threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3214  } else {
3215    ShouldNotReachHere();
3216  }
3217  set_result(threadid);
3218  return true;
3219}
3220#endif
3221
3222//------------------------inline_native_time_funcs--------------
3223// inline code for System.currentTimeMillis() and System.nanoTime()
3224// these have the same type and signature
3225bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3226  const TypeFunc* tf = OptoRuntime::void_long_Type();
3227  const TypePtr* no_memory_effects = NULL;
3228  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3229  Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3230#ifdef ASSERT
3231  Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3232  assert(value_top == top(), "second value must be top");
3233#endif
3234  set_result(value);
3235  return true;
3236}
3237
3238//------------------------inline_native_currentThread------------------
3239bool LibraryCallKit::inline_native_currentThread() {
3240  Node* junk = NULL;
3241  set_result(generate_current_thread(junk));
3242  return true;
3243}
3244
3245//------------------------inline_native_isInterrupted------------------
3246// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3247bool LibraryCallKit::inline_native_isInterrupted() {
3248  // Add a fast path to t.isInterrupted(clear_int):
3249  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
3250  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3251  // So, in the common case that the interrupt bit is false,
3252  // we avoid making a call into the VM.  Even if the interrupt bit
3253  // is true, if the clear_int argument is false, we avoid the VM call.
3254  // However, if the receiver is not currentThread, we must call the VM,
3255  // because there must be some locking done around the operation.
3256
3257  // We only go to the fast case code if we pass two guards.
3258  // Paths which do not pass are accumulated in the slow_region.
3259
3260  enum {
3261    no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3262    no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3263    slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3264    PATH_LIMIT
3265  };
3266
3267  // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3268  // out of the function.
3269  insert_mem_bar(Op_MemBarCPUOrder);
3270
3271  RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3272  PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3273
3274  RegionNode* slow_region = new (C) RegionNode(1);
3275  record_for_igvn(slow_region);
3276
3277  // (a) Receiving thread must be the current thread.
3278  Node* rec_thr = argument(0);
3279  Node* tls_ptr = NULL;
3280  Node* cur_thr = generate_current_thread(tls_ptr);
3281  Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3282  Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3283
3284  generate_slow_guard(bol_thr, slow_region);
3285
3286  // (b) Interrupt bit on TLS must be false.
3287  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3288  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3289  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3290
3291  // Set the control input on the field _interrupted read to prevent it floating up.
3292  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3293  Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3294  Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3295
3296  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3297
3298  // First fast path:  if (!TLS._interrupted) return false;
3299  Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3300  result_rgn->init_req(no_int_result_path, false_bit);
3301  result_val->init_req(no_int_result_path, intcon(0));
3302
3303  // drop through to next case
3304  set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3305
3306  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3307  Node* clr_arg = argument(1);
3308  Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3309  Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3310  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3311
3312  // Second fast path:  ... else if (!clear_int) return true;
3313  Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3314  result_rgn->init_req(no_clear_result_path, false_arg);
3315  result_val->init_req(no_clear_result_path, intcon(1));
3316
3317  // drop through to next case
3318  set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3319
3320  // (d) Otherwise, go to the slow path.
3321  slow_region->add_req(control());
3322  set_control( _gvn.transform(slow_region));
3323
3324  if (stopped()) {
3325    // There is no slow path.
3326    result_rgn->init_req(slow_result_path, top());
3327    result_val->init_req(slow_result_path, top());
3328  } else {
3329    // non-virtual because it is a private non-static
3330    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3331
3332    Node* slow_val = set_results_for_java_call(slow_call);
3333    // this->control() comes from set_results_for_java_call
3334
3335    Node* fast_io  = slow_call->in(TypeFunc::I_O);
3336    Node* fast_mem = slow_call->in(TypeFunc::Memory);
3337
3338    // These two phis are pre-filled with copies of of the fast IO and Memory
3339    PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3340    PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3341
3342    result_rgn->init_req(slow_result_path, control());
3343    result_io ->init_req(slow_result_path, i_o());
3344    result_mem->init_req(slow_result_path, reset_memory());
3345    result_val->init_req(slow_result_path, slow_val);
3346
3347    set_all_memory(_gvn.transform(result_mem));
3348    set_i_o(       _gvn.transform(result_io));
3349  }
3350
3351  C->set_has_split_ifs(true); // Has chance for split-if optimization
3352  set_result(result_rgn, result_val);
3353  return true;
3354}
3355
3356//---------------------------load_mirror_from_klass----------------------------
3357// Given a klass oop, load its java mirror (a java.lang.Class oop).
3358Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3359  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3360  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3361}
3362
3363//-----------------------load_klass_from_mirror_common-------------------------
3364// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3365// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3366// and branch to the given path on the region.
3367// If never_see_null, take an uncommon trap on null, so we can optimistically
3368// compile for the non-null case.
3369// If the region is NULL, force never_see_null = true.
3370Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3371                                                    bool never_see_null,
3372                                                    RegionNode* region,
3373                                                    int null_path,
3374                                                    int offset) {
3375  if (region == NULL)  never_see_null = true;
3376  Node* p = basic_plus_adr(mirror, offset);
3377  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3378  Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3379  Node* null_ctl = top();
3380  kls = null_check_oop(kls, &null_ctl, never_see_null);
3381  if (region != NULL) {
3382    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3383    region->init_req(null_path, null_ctl);
3384  } else {
3385    assert(null_ctl == top(), "no loose ends");
3386  }
3387  return kls;
3388}
3389
3390//--------------------(inline_native_Class_query helpers)---------------------
3391// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3392// Fall through if (mods & mask) == bits, take the guard otherwise.
3393Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3394  // Branch around if the given klass has the given modifier bit set.
3395  // Like generate_guard, adds a new path onto the region.
3396  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3397  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3398  Node* mask = intcon(modifier_mask);
3399  Node* bits = intcon(modifier_bits);
3400  Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3401  Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3402  Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3403  return generate_fair_guard(bol, region);
3404}
3405Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3406  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3407}
3408
3409//-------------------------inline_native_Class_query-------------------
3410bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3411  const Type* return_type = TypeInt::BOOL;
3412  Node* prim_return_value = top();  // what happens if it's a primitive class?
3413  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3414  bool expect_prim = false;     // most of these guys expect to work on refs
3415
3416  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3417
3418  Node* mirror = argument(0);
3419  Node* obj    = top();
3420
3421  switch (id) {
3422  case vmIntrinsics::_isInstance:
3423    // nothing is an instance of a primitive type
3424    prim_return_value = intcon(0);
3425    obj = argument(1);
3426    break;
3427  case vmIntrinsics::_getModifiers:
3428    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3429    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3430    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3431    break;
3432  case vmIntrinsics::_isInterface:
3433    prim_return_value = intcon(0);
3434    break;
3435  case vmIntrinsics::_isArray:
3436    prim_return_value = intcon(0);
3437    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3438    break;
3439  case vmIntrinsics::_isPrimitive:
3440    prim_return_value = intcon(1);
3441    expect_prim = true;  // obviously
3442    break;
3443  case vmIntrinsics::_getSuperclass:
3444    prim_return_value = null();
3445    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3446    break;
3447  case vmIntrinsics::_getComponentType:
3448    prim_return_value = null();
3449    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3450    break;
3451  case vmIntrinsics::_getClassAccessFlags:
3452    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3453    return_type = TypeInt::INT;  // not bool!  6297094
3454    break;
3455  default:
3456    fatal_unexpected_iid(id);
3457    break;
3458  }
3459
3460  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3461  if (mirror_con == NULL)  return false;  // cannot happen?
3462
3463#ifndef PRODUCT
3464  if (C->print_intrinsics() || C->print_inlining()) {
3465    ciType* k = mirror_con->java_mirror_type();
3466    if (k) {
3467      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3468      k->print_name();
3469      tty->cr();
3470    }
3471  }
3472#endif
3473
3474  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3475  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3476  record_for_igvn(region);
3477  PhiNode* phi = new (C) PhiNode(region, return_type);
3478
3479  // The mirror will never be null of Reflection.getClassAccessFlags, however
3480  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3481  // if it is. See bug 4774291.
3482
3483  // For Reflection.getClassAccessFlags(), the null check occurs in
3484  // the wrong place; see inline_unsafe_access(), above, for a similar
3485  // situation.
3486  mirror = null_check(mirror);
3487  // If mirror or obj is dead, only null-path is taken.
3488  if (stopped())  return true;
3489
3490  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3491
3492  // Now load the mirror's klass metaobject, and null-check it.
3493  // Side-effects region with the control path if the klass is null.
3494  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3495  // If kls is null, we have a primitive mirror.
3496  phi->init_req(_prim_path, prim_return_value);
3497  if (stopped()) { set_result(region, phi); return true; }
3498  bool safe_for_replace = (region->in(_prim_path) == top());
3499
3500  Node* p;  // handy temp
3501  Node* null_ctl;
3502
3503  // Now that we have the non-null klass, we can perform the real query.
3504  // For constant classes, the query will constant-fold in LoadNode::Value.
3505  Node* query_value = top();
3506  switch (id) {
3507  case vmIntrinsics::_isInstance:
3508    // nothing is an instance of a primitive type
3509    query_value = gen_instanceof(obj, kls, safe_for_replace);
3510    break;
3511
3512  case vmIntrinsics::_getModifiers:
3513    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3514    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3515    break;
3516
3517  case vmIntrinsics::_isInterface:
3518    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3519    if (generate_interface_guard(kls, region) != NULL)
3520      // A guard was added.  If the guard is taken, it was an interface.
3521      phi->add_req(intcon(1));
3522    // If we fall through, it's a plain class.
3523    query_value = intcon(0);
3524    break;
3525
3526  case vmIntrinsics::_isArray:
3527    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3528    if (generate_array_guard(kls, region) != NULL)
3529      // A guard was added.  If the guard is taken, it was an array.
3530      phi->add_req(intcon(1));
3531    // If we fall through, it's a plain class.
3532    query_value = intcon(0);
3533    break;
3534
3535  case vmIntrinsics::_isPrimitive:
3536    query_value = intcon(0); // "normal" path produces false
3537    break;
3538
3539  case vmIntrinsics::_getSuperclass:
3540    // The rules here are somewhat unfortunate, but we can still do better
3541    // with random logic than with a JNI call.
3542    // Interfaces store null or Object as _super, but must report null.
3543    // Arrays store an intermediate super as _super, but must report Object.
3544    // Other types can report the actual _super.
3545    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3546    if (generate_interface_guard(kls, region) != NULL)
3547      // A guard was added.  If the guard is taken, it was an interface.
3548      phi->add_req(null());
3549    if (generate_array_guard(kls, region) != NULL)
3550      // A guard was added.  If the guard is taken, it was an array.
3551      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3552    // If we fall through, it's a plain class.  Get its _super.
3553    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3554    kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3555    null_ctl = top();
3556    kls = null_check_oop(kls, &null_ctl);
3557    if (null_ctl != top()) {
3558      // If the guard is taken, Object.superClass is null (both klass and mirror).
3559      region->add_req(null_ctl);
3560      phi   ->add_req(null());
3561    }
3562    if (!stopped()) {
3563      query_value = load_mirror_from_klass(kls);
3564    }
3565    break;
3566
3567  case vmIntrinsics::_getComponentType:
3568    if (generate_array_guard(kls, region) != NULL) {
3569      // Be sure to pin the oop load to the guard edge just created:
3570      Node* is_array_ctrl = region->in(region->req()-1);
3571      Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3572      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3573      phi->add_req(cmo);
3574    }
3575    query_value = null();  // non-array case is null
3576    break;
3577
3578  case vmIntrinsics::_getClassAccessFlags:
3579    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3580    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3581    break;
3582
3583  default:
3584    fatal_unexpected_iid(id);
3585    break;
3586  }
3587
3588  // Fall-through is the normal case of a query to a real class.
3589  phi->init_req(1, query_value);
3590  region->init_req(1, control());
3591
3592  C->set_has_split_ifs(true); // Has chance for split-if optimization
3593  set_result(region, phi);
3594  return true;
3595}
3596
3597//--------------------------inline_native_subtype_check------------------------
3598// This intrinsic takes the JNI calls out of the heart of
3599// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3600bool LibraryCallKit::inline_native_subtype_check() {
3601  // Pull both arguments off the stack.
3602  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3603  args[0] = argument(0);
3604  args[1] = argument(1);
3605  Node* klasses[2];             // corresponding Klasses: superk, subk
3606  klasses[0] = klasses[1] = top();
3607
3608  enum {
3609    // A full decision tree on {superc is prim, subc is prim}:
3610    _prim_0_path = 1,           // {P,N} => false
3611                                // {P,P} & superc!=subc => false
3612    _prim_same_path,            // {P,P} & superc==subc => true
3613    _prim_1_path,               // {N,P} => false
3614    _ref_subtype_path,          // {N,N} & subtype check wins => true
3615    _both_ref_path,             // {N,N} & subtype check loses => false
3616    PATH_LIMIT
3617  };
3618
3619  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3620  Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3621  record_for_igvn(region);
3622
3623  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3624  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3625  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3626
3627  // First null-check both mirrors and load each mirror's klass metaobject.
3628  int which_arg;
3629  for (which_arg = 0; which_arg <= 1; which_arg++) {
3630    Node* arg = args[which_arg];
3631    arg = null_check(arg);
3632    if (stopped())  break;
3633    args[which_arg] = arg;
3634
3635    Node* p = basic_plus_adr(arg, class_klass_offset);
3636    Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3637    klasses[which_arg] = _gvn.transform(kls);
3638  }
3639
3640  // Having loaded both klasses, test each for null.
3641  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3642  for (which_arg = 0; which_arg <= 1; which_arg++) {
3643    Node* kls = klasses[which_arg];
3644    Node* null_ctl = top();
3645    kls = null_check_oop(kls, &null_ctl, never_see_null);
3646    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3647    region->init_req(prim_path, null_ctl);
3648    if (stopped())  break;
3649    klasses[which_arg] = kls;
3650  }
3651
3652  if (!stopped()) {
3653    // now we have two reference types, in klasses[0..1]
3654    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3655    Node* superk = klasses[0];  // the receiver
3656    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3657    // now we have a successful reference subtype check
3658    region->set_req(_ref_subtype_path, control());
3659  }
3660
3661  // If both operands are primitive (both klasses null), then
3662  // we must return true when they are identical primitives.
3663  // It is convenient to test this after the first null klass check.
3664  set_control(region->in(_prim_0_path)); // go back to first null check
3665  if (!stopped()) {
3666    // Since superc is primitive, make a guard for the superc==subc case.
3667    Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3668    Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3669    generate_guard(bol_eq, region, PROB_FAIR);
3670    if (region->req() == PATH_LIMIT+1) {
3671      // A guard was added.  If the added guard is taken, superc==subc.
3672      region->swap_edges(PATH_LIMIT, _prim_same_path);
3673      region->del_req(PATH_LIMIT);
3674    }
3675    region->set_req(_prim_0_path, control()); // Not equal after all.
3676  }
3677
3678  // these are the only paths that produce 'true':
3679  phi->set_req(_prim_same_path,   intcon(1));
3680  phi->set_req(_ref_subtype_path, intcon(1));
3681
3682  // pull together the cases:
3683  assert(region->req() == PATH_LIMIT, "sane region");
3684  for (uint i = 1; i < region->req(); i++) {
3685    Node* ctl = region->in(i);
3686    if (ctl == NULL || ctl == top()) {
3687      region->set_req(i, top());
3688      phi   ->set_req(i, top());
3689    } else if (phi->in(i) == NULL) {
3690      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3691    }
3692  }
3693
3694  set_control(_gvn.transform(region));
3695  set_result(_gvn.transform(phi));
3696  return true;
3697}
3698
3699//---------------------generate_array_guard_common------------------------
3700Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3701                                                  bool obj_array, bool not_array) {
3702  // If obj_array/non_array==false/false:
3703  // Branch around if the given klass is in fact an array (either obj or prim).
3704  // If obj_array/non_array==false/true:
3705  // Branch around if the given klass is not an array klass of any kind.
3706  // If obj_array/non_array==true/true:
3707  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3708  // If obj_array/non_array==true/false:
3709  // Branch around if the kls is an oop array (Object[] or subtype)
3710  //
3711  // Like generate_guard, adds a new path onto the region.
3712  jint  layout_con = 0;
3713  Node* layout_val = get_layout_helper(kls, layout_con);
3714  if (layout_val == NULL) {
3715    bool query = (obj_array
3716                  ? Klass::layout_helper_is_objArray(layout_con)
3717                  : Klass::layout_helper_is_array(layout_con));
3718    if (query == not_array) {
3719      return NULL;                       // never a branch
3720    } else {                             // always a branch
3721      Node* always_branch = control();
3722      if (region != NULL)
3723        region->add_req(always_branch);
3724      set_control(top());
3725      return always_branch;
3726    }
3727  }
3728  // Now test the correct condition.
3729  jint  nval = (obj_array
3730                ? ((jint)Klass::_lh_array_tag_type_value
3731                   <<    Klass::_lh_array_tag_shift)
3732                : Klass::_lh_neutral_value);
3733  Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3734  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3735  // invert the test if we are looking for a non-array
3736  if (not_array)  btest = BoolTest(btest).negate();
3737  Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3738  return generate_fair_guard(bol, region);
3739}
3740
3741
3742//-----------------------inline_native_newArray--------------------------
3743// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3744bool LibraryCallKit::inline_native_newArray() {
3745  Node* mirror    = argument(0);
3746  Node* count_val = argument(1);
3747
3748  mirror = null_check(mirror);
3749  // If mirror or obj is dead, only null-path is taken.
3750  if (stopped())  return true;
3751
3752  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3753  RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3754  PhiNode*    result_val = new(C) PhiNode(result_reg,
3755                                          TypeInstPtr::NOTNULL);
3756  PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3757  PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3758                                          TypePtr::BOTTOM);
3759
3760  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3761  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3762                                                  result_reg, _slow_path);
3763  Node* normal_ctl   = control();
3764  Node* no_array_ctl = result_reg->in(_slow_path);
3765
3766  // Generate code for the slow case.  We make a call to newArray().
3767  set_control(no_array_ctl);
3768  if (!stopped()) {
3769    // Either the input type is void.class, or else the
3770    // array klass has not yet been cached.  Either the
3771    // ensuing call will throw an exception, or else it
3772    // will cache the array klass for next time.
3773    PreserveJVMState pjvms(this);
3774    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3775    Node* slow_result = set_results_for_java_call(slow_call);
3776    // this->control() comes from set_results_for_java_call
3777    result_reg->set_req(_slow_path, control());
3778    result_val->set_req(_slow_path, slow_result);
3779    result_io ->set_req(_slow_path, i_o());
3780    result_mem->set_req(_slow_path, reset_memory());
3781  }
3782
3783  set_control(normal_ctl);
3784  if (!stopped()) {
3785    // Normal case:  The array type has been cached in the java.lang.Class.
3786    // The following call works fine even if the array type is polymorphic.
3787    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3788    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3789    result_reg->init_req(_normal_path, control());
3790    result_val->init_req(_normal_path, obj);
3791    result_io ->init_req(_normal_path, i_o());
3792    result_mem->init_req(_normal_path, reset_memory());
3793  }
3794
3795  // Return the combined state.
3796  set_i_o(        _gvn.transform(result_io)  );
3797  set_all_memory( _gvn.transform(result_mem));
3798
3799  C->set_has_split_ifs(true); // Has chance for split-if optimization
3800  set_result(result_reg, result_val);
3801  return true;
3802}
3803
3804//----------------------inline_native_getLength--------------------------
3805// public static native int java.lang.reflect.Array.getLength(Object array);
3806bool LibraryCallKit::inline_native_getLength() {
3807  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3808
3809  Node* array = null_check(argument(0));
3810  // If array is dead, only null-path is taken.
3811  if (stopped())  return true;
3812
3813  // Deoptimize if it is a non-array.
3814  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3815
3816  if (non_array != NULL) {
3817    PreserveJVMState pjvms(this);
3818    set_control(non_array);
3819    uncommon_trap(Deoptimization::Reason_intrinsic,
3820                  Deoptimization::Action_maybe_recompile);
3821  }
3822
3823  // If control is dead, only non-array-path is taken.
3824  if (stopped())  return true;
3825
3826  // The works fine even if the array type is polymorphic.
3827  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3828  Node* result = load_array_length(array);
3829
3830  C->set_has_split_ifs(true);  // Has chance for split-if optimization
3831  set_result(result);
3832  return true;
3833}
3834
3835//------------------------inline_array_copyOf----------------------------
3836// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3837// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3838bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3839  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3840
3841  // Get the arguments.
3842  Node* original          = argument(0);
3843  Node* start             = is_copyOfRange? argument(1): intcon(0);
3844  Node* end               = is_copyOfRange? argument(2): argument(1);
3845  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3846
3847  Node* newcopy;
3848
3849  // Set the original stack and the reexecute bit for the interpreter to reexecute
3850  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3851  { PreserveReexecuteState preexecs(this);
3852    jvms()->set_should_reexecute(true);
3853
3854    array_type_mirror = null_check(array_type_mirror);
3855    original          = null_check(original);
3856
3857    // Check if a null path was taken unconditionally.
3858    if (stopped())  return true;
3859
3860    Node* orig_length = load_array_length(original);
3861
3862    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3863    klass_node = null_check(klass_node);
3864
3865    RegionNode* bailout = new (C) RegionNode(1);
3866    record_for_igvn(bailout);
3867
3868    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3869    // Bail out if that is so.
3870    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3871    if (not_objArray != NULL) {
3872      // Improve the klass node's type from the new optimistic assumption:
3873      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3874      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3875      Node* cast = new (C) CastPPNode(klass_node, akls);
3876      cast->init_req(0, control());
3877      klass_node = _gvn.transform(cast);
3878    }
3879
3880    // Bail out if either start or end is negative.
3881    generate_negative_guard(start, bailout, &start);
3882    generate_negative_guard(end,   bailout, &end);
3883
3884    Node* length = end;
3885    if (_gvn.type(start) != TypeInt::ZERO) {
3886      length = _gvn.transform(new (C) SubINode(end, start));
3887    }
3888
3889    // Bail out if length is negative.
3890    // Without this the new_array would throw
3891    // NegativeArraySizeException but IllegalArgumentException is what
3892    // should be thrown
3893    generate_negative_guard(length, bailout, &length);
3894
3895    if (bailout->req() > 1) {
3896      PreserveJVMState pjvms(this);
3897      set_control(_gvn.transform(bailout));
3898      uncommon_trap(Deoptimization::Reason_intrinsic,
3899                    Deoptimization::Action_maybe_recompile);
3900    }
3901
3902    if (!stopped()) {
3903      // How many elements will we copy from the original?
3904      // The answer is MinI(orig_length - start, length).
3905      Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3906      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3907
3908      newcopy = new_array(klass_node, length, 0);  // no argments to push
3909
3910      // Generate a direct call to the right arraycopy function(s).
3911      // We know the copy is disjoint but we might not know if the
3912      // oop stores need checking.
3913      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3914      // This will fail a store-check if x contains any non-nulls.
3915      bool disjoint_bases = true;
3916      // if start > orig_length then the length of the copy may be
3917      // negative.
3918      bool length_never_negative = !is_copyOfRange;
3919      generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3920                         original, start, newcopy, intcon(0), moved,
3921                         disjoint_bases, length_never_negative);
3922    }
3923  } // original reexecute is set back here
3924
3925  C->set_has_split_ifs(true); // Has chance for split-if optimization
3926  if (!stopped()) {
3927    set_result(newcopy);
3928  }
3929  return true;
3930}
3931
3932
3933//----------------------generate_virtual_guard---------------------------
3934// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3935Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3936                                             RegionNode* slow_region) {
3937  ciMethod* method = callee();
3938  int vtable_index = method->vtable_index();
3939  assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3940         err_msg_res("bad index %d", vtable_index));
3941  // Get the Method* out of the appropriate vtable entry.
3942  int entry_offset  = (InstanceKlass::vtable_start_offset() +
3943                     vtable_index*vtableEntry::size()) * wordSize +
3944                     vtableEntry::method_offset_in_bytes();
3945  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3946  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3947
3948  // Compare the target method with the expected method (e.g., Object.hashCode).
3949  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3950
3951  Node* native_call = makecon(native_call_addr);
3952  Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3953  Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3954
3955  return generate_slow_guard(test_native, slow_region);
3956}
3957
3958//-----------------------generate_method_call----------------------------
3959// Use generate_method_call to make a slow-call to the real
3960// method if the fast path fails.  An alternative would be to
3961// use a stub like OptoRuntime::slow_arraycopy_Java.
3962// This only works for expanding the current library call,
3963// not another intrinsic.  (E.g., don't use this for making an
3964// arraycopy call inside of the copyOf intrinsic.)
3965CallJavaNode*
3966LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3967  // When compiling the intrinsic method itself, do not use this technique.
3968  guarantee(callee() != C->method(), "cannot make slow-call to self");
3969
3970  ciMethod* method = callee();
3971  // ensure the JVMS we have will be correct for this call
3972  guarantee(method_id == method->intrinsic_id(), "must match");
3973
3974  const TypeFunc* tf = TypeFunc::make(method);
3975  CallJavaNode* slow_call;
3976  if (is_static) {
3977    assert(!is_virtual, "");
3978    slow_call = new(C) CallStaticJavaNode(C, tf,
3979                           SharedRuntime::get_resolve_static_call_stub(),
3980                           method, bci());
3981  } else if (is_virtual) {
3982    null_check_receiver();
3983    int vtable_index = Method::invalid_vtable_index;
3984    if (UseInlineCaches) {
3985      // Suppress the vtable call
3986    } else {
3987      // hashCode and clone are not a miranda methods,
3988      // so the vtable index is fixed.
3989      // No need to use the linkResolver to get it.
3990       vtable_index = method->vtable_index();
3991       assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3992              err_msg_res("bad index %d", vtable_index));
3993    }
3994    slow_call = new(C) CallDynamicJavaNode(tf,
3995                          SharedRuntime::get_resolve_virtual_call_stub(),
3996                          method, vtable_index, bci());
3997  } else {  // neither virtual nor static:  opt_virtual
3998    null_check_receiver();
3999    slow_call = new(C) CallStaticJavaNode(C, tf,
4000                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
4001                                method, bci());
4002    slow_call->set_optimized_virtual(true);
4003  }
4004  set_arguments_for_java_call(slow_call);
4005  set_edges_for_java_call(slow_call);
4006  return slow_call;
4007}
4008
4009
4010//------------------------------inline_native_hashcode--------------------
4011// Build special case code for calls to hashCode on an object.
4012bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4013  assert(is_static == callee()->is_static(), "correct intrinsic selection");
4014  assert(!(is_virtual && is_static), "either virtual, special, or static");
4015
4016  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4017
4018  RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4019  PhiNode*    result_val = new(C) PhiNode(result_reg,
4020                                          TypeInt::INT);
4021  PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4022  PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4023                                          TypePtr::BOTTOM);
4024  Node* obj = NULL;
4025  if (!is_static) {
4026    // Check for hashing null object
4027    obj = null_check_receiver();
4028    if (stopped())  return true;        // unconditionally null
4029    result_reg->init_req(_null_path, top());
4030    result_val->init_req(_null_path, top());
4031  } else {
4032    // Do a null check, and return zero if null.
4033    // System.identityHashCode(null) == 0
4034    obj = argument(0);
4035    Node* null_ctl = top();
4036    obj = null_check_oop(obj, &null_ctl);
4037    result_reg->init_req(_null_path, null_ctl);
4038    result_val->init_req(_null_path, _gvn.intcon(0));
4039  }
4040
4041  // Unconditionally null?  Then return right away.
4042  if (stopped()) {
4043    set_control( result_reg->in(_null_path));
4044    if (!stopped())
4045      set_result(result_val->in(_null_path));
4046    return true;
4047  }
4048
4049  // After null check, get the object's klass.
4050  Node* obj_klass = load_object_klass(obj);
4051
4052  // This call may be virtual (invokevirtual) or bound (invokespecial).
4053  // For each case we generate slightly different code.
4054
4055  // We only go to the fast case code if we pass a number of guards.  The
4056  // paths which do not pass are accumulated in the slow_region.
4057  RegionNode* slow_region = new (C) RegionNode(1);
4058  record_for_igvn(slow_region);
4059
4060  // If this is a virtual call, we generate a funny guard.  We pull out
4061  // the vtable entry corresponding to hashCode() from the target object.
4062  // If the target method which we are calling happens to be the native
4063  // Object hashCode() method, we pass the guard.  We do not need this
4064  // guard for non-virtual calls -- the caller is known to be the native
4065  // Object hashCode().
4066  if (is_virtual) {
4067    generate_virtual_guard(obj_klass, slow_region);
4068  }
4069
4070  // Get the header out of the object, use LoadMarkNode when available
4071  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4072  Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4073
4074  // Test the header to see if it is unlocked.
4075  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4076  Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4077  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4078  Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4079  Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4080
4081  generate_slow_guard(test_unlocked, slow_region);
4082
4083  // Get the hash value and check to see that it has been properly assigned.
4084  // We depend on hash_mask being at most 32 bits and avoid the use of
4085  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4086  // vm: see markOop.hpp.
4087  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4088  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4089  Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4090  // This hack lets the hash bits live anywhere in the mark object now, as long
4091  // as the shift drops the relevant bits into the low 32 bits.  Note that
4092  // Java spec says that HashCode is an int so there's no point in capturing
4093  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4094  hshifted_header      = ConvX2I(hshifted_header);
4095  Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4096
4097  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4098  Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4099  Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4100
4101  generate_slow_guard(test_assigned, slow_region);
4102
4103  Node* init_mem = reset_memory();
4104  // fill in the rest of the null path:
4105  result_io ->init_req(_null_path, i_o());
4106  result_mem->init_req(_null_path, init_mem);
4107
4108  result_val->init_req(_fast_path, hash_val);
4109  result_reg->init_req(_fast_path, control());
4110  result_io ->init_req(_fast_path, i_o());
4111  result_mem->init_req(_fast_path, init_mem);
4112
4113  // Generate code for the slow case.  We make a call to hashCode().
4114  set_control(_gvn.transform(slow_region));
4115  if (!stopped()) {
4116    // No need for PreserveJVMState, because we're using up the present state.
4117    set_all_memory(init_mem);
4118    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4119    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4120    Node* slow_result = set_results_for_java_call(slow_call);
4121    // this->control() comes from set_results_for_java_call
4122    result_reg->init_req(_slow_path, control());
4123    result_val->init_req(_slow_path, slow_result);
4124    result_io  ->set_req(_slow_path, i_o());
4125    result_mem ->set_req(_slow_path, reset_memory());
4126  }
4127
4128  // Return the combined state.
4129  set_i_o(        _gvn.transform(result_io)  );
4130  set_all_memory( _gvn.transform(result_mem));
4131
4132  set_result(result_reg, result_val);
4133  return true;
4134}
4135
4136//---------------------------inline_native_getClass----------------------------
4137// public final native Class<?> java.lang.Object.getClass();
4138//
4139// Build special case code for calls to getClass on an object.
4140bool LibraryCallKit::inline_native_getClass() {
4141  Node* obj = null_check_receiver();
4142  if (stopped())  return true;
4143  set_result(load_mirror_from_klass(load_object_klass(obj)));
4144  return true;
4145}
4146
4147//-----------------inline_native_Reflection_getCallerClass---------------------
4148// public static native Class<?> sun.reflect.Reflection.getCallerClass();
4149//
4150// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4151//
4152// NOTE: This code must perform the same logic as JVM_GetCallerClass
4153// in that it must skip particular security frames and checks for
4154// caller sensitive methods.
4155bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4156#ifndef PRODUCT
4157  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4158    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4159  }
4160#endif
4161
4162  if (!jvms()->has_method()) {
4163#ifndef PRODUCT
4164    if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4165      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4166    }
4167#endif
4168    return false;
4169  }
4170
4171  // Walk back up the JVM state to find the caller at the required
4172  // depth.
4173  JVMState* caller_jvms = jvms();
4174
4175  // Cf. JVM_GetCallerClass
4176  // NOTE: Start the loop at depth 1 because the current JVM state does
4177  // not include the Reflection.getCallerClass() frame.
4178  for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4179    ciMethod* m = caller_jvms->method();
4180    switch (n) {
4181    case 0:
4182      fatal("current JVM state does not include the Reflection.getCallerClass frame");
4183      break;
4184    case 1:
4185      // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4186      if (!m->caller_sensitive()) {
4187#ifndef PRODUCT
4188        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4189          tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4190        }
4191#endif
4192        return false;  // bail-out; let JVM_GetCallerClass do the work
4193      }
4194      break;
4195    default:
4196      if (!m->is_ignored_by_security_stack_walk()) {
4197        // We have reached the desired frame; return the holder class.
4198        // Acquire method holder as java.lang.Class and push as constant.
4199        ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4200        ciInstance* caller_mirror = caller_klass->java_mirror();
4201        set_result(makecon(TypeInstPtr::make(caller_mirror)));
4202
4203#ifndef PRODUCT
4204        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4205          tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4206          tty->print_cr("  JVM state at this point:");
4207          for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4208            ciMethod* m = jvms()->of_depth(i)->method();
4209            tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4210          }
4211        }
4212#endif
4213        return true;
4214      }
4215      break;
4216    }
4217  }
4218
4219#ifndef PRODUCT
4220  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4221    tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4222    tty->print_cr("  JVM state at this point:");
4223    for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4224      ciMethod* m = jvms()->of_depth(i)->method();
4225      tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4226    }
4227  }
4228#endif
4229
4230  return false;  // bail-out; let JVM_GetCallerClass do the work
4231}
4232
4233bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4234  Node* arg = argument(0);
4235  Node* result;
4236
4237  switch (id) {
4238  case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4239  case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4240  case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4241  case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4242
4243  case vmIntrinsics::_doubleToLongBits: {
4244    // two paths (plus control) merge in a wood
4245    RegionNode *r = new (C) RegionNode(3);
4246    Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4247
4248    Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4249    // Build the boolean node
4250    Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4251
4252    // Branch either way.
4253    // NaN case is less traveled, which makes all the difference.
4254    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4255    Node *opt_isnan = _gvn.transform(ifisnan);
4256    assert( opt_isnan->is_If(), "Expect an IfNode");
4257    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4258    Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4259
4260    set_control(iftrue);
4261
4262    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4263    Node *slow_result = longcon(nan_bits); // return NaN
4264    phi->init_req(1, _gvn.transform( slow_result ));
4265    r->init_req(1, iftrue);
4266
4267    // Else fall through
4268    Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4269    set_control(iffalse);
4270
4271    phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4272    r->init_req(2, iffalse);
4273
4274    // Post merge
4275    set_control(_gvn.transform(r));
4276    record_for_igvn(r);
4277
4278    C->set_has_split_ifs(true); // Has chance for split-if optimization
4279    result = phi;
4280    assert(result->bottom_type()->isa_long(), "must be");
4281    break;
4282  }
4283
4284  case vmIntrinsics::_floatToIntBits: {
4285    // two paths (plus control) merge in a wood
4286    RegionNode *r = new (C) RegionNode(3);
4287    Node *phi = new (C) PhiNode(r, TypeInt::INT);
4288
4289    Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4290    // Build the boolean node
4291    Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4292
4293    // Branch either way.
4294    // NaN case is less traveled, which makes all the difference.
4295    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4296    Node *opt_isnan = _gvn.transform(ifisnan);
4297    assert( opt_isnan->is_If(), "Expect an IfNode");
4298    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4299    Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4300
4301    set_control(iftrue);
4302
4303    static const jint nan_bits = 0x7fc00000;
4304    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4305    phi->init_req(1, _gvn.transform( slow_result ));
4306    r->init_req(1, iftrue);
4307
4308    // Else fall through
4309    Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4310    set_control(iffalse);
4311
4312    phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4313    r->init_req(2, iffalse);
4314
4315    // Post merge
4316    set_control(_gvn.transform(r));
4317    record_for_igvn(r);
4318
4319    C->set_has_split_ifs(true); // Has chance for split-if optimization
4320    result = phi;
4321    assert(result->bottom_type()->isa_int(), "must be");
4322    break;
4323  }
4324
4325  default:
4326    fatal_unexpected_iid(id);
4327    break;
4328  }
4329  set_result(_gvn.transform(result));
4330  return true;
4331}
4332
4333#ifdef _LP64
4334#define XTOP ,top() /*additional argument*/
4335#else  //_LP64
4336#define XTOP        /*no additional argument*/
4337#endif //_LP64
4338
4339//----------------------inline_unsafe_copyMemory-------------------------
4340// public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4341bool LibraryCallKit::inline_unsafe_copyMemory() {
4342  if (callee()->is_static())  return false;  // caller must have the capability!
4343  null_check_receiver();  // null-check receiver
4344  if (stopped())  return true;
4345
4346  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4347
4348  Node* src_ptr =         argument(1);   // type: oop
4349  Node* src_off = ConvL2X(argument(2));  // type: long
4350  Node* dst_ptr =         argument(4);   // type: oop
4351  Node* dst_off = ConvL2X(argument(5));  // type: long
4352  Node* size    = ConvL2X(argument(7));  // type: long
4353
4354  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4355         "fieldOffset must be byte-scaled");
4356
4357  Node* src = make_unsafe_address(src_ptr, src_off);
4358  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4359
4360  // Conservatively insert a memory barrier on all memory slices.
4361  // Do not let writes of the copy source or destination float below the copy.
4362  insert_mem_bar(Op_MemBarCPUOrder);
4363
4364  // Call it.  Note that the length argument is not scaled.
4365  make_runtime_call(RC_LEAF|RC_NO_FP,
4366                    OptoRuntime::fast_arraycopy_Type(),
4367                    StubRoutines::unsafe_arraycopy(),
4368                    "unsafe_arraycopy",
4369                    TypeRawPtr::BOTTOM,
4370                    src, dst, size XTOP);
4371
4372  // Do not let reads of the copy destination float above the copy.
4373  insert_mem_bar(Op_MemBarCPUOrder);
4374
4375  return true;
4376}
4377
4378//------------------------clone_coping-----------------------------------
4379// Helper function for inline_native_clone.
4380void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4381  assert(obj_size != NULL, "");
4382  Node* raw_obj = alloc_obj->in(1);
4383  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4384
4385  AllocateNode* alloc = NULL;
4386  if (ReduceBulkZeroing) {
4387    // We will be completely responsible for initializing this object -
4388    // mark Initialize node as complete.
4389    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4390    // The object was just allocated - there should be no any stores!
4391    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4392    // Mark as complete_with_arraycopy so that on AllocateNode
4393    // expansion, we know this AllocateNode is initialized by an array
4394    // copy and a StoreStore barrier exists after the array copy.
4395    alloc->initialization()->set_complete_with_arraycopy();
4396  }
4397
4398  // Copy the fastest available way.
4399  // TODO: generate fields copies for small objects instead.
4400  Node* src  = obj;
4401  Node* dest = alloc_obj;
4402  Node* size = _gvn.transform(obj_size);
4403
4404  // Exclude the header but include array length to copy by 8 bytes words.
4405  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4406  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4407                            instanceOopDesc::base_offset_in_bytes();
4408  // base_off:
4409  // 8  - 32-bit VM
4410  // 12 - 64-bit VM, compressed klass
4411  // 16 - 64-bit VM, normal klass
4412  if (base_off % BytesPerLong != 0) {
4413    assert(UseCompressedClassPointers, "");
4414    if (is_array) {
4415      // Exclude length to copy by 8 bytes words.
4416      base_off += sizeof(int);
4417    } else {
4418      // Include klass to copy by 8 bytes words.
4419      base_off = instanceOopDesc::klass_offset_in_bytes();
4420    }
4421    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4422  }
4423  src  = basic_plus_adr(src,  base_off);
4424  dest = basic_plus_adr(dest, base_off);
4425
4426  // Compute the length also, if needed:
4427  Node* countx = size;
4428  countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4429  countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4430
4431  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4432  bool disjoint_bases = true;
4433  generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4434                               src, NULL, dest, NULL, countx,
4435                               /*dest_uninitialized*/true);
4436
4437  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4438  if (card_mark) {
4439    assert(!is_array, "");
4440    // Put in store barrier for any and all oops we are sticking
4441    // into this object.  (We could avoid this if we could prove
4442    // that the object type contains no oop fields at all.)
4443    Node* no_particular_value = NULL;
4444    Node* no_particular_field = NULL;
4445    int raw_adr_idx = Compile::AliasIdxRaw;
4446    post_barrier(control(),
4447                 memory(raw_adr_type),
4448                 alloc_obj,
4449                 no_particular_field,
4450                 raw_adr_idx,
4451                 no_particular_value,
4452                 T_OBJECT,
4453                 false);
4454  }
4455
4456  // Do not let reads from the cloned object float above the arraycopy.
4457  if (alloc != NULL) {
4458    // Do not let stores that initialize this object be reordered with
4459    // a subsequent store that would make this object accessible by
4460    // other threads.
4461    // Record what AllocateNode this StoreStore protects so that
4462    // escape analysis can go from the MemBarStoreStoreNode to the
4463    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4464    // based on the escape status of the AllocateNode.
4465    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4466  } else {
4467    insert_mem_bar(Op_MemBarCPUOrder);
4468  }
4469}
4470
4471//------------------------inline_native_clone----------------------------
4472// protected native Object java.lang.Object.clone();
4473//
4474// Here are the simple edge cases:
4475//  null receiver => normal trap
4476//  virtual and clone was overridden => slow path to out-of-line clone
4477//  not cloneable or finalizer => slow path to out-of-line Object.clone
4478//
4479// The general case has two steps, allocation and copying.
4480// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4481//
4482// Copying also has two cases, oop arrays and everything else.
4483// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4484// Everything else uses the tight inline loop supplied by CopyArrayNode.
4485//
4486// These steps fold up nicely if and when the cloned object's klass
4487// can be sharply typed as an object array, a type array, or an instance.
4488//
4489bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4490  PhiNode* result_val;
4491
4492  // Set the reexecute bit for the interpreter to reexecute
4493  // the bytecode that invokes Object.clone if deoptimization happens.
4494  { PreserveReexecuteState preexecs(this);
4495    jvms()->set_should_reexecute(true);
4496
4497    Node* obj = null_check_receiver();
4498    if (stopped())  return true;
4499
4500    Node* obj_klass = load_object_klass(obj);
4501    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4502    const TypeOopPtr*   toop   = ((tklass != NULL)
4503                                ? tklass->as_instance_type()
4504                                : TypeInstPtr::NOTNULL);
4505
4506    // Conservatively insert a memory barrier on all memory slices.
4507    // Do not let writes into the original float below the clone.
4508    insert_mem_bar(Op_MemBarCPUOrder);
4509
4510    // paths into result_reg:
4511    enum {
4512      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4513      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4514      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4515      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4516      PATH_LIMIT
4517    };
4518    RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4519    result_val             = new(C) PhiNode(result_reg,
4520                                            TypeInstPtr::NOTNULL);
4521    PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4522    PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4523                                            TypePtr::BOTTOM);
4524    record_for_igvn(result_reg);
4525
4526    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4527    int raw_adr_idx = Compile::AliasIdxRaw;
4528
4529    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4530    if (array_ctl != NULL) {
4531      // It's an array.
4532      PreserveJVMState pjvms(this);
4533      set_control(array_ctl);
4534      Node* obj_length = load_array_length(obj);
4535      Node* obj_size  = NULL;
4536      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4537
4538      if (!use_ReduceInitialCardMarks()) {
4539        // If it is an oop array, it requires very special treatment,
4540        // because card marking is required on each card of the array.
4541        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4542        if (is_obja != NULL) {
4543          PreserveJVMState pjvms2(this);
4544          set_control(is_obja);
4545          // Generate a direct call to the right arraycopy function(s).
4546          bool disjoint_bases = true;
4547          bool length_never_negative = true;
4548          generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4549                             obj, intcon(0), alloc_obj, intcon(0),
4550                             obj_length,
4551                             disjoint_bases, length_never_negative);
4552          result_reg->init_req(_objArray_path, control());
4553          result_val->init_req(_objArray_path, alloc_obj);
4554          result_i_o ->set_req(_objArray_path, i_o());
4555          result_mem ->set_req(_objArray_path, reset_memory());
4556        }
4557      }
4558      // Otherwise, there are no card marks to worry about.
4559      // (We can dispense with card marks if we know the allocation
4560      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4561      //  causes the non-eden paths to take compensating steps to
4562      //  simulate a fresh allocation, so that no further
4563      //  card marks are required in compiled code to initialize
4564      //  the object.)
4565
4566      if (!stopped()) {
4567        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4568
4569        // Present the results of the copy.
4570        result_reg->init_req(_array_path, control());
4571        result_val->init_req(_array_path, alloc_obj);
4572        result_i_o ->set_req(_array_path, i_o());
4573        result_mem ->set_req(_array_path, reset_memory());
4574      }
4575    }
4576
4577    // We only go to the instance fast case code if we pass a number of guards.
4578    // The paths which do not pass are accumulated in the slow_region.
4579    RegionNode* slow_region = new (C) RegionNode(1);
4580    record_for_igvn(slow_region);
4581    if (!stopped()) {
4582      // It's an instance (we did array above).  Make the slow-path tests.
4583      // If this is a virtual call, we generate a funny guard.  We grab
4584      // the vtable entry corresponding to clone() from the target object.
4585      // If the target method which we are calling happens to be the
4586      // Object clone() method, we pass the guard.  We do not need this
4587      // guard for non-virtual calls; the caller is known to be the native
4588      // Object clone().
4589      if (is_virtual) {
4590        generate_virtual_guard(obj_klass, slow_region);
4591      }
4592
4593      // The object must be cloneable and must not have a finalizer.
4594      // Both of these conditions may be checked in a single test.
4595      // We could optimize the cloneable test further, but we don't care.
4596      generate_access_flags_guard(obj_klass,
4597                                  // Test both conditions:
4598                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4599                                  // Must be cloneable but not finalizer:
4600                                  JVM_ACC_IS_CLONEABLE,
4601                                  slow_region);
4602    }
4603
4604    if (!stopped()) {
4605      // It's an instance, and it passed the slow-path tests.
4606      PreserveJVMState pjvms(this);
4607      Node* obj_size  = NULL;
4608      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4609
4610      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4611
4612      // Present the results of the slow call.
4613      result_reg->init_req(_instance_path, control());
4614      result_val->init_req(_instance_path, alloc_obj);
4615      result_i_o ->set_req(_instance_path, i_o());
4616      result_mem ->set_req(_instance_path, reset_memory());
4617    }
4618
4619    // Generate code for the slow case.  We make a call to clone().
4620    set_control(_gvn.transform(slow_region));
4621    if (!stopped()) {
4622      PreserveJVMState pjvms(this);
4623      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4624      Node* slow_result = set_results_for_java_call(slow_call);
4625      // this->control() comes from set_results_for_java_call
4626      result_reg->init_req(_slow_path, control());
4627      result_val->init_req(_slow_path, slow_result);
4628      result_i_o ->set_req(_slow_path, i_o());
4629      result_mem ->set_req(_slow_path, reset_memory());
4630    }
4631
4632    // Return the combined state.
4633    set_control(    _gvn.transform(result_reg));
4634    set_i_o(        _gvn.transform(result_i_o));
4635    set_all_memory( _gvn.transform(result_mem));
4636  } // original reexecute is set back here
4637
4638  set_result(_gvn.transform(result_val));
4639  return true;
4640}
4641
4642//------------------------------basictype2arraycopy----------------------------
4643address LibraryCallKit::basictype2arraycopy(BasicType t,
4644                                            Node* src_offset,
4645                                            Node* dest_offset,
4646                                            bool disjoint_bases,
4647                                            const char* &name,
4648                                            bool dest_uninitialized) {
4649  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4650  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4651
4652  bool aligned = false;
4653  bool disjoint = disjoint_bases;
4654
4655  // if the offsets are the same, we can treat the memory regions as
4656  // disjoint, because either the memory regions are in different arrays,
4657  // or they are identical (which we can treat as disjoint.)  We can also
4658  // treat a copy with a destination index  less that the source index
4659  // as disjoint since a low->high copy will work correctly in this case.
4660  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4661      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4662    // both indices are constants
4663    int s_offs = src_offset_inttype->get_con();
4664    int d_offs = dest_offset_inttype->get_con();
4665    int element_size = type2aelembytes(t);
4666    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4667              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4668    if (s_offs >= d_offs)  disjoint = true;
4669  } else if (src_offset == dest_offset && src_offset != NULL) {
4670    // This can occur if the offsets are identical non-constants.
4671    disjoint = true;
4672  }
4673
4674  return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4675}
4676
4677
4678//------------------------------inline_arraycopy-----------------------
4679// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4680//                                                      Object dest, int destPos,
4681//                                                      int length);
4682bool LibraryCallKit::inline_arraycopy() {
4683  // Get the arguments.
4684  Node* src         = argument(0);  // type: oop
4685  Node* src_offset  = argument(1);  // type: int
4686  Node* dest        = argument(2);  // type: oop
4687  Node* dest_offset = argument(3);  // type: int
4688  Node* length      = argument(4);  // type: int
4689
4690  // Compile time checks.  If any of these checks cannot be verified at compile time,
4691  // we do not make a fast path for this call.  Instead, we let the call remain as it
4692  // is.  The checks we choose to mandate at compile time are:
4693  //
4694  // (1) src and dest are arrays.
4695  const Type* src_type  = src->Value(&_gvn);
4696  const Type* dest_type = dest->Value(&_gvn);
4697  const TypeAryPtr* top_src  = src_type->isa_aryptr();
4698  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4699
4700  // Do we have the type of src?
4701  bool has_src = (top_src != NULL && top_src->klass() != NULL);
4702  // Do we have the type of dest?
4703  bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4704  // Is the type for src from speculation?
4705  bool src_spec = false;
4706  // Is the type for dest from speculation?
4707  bool dest_spec = false;
4708
4709  if (!has_src || !has_dest) {
4710    // We don't have sufficient type information, let's see if
4711    // speculative types can help. We need to have types for both src
4712    // and dest so that it pays off.
4713
4714    // Do we already have or could we have type information for src
4715    bool could_have_src = has_src;
4716    // Do we already have or could we have type information for dest
4717    bool could_have_dest = has_dest;
4718
4719    ciKlass* src_k = NULL;
4720    if (!has_src) {
4721      src_k = src_type->speculative_type();
4722      if (src_k != NULL && src_k->is_array_klass()) {
4723        could_have_src = true;
4724      }
4725    }
4726
4727    ciKlass* dest_k = NULL;
4728    if (!has_dest) {
4729      dest_k = dest_type->speculative_type();
4730      if (dest_k != NULL && dest_k->is_array_klass()) {
4731        could_have_dest = true;
4732      }
4733    }
4734
4735    if (could_have_src && could_have_dest) {
4736      // This is going to pay off so emit the required guards
4737      if (!has_src) {
4738        src = maybe_cast_profiled_obj(src, src_k);
4739        src_type  = _gvn.type(src);
4740        top_src  = src_type->isa_aryptr();
4741        has_src = (top_src != NULL && top_src->klass() != NULL);
4742        src_spec = true;
4743      }
4744      if (!has_dest) {
4745        dest = maybe_cast_profiled_obj(dest, dest_k);
4746        dest_type  = _gvn.type(dest);
4747        top_dest  = dest_type->isa_aryptr();
4748        has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4749        dest_spec = true;
4750      }
4751    }
4752  }
4753
4754  if (!has_src || !has_dest) {
4755    // Conservatively insert a memory barrier on all memory slices.
4756    // Do not let writes into the source float below the arraycopy.
4757    insert_mem_bar(Op_MemBarCPUOrder);
4758
4759    // Call StubRoutines::generic_arraycopy stub.
4760    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4761                       src, src_offset, dest, dest_offset, length);
4762
4763    // Do not let reads from the destination float above the arraycopy.
4764    // Since we cannot type the arrays, we don't know which slices
4765    // might be affected.  We could restrict this barrier only to those
4766    // memory slices which pertain to array elements--but don't bother.
4767    if (!InsertMemBarAfterArraycopy)
4768      // (If InsertMemBarAfterArraycopy, there is already one in place.)
4769      insert_mem_bar(Op_MemBarCPUOrder);
4770    return true;
4771  }
4772
4773  // (2) src and dest arrays must have elements of the same BasicType
4774  // Figure out the size and type of the elements we will be copying.
4775  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4776  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4777  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4778  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4779
4780  if (src_elem != dest_elem || dest_elem == T_VOID) {
4781    // The component types are not the same or are not recognized.  Punt.
4782    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4783    generate_slow_arraycopy(TypePtr::BOTTOM,
4784                            src, src_offset, dest, dest_offset, length,
4785                            /*dest_uninitialized*/false);
4786    return true;
4787  }
4788
4789  if (src_elem == T_OBJECT) {
4790    // If both arrays are object arrays then having the exact types
4791    // for both will remove the need for a subtype check at runtime
4792    // before the call and may make it possible to pick a faster copy
4793    // routine (without a subtype check on every element)
4794    // Do we have the exact type of src?
4795    bool could_have_src = src_spec;
4796    // Do we have the exact type of dest?
4797    bool could_have_dest = dest_spec;
4798    ciKlass* src_k = top_src->klass();
4799    ciKlass* dest_k = top_dest->klass();
4800    if (!src_spec) {
4801      src_k = src_type->speculative_type();
4802      if (src_k != NULL && src_k->is_array_klass()) {
4803          could_have_src = true;
4804      }
4805    }
4806    if (!dest_spec) {
4807      dest_k = dest_type->speculative_type();
4808      if (dest_k != NULL && dest_k->is_array_klass()) {
4809        could_have_dest = true;
4810      }
4811    }
4812    if (could_have_src && could_have_dest) {
4813      // If we can have both exact types, emit the missing guards
4814      if (could_have_src && !src_spec) {
4815        src = maybe_cast_profiled_obj(src, src_k);
4816      }
4817      if (could_have_dest && !dest_spec) {
4818        dest = maybe_cast_profiled_obj(dest, dest_k);
4819      }
4820    }
4821  }
4822
4823  //---------------------------------------------------------------------------
4824  // We will make a fast path for this call to arraycopy.
4825
4826  // We have the following tests left to perform:
4827  //
4828  // (3) src and dest must not be null.
4829  // (4) src_offset must not be negative.
4830  // (5) dest_offset must not be negative.
4831  // (6) length must not be negative.
4832  // (7) src_offset + length must not exceed length of src.
4833  // (8) dest_offset + length must not exceed length of dest.
4834  // (9) each element of an oop array must be assignable
4835
4836  RegionNode* slow_region = new (C) RegionNode(1);
4837  record_for_igvn(slow_region);
4838
4839  // (3) operands must not be null
4840  // We currently perform our null checks with the null_check routine.
4841  // This means that the null exceptions will be reported in the caller
4842  // rather than (correctly) reported inside of the native arraycopy call.
4843  // This should be corrected, given time.  We do our null check with the
4844  // stack pointer restored.
4845  src  = null_check(src,  T_ARRAY);
4846  dest = null_check(dest, T_ARRAY);
4847
4848  // (4) src_offset must not be negative.
4849  generate_negative_guard(src_offset, slow_region);
4850
4851  // (5) dest_offset must not be negative.
4852  generate_negative_guard(dest_offset, slow_region);
4853
4854  // (6) length must not be negative (moved to generate_arraycopy()).
4855  // generate_negative_guard(length, slow_region);
4856
4857  // (7) src_offset + length must not exceed length of src.
4858  generate_limit_guard(src_offset, length,
4859                       load_array_length(src),
4860                       slow_region);
4861
4862  // (8) dest_offset + length must not exceed length of dest.
4863  generate_limit_guard(dest_offset, length,
4864                       load_array_length(dest),
4865                       slow_region);
4866
4867  // (9) each element of an oop array must be assignable
4868  // The generate_arraycopy subroutine checks this.
4869
4870  // This is where the memory effects are placed:
4871  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4872  generate_arraycopy(adr_type, dest_elem,
4873                     src, src_offset, dest, dest_offset, length,
4874                     false, false, slow_region);
4875
4876  return true;
4877}
4878
4879//-----------------------------generate_arraycopy----------------------
4880// Generate an optimized call to arraycopy.
4881// Caller must guard against non-arrays.
4882// Caller must determine a common array basic-type for both arrays.
4883// Caller must validate offsets against array bounds.
4884// The slow_region has already collected guard failure paths
4885// (such as out of bounds length or non-conformable array types).
4886// The generated code has this shape, in general:
4887//
4888//     if (length == 0)  return   // via zero_path
4889//     slowval = -1
4890//     if (types unknown) {
4891//       slowval = call generic copy loop
4892//       if (slowval == 0)  return  // via checked_path
4893//     } else if (indexes in bounds) {
4894//       if ((is object array) && !(array type check)) {
4895//         slowval = call checked copy loop
4896//         if (slowval == 0)  return  // via checked_path
4897//       } else {
4898//         call bulk copy loop
4899//         return  // via fast_path
4900//       }
4901//     }
4902//     // adjust params for remaining work:
4903//     if (slowval != -1) {
4904//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4905//     }
4906//   slow_region:
4907//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4908//     return  // via slow_call_path
4909//
4910// This routine is used from several intrinsics:  System.arraycopy,
4911// Object.clone (the array subcase), and Arrays.copyOf[Range].
4912//
4913void
4914LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4915                                   BasicType basic_elem_type,
4916                                   Node* src,  Node* src_offset,
4917                                   Node* dest, Node* dest_offset,
4918                                   Node* copy_length,
4919                                   bool disjoint_bases,
4920                                   bool length_never_negative,
4921                                   RegionNode* slow_region) {
4922
4923  if (slow_region == NULL) {
4924    slow_region = new(C) RegionNode(1);
4925    record_for_igvn(slow_region);
4926  }
4927
4928  Node* original_dest      = dest;
4929  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4930  bool  dest_uninitialized = false;
4931
4932  // See if this is the initialization of a newly-allocated array.
4933  // If so, we will take responsibility here for initializing it to zero.
4934  // (Note:  Because tightly_coupled_allocation performs checks on the
4935  // out-edges of the dest, we need to avoid making derived pointers
4936  // from it until we have checked its uses.)
4937  if (ReduceBulkZeroing
4938      && !ZeroTLAB              // pointless if already zeroed
4939      && basic_elem_type != T_CONFLICT // avoid corner case
4940      && !src->eqv_uncast(dest)
4941      && ((alloc = tightly_coupled_allocation(dest, slow_region))
4942          != NULL)
4943      && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4944      && alloc->maybe_set_complete(&_gvn)) {
4945    // "You break it, you buy it."
4946    InitializeNode* init = alloc->initialization();
4947    assert(init->is_complete(), "we just did this");
4948    init->set_complete_with_arraycopy();
4949    assert(dest->is_CheckCastPP(), "sanity");
4950    assert(dest->in(0)->in(0) == init, "dest pinned");
4951    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4952    // From this point on, every exit path is responsible for
4953    // initializing any non-copied parts of the object to zero.
4954    // Also, if this flag is set we make sure that arraycopy interacts properly
4955    // with G1, eliding pre-barriers. See CR 6627983.
4956    dest_uninitialized = true;
4957  } else {
4958    // No zeroing elimination here.
4959    alloc             = NULL;
4960    //original_dest   = dest;
4961    //dest_uninitialized = false;
4962  }
4963
4964  // Results are placed here:
4965  enum { fast_path        = 1,  // normal void-returning assembly stub
4966         checked_path     = 2,  // special assembly stub with cleanup
4967         slow_call_path   = 3,  // something went wrong; call the VM
4968         zero_path        = 4,  // bypass when length of copy is zero
4969         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4970         PATH_LIMIT       = 6
4971  };
4972  RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4973  PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4974  PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4975  record_for_igvn(result_region);
4976  _gvn.set_type_bottom(result_i_o);
4977  _gvn.set_type_bottom(result_memory);
4978  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4979
4980  // The slow_control path:
4981  Node* slow_control;
4982  Node* slow_i_o = i_o();
4983  Node* slow_mem = memory(adr_type);
4984  debug_only(slow_control = (Node*) badAddress);
4985
4986  // Checked control path:
4987  Node* checked_control = top();
4988  Node* checked_mem     = NULL;
4989  Node* checked_i_o     = NULL;
4990  Node* checked_value   = NULL;
4991
4992  if (basic_elem_type == T_CONFLICT) {
4993    assert(!dest_uninitialized, "");
4994    Node* cv = generate_generic_arraycopy(adr_type,
4995                                          src, src_offset, dest, dest_offset,
4996                                          copy_length, dest_uninitialized);
4997    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4998    checked_control = control();
4999    checked_i_o     = i_o();
5000    checked_mem     = memory(adr_type);
5001    checked_value   = cv;
5002    set_control(top());         // no fast path
5003  }
5004
5005  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
5006  if (not_pos != NULL) {
5007    PreserveJVMState pjvms(this);
5008    set_control(not_pos);
5009
5010    // (6) length must not be negative.
5011    if (!length_never_negative) {
5012      generate_negative_guard(copy_length, slow_region);
5013    }
5014
5015    // copy_length is 0.
5016    if (!stopped() && dest_uninitialized) {
5017      Node* dest_length = alloc->in(AllocateNode::ALength);
5018      if (copy_length->eqv_uncast(dest_length)
5019          || _gvn.find_int_con(dest_length, 1) <= 0) {
5020        // There is no zeroing to do. No need for a secondary raw memory barrier.
5021      } else {
5022        // Clear the whole thing since there are no source elements to copy.
5023        generate_clear_array(adr_type, dest, basic_elem_type,
5024                             intcon(0), NULL,
5025                             alloc->in(AllocateNode::AllocSize));
5026        // Use a secondary InitializeNode as raw memory barrier.
5027        // Currently it is needed only on this path since other
5028        // paths have stub or runtime calls as raw memory barriers.
5029        InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5030                                                       Compile::AliasIdxRaw,
5031                                                       top())->as_Initialize();
5032        init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5033      }
5034    }
5035
5036    // Present the results of the fast call.
5037    result_region->init_req(zero_path, control());
5038    result_i_o   ->init_req(zero_path, i_o());
5039    result_memory->init_req(zero_path, memory(adr_type));
5040  }
5041
5042  if (!stopped() && dest_uninitialized) {
5043    // We have to initialize the *uncopied* part of the array to zero.
5044    // The copy destination is the slice dest[off..off+len].  The other slices
5045    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5046    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5047    Node* dest_length = alloc->in(AllocateNode::ALength);
5048    Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5049                                                          copy_length));
5050
5051    // If there is a head section that needs zeroing, do it now.
5052    if (find_int_con(dest_offset, -1) != 0) {
5053      generate_clear_array(adr_type, dest, basic_elem_type,
5054                           intcon(0), dest_offset,
5055                           NULL);
5056    }
5057
5058    // Next, perform a dynamic check on the tail length.
5059    // It is often zero, and we can win big if we prove this.
5060    // There are two wins:  Avoid generating the ClearArray
5061    // with its attendant messy index arithmetic, and upgrade
5062    // the copy to a more hardware-friendly word size of 64 bits.
5063    Node* tail_ctl = NULL;
5064    if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5065      Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5066      Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5067      tail_ctl = generate_slow_guard(bol_lt, NULL);
5068      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5069    }
5070
5071    // At this point, let's assume there is no tail.
5072    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5073      // There is no tail.  Try an upgrade to a 64-bit copy.
5074      bool didit = false;
5075      { PreserveJVMState pjvms(this);
5076        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5077                                         src, src_offset, dest, dest_offset,
5078                                         dest_size, dest_uninitialized);
5079        if (didit) {
5080          // Present the results of the block-copying fast call.
5081          result_region->init_req(bcopy_path, control());
5082          result_i_o   ->init_req(bcopy_path, i_o());
5083          result_memory->init_req(bcopy_path, memory(adr_type));
5084        }
5085      }
5086      if (didit)
5087        set_control(top());     // no regular fast path
5088    }
5089
5090    // Clear the tail, if any.
5091    if (tail_ctl != NULL) {
5092      Node* notail_ctl = stopped() ? NULL : control();
5093      set_control(tail_ctl);
5094      if (notail_ctl == NULL) {
5095        generate_clear_array(adr_type, dest, basic_elem_type,
5096                             dest_tail, NULL,
5097                             dest_size);
5098      } else {
5099        // Make a local merge.
5100        Node* done_ctl = new(C) RegionNode(3);
5101        Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5102        done_ctl->init_req(1, notail_ctl);
5103        done_mem->init_req(1, memory(adr_type));
5104        generate_clear_array(adr_type, dest, basic_elem_type,
5105                             dest_tail, NULL,
5106                             dest_size);
5107        done_ctl->init_req(2, control());
5108        done_mem->init_req(2, memory(adr_type));
5109        set_control( _gvn.transform(done_ctl));
5110        set_memory(  _gvn.transform(done_mem), adr_type );
5111      }
5112    }
5113  }
5114
5115  BasicType copy_type = basic_elem_type;
5116  assert(basic_elem_type != T_ARRAY, "caller must fix this");
5117  if (!stopped() && copy_type == T_OBJECT) {
5118    // If src and dest have compatible element types, we can copy bits.
5119    // Types S[] and D[] are compatible if D is a supertype of S.
5120    //
5121    // If they are not, we will use checked_oop_disjoint_arraycopy,
5122    // which performs a fast optimistic per-oop check, and backs off
5123    // further to JVM_ArrayCopy on the first per-oop check that fails.
5124    // (Actually, we don't move raw bits only; the GC requires card marks.)
5125
5126    // Get the Klass* for both src and dest
5127    Node* src_klass  = load_object_klass(src);
5128    Node* dest_klass = load_object_klass(dest);
5129
5130    // Generate the subtype check.
5131    // This might fold up statically, or then again it might not.
5132    //
5133    // Non-static example:  Copying List<String>.elements to a new String[].
5134    // The backing store for a List<String> is always an Object[],
5135    // but its elements are always type String, if the generic types
5136    // are correct at the source level.
5137    //
5138    // Test S[] against D[], not S against D, because (probably)
5139    // the secondary supertype cache is less busy for S[] than S.
5140    // This usually only matters when D is an interface.
5141    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5142    // Plug failing path into checked_oop_disjoint_arraycopy
5143    if (not_subtype_ctrl != top()) {
5144      PreserveJVMState pjvms(this);
5145      set_control(not_subtype_ctrl);
5146      // (At this point we can assume disjoint_bases, since types differ.)
5147      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5148      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5149      Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5150      Node* dest_elem_klass = _gvn.transform(n1);
5151      Node* cv = generate_checkcast_arraycopy(adr_type,
5152                                              dest_elem_klass,
5153                                              src, src_offset, dest, dest_offset,
5154                                              ConvI2X(copy_length), dest_uninitialized);
5155      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5156      checked_control = control();
5157      checked_i_o     = i_o();
5158      checked_mem     = memory(adr_type);
5159      checked_value   = cv;
5160    }
5161    // At this point we know we do not need type checks on oop stores.
5162
5163    // Let's see if we need card marks:
5164    if (alloc != NULL && use_ReduceInitialCardMarks()) {
5165      // If we do not need card marks, copy using the jint or jlong stub.
5166      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5167      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5168             "sizes agree");
5169    }
5170  }
5171
5172  if (!stopped()) {
5173    // Generate the fast path, if possible.
5174    PreserveJVMState pjvms(this);
5175    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5176                                 src, src_offset, dest, dest_offset,
5177                                 ConvI2X(copy_length), dest_uninitialized);
5178
5179    // Present the results of the fast call.
5180    result_region->init_req(fast_path, control());
5181    result_i_o   ->init_req(fast_path, i_o());
5182    result_memory->init_req(fast_path, memory(adr_type));
5183  }
5184
5185  // Here are all the slow paths up to this point, in one bundle:
5186  slow_control = top();
5187  if (slow_region != NULL)
5188    slow_control = _gvn.transform(slow_region);
5189  DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5190
5191  set_control(checked_control);
5192  if (!stopped()) {
5193    // Clean up after the checked call.
5194    // The returned value is either 0 or -1^K,
5195    // where K = number of partially transferred array elements.
5196    Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5197    Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5198    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5199
5200    // If it is 0, we are done, so transfer to the end.
5201    Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5202    result_region->init_req(checked_path, checks_done);
5203    result_i_o   ->init_req(checked_path, checked_i_o);
5204    result_memory->init_req(checked_path, checked_mem);
5205
5206    // If it is not zero, merge into the slow call.
5207    set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5208    RegionNode* slow_reg2 = new(C) RegionNode(3);
5209    PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5210    PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5211    record_for_igvn(slow_reg2);
5212    slow_reg2  ->init_req(1, slow_control);
5213    slow_i_o2  ->init_req(1, slow_i_o);
5214    slow_mem2  ->init_req(1, slow_mem);
5215    slow_reg2  ->init_req(2, control());
5216    slow_i_o2  ->init_req(2, checked_i_o);
5217    slow_mem2  ->init_req(2, checked_mem);
5218
5219    slow_control = _gvn.transform(slow_reg2);
5220    slow_i_o     = _gvn.transform(slow_i_o2);
5221    slow_mem     = _gvn.transform(slow_mem2);
5222
5223    if (alloc != NULL) {
5224      // We'll restart from the very beginning, after zeroing the whole thing.
5225      // This can cause double writes, but that's OK since dest is brand new.
5226      // So we ignore the low 31 bits of the value returned from the stub.
5227    } else {
5228      // We must continue the copy exactly where it failed, or else
5229      // another thread might see the wrong number of writes to dest.
5230      Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5231      Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5232      slow_offset->init_req(1, intcon(0));
5233      slow_offset->init_req(2, checked_offset);
5234      slow_offset  = _gvn.transform(slow_offset);
5235
5236      // Adjust the arguments by the conditionally incoming offset.
5237      Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5238      Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5239      Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5240
5241      // Tweak the node variables to adjust the code produced below:
5242      src_offset  = src_off_plus;
5243      dest_offset = dest_off_plus;
5244      copy_length = length_minus;
5245    }
5246  }
5247
5248  set_control(slow_control);
5249  if (!stopped()) {
5250    // Generate the slow path, if needed.
5251    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5252
5253    set_memory(slow_mem, adr_type);
5254    set_i_o(slow_i_o);
5255
5256    if (dest_uninitialized) {
5257      generate_clear_array(adr_type, dest, basic_elem_type,
5258                           intcon(0), NULL,
5259                           alloc->in(AllocateNode::AllocSize));
5260    }
5261
5262    generate_slow_arraycopy(adr_type,
5263                            src, src_offset, dest, dest_offset,
5264                            copy_length, /*dest_uninitialized*/false);
5265
5266    result_region->init_req(slow_call_path, control());
5267    result_i_o   ->init_req(slow_call_path, i_o());
5268    result_memory->init_req(slow_call_path, memory(adr_type));
5269  }
5270
5271  // Remove unused edges.
5272  for (uint i = 1; i < result_region->req(); i++) {
5273    if (result_region->in(i) == NULL)
5274      result_region->init_req(i, top());
5275  }
5276
5277  // Finished; return the combined state.
5278  set_control( _gvn.transform(result_region));
5279  set_i_o(     _gvn.transform(result_i_o)    );
5280  set_memory(  _gvn.transform(result_memory), adr_type );
5281
5282  // The memory edges above are precise in order to model effects around
5283  // array copies accurately to allow value numbering of field loads around
5284  // arraycopy.  Such field loads, both before and after, are common in Java
5285  // collections and similar classes involving header/array data structures.
5286  //
5287  // But with low number of register or when some registers are used or killed
5288  // by arraycopy calls it causes registers spilling on stack. See 6544710.
5289  // The next memory barrier is added to avoid it. If the arraycopy can be
5290  // optimized away (which it can, sometimes) then we can manually remove
5291  // the membar also.
5292  //
5293  // Do not let reads from the cloned object float above the arraycopy.
5294  if (alloc != NULL) {
5295    // Do not let stores that initialize this object be reordered with
5296    // a subsequent store that would make this object accessible by
5297    // other threads.
5298    // Record what AllocateNode this StoreStore protects so that
5299    // escape analysis can go from the MemBarStoreStoreNode to the
5300    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5301    // based on the escape status of the AllocateNode.
5302    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5303  } else if (InsertMemBarAfterArraycopy)
5304    insert_mem_bar(Op_MemBarCPUOrder);
5305}
5306
5307
5308// Helper function which determines if an arraycopy immediately follows
5309// an allocation, with no intervening tests or other escapes for the object.
5310AllocateArrayNode*
5311LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5312                                           RegionNode* slow_region) {
5313  if (stopped())             return NULL;  // no fast path
5314  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5315
5316  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5317  if (alloc == NULL)  return NULL;
5318
5319  Node* rawmem = memory(Compile::AliasIdxRaw);
5320  // Is the allocation's memory state untouched?
5321  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5322    // Bail out if there have been raw-memory effects since the allocation.
5323    // (Example:  There might have been a call or safepoint.)
5324    return NULL;
5325  }
5326  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5327  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5328    return NULL;
5329  }
5330
5331  // There must be no unexpected observers of this allocation.
5332  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5333    Node* obs = ptr->fast_out(i);
5334    if (obs != this->map()) {
5335      return NULL;
5336    }
5337  }
5338
5339  // This arraycopy must unconditionally follow the allocation of the ptr.
5340  Node* alloc_ctl = ptr->in(0);
5341  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5342
5343  Node* ctl = control();
5344  while (ctl != alloc_ctl) {
5345    // There may be guards which feed into the slow_region.
5346    // Any other control flow means that we might not get a chance
5347    // to finish initializing the allocated object.
5348    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5349      IfNode* iff = ctl->in(0)->as_If();
5350      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5351      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5352      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5353        ctl = iff->in(0);       // This test feeds the known slow_region.
5354        continue;
5355      }
5356      // One more try:  Various low-level checks bottom out in
5357      // uncommon traps.  If the debug-info of the trap omits
5358      // any reference to the allocation, as we've already
5359      // observed, then there can be no objection to the trap.
5360      bool found_trap = false;
5361      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5362        Node* obs = not_ctl->fast_out(j);
5363        if (obs->in(0) == not_ctl && obs->is_Call() &&
5364            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5365          found_trap = true; break;
5366        }
5367      }
5368      if (found_trap) {
5369        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5370        continue;
5371      }
5372    }
5373    return NULL;
5374  }
5375
5376  // If we get this far, we have an allocation which immediately
5377  // precedes the arraycopy, and we can take over zeroing the new object.
5378  // The arraycopy will finish the initialization, and provide
5379  // a new control state to which we will anchor the destination pointer.
5380
5381  return alloc;
5382}
5383
5384// Helper for initialization of arrays, creating a ClearArray.
5385// It writes zero bits in [start..end), within the body of an array object.
5386// The memory effects are all chained onto the 'adr_type' alias category.
5387//
5388// Since the object is otherwise uninitialized, we are free
5389// to put a little "slop" around the edges of the cleared area,
5390// as long as it does not go back into the array's header,
5391// or beyond the array end within the heap.
5392//
5393// The lower edge can be rounded down to the nearest jint and the
5394// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5395//
5396// Arguments:
5397//   adr_type           memory slice where writes are generated
5398//   dest               oop of the destination array
5399//   basic_elem_type    element type of the destination
5400//   slice_idx          array index of first element to store
5401//   slice_len          number of elements to store (or NULL)
5402//   dest_size          total size in bytes of the array object
5403//
5404// Exactly one of slice_len or dest_size must be non-NULL.
5405// If dest_size is non-NULL, zeroing extends to the end of the object.
5406// If slice_len is non-NULL, the slice_idx value must be a constant.
5407void
5408LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5409                                     Node* dest,
5410                                     BasicType basic_elem_type,
5411                                     Node* slice_idx,
5412                                     Node* slice_len,
5413                                     Node* dest_size) {
5414  // one or the other but not both of slice_len and dest_size:
5415  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5416  if (slice_len == NULL)  slice_len = top();
5417  if (dest_size == NULL)  dest_size = top();
5418
5419  // operate on this memory slice:
5420  Node* mem = memory(adr_type); // memory slice to operate on
5421
5422  // scaling and rounding of indexes:
5423  int scale = exact_log2(type2aelembytes(basic_elem_type));
5424  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5425  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5426  int bump_bit  = (-1 << scale) & BytesPerInt;
5427
5428  // determine constant starts and ends
5429  const intptr_t BIG_NEG = -128;
5430  assert(BIG_NEG + 2*abase < 0, "neg enough");
5431  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5432  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5433  if (slice_len_con == 0) {
5434    return;                     // nothing to do here
5435  }
5436  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5437  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5438  if (slice_idx_con >= 0 && slice_len_con >= 0) {
5439    assert(end_con < 0, "not two cons");
5440    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5441                       BytesPerLong);
5442  }
5443
5444  if (start_con >= 0 && end_con >= 0) {
5445    // Constant start and end.  Simple.
5446    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5447                                       start_con, end_con, &_gvn);
5448  } else if (start_con >= 0 && dest_size != top()) {
5449    // Constant start, pre-rounded end after the tail of the array.
5450    Node* end = dest_size;
5451    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5452                                       start_con, end, &_gvn);
5453  } else if (start_con >= 0 && slice_len != top()) {
5454    // Constant start, non-constant end.  End needs rounding up.
5455    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5456    intptr_t end_base  = abase + (slice_idx_con << scale);
5457    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5458    Node*    end       = ConvI2X(slice_len);
5459    if (scale != 0)
5460      end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5461    end_base += end_round;
5462    end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5463    end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5464    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5465                                       start_con, end, &_gvn);
5466  } else if (start_con < 0 && dest_size != top()) {
5467    // Non-constant start, pre-rounded end after the tail of the array.
5468    // This is almost certainly a "round-to-end" operation.
5469    Node* start = slice_idx;
5470    start = ConvI2X(start);
5471    if (scale != 0)
5472      start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5473    start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5474    if ((bump_bit | clear_low) != 0) {
5475      int to_clear = (bump_bit | clear_low);
5476      // Align up mod 8, then store a jint zero unconditionally
5477      // just before the mod-8 boundary.
5478      if (((abase + bump_bit) & ~to_clear) - bump_bit
5479          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5480        bump_bit = 0;
5481        assert((abase & to_clear) == 0, "array base must be long-aligned");
5482      } else {
5483        // Bump 'start' up to (or past) the next jint boundary:
5484        start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5485        assert((abase & clear_low) == 0, "array base must be int-aligned");
5486      }
5487      // Round bumped 'start' down to jlong boundary in body of array.
5488      start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5489      if (bump_bit != 0) {
5490        // Store a zero to the immediately preceding jint:
5491        Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5492        Node* p1 = basic_plus_adr(dest, x1);
5493        mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5494        mem = _gvn.transform(mem);
5495      }
5496    }
5497    Node* end = dest_size; // pre-rounded
5498    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5499                                       start, end, &_gvn);
5500  } else {
5501    // Non-constant start, unrounded non-constant end.
5502    // (Nobody zeroes a random midsection of an array using this routine.)
5503    ShouldNotReachHere();       // fix caller
5504  }
5505
5506  // Done.
5507  set_memory(mem, adr_type);
5508}
5509
5510
5511bool
5512LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5513                                         BasicType basic_elem_type,
5514                                         AllocateNode* alloc,
5515                                         Node* src,  Node* src_offset,
5516                                         Node* dest, Node* dest_offset,
5517                                         Node* dest_size, bool dest_uninitialized) {
5518  // See if there is an advantage from block transfer.
5519  int scale = exact_log2(type2aelembytes(basic_elem_type));
5520  if (scale >= LogBytesPerLong)
5521    return false;               // it is already a block transfer
5522
5523  // Look at the alignment of the starting offsets.
5524  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5525
5526  intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5527  intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5528  if (src_off_con < 0 || dest_off_con < 0)
5529    // At present, we can only understand constants.
5530    return false;
5531
5532  intptr_t src_off  = abase + (src_off_con  << scale);
5533  intptr_t dest_off = abase + (dest_off_con << scale);
5534
5535  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5536    // Non-aligned; too bad.
5537    // One more chance:  Pick off an initial 32-bit word.
5538    // This is a common case, since abase can be odd mod 8.
5539    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5540        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5541      Node* sptr = basic_plus_adr(src,  src_off);
5542      Node* dptr = basic_plus_adr(dest, dest_off);
5543      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5544      store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5545      src_off += BytesPerInt;
5546      dest_off += BytesPerInt;
5547    } else {
5548      return false;
5549    }
5550  }
5551  assert(src_off % BytesPerLong == 0, "");
5552  assert(dest_off % BytesPerLong == 0, "");
5553
5554  // Do this copy by giant steps.
5555  Node* sptr  = basic_plus_adr(src,  src_off);
5556  Node* dptr  = basic_plus_adr(dest, dest_off);
5557  Node* countx = dest_size;
5558  countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5559  countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5560
5561  bool disjoint_bases = true;   // since alloc != NULL
5562  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5563                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5564
5565  return true;
5566}
5567
5568
5569// Helper function; generates code for the slow case.
5570// We make a call to a runtime method which emulates the native method,
5571// but without the native wrapper overhead.
5572void
5573LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5574                                        Node* src,  Node* src_offset,
5575                                        Node* dest, Node* dest_offset,
5576                                        Node* copy_length, bool dest_uninitialized) {
5577  assert(!dest_uninitialized, "Invariant");
5578  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5579                                 OptoRuntime::slow_arraycopy_Type(),
5580                                 OptoRuntime::slow_arraycopy_Java(),
5581                                 "slow_arraycopy", adr_type,
5582                                 src, src_offset, dest, dest_offset,
5583                                 copy_length);
5584
5585  // Handle exceptions thrown by this fellow:
5586  make_slow_call_ex(call, env()->Throwable_klass(), false);
5587}
5588
5589// Helper function; generates code for cases requiring runtime checks.
5590Node*
5591LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5592                                             Node* dest_elem_klass,
5593                                             Node* src,  Node* src_offset,
5594                                             Node* dest, Node* dest_offset,
5595                                             Node* copy_length, bool dest_uninitialized) {
5596  if (stopped())  return NULL;
5597
5598  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5599  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5600    return NULL;
5601  }
5602
5603  // Pick out the parameters required to perform a store-check
5604  // for the target array.  This is an optimistic check.  It will
5605  // look in each non-null element's class, at the desired klass's
5606  // super_check_offset, for the desired klass.
5607  int sco_offset = in_bytes(Klass::super_check_offset_offset());
5608  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5609  Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5610  Node* check_offset = ConvI2X(_gvn.transform(n3));
5611  Node* check_value  = dest_elem_klass;
5612
5613  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5614  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5615
5616  // (We know the arrays are never conjoint, because their types differ.)
5617  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5618                                 OptoRuntime::checkcast_arraycopy_Type(),
5619                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
5620                                 // five arguments, of which two are
5621                                 // intptr_t (jlong in LP64)
5622                                 src_start, dest_start,
5623                                 copy_length XTOP,
5624                                 check_offset XTOP,
5625                                 check_value);
5626
5627  return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5628}
5629
5630
5631// Helper function; generates code for cases requiring runtime checks.
5632Node*
5633LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5634                                           Node* src,  Node* src_offset,
5635                                           Node* dest, Node* dest_offset,
5636                                           Node* copy_length, bool dest_uninitialized) {
5637  assert(!dest_uninitialized, "Invariant");
5638  if (stopped())  return NULL;
5639  address copyfunc_addr = StubRoutines::generic_arraycopy();
5640  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5641    return NULL;
5642  }
5643
5644  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5645                    OptoRuntime::generic_arraycopy_Type(),
5646                    copyfunc_addr, "generic_arraycopy", adr_type,
5647                    src, src_offset, dest, dest_offset, copy_length);
5648
5649  return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5650}
5651
5652// Helper function; generates the fast out-of-line call to an arraycopy stub.
5653void
5654LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5655                                             BasicType basic_elem_type,
5656                                             bool disjoint_bases,
5657                                             Node* src,  Node* src_offset,
5658                                             Node* dest, Node* dest_offset,
5659                                             Node* copy_length, bool dest_uninitialized) {
5660  if (stopped())  return;               // nothing to do
5661
5662  Node* src_start  = src;
5663  Node* dest_start = dest;
5664  if (src_offset != NULL || dest_offset != NULL) {
5665    assert(src_offset != NULL && dest_offset != NULL, "");
5666    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5667    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5668  }
5669
5670  // Figure out which arraycopy runtime method to call.
5671  const char* copyfunc_name = "arraycopy";
5672  address     copyfunc_addr =
5673      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5674                          disjoint_bases, copyfunc_name, dest_uninitialized);
5675
5676  // Call it.  Note that the count_ix value is not scaled to a byte-size.
5677  make_runtime_call(RC_LEAF|RC_NO_FP,
5678                    OptoRuntime::fast_arraycopy_Type(),
5679                    copyfunc_addr, copyfunc_name, adr_type,
5680                    src_start, dest_start, copy_length XTOP);
5681}
5682
5683//-------------inline_encodeISOArray-----------------------------------
5684// encode char[] to byte[] in ISO_8859_1
5685bool LibraryCallKit::inline_encodeISOArray() {
5686  assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5687  // no receiver since it is static method
5688  Node *src         = argument(0);
5689  Node *src_offset  = argument(1);
5690  Node *dst         = argument(2);
5691  Node *dst_offset  = argument(3);
5692  Node *length      = argument(4);
5693
5694  const Type* src_type = src->Value(&_gvn);
5695  const Type* dst_type = dst->Value(&_gvn);
5696  const TypeAryPtr* top_src = src_type->isa_aryptr();
5697  const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5698  if (top_src  == NULL || top_src->klass()  == NULL ||
5699      top_dest == NULL || top_dest->klass() == NULL) {
5700    // failed array check
5701    return false;
5702  }
5703
5704  // Figure out the size and type of the elements we will be copying.
5705  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5706  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5707  if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5708    return false;
5709  }
5710  Node* src_start = array_element_address(src, src_offset, src_elem);
5711  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5712  // 'src_start' points to src array + scaled offset
5713  // 'dst_start' points to dst array + scaled offset
5714
5715  const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5716  Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5717  enc = _gvn.transform(enc);
5718  Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5719  set_memory(res_mem, mtype);
5720  set_result(enc);
5721  return true;
5722}
5723
5724/**
5725 * Calculate CRC32 for byte.
5726 * int java.util.zip.CRC32.update(int crc, int b)
5727 */
5728bool LibraryCallKit::inline_updateCRC32() {
5729  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5730  assert(callee()->signature()->size() == 2, "update has 2 parameters");
5731  // no receiver since it is static method
5732  Node* crc  = argument(0); // type: int
5733  Node* b    = argument(1); // type: int
5734
5735  /*
5736   *    int c = ~ crc;
5737   *    b = timesXtoThe32[(b ^ c) & 0xFF];
5738   *    b = b ^ (c >>> 8);
5739   *    crc = ~b;
5740   */
5741
5742  Node* M1 = intcon(-1);
5743  crc = _gvn.transform(new (C) XorINode(crc, M1));
5744  Node* result = _gvn.transform(new (C) XorINode(crc, b));
5745  result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5746
5747  Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5748  Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5749  Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5750  result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5751
5752  crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5753  result = _gvn.transform(new (C) XorINode(crc, result));
5754  result = _gvn.transform(new (C) XorINode(result, M1));
5755  set_result(result);
5756  return true;
5757}
5758
5759/**
5760 * Calculate CRC32 for byte[] array.
5761 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5762 */
5763bool LibraryCallKit::inline_updateBytesCRC32() {
5764  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5765  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5766  // no receiver since it is static method
5767  Node* crc     = argument(0); // type: int
5768  Node* src     = argument(1); // type: oop
5769  Node* offset  = argument(2); // type: int
5770  Node* length  = argument(3); // type: int
5771
5772  const Type* src_type = src->Value(&_gvn);
5773  const TypeAryPtr* top_src = src_type->isa_aryptr();
5774  if (top_src  == NULL || top_src->klass()  == NULL) {
5775    // failed array check
5776    return false;
5777  }
5778
5779  // Figure out the size and type of the elements we will be copying.
5780  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5781  if (src_elem != T_BYTE) {
5782    return false;
5783  }
5784
5785  // 'src_start' points to src array + scaled offset
5786  Node* src_start = array_element_address(src, offset, src_elem);
5787
5788  // We assume that range check is done by caller.
5789  // TODO: generate range check (offset+length < src.length) in debug VM.
5790
5791  // Call the stub.
5792  address stubAddr = StubRoutines::updateBytesCRC32();
5793  const char *stubName = "updateBytesCRC32";
5794
5795  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5796                                 stubAddr, stubName, TypePtr::BOTTOM,
5797                                 crc, src_start, length);
5798  Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5799  set_result(result);
5800  return true;
5801}
5802
5803/**
5804 * Calculate CRC32 for ByteBuffer.
5805 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5806 */
5807bool LibraryCallKit::inline_updateByteBufferCRC32() {
5808  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5809  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5810  // no receiver since it is static method
5811  Node* crc     = argument(0); // type: int
5812  Node* src     = argument(1); // type: long
5813  Node* offset  = argument(3); // type: int
5814  Node* length  = argument(4); // type: int
5815
5816  src = ConvL2X(src);  // adjust Java long to machine word
5817  Node* base = _gvn.transform(new (C) CastX2PNode(src));
5818  offset = ConvI2X(offset);
5819
5820  // 'src_start' points to src array + scaled offset
5821  Node* src_start = basic_plus_adr(top(), base, offset);
5822
5823  // Call the stub.
5824  address stubAddr = StubRoutines::updateBytesCRC32();
5825  const char *stubName = "updateBytesCRC32";
5826
5827  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5828                                 stubAddr, stubName, TypePtr::BOTTOM,
5829                                 crc, src_start, length);
5830  Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5831  set_result(result);
5832  return true;
5833}
5834
5835//----------------------------inline_reference_get----------------------------
5836// public T java.lang.ref.Reference.get();
5837bool LibraryCallKit::inline_reference_get() {
5838  const int referent_offset = java_lang_ref_Reference::referent_offset;
5839  guarantee(referent_offset > 0, "should have already been set");
5840
5841  // Get the argument:
5842  Node* reference_obj = null_check_receiver();
5843  if (stopped()) return true;
5844
5845  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5846
5847  ciInstanceKlass* klass = env()->Object_klass();
5848  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5849
5850  Node* no_ctrl = NULL;
5851  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5852
5853  // Use the pre-barrier to record the value in the referent field
5854  pre_barrier(false /* do_load */,
5855              control(),
5856              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5857              result /* pre_val */,
5858              T_OBJECT);
5859
5860  // Add memory barrier to prevent commoning reads from this field
5861  // across safepoint since GC can change its value.
5862  insert_mem_bar(Op_MemBarCPUOrder);
5863
5864  set_result(result);
5865  return true;
5866}
5867
5868
5869Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5870                                              bool is_exact=true, bool is_static=false) {
5871
5872  const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5873  assert(tinst != NULL, "obj is null");
5874  assert(tinst->klass()->is_loaded(), "obj is not loaded");
5875  assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5876
5877  ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5878                                                                          ciSymbol::make(fieldTypeString),
5879                                                                          is_static);
5880  if (field == NULL) return (Node *) NULL;
5881  assert (field != NULL, "undefined field");
5882
5883  // Next code  copied from Parse::do_get_xxx():
5884
5885  // Compute address and memory type.
5886  int offset  = field->offset_in_bytes();
5887  bool is_vol = field->is_volatile();
5888  ciType* field_klass = field->type();
5889  assert(field_klass->is_loaded(), "should be loaded");
5890  const TypePtr* adr_type = C->alias_type(field)->adr_type();
5891  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5892  BasicType bt = field->layout_type();
5893
5894  // Build the resultant type of the load
5895  const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5896
5897  // Build the load.
5898  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5899  return loadedField;
5900}
5901
5902
5903//------------------------------inline_aescrypt_Block-----------------------
5904bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5905  address stubAddr;
5906  const char *stubName;
5907  assert(UseAES, "need AES instruction support");
5908
5909  switch(id) {
5910  case vmIntrinsics::_aescrypt_encryptBlock:
5911    stubAddr = StubRoutines::aescrypt_encryptBlock();
5912    stubName = "aescrypt_encryptBlock";
5913    break;
5914  case vmIntrinsics::_aescrypt_decryptBlock:
5915    stubAddr = StubRoutines::aescrypt_decryptBlock();
5916    stubName = "aescrypt_decryptBlock";
5917    break;
5918  }
5919  if (stubAddr == NULL) return false;
5920
5921  Node* aescrypt_object = argument(0);
5922  Node* src             = argument(1);
5923  Node* src_offset      = argument(2);
5924  Node* dest            = argument(3);
5925  Node* dest_offset     = argument(4);
5926
5927  // (1) src and dest are arrays.
5928  const Type* src_type = src->Value(&_gvn);
5929  const Type* dest_type = dest->Value(&_gvn);
5930  const TypeAryPtr* top_src = src_type->isa_aryptr();
5931  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5932  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5933
5934  // for the quick and dirty code we will skip all the checks.
5935  // we are just trying to get the call to be generated.
5936  Node* src_start  = src;
5937  Node* dest_start = dest;
5938  if (src_offset != NULL || dest_offset != NULL) {
5939    assert(src_offset != NULL && dest_offset != NULL, "");
5940    src_start  = array_element_address(src,  src_offset,  T_BYTE);
5941    dest_start = array_element_address(dest, dest_offset, T_BYTE);
5942  }
5943
5944  // now need to get the start of its expanded key array
5945  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5946  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5947  if (k_start == NULL) return false;
5948
5949  if (Matcher::pass_original_key_for_aes()) {
5950    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5951    // compatibility issues between Java key expansion and SPARC crypto instructions
5952    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5953    if (original_k_start == NULL) return false;
5954
5955    // Call the stub.
5956    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5957                      stubAddr, stubName, TypePtr::BOTTOM,
5958                      src_start, dest_start, k_start, original_k_start);
5959  } else {
5960    // Call the stub.
5961    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5962                      stubAddr, stubName, TypePtr::BOTTOM,
5963                      src_start, dest_start, k_start);
5964  }
5965
5966  return true;
5967}
5968
5969//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5970bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5971  address stubAddr;
5972  const char *stubName;
5973
5974  assert(UseAES, "need AES instruction support");
5975
5976  switch(id) {
5977  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5978    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5979    stubName = "cipherBlockChaining_encryptAESCrypt";
5980    break;
5981  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5982    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5983    stubName = "cipherBlockChaining_decryptAESCrypt";
5984    break;
5985  }
5986  if (stubAddr == NULL) return false;
5987
5988  Node* cipherBlockChaining_object = argument(0);
5989  Node* src                        = argument(1);
5990  Node* src_offset                 = argument(2);
5991  Node* len                        = argument(3);
5992  Node* dest                       = argument(4);
5993  Node* dest_offset                = argument(5);
5994
5995  // (1) src and dest are arrays.
5996  const Type* src_type = src->Value(&_gvn);
5997  const Type* dest_type = dest->Value(&_gvn);
5998  const TypeAryPtr* top_src = src_type->isa_aryptr();
5999  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6000  assert (top_src  != NULL && top_src->klass()  != NULL
6001          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6002
6003  // checks are the responsibility of the caller
6004  Node* src_start  = src;
6005  Node* dest_start = dest;
6006  if (src_offset != NULL || dest_offset != NULL) {
6007    assert(src_offset != NULL && dest_offset != NULL, "");
6008    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6009    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6010  }
6011
6012  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6013  // (because of the predicated logic executed earlier).
6014  // so we cast it here safely.
6015  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6016
6017  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6018  if (embeddedCipherObj == NULL) return false;
6019
6020  // cast it to what we know it will be at runtime
6021  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6022  assert(tinst != NULL, "CBC obj is null");
6023  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6024  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6025  if (!klass_AESCrypt->is_loaded()) return false;
6026
6027  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6028  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6029  const TypeOopPtr* xtype = aklass->as_instance_type();
6030  Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6031  aescrypt_object = _gvn.transform(aescrypt_object);
6032
6033  // we need to get the start of the aescrypt_object's expanded key array
6034  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6035  if (k_start == NULL) return false;
6036
6037  // similarly, get the start address of the r vector
6038  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6039  if (objRvec == NULL) return false;
6040  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6041
6042  Node* cbcCrypt;
6043  if (Matcher::pass_original_key_for_aes()) {
6044    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6045    // compatibility issues between Java key expansion and SPARC crypto instructions
6046    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6047    if (original_k_start == NULL) return false;
6048
6049    // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6050    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6051                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6052                                 stubAddr, stubName, TypePtr::BOTTOM,
6053                                 src_start, dest_start, k_start, r_start, len, original_k_start);
6054  } else {
6055    // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6056    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6057                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6058                                 stubAddr, stubName, TypePtr::BOTTOM,
6059                                 src_start, dest_start, k_start, r_start, len);
6060  }
6061
6062  // return cipher length (int)
6063  Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6064  set_result(retvalue);
6065  return true;
6066}
6067
6068//------------------------------get_key_start_from_aescrypt_object-----------------------
6069Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6070  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6071  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6072  if (objAESCryptKey == NULL) return (Node *) NULL;
6073
6074  // now have the array, need to get the start address of the K array
6075  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6076  return k_start;
6077}
6078
6079//------------------------------get_original_key_start_from_aescrypt_object-----------------------
6080Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6081  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6082  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6083  if (objAESCryptKey == NULL) return (Node *) NULL;
6084
6085  // now have the array, need to get the start address of the lastKey array
6086  Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6087  return original_k_start;
6088}
6089
6090//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6091// Return node representing slow path of predicate check.
6092// the pseudo code we want to emulate with this predicate is:
6093// for encryption:
6094//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6095// for decryption:
6096//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6097//    note cipher==plain is more conservative than the original java code but that's OK
6098//
6099Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6100  // First, check receiver for NULL since it is virtual method.
6101  Node* objCBC = argument(0);
6102  objCBC = null_check(objCBC);
6103
6104  if (stopped()) return NULL; // Always NULL
6105
6106  // Load embeddedCipher field of CipherBlockChaining object.
6107  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6108
6109  // get AESCrypt klass for instanceOf check
6110  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6111  // will have same classloader as CipherBlockChaining object
6112  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6113  assert(tinst != NULL, "CBCobj is null");
6114  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6115
6116  // we want to do an instanceof comparison against the AESCrypt class
6117  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6118  if (!klass_AESCrypt->is_loaded()) {
6119    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6120    Node* ctrl = control();
6121    set_control(top()); // no regular fast path
6122    return ctrl;
6123  }
6124  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6125
6126  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6127  Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6128  Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6129
6130  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6131
6132  // for encryption, we are done
6133  if (!decrypting)
6134    return instof_false;  // even if it is NULL
6135
6136  // for decryption, we need to add a further check to avoid
6137  // taking the intrinsic path when cipher and plain are the same
6138  // see the original java code for why.
6139  RegionNode* region = new(C) RegionNode(3);
6140  region->init_req(1, instof_false);
6141  Node* src = argument(1);
6142  Node* dest = argument(4);
6143  Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6144  Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6145  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6146  region->init_req(2, src_dest_conjoint);
6147
6148  record_for_igvn(region);
6149  return _gvn.transform(region);
6150}
6151