library_call.cpp revision 3911:18712b1caf7a
1/*
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "compiler/compileBroker.hpp"
29#include "compiler/compileLog.hpp"
30#include "oops/objArrayKlass.hpp"
31#include "opto/addnode.hpp"
32#include "opto/callGenerator.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/idealKit.hpp"
35#include "opto/mulnode.hpp"
36#include "opto/parse.hpp"
37#include "opto/runtime.hpp"
38#include "opto/subnode.hpp"
39#include "prims/nativeLookup.hpp"
40#include "runtime/sharedRuntime.hpp"
41
42class LibraryIntrinsic : public InlineCallGenerator {
43  // Extend the set of intrinsics known to the runtime:
44 public:
45 private:
46  bool             _is_virtual;
47  bool             _is_predicted;
48  vmIntrinsics::ID _intrinsic_id;
49
50 public:
51  LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
52    : InlineCallGenerator(m),
53      _is_virtual(is_virtual),
54      _is_predicted(is_predicted),
55      _intrinsic_id(id)
56  {
57  }
58  virtual bool is_intrinsic() const { return true; }
59  virtual bool is_virtual()   const { return _is_virtual; }
60  virtual bool is_predicted()   const { return _is_predicted; }
61  virtual JVMState* generate(JVMState* jvms);
62  virtual Node* generate_predicate(JVMState* jvms);
63  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
64};
65
66
67// Local helper class for LibraryIntrinsic:
68class LibraryCallKit : public GraphKit {
69 private:
70  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
71  Node*             _result;        // the result node, if any
72  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
73
74  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
75
76 public:
77  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
78    : GraphKit(jvms),
79      _intrinsic(intrinsic),
80      _result(NULL)
81  {
82    // Check if this is a root compile.  In that case we don't have a caller.
83    if (!jvms->has_method()) {
84      _reexecute_sp = sp();
85    } else {
86      // Find out how many arguments the interpreter needs when deoptimizing
87      // and save the stack pointer value so it can used by uncommon_trap.
88      // We find the argument count by looking at the declared signature.
89      bool ignored_will_link;
90      ciSignature* declared_signature = NULL;
91      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
92      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
93      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
94    }
95  }
96
97  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
98
99  ciMethod*         caller()    const    { return jvms()->method(); }
100  int               bci()       const    { return jvms()->bci(); }
101  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
102  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
103  ciMethod*         callee()    const    { return _intrinsic->method(); }
104
105  bool try_to_inline();
106  Node* try_to_predicate();
107
108  void push_result() {
109    // Push the result onto the stack.
110    if (!stopped() && result() != NULL) {
111      BasicType bt = result()->bottom_type()->basic_type();
112      push_node(bt, result());
113    }
114  }
115
116 private:
117  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
118    fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
119  }
120
121  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
122  void  set_result(RegionNode* region, PhiNode* value);
123  Node*     result() { return _result; }
124
125  virtual int reexecute_sp() { return _reexecute_sp; }
126
127  // Helper functions to inline natives
128  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
129  Node* generate_slow_guard(Node* test, RegionNode* region);
130  Node* generate_fair_guard(Node* test, RegionNode* region);
131  Node* generate_negative_guard(Node* index, RegionNode* region,
132                                // resulting CastII of index:
133                                Node* *pos_index = NULL);
134  Node* generate_nonpositive_guard(Node* index, bool never_negative,
135                                   // resulting CastII of index:
136                                   Node* *pos_index = NULL);
137  Node* generate_limit_guard(Node* offset, Node* subseq_length,
138                             Node* array_length,
139                             RegionNode* region);
140  Node* generate_current_thread(Node* &tls_output);
141  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
142                              bool disjoint_bases, const char* &name, bool dest_uninitialized);
143  Node* load_mirror_from_klass(Node* klass);
144  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
145                                      RegionNode* region, int null_path,
146                                      int offset);
147  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
148                               RegionNode* region, int null_path) {
149    int offset = java_lang_Class::klass_offset_in_bytes();
150    return load_klass_from_mirror_common(mirror, never_see_null,
151                                         region, null_path,
152                                         offset);
153  }
154  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
155                                     RegionNode* region, int null_path) {
156    int offset = java_lang_Class::array_klass_offset_in_bytes();
157    return load_klass_from_mirror_common(mirror, never_see_null,
158                                         region, null_path,
159                                         offset);
160  }
161  Node* generate_access_flags_guard(Node* kls,
162                                    int modifier_mask, int modifier_bits,
163                                    RegionNode* region);
164  Node* generate_interface_guard(Node* kls, RegionNode* region);
165  Node* generate_array_guard(Node* kls, RegionNode* region) {
166    return generate_array_guard_common(kls, region, false, false);
167  }
168  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
169    return generate_array_guard_common(kls, region, false, true);
170  }
171  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
172    return generate_array_guard_common(kls, region, true, false);
173  }
174  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
175    return generate_array_guard_common(kls, region, true, true);
176  }
177  Node* generate_array_guard_common(Node* kls, RegionNode* region,
178                                    bool obj_array, bool not_array);
179  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
180  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
181                                     bool is_virtual = false, bool is_static = false);
182  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
183    return generate_method_call(method_id, false, true);
184  }
185  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
186    return generate_method_call(method_id, true, false);
187  }
188  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
189
190  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
191  Node* make_string_method_node(int opcode, Node* str1, Node* str2);
192  bool inline_string_compareTo();
193  bool inline_string_indexOf();
194  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
195  bool inline_string_equals();
196  Node* round_double_node(Node* n);
197  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
198  bool inline_math_native(vmIntrinsics::ID id);
199  bool inline_trig(vmIntrinsics::ID id);
200  bool inline_math(vmIntrinsics::ID id);
201  bool inline_exp();
202  bool inline_pow();
203  void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
204  bool inline_min_max(vmIntrinsics::ID id);
205  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
206  // This returns Type::AnyPtr, RawPtr, or OopPtr.
207  int classify_unsafe_addr(Node* &base, Node* &offset);
208  Node* make_unsafe_address(Node* base, Node* offset);
209  // Helper for inline_unsafe_access.
210  // Generates the guards that check whether the result of
211  // Unsafe.getObject should be recorded in an SATB log buffer.
212  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
213  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
214  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
215  bool inline_unsafe_allocate();
216  bool inline_unsafe_copyMemory();
217  bool inline_native_currentThread();
218#ifdef TRACE_HAVE_INTRINSICS
219  bool inline_native_classID();
220  bool inline_native_threadID();
221#endif
222  bool inline_native_time_funcs(address method, const char* funcName);
223  bool inline_native_isInterrupted();
224  bool inline_native_Class_query(vmIntrinsics::ID id);
225  bool inline_native_subtype_check();
226
227  bool inline_native_newArray();
228  bool inline_native_getLength();
229  bool inline_array_copyOf(bool is_copyOfRange);
230  bool inline_array_equals();
231  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
232  bool inline_native_clone(bool is_virtual);
233  bool inline_native_Reflection_getCallerClass();
234  bool is_method_invoke_or_aux_frame(JVMState* jvms);
235  // Helper function for inlining native object hash method
236  bool inline_native_hashcode(bool is_virtual, bool is_static);
237  bool inline_native_getClass();
238
239  // Helper functions for inlining arraycopy
240  bool inline_arraycopy();
241  void generate_arraycopy(const TypePtr* adr_type,
242                          BasicType basic_elem_type,
243                          Node* src,  Node* src_offset,
244                          Node* dest, Node* dest_offset,
245                          Node* copy_length,
246                          bool disjoint_bases = false,
247                          bool length_never_negative = false,
248                          RegionNode* slow_region = NULL);
249  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
250                                                RegionNode* slow_region);
251  void generate_clear_array(const TypePtr* adr_type,
252                            Node* dest,
253                            BasicType basic_elem_type,
254                            Node* slice_off,
255                            Node* slice_len,
256                            Node* slice_end);
257  bool generate_block_arraycopy(const TypePtr* adr_type,
258                                BasicType basic_elem_type,
259                                AllocateNode* alloc,
260                                Node* src,  Node* src_offset,
261                                Node* dest, Node* dest_offset,
262                                Node* dest_size, bool dest_uninitialized);
263  void generate_slow_arraycopy(const TypePtr* adr_type,
264                               Node* src,  Node* src_offset,
265                               Node* dest, Node* dest_offset,
266                               Node* copy_length, bool dest_uninitialized);
267  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
268                                     Node* dest_elem_klass,
269                                     Node* src,  Node* src_offset,
270                                     Node* dest, Node* dest_offset,
271                                     Node* copy_length, bool dest_uninitialized);
272  Node* generate_generic_arraycopy(const TypePtr* adr_type,
273                                   Node* src,  Node* src_offset,
274                                   Node* dest, Node* dest_offset,
275                                   Node* copy_length, bool dest_uninitialized);
276  void generate_unchecked_arraycopy(const TypePtr* adr_type,
277                                    BasicType basic_elem_type,
278                                    bool disjoint_bases,
279                                    Node* src,  Node* src_offset,
280                                    Node* dest, Node* dest_offset,
281                                    Node* copy_length, bool dest_uninitialized);
282  typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
283  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
284  bool inline_unsafe_ordered_store(BasicType type);
285  bool inline_fp_conversions(vmIntrinsics::ID id);
286  bool inline_number_methods(vmIntrinsics::ID id);
287  bool inline_reference_get();
288  bool inline_aescrypt_Block(vmIntrinsics::ID id);
289  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
290  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
291  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
292};
293
294
295//---------------------------make_vm_intrinsic----------------------------
296CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
297  vmIntrinsics::ID id = m->intrinsic_id();
298  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
299
300  if (DisableIntrinsic[0] != '\0'
301      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
302    // disabled by a user request on the command line:
303    // example: -XX:DisableIntrinsic=_hashCode,_getClass
304    return NULL;
305  }
306
307  if (!m->is_loaded()) {
308    // do not attempt to inline unloaded methods
309    return NULL;
310  }
311
312  // Only a few intrinsics implement a virtual dispatch.
313  // They are expensive calls which are also frequently overridden.
314  if (is_virtual) {
315    switch (id) {
316    case vmIntrinsics::_hashCode:
317    case vmIntrinsics::_clone:
318      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
319      break;
320    default:
321      return NULL;
322    }
323  }
324
325  // -XX:-InlineNatives disables nearly all intrinsics:
326  if (!InlineNatives) {
327    switch (id) {
328    case vmIntrinsics::_indexOf:
329    case vmIntrinsics::_compareTo:
330    case vmIntrinsics::_equals:
331    case vmIntrinsics::_equalsC:
332    case vmIntrinsics::_getAndAddInt:
333    case vmIntrinsics::_getAndAddLong:
334    case vmIntrinsics::_getAndSetInt:
335    case vmIntrinsics::_getAndSetLong:
336    case vmIntrinsics::_getAndSetObject:
337      break;  // InlineNatives does not control String.compareTo
338    case vmIntrinsics::_Reference_get:
339      break;  // InlineNatives does not control Reference.get
340    default:
341      return NULL;
342    }
343  }
344
345  bool is_predicted = false;
346
347  switch (id) {
348  case vmIntrinsics::_compareTo:
349    if (!SpecialStringCompareTo)  return NULL;
350    if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
351    break;
352  case vmIntrinsics::_indexOf:
353    if (!SpecialStringIndexOf)  return NULL;
354    break;
355  case vmIntrinsics::_equals:
356    if (!SpecialStringEquals)  return NULL;
357    if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
358    break;
359  case vmIntrinsics::_equalsC:
360    if (!SpecialArraysEquals)  return NULL;
361    if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
362    break;
363  case vmIntrinsics::_arraycopy:
364    if (!InlineArrayCopy)  return NULL;
365    break;
366  case vmIntrinsics::_copyMemory:
367    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
368    if (!InlineArrayCopy)  return NULL;
369    break;
370  case vmIntrinsics::_hashCode:
371    if (!InlineObjectHash)  return NULL;
372    break;
373  case vmIntrinsics::_clone:
374  case vmIntrinsics::_copyOf:
375  case vmIntrinsics::_copyOfRange:
376    if (!InlineObjectCopy)  return NULL;
377    // These also use the arraycopy intrinsic mechanism:
378    if (!InlineArrayCopy)  return NULL;
379    break;
380  case vmIntrinsics::_checkIndex:
381    // We do not intrinsify this.  The optimizer does fine with it.
382    return NULL;
383
384  case vmIntrinsics::_getCallerClass:
385    if (!UseNewReflection)  return NULL;
386    if (!InlineReflectionGetCallerClass)  return NULL;
387    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
388    break;
389
390  case vmIntrinsics::_bitCount_i:
391    if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
392    break;
393
394  case vmIntrinsics::_bitCount_l:
395    if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
396    break;
397
398  case vmIntrinsics::_numberOfLeadingZeros_i:
399    if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
400    break;
401
402  case vmIntrinsics::_numberOfLeadingZeros_l:
403    if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
404    break;
405
406  case vmIntrinsics::_numberOfTrailingZeros_i:
407    if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
408    break;
409
410  case vmIntrinsics::_numberOfTrailingZeros_l:
411    if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
412    break;
413
414  case vmIntrinsics::_reverseBytes_c:
415    if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
416    break;
417  case vmIntrinsics::_reverseBytes_s:
418    if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
419    break;
420  case vmIntrinsics::_reverseBytes_i:
421    if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
422    break;
423  case vmIntrinsics::_reverseBytes_l:
424    if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
425    break;
426
427  case vmIntrinsics::_Reference_get:
428    // Use the intrinsic version of Reference.get() so that the value in
429    // the referent field can be registered by the G1 pre-barrier code.
430    // Also add memory barrier to prevent commoning reads from this field
431    // across safepoint since GC can change it value.
432    break;
433
434  case vmIntrinsics::_compareAndSwapObject:
435#ifdef _LP64
436    if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
437#endif
438    break;
439
440  case vmIntrinsics::_compareAndSwapLong:
441    if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
442    break;
443
444  case vmIntrinsics::_getAndAddInt:
445    if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
446    break;
447
448  case vmIntrinsics::_getAndAddLong:
449    if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
450    break;
451
452  case vmIntrinsics::_getAndSetInt:
453    if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
454    break;
455
456  case vmIntrinsics::_getAndSetLong:
457    if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
458    break;
459
460  case vmIntrinsics::_getAndSetObject:
461#ifdef _LP64
462    if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
463    if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
464    break;
465#else
466    if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
467    break;
468#endif
469
470  case vmIntrinsics::_aescrypt_encryptBlock:
471  case vmIntrinsics::_aescrypt_decryptBlock:
472    if (!UseAESIntrinsics) return NULL;
473    break;
474
475  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
476  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
477    if (!UseAESIntrinsics) return NULL;
478    // these two require the predicated logic
479    is_predicted = true;
480    break;
481
482 default:
483    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
484    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
485    break;
486  }
487
488  // -XX:-InlineClassNatives disables natives from the Class class.
489  // The flag applies to all reflective calls, notably Array.newArray
490  // (visible to Java programmers as Array.newInstance).
491  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
492      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
493    if (!InlineClassNatives)  return NULL;
494  }
495
496  // -XX:-InlineThreadNatives disables natives from the Thread class.
497  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
498    if (!InlineThreadNatives)  return NULL;
499  }
500
501  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
502  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
503      m->holder()->name() == ciSymbol::java_lang_Float() ||
504      m->holder()->name() == ciSymbol::java_lang_Double()) {
505    if (!InlineMathNatives)  return NULL;
506  }
507
508  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
509  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
510    if (!InlineUnsafeOps)  return NULL;
511  }
512
513  return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
514}
515
516//----------------------register_library_intrinsics-----------------------
517// Initialize this file's data structures, for each Compile instance.
518void Compile::register_library_intrinsics() {
519  // Nothing to do here.
520}
521
522JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
523  LibraryCallKit kit(jvms, this);
524  Compile* C = kit.C;
525  int nodes = C->unique();
526#ifndef PRODUCT
527  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
528    char buf[1000];
529    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
530    tty->print_cr("Intrinsic %s", str);
531  }
532#endif
533  ciMethod* callee = kit.callee();
534  const int bci    = kit.bci();
535
536  // Try to inline the intrinsic.
537  if (kit.try_to_inline()) {
538    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
539      CompileTask::print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
540    }
541    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
542    if (C->log()) {
543      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
544                     vmIntrinsics::name_at(intrinsic_id()),
545                     (is_virtual() ? " virtual='1'" : ""),
546                     C->unique() - nodes);
547    }
548    // Push the result from the inlined method onto the stack.
549    kit.push_result();
550    return kit.transfer_exceptions_into_jvms();
551  }
552
553  // The intrinsic bailed out
554  if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
555    if (jvms->has_method()) {
556      // Not a root compile.
557      const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
558      CompileTask::print_inlining(callee, jvms->depth() - 1, bci, msg);
559    } else {
560      // Root compile
561      tty->print("Did not generate intrinsic %s%s at bci:%d in",
562               vmIntrinsics::name_at(intrinsic_id()),
563               (is_virtual() ? " (virtual)" : ""), bci);
564    }
565  }
566  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
567  return NULL;
568}
569
570Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
571  LibraryCallKit kit(jvms, this);
572  Compile* C = kit.C;
573  int nodes = C->unique();
574#ifndef PRODUCT
575  assert(is_predicted(), "sanity");
576  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
577    char buf[1000];
578    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
579    tty->print_cr("Predicate for intrinsic %s", str);
580  }
581#endif
582  ciMethod* callee = kit.callee();
583  const int bci    = kit.bci();
584
585  Node* slow_ctl = kit.try_to_predicate();
586  if (!kit.failing()) {
587    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
588      CompileTask::print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
589    }
590    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
591    if (C->log()) {
592      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
593                     vmIntrinsics::name_at(intrinsic_id()),
594                     (is_virtual() ? " virtual='1'" : ""),
595                     C->unique() - nodes);
596    }
597    return slow_ctl; // Could be NULL if the check folds.
598  }
599
600  // The intrinsic bailed out
601  if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
602    if (jvms->has_method()) {
603      // Not a root compile.
604      const char* msg = "failed to generate predicate for intrinsic";
605      CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
606    } else {
607      // Root compile
608      tty->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
609               vmIntrinsics::name_at(intrinsic_id()),
610               (is_virtual() ? " (virtual)" : ""), bci);
611    }
612  }
613  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
614  return NULL;
615}
616
617bool LibraryCallKit::try_to_inline() {
618  // Handle symbolic names for otherwise undistinguished boolean switches:
619  const bool is_store       = true;
620  const bool is_native_ptr  = true;
621  const bool is_static      = true;
622  const bool is_volatile    = true;
623
624  if (!jvms()->has_method()) {
625    // Root JVMState has a null method.
626    assert(map()->memory()->Opcode() == Op_Parm, "");
627    // Insert the memory aliasing node
628    set_all_memory(reset_memory());
629  }
630  assert(merged_memory(), "");
631
632
633  switch (intrinsic_id()) {
634  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
635  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
636  case vmIntrinsics::_getClass:                 return inline_native_getClass();
637
638  case vmIntrinsics::_dsin:
639  case vmIntrinsics::_dcos:
640  case vmIntrinsics::_dtan:
641  case vmIntrinsics::_dabs:
642  case vmIntrinsics::_datan2:
643  case vmIntrinsics::_dsqrt:
644  case vmIntrinsics::_dexp:
645  case vmIntrinsics::_dlog:
646  case vmIntrinsics::_dlog10:
647  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
648
649  case vmIntrinsics::_min:
650  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
651
652  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
653
654  case vmIntrinsics::_compareTo:                return inline_string_compareTo();
655  case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
656  case vmIntrinsics::_equals:                   return inline_string_equals();
657
658  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
659  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
660  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
661  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
662  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
663  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
664  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
665  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
666  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
667
668  case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
669  case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
670  case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
671  case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
672  case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
673  case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
674  case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
675  case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
676  case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
677
678  case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
679  case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
680  case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
681  case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
682  case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
683  case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
684  case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
685  case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
686
687  case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
688  case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
689  case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
690  case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
691  case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
692  case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
693  case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
694  case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
695
696  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
697  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
698  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
699  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
700  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
701  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
702  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
703  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
704  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
705
706  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
707  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
708  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
709  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
710  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
711  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
712  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
713  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
714  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
715
716  case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
717  case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
718  case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
719  case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
720
721  case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
722  case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
723  case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
724
725  case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
726  case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
727  case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
728
729  case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
730  case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
731  case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
732  case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
733  case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
734
735  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
736  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
737
738#ifdef TRACE_HAVE_INTRINSICS
739  case vmIntrinsics::_classID:                  return inline_native_classID();
740  case vmIntrinsics::_threadID:                 return inline_native_threadID();
741  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
742#endif
743  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
744  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
745  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
746  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
747  case vmIntrinsics::_newArray:                 return inline_native_newArray();
748  case vmIntrinsics::_getLength:                return inline_native_getLength();
749  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
750  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
751  case vmIntrinsics::_equalsC:                  return inline_array_equals();
752  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
753
754  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
755
756  case vmIntrinsics::_isInstance:
757  case vmIntrinsics::_getModifiers:
758  case vmIntrinsics::_isInterface:
759  case vmIntrinsics::_isArray:
760  case vmIntrinsics::_isPrimitive:
761  case vmIntrinsics::_getSuperclass:
762  case vmIntrinsics::_getComponentType:
763  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
764
765  case vmIntrinsics::_floatToRawIntBits:
766  case vmIntrinsics::_floatToIntBits:
767  case vmIntrinsics::_intBitsToFloat:
768  case vmIntrinsics::_doubleToRawLongBits:
769  case vmIntrinsics::_doubleToLongBits:
770  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
771
772  case vmIntrinsics::_numberOfLeadingZeros_i:
773  case vmIntrinsics::_numberOfLeadingZeros_l:
774  case vmIntrinsics::_numberOfTrailingZeros_i:
775  case vmIntrinsics::_numberOfTrailingZeros_l:
776  case vmIntrinsics::_bitCount_i:
777  case vmIntrinsics::_bitCount_l:
778  case vmIntrinsics::_reverseBytes_i:
779  case vmIntrinsics::_reverseBytes_l:
780  case vmIntrinsics::_reverseBytes_s:
781  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
782
783  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
784
785  case vmIntrinsics::_Reference_get:            return inline_reference_get();
786
787  case vmIntrinsics::_aescrypt_encryptBlock:
788  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
789
790  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
791  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
792    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
793
794  default:
795    // If you get here, it may be that someone has added a new intrinsic
796    // to the list in vmSymbols.hpp without implementing it here.
797#ifndef PRODUCT
798    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
799      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
800                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
801    }
802#endif
803    return false;
804  }
805}
806
807Node* LibraryCallKit::try_to_predicate() {
808  if (!jvms()->has_method()) {
809    // Root JVMState has a null method.
810    assert(map()->memory()->Opcode() == Op_Parm, "");
811    // Insert the memory aliasing node
812    set_all_memory(reset_memory());
813  }
814  assert(merged_memory(), "");
815
816  switch (intrinsic_id()) {
817  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
818    return inline_cipherBlockChaining_AESCrypt_predicate(false);
819  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
820    return inline_cipherBlockChaining_AESCrypt_predicate(true);
821
822  default:
823    // If you get here, it may be that someone has added a new intrinsic
824    // to the list in vmSymbols.hpp without implementing it here.
825#ifndef PRODUCT
826    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
827      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
828                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
829    }
830#endif
831    Node* slow_ctl = control();
832    set_control(top()); // No fast path instrinsic
833    return slow_ctl;
834  }
835}
836
837//------------------------------set_result-------------------------------
838// Helper function for finishing intrinsics.
839void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
840  record_for_igvn(region);
841  set_control(_gvn.transform(region));
842  set_result( _gvn.transform(value));
843  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
844}
845
846//------------------------------generate_guard---------------------------
847// Helper function for generating guarded fast-slow graph structures.
848// The given 'test', if true, guards a slow path.  If the test fails
849// then a fast path can be taken.  (We generally hope it fails.)
850// In all cases, GraphKit::control() is updated to the fast path.
851// The returned value represents the control for the slow path.
852// The return value is never 'top'; it is either a valid control
853// or NULL if it is obvious that the slow path can never be taken.
854// Also, if region and the slow control are not NULL, the slow edge
855// is appended to the region.
856Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
857  if (stopped()) {
858    // Already short circuited.
859    return NULL;
860  }
861
862  // Build an if node and its projections.
863  // If test is true we take the slow path, which we assume is uncommon.
864  if (_gvn.type(test) == TypeInt::ZERO) {
865    // The slow branch is never taken.  No need to build this guard.
866    return NULL;
867  }
868
869  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
870
871  Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
872  if (if_slow == top()) {
873    // The slow branch is never taken.  No need to build this guard.
874    return NULL;
875  }
876
877  if (region != NULL)
878    region->add_req(if_slow);
879
880  Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
881  set_control(if_fast);
882
883  return if_slow;
884}
885
886inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
887  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
888}
889inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
890  return generate_guard(test, region, PROB_FAIR);
891}
892
893inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
894                                                     Node* *pos_index) {
895  if (stopped())
896    return NULL;                // already stopped
897  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
898    return NULL;                // index is already adequately typed
899  Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
900  Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
901  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
902  if (is_neg != NULL && pos_index != NULL) {
903    // Emulate effect of Parse::adjust_map_after_if.
904    Node* ccast = new (C) CastIINode(index, TypeInt::POS);
905    ccast->set_req(0, control());
906    (*pos_index) = _gvn.transform(ccast);
907  }
908  return is_neg;
909}
910
911inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
912                                                        Node* *pos_index) {
913  if (stopped())
914    return NULL;                // already stopped
915  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
916    return NULL;                // index is already adequately typed
917  Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
918  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
919  Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
920  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
921  if (is_notp != NULL && pos_index != NULL) {
922    // Emulate effect of Parse::adjust_map_after_if.
923    Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
924    ccast->set_req(0, control());
925    (*pos_index) = _gvn.transform(ccast);
926  }
927  return is_notp;
928}
929
930// Make sure that 'position' is a valid limit index, in [0..length].
931// There are two equivalent plans for checking this:
932//   A. (offset + copyLength)  unsigned<=  arrayLength
933//   B. offset  <=  (arrayLength - copyLength)
934// We require that all of the values above, except for the sum and
935// difference, are already known to be non-negative.
936// Plan A is robust in the face of overflow, if offset and copyLength
937// are both hugely positive.
938//
939// Plan B is less direct and intuitive, but it does not overflow at
940// all, since the difference of two non-negatives is always
941// representable.  Whenever Java methods must perform the equivalent
942// check they generally use Plan B instead of Plan A.
943// For the moment we use Plan A.
944inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
945                                                  Node* subseq_length,
946                                                  Node* array_length,
947                                                  RegionNode* region) {
948  if (stopped())
949    return NULL;                // already stopped
950  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
951  if (zero_offset && subseq_length->eqv_uncast(array_length))
952    return NULL;                // common case of whole-array copy
953  Node* last = subseq_length;
954  if (!zero_offset)             // last += offset
955    last = _gvn.transform( new (C) AddINode(last, offset));
956  Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
957  Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
958  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
959  return is_over;
960}
961
962
963//--------------------------generate_current_thread--------------------
964Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
965  ciKlass*    thread_klass = env()->Thread_klass();
966  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
967  Node* thread = _gvn.transform(new (C) ThreadLocalNode());
968  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
969  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
970  tls_output = thread;
971  return threadObj;
972}
973
974
975//------------------------------make_string_method_node------------------------
976// Helper method for String intrinsic functions. This version is called
977// with str1 and str2 pointing to String object nodes.
978//
979Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
980  Node* no_ctrl = NULL;
981
982  // Get start addr of string
983  Node* str1_value   = load_String_value(no_ctrl, str1);
984  Node* str1_offset  = load_String_offset(no_ctrl, str1);
985  Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
986
987  // Get length of string 1
988  Node* str1_len  = load_String_length(no_ctrl, str1);
989
990  Node* str2_value   = load_String_value(no_ctrl, str2);
991  Node* str2_offset  = load_String_offset(no_ctrl, str2);
992  Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
993
994  Node* str2_len = NULL;
995  Node* result = NULL;
996
997  switch (opcode) {
998  case Op_StrIndexOf:
999    // Get length of string 2
1000    str2_len = load_String_length(no_ctrl, str2);
1001
1002    result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1003                                 str1_start, str1_len, str2_start, str2_len);
1004    break;
1005  case Op_StrComp:
1006    // Get length of string 2
1007    str2_len = load_String_length(no_ctrl, str2);
1008
1009    result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1010                                 str1_start, str1_len, str2_start, str2_len);
1011    break;
1012  case Op_StrEquals:
1013    result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1014                               str1_start, str2_start, str1_len);
1015    break;
1016  default:
1017    ShouldNotReachHere();
1018    return NULL;
1019  }
1020
1021  // All these intrinsics have checks.
1022  C->set_has_split_ifs(true); // Has chance for split-if optimization
1023
1024  return _gvn.transform(result);
1025}
1026
1027// Helper method for String intrinsic functions. This version is called
1028// with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1029// to Int nodes containing the lenghts of str1 and str2.
1030//
1031Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1032  Node* result = NULL;
1033  switch (opcode) {
1034  case Op_StrIndexOf:
1035    result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1036                                 str1_start, cnt1, str2_start, cnt2);
1037    break;
1038  case Op_StrComp:
1039    result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1040                                 str1_start, cnt1, str2_start, cnt2);
1041    break;
1042  case Op_StrEquals:
1043    result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1044                                 str1_start, str2_start, cnt1);
1045    break;
1046  default:
1047    ShouldNotReachHere();
1048    return NULL;
1049  }
1050
1051  // All these intrinsics have checks.
1052  C->set_has_split_ifs(true); // Has chance for split-if optimization
1053
1054  return _gvn.transform(result);
1055}
1056
1057//------------------------------inline_string_compareTo------------------------
1058// public int java.lang.String.compareTo(String anotherString);
1059bool LibraryCallKit::inline_string_compareTo() {
1060  Node* receiver = null_check(argument(0));
1061  Node* arg      = null_check(argument(1));
1062  if (stopped()) {
1063    return true;
1064  }
1065  set_result(make_string_method_node(Op_StrComp, receiver, arg));
1066  return true;
1067}
1068
1069//------------------------------inline_string_equals------------------------
1070bool LibraryCallKit::inline_string_equals() {
1071  Node* receiver = null_check_receiver();
1072  // NOTE: Do not null check argument for String.equals() because spec
1073  // allows to specify NULL as argument.
1074  Node* argument = this->argument(1);
1075  if (stopped()) {
1076    return true;
1077  }
1078
1079  // paths (plus control) merge
1080  RegionNode* region = new (C) RegionNode(5);
1081  Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1082
1083  // does source == target string?
1084  Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1085  Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1086
1087  Node* if_eq = generate_slow_guard(bol, NULL);
1088  if (if_eq != NULL) {
1089    // receiver == argument
1090    phi->init_req(2, intcon(1));
1091    region->init_req(2, if_eq);
1092  }
1093
1094  // get String klass for instanceOf
1095  ciInstanceKlass* klass = env()->String_klass();
1096
1097  if (!stopped()) {
1098    Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1099    Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1100    Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1101
1102    Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1103    //instanceOf == true, fallthrough
1104
1105    if (inst_false != NULL) {
1106      phi->init_req(3, intcon(0));
1107      region->init_req(3, inst_false);
1108    }
1109  }
1110
1111  if (!stopped()) {
1112    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1113
1114    // Properly cast the argument to String
1115    argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1116    // This path is taken only when argument's type is String:NotNull.
1117    argument = cast_not_null(argument, false);
1118
1119    Node* no_ctrl = NULL;
1120
1121    // Get start addr of receiver
1122    Node* receiver_val    = load_String_value(no_ctrl, receiver);
1123    Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1124    Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1125
1126    // Get length of receiver
1127    Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1128
1129    // Get start addr of argument
1130    Node* argument_val    = load_String_value(no_ctrl, argument);
1131    Node* argument_offset = load_String_offset(no_ctrl, argument);
1132    Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1133
1134    // Get length of argument
1135    Node* argument_cnt  = load_String_length(no_ctrl, argument);
1136
1137    // Check for receiver count != argument count
1138    Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1139    Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1140    Node* if_ne = generate_slow_guard(bol, NULL);
1141    if (if_ne != NULL) {
1142      phi->init_req(4, intcon(0));
1143      region->init_req(4, if_ne);
1144    }
1145
1146    // Check for count == 0 is done by assembler code for StrEquals.
1147
1148    if (!stopped()) {
1149      Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1150      phi->init_req(1, equals);
1151      region->init_req(1, control());
1152    }
1153  }
1154
1155  // post merge
1156  set_control(_gvn.transform(region));
1157  record_for_igvn(region);
1158
1159  set_result(_gvn.transform(phi));
1160  return true;
1161}
1162
1163//------------------------------inline_array_equals----------------------------
1164bool LibraryCallKit::inline_array_equals() {
1165  Node* arg1 = argument(0);
1166  Node* arg2 = argument(1);
1167  set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1168  return true;
1169}
1170
1171// Java version of String.indexOf(constant string)
1172// class StringDecl {
1173//   StringDecl(char[] ca) {
1174//     offset = 0;
1175//     count = ca.length;
1176//     value = ca;
1177//   }
1178//   int offset;
1179//   int count;
1180//   char[] value;
1181// }
1182//
1183// static int string_indexOf_J(StringDecl string_object, char[] target_object,
1184//                             int targetOffset, int cache_i, int md2) {
1185//   int cache = cache_i;
1186//   int sourceOffset = string_object.offset;
1187//   int sourceCount = string_object.count;
1188//   int targetCount = target_object.length;
1189//
1190//   int targetCountLess1 = targetCount - 1;
1191//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1192//
1193//   char[] source = string_object.value;
1194//   char[] target = target_object;
1195//   int lastChar = target[targetCountLess1];
1196//
1197//  outer_loop:
1198//   for (int i = sourceOffset; i < sourceEnd; ) {
1199//     int src = source[i + targetCountLess1];
1200//     if (src == lastChar) {
1201//       // With random strings and a 4-character alphabet,
1202//       // reverse matching at this point sets up 0.8% fewer
1203//       // frames, but (paradoxically) makes 0.3% more probes.
1204//       // Since those probes are nearer the lastChar probe,
1205//       // there is may be a net D$ win with reverse matching.
1206//       // But, reversing loop inhibits unroll of inner loop
1207//       // for unknown reason.  So, does running outer loop from
1208//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1209//       for (int j = 0; j < targetCountLess1; j++) {
1210//         if (target[targetOffset + j] != source[i+j]) {
1211//           if ((cache & (1 << source[i+j])) == 0) {
1212//             if (md2 < j+1) {
1213//               i += j+1;
1214//               continue outer_loop;
1215//             }
1216//           }
1217//           i += md2;
1218//           continue outer_loop;
1219//         }
1220//       }
1221//       return i - sourceOffset;
1222//     }
1223//     if ((cache & (1 << src)) == 0) {
1224//       i += targetCountLess1;
1225//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1226//     i++;
1227//   }
1228//   return -1;
1229// }
1230
1231//------------------------------string_indexOf------------------------
1232Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1233                                     jint cache_i, jint md2_i) {
1234
1235  Node* no_ctrl  = NULL;
1236  float likely   = PROB_LIKELY(0.9);
1237  float unlikely = PROB_UNLIKELY(0.9);
1238
1239  const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1240
1241  Node* source        = load_String_value(no_ctrl, string_object);
1242  Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1243  Node* sourceCount   = load_String_length(no_ctrl, string_object);
1244
1245  Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1246  jint target_length = target_array->length();
1247  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1248  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1249
1250  IdealKit kit(this, false, true);
1251#define __ kit.
1252  Node* zero             = __ ConI(0);
1253  Node* one              = __ ConI(1);
1254  Node* cache            = __ ConI(cache_i);
1255  Node* md2              = __ ConI(md2_i);
1256  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1257  Node* targetCount      = __ ConI(target_length);
1258  Node* targetCountLess1 = __ ConI(target_length - 1);
1259  Node* targetOffset     = __ ConI(targetOffset_i);
1260  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1261
1262  IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1263  Node* outer_loop = __ make_label(2 /* goto */);
1264  Node* return_    = __ make_label(1);
1265
1266  __ set(rtn,__ ConI(-1));
1267  __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1268       Node* i2  = __ AddI(__ value(i), targetCountLess1);
1269       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1270       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1271       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1272         __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1273              Node* tpj = __ AddI(targetOffset, __ value(j));
1274              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1275              Node* ipj  = __ AddI(__ value(i), __ value(j));
1276              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1277              __ if_then(targ, BoolTest::ne, src2); {
1278                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1279                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1280                    __ increment(i, __ AddI(__ value(j), one));
1281                    __ goto_(outer_loop);
1282                  } __ end_if(); __ dead(j);
1283                }__ end_if(); __ dead(j);
1284                __ increment(i, md2);
1285                __ goto_(outer_loop);
1286              }__ end_if();
1287              __ increment(j, one);
1288         }__ end_loop(); __ dead(j);
1289         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1290         __ goto_(return_);
1291       }__ end_if();
1292       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1293         __ increment(i, targetCountLess1);
1294       }__ end_if();
1295       __ increment(i, one);
1296       __ bind(outer_loop);
1297  }__ end_loop(); __ dead(i);
1298  __ bind(return_);
1299
1300  // Final sync IdealKit and GraphKit.
1301  final_sync(kit);
1302  Node* result = __ value(rtn);
1303#undef __
1304  C->set_has_loops(true);
1305  return result;
1306}
1307
1308//------------------------------inline_string_indexOf------------------------
1309bool LibraryCallKit::inline_string_indexOf() {
1310  Node* receiver = argument(0);
1311  Node* arg      = argument(1);
1312
1313  Node* result;
1314  // Disable the use of pcmpestri until it can be guaranteed that
1315  // the load doesn't cross into the uncommited space.
1316  if (Matcher::has_match_rule(Op_StrIndexOf) &&
1317      UseSSE42Intrinsics) {
1318    // Generate SSE4.2 version of indexOf
1319    // We currently only have match rules that use SSE4.2
1320
1321    receiver = null_check(receiver);
1322    arg      = null_check(arg);
1323    if (stopped()) {
1324      return true;
1325    }
1326
1327    ciInstanceKlass* str_klass = env()->String_klass();
1328    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1329
1330    // Make the merge point
1331    RegionNode* result_rgn = new (C) RegionNode(4);
1332    Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1333    Node* no_ctrl  = NULL;
1334
1335    // Get start addr of source string
1336    Node* source = load_String_value(no_ctrl, receiver);
1337    Node* source_offset = load_String_offset(no_ctrl, receiver);
1338    Node* source_start = array_element_address(source, source_offset, T_CHAR);
1339
1340    // Get length of source string
1341    Node* source_cnt  = load_String_length(no_ctrl, receiver);
1342
1343    // Get start addr of substring
1344    Node* substr = load_String_value(no_ctrl, arg);
1345    Node* substr_offset = load_String_offset(no_ctrl, arg);
1346    Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1347
1348    // Get length of source string
1349    Node* substr_cnt  = load_String_length(no_ctrl, arg);
1350
1351    // Check for substr count > string count
1352    Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1353    Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1354    Node* if_gt = generate_slow_guard(bol, NULL);
1355    if (if_gt != NULL) {
1356      result_phi->init_req(2, intcon(-1));
1357      result_rgn->init_req(2, if_gt);
1358    }
1359
1360    if (!stopped()) {
1361      // Check for substr count == 0
1362      cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1363      bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1364      Node* if_zero = generate_slow_guard(bol, NULL);
1365      if (if_zero != NULL) {
1366        result_phi->init_req(3, intcon(0));
1367        result_rgn->init_req(3, if_zero);
1368      }
1369    }
1370
1371    if (!stopped()) {
1372      result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1373      result_phi->init_req(1, result);
1374      result_rgn->init_req(1, control());
1375    }
1376    set_control(_gvn.transform(result_rgn));
1377    record_for_igvn(result_rgn);
1378    result = _gvn.transform(result_phi);
1379
1380  } else { // Use LibraryCallKit::string_indexOf
1381    // don't intrinsify if argument isn't a constant string.
1382    if (!arg->is_Con()) {
1383     return false;
1384    }
1385    const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1386    if (str_type == NULL) {
1387      return false;
1388    }
1389    ciInstanceKlass* klass = env()->String_klass();
1390    ciObject* str_const = str_type->const_oop();
1391    if (str_const == NULL || str_const->klass() != klass) {
1392      return false;
1393    }
1394    ciInstance* str = str_const->as_instance();
1395    assert(str != NULL, "must be instance");
1396
1397    ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1398    ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1399
1400    int o;
1401    int c;
1402    if (java_lang_String::has_offset_field()) {
1403      o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1404      c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1405    } else {
1406      o = 0;
1407      c = pat->length();
1408    }
1409
1410    // constant strings have no offset and count == length which
1411    // simplifies the resulting code somewhat so lets optimize for that.
1412    if (o != 0 || c != pat->length()) {
1413     return false;
1414    }
1415
1416    receiver = null_check(receiver, T_OBJECT);
1417    // NOTE: No null check on the argument is needed since it's a constant String oop.
1418    if (stopped()) {
1419      return true;
1420    }
1421
1422    // The null string as a pattern always returns 0 (match at beginning of string)
1423    if (c == 0) {
1424      set_result(intcon(0));
1425      return true;
1426    }
1427
1428    // Generate default indexOf
1429    jchar lastChar = pat->char_at(o + (c - 1));
1430    int cache = 0;
1431    int i;
1432    for (i = 0; i < c - 1; i++) {
1433      assert(i < pat->length(), "out of range");
1434      cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1435    }
1436
1437    int md2 = c;
1438    for (i = 0; i < c - 1; i++) {
1439      assert(i < pat->length(), "out of range");
1440      if (pat->char_at(o + i) == lastChar) {
1441        md2 = (c - 1) - i;
1442      }
1443    }
1444
1445    result = string_indexOf(receiver, pat, o, cache, md2);
1446  }
1447  set_result(result);
1448  return true;
1449}
1450
1451//--------------------------round_double_node--------------------------------
1452// Round a double node if necessary.
1453Node* LibraryCallKit::round_double_node(Node* n) {
1454  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1455    n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1456  return n;
1457}
1458
1459//------------------------------inline_math-----------------------------------
1460// public static double Math.abs(double)
1461// public static double Math.sqrt(double)
1462// public static double Math.log(double)
1463// public static double Math.log10(double)
1464bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1465  Node* arg = round_double_node(argument(0));
1466  Node* n;
1467  switch (id) {
1468  case vmIntrinsics::_dabs:   n = new (C) AbsDNode(    arg);  break;
1469  case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(0, arg);  break;
1470  case vmIntrinsics::_dlog:   n = new (C) LogDNode(    arg);  break;
1471  case vmIntrinsics::_dlog10: n = new (C) Log10DNode(  arg);  break;
1472  default:  fatal_unexpected_iid(id);  break;
1473  }
1474  set_result(_gvn.transform(n));
1475  return true;
1476}
1477
1478//------------------------------inline_trig----------------------------------
1479// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1480// argument reduction which will turn into a fast/slow diamond.
1481bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1482  Node* arg = round_double_node(argument(0));
1483  Node* n = NULL;
1484
1485  switch (id) {
1486  case vmIntrinsics::_dsin:  n = new (C) SinDNode(arg);  break;
1487  case vmIntrinsics::_dcos:  n = new (C) CosDNode(arg);  break;
1488  case vmIntrinsics::_dtan:  n = new (C) TanDNode(arg);  break;
1489  default:  fatal_unexpected_iid(id);  break;
1490  }
1491  n = _gvn.transform(n);
1492
1493  // Rounding required?  Check for argument reduction!
1494  if (Matcher::strict_fp_requires_explicit_rounding) {
1495    static const double     pi_4 =  0.7853981633974483;
1496    static const double neg_pi_4 = -0.7853981633974483;
1497    // pi/2 in 80-bit extended precision
1498    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1499    // -pi/2 in 80-bit extended precision
1500    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1501    // Cutoff value for using this argument reduction technique
1502    //static const double    pi_2_minus_epsilon =  1.564660403643354;
1503    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1504
1505    // Pseudocode for sin:
1506    // if (x <= Math.PI / 4.0) {
1507    //   if (x >= -Math.PI / 4.0) return  fsin(x);
1508    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1509    // } else {
1510    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1511    // }
1512    // return StrictMath.sin(x);
1513
1514    // Pseudocode for cos:
1515    // if (x <= Math.PI / 4.0) {
1516    //   if (x >= -Math.PI / 4.0) return  fcos(x);
1517    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1518    // } else {
1519    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1520    // }
1521    // return StrictMath.cos(x);
1522
1523    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1524    // requires a special machine instruction to load it.  Instead we'll try
1525    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1526    // probably do the math inside the SIN encoding.
1527
1528    // Make the merge point
1529    RegionNode* r = new (C) RegionNode(3);
1530    Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1531
1532    // Flatten arg so we need only 1 test
1533    Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1534    // Node for PI/4 constant
1535    Node *pi4 = makecon(TypeD::make(pi_4));
1536    // Check PI/4 : abs(arg)
1537    Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1538    // Check: If PI/4 < abs(arg) then go slow
1539    Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1540    // Branch either way
1541    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1542    set_control(opt_iff(r,iff));
1543
1544    // Set fast path result
1545    phi->init_req(2, n);
1546
1547    // Slow path - non-blocking leaf call
1548    Node* call = NULL;
1549    switch (id) {
1550    case vmIntrinsics::_dsin:
1551      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1552                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1553                               "Sin", NULL, arg, top());
1554      break;
1555    case vmIntrinsics::_dcos:
1556      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1557                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1558                               "Cos", NULL, arg, top());
1559      break;
1560    case vmIntrinsics::_dtan:
1561      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1562                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1563                               "Tan", NULL, arg, top());
1564      break;
1565    }
1566    assert(control()->in(0) == call, "");
1567    Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1568    r->init_req(1, control());
1569    phi->init_req(1, slow_result);
1570
1571    // Post-merge
1572    set_control(_gvn.transform(r));
1573    record_for_igvn(r);
1574    n = _gvn.transform(phi);
1575
1576    C->set_has_split_ifs(true); // Has chance for split-if optimization
1577  }
1578  set_result(n);
1579  return true;
1580}
1581
1582void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1583  //-------------------
1584  //result=(result.isNaN())? funcAddr():result;
1585  // Check: If isNaN() by checking result!=result? then either trap
1586  // or go to runtime
1587  Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1588  // Build the boolean node
1589  Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1590
1591  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1592    { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1593      // The pow or exp intrinsic returned a NaN, which requires a call
1594      // to the runtime.  Recompile with the runtime call.
1595      uncommon_trap(Deoptimization::Reason_intrinsic,
1596                    Deoptimization::Action_make_not_entrant);
1597    }
1598    set_result(result);
1599  } else {
1600    // If this inlining ever returned NaN in the past, we compile a call
1601    // to the runtime to properly handle corner cases
1602
1603    IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1604    Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1605    Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1606
1607    if (!if_slow->is_top()) {
1608      RegionNode* result_region = new (C) RegionNode(3);
1609      PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1610
1611      result_region->init_req(1, if_fast);
1612      result_val->init_req(1, result);
1613
1614      set_control(if_slow);
1615
1616      const TypePtr* no_memory_effects = NULL;
1617      Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1618                                   no_memory_effects,
1619                                   x, top(), y, y ? top() : NULL);
1620      Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1621#ifdef ASSERT
1622      Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1623      assert(value_top == top(), "second value must be top");
1624#endif
1625
1626      result_region->init_req(2, control());
1627      result_val->init_req(2, value);
1628      set_result(result_region, result_val);
1629    } else {
1630      set_result(result);
1631    }
1632  }
1633}
1634
1635//------------------------------inline_exp-------------------------------------
1636// Inline exp instructions, if possible.  The Intel hardware only misses
1637// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1638bool LibraryCallKit::inline_exp() {
1639  Node* arg = round_double_node(argument(0));
1640  Node* n   = _gvn.transform(new (C) ExpDNode(0, arg));
1641
1642  finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1643
1644  C->set_has_split_ifs(true); // Has chance for split-if optimization
1645  return true;
1646}
1647
1648//------------------------------inline_pow-------------------------------------
1649// Inline power instructions, if possible.
1650bool LibraryCallKit::inline_pow() {
1651  // Pseudocode for pow
1652  // if (x <= 0.0) {
1653  //   long longy = (long)y;
1654  //   if ((double)longy == y) { // if y is long
1655  //     if (y + 1 == y) longy = 0; // huge number: even
1656  //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1657  //   } else {
1658  //     result = NaN;
1659  //   }
1660  // } else {
1661  //   result = DPow(x,y);
1662  // }
1663  // if (result != result)?  {
1664  //   result = uncommon_trap() or runtime_call();
1665  // }
1666  // return result;
1667
1668  Node* x = round_double_node(argument(0));
1669  Node* y = round_double_node(argument(2));
1670
1671  Node* result = NULL;
1672
1673  if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1674    // Short form: skip the fancy tests and just check for NaN result.
1675    result = _gvn.transform(new (C) PowDNode(0, x, y));
1676  } else {
1677    // If this inlining ever returned NaN in the past, include all
1678    // checks + call to the runtime.
1679
1680    // Set the merge point for If node with condition of (x <= 0.0)
1681    // There are four possible paths to region node and phi node
1682    RegionNode *r = new (C) RegionNode(4);
1683    Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1684
1685    // Build the first if node: if (x <= 0.0)
1686    // Node for 0 constant
1687    Node *zeronode = makecon(TypeD::ZERO);
1688    // Check x:0
1689    Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1690    // Check: If (x<=0) then go complex path
1691    Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1692    // Branch either way
1693    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1694    // Fast path taken; set region slot 3
1695    Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1696    r->init_req(3,fast_taken); // Capture fast-control
1697
1698    // Fast path not-taken, i.e. slow path
1699    Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1700
1701    // Set fast path result
1702    Node *fast_result = _gvn.transform( new (C) PowDNode(0, x, y) );
1703    phi->init_req(3, fast_result);
1704
1705    // Complex path
1706    // Build the second if node (if y is long)
1707    // Node for (long)y
1708    Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1709    // Node for (double)((long) y)
1710    Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1711    // Check (double)((long) y) : y
1712    Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1713    // Check if (y isn't long) then go to slow path
1714
1715    Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1716    // Branch either way
1717    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1718    Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1719
1720    Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1721
1722    // Calculate DPow(abs(x), y)*(1 & (long)y)
1723    // Node for constant 1
1724    Node *conone = longcon(1);
1725    // 1& (long)y
1726    Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1727
1728    // A huge number is always even. Detect a huge number by checking
1729    // if y + 1 == y and set integer to be tested for parity to 0.
1730    // Required for corner case:
1731    // (long)9.223372036854776E18 = max_jlong
1732    // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1733    // max_jlong is odd but 9.223372036854776E18 is even
1734    Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1735    Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1736    Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1737    Node* correctedsign = NULL;
1738    if (ConditionalMoveLimit != 0) {
1739      correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1740    } else {
1741      IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1742      RegionNode *r = new (C) RegionNode(3);
1743      Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1744      r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1745      r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1746      phi->init_req(1, signnode);
1747      phi->init_req(2, longcon(0));
1748      correctedsign = _gvn.transform(phi);
1749      ylong_path = _gvn.transform(r);
1750      record_for_igvn(r);
1751    }
1752
1753    // zero node
1754    Node *conzero = longcon(0);
1755    // Check (1&(long)y)==0?
1756    Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1757    // Check if (1&(long)y)!=0?, if so the result is negative
1758    Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1759    // abs(x)
1760    Node *absx=_gvn.transform( new (C) AbsDNode(x));
1761    // abs(x)^y
1762    Node *absxpowy = _gvn.transform( new (C) PowDNode(0, absx, y) );
1763    // -abs(x)^y
1764    Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1765    // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1766    Node *signresult = NULL;
1767    if (ConditionalMoveLimit != 0) {
1768      signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1769    } else {
1770      IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1771      RegionNode *r = new (C) RegionNode(3);
1772      Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1773      r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1774      r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1775      phi->init_req(1, absxpowy);
1776      phi->init_req(2, negabsxpowy);
1777      signresult = _gvn.transform(phi);
1778      ylong_path = _gvn.transform(r);
1779      record_for_igvn(r);
1780    }
1781    // Set complex path fast result
1782    r->init_req(2, ylong_path);
1783    phi->init_req(2, signresult);
1784
1785    static const jlong nan_bits = CONST64(0x7ff8000000000000);
1786    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1787    r->init_req(1,slow_path);
1788    phi->init_req(1,slow_result);
1789
1790    // Post merge
1791    set_control(_gvn.transform(r));
1792    record_for_igvn(r);
1793    result = _gvn.transform(phi);
1794  }
1795
1796  finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1797
1798  C->set_has_split_ifs(true); // Has chance for split-if optimization
1799  return true;
1800}
1801
1802//------------------------------runtime_math-----------------------------
1803bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1804  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1805         "must be (DD)D or (D)D type");
1806
1807  // Inputs
1808  Node* a = round_double_node(argument(0));
1809  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1810
1811  const TypePtr* no_memory_effects = NULL;
1812  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1813                                 no_memory_effects,
1814                                 a, top(), b, b ? top() : NULL);
1815  Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1816#ifdef ASSERT
1817  Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1818  assert(value_top == top(), "second value must be top");
1819#endif
1820
1821  set_result(value);
1822  return true;
1823}
1824
1825//------------------------------inline_math_native-----------------------------
1826bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1827#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1828  switch (id) {
1829    // These intrinsics are not properly supported on all hardware
1830  case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1831    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1832  case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1833    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1834  case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1835    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1836
1837  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1838    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1839  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1840    runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1841
1842    // These intrinsics are supported on all hardware
1843  case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
1844  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1845
1846  case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1847    runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1848  case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1849    runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1850#undef FN_PTR
1851
1852   // These intrinsics are not yet correctly implemented
1853  case vmIntrinsics::_datan2:
1854    return false;
1855
1856  default:
1857    fatal_unexpected_iid(id);
1858    return false;
1859  }
1860}
1861
1862static bool is_simple_name(Node* n) {
1863  return (n->req() == 1         // constant
1864          || (n->is_Type() && n->as_Type()->type()->singleton())
1865          || n->is_Proj()       // parameter or return value
1866          || n->is_Phi()        // local of some sort
1867          );
1868}
1869
1870//----------------------------inline_min_max-----------------------------------
1871bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1872  set_result(generate_min_max(id, argument(0), argument(1)));
1873  return true;
1874}
1875
1876Node*
1877LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1878  // These are the candidate return value:
1879  Node* xvalue = x0;
1880  Node* yvalue = y0;
1881
1882  if (xvalue == yvalue) {
1883    return xvalue;
1884  }
1885
1886  bool want_max = (id == vmIntrinsics::_max);
1887
1888  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1889  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1890  if (txvalue == NULL || tyvalue == NULL)  return top();
1891  // This is not really necessary, but it is consistent with a
1892  // hypothetical MaxINode::Value method:
1893  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1894
1895  // %%% This folding logic should (ideally) be in a different place.
1896  // Some should be inside IfNode, and there to be a more reliable
1897  // transformation of ?: style patterns into cmoves.  We also want
1898  // more powerful optimizations around cmove and min/max.
1899
1900  // Try to find a dominating comparison of these guys.
1901  // It can simplify the index computation for Arrays.copyOf
1902  // and similar uses of System.arraycopy.
1903  // First, compute the normalized version of CmpI(x, y).
1904  int   cmp_op = Op_CmpI;
1905  Node* xkey = xvalue;
1906  Node* ykey = yvalue;
1907  Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1908  if (ideal_cmpxy->is_Cmp()) {
1909    // E.g., if we have CmpI(length - offset, count),
1910    // it might idealize to CmpI(length, count + offset)
1911    cmp_op = ideal_cmpxy->Opcode();
1912    xkey = ideal_cmpxy->in(1);
1913    ykey = ideal_cmpxy->in(2);
1914  }
1915
1916  // Start by locating any relevant comparisons.
1917  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1918  Node* cmpxy = NULL;
1919  Node* cmpyx = NULL;
1920  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1921    Node* cmp = start_from->fast_out(k);
1922    if (cmp->outcnt() > 0 &&            // must have prior uses
1923        cmp->in(0) == NULL &&           // must be context-independent
1924        cmp->Opcode() == cmp_op) {      // right kind of compare
1925      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1926      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1927    }
1928  }
1929
1930  const int NCMPS = 2;
1931  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1932  int cmpn;
1933  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1934    if (cmps[cmpn] != NULL)  break;     // find a result
1935  }
1936  if (cmpn < NCMPS) {
1937    // Look for a dominating test that tells us the min and max.
1938    int depth = 0;                // Limit search depth for speed
1939    Node* dom = control();
1940    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1941      if (++depth >= 100)  break;
1942      Node* ifproj = dom;
1943      if (!ifproj->is_Proj())  continue;
1944      Node* iff = ifproj->in(0);
1945      if (!iff->is_If())  continue;
1946      Node* bol = iff->in(1);
1947      if (!bol->is_Bool())  continue;
1948      Node* cmp = bol->in(1);
1949      if (cmp == NULL)  continue;
1950      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1951        if (cmps[cmpn] == cmp)  break;
1952      if (cmpn == NCMPS)  continue;
1953      BoolTest::mask btest = bol->as_Bool()->_test._test;
1954      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1955      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1956      // At this point, we know that 'x btest y' is true.
1957      switch (btest) {
1958      case BoolTest::eq:
1959        // They are proven equal, so we can collapse the min/max.
1960        // Either value is the answer.  Choose the simpler.
1961        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1962          return yvalue;
1963        return xvalue;
1964      case BoolTest::lt:          // x < y
1965      case BoolTest::le:          // x <= y
1966        return (want_max ? yvalue : xvalue);
1967      case BoolTest::gt:          // x > y
1968      case BoolTest::ge:          // x >= y
1969        return (want_max ? xvalue : yvalue);
1970      }
1971    }
1972  }
1973
1974  // We failed to find a dominating test.
1975  // Let's pick a test that might GVN with prior tests.
1976  Node*          best_bol   = NULL;
1977  BoolTest::mask best_btest = BoolTest::illegal;
1978  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1979    Node* cmp = cmps[cmpn];
1980    if (cmp == NULL)  continue;
1981    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1982      Node* bol = cmp->fast_out(j);
1983      if (!bol->is_Bool())  continue;
1984      BoolTest::mask btest = bol->as_Bool()->_test._test;
1985      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1986      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1987      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1988        best_bol   = bol->as_Bool();
1989        best_btest = btest;
1990      }
1991    }
1992  }
1993
1994  Node* answer_if_true  = NULL;
1995  Node* answer_if_false = NULL;
1996  switch (best_btest) {
1997  default:
1998    if (cmpxy == NULL)
1999      cmpxy = ideal_cmpxy;
2000    best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2001    // and fall through:
2002  case BoolTest::lt:          // x < y
2003  case BoolTest::le:          // x <= y
2004    answer_if_true  = (want_max ? yvalue : xvalue);
2005    answer_if_false = (want_max ? xvalue : yvalue);
2006    break;
2007  case BoolTest::gt:          // x > y
2008  case BoolTest::ge:          // x >= y
2009    answer_if_true  = (want_max ? xvalue : yvalue);
2010    answer_if_false = (want_max ? yvalue : xvalue);
2011    break;
2012  }
2013
2014  jint hi, lo;
2015  if (want_max) {
2016    // We can sharpen the minimum.
2017    hi = MAX2(txvalue->_hi, tyvalue->_hi);
2018    lo = MAX2(txvalue->_lo, tyvalue->_lo);
2019  } else {
2020    // We can sharpen the maximum.
2021    hi = MIN2(txvalue->_hi, tyvalue->_hi);
2022    lo = MIN2(txvalue->_lo, tyvalue->_lo);
2023  }
2024
2025  // Use a flow-free graph structure, to avoid creating excess control edges
2026  // which could hinder other optimizations.
2027  // Since Math.min/max is often used with arraycopy, we want
2028  // tightly_coupled_allocation to be able to see beyond min/max expressions.
2029  Node* cmov = CMoveNode::make(C, NULL, best_bol,
2030                               answer_if_false, answer_if_true,
2031                               TypeInt::make(lo, hi, widen));
2032
2033  return _gvn.transform(cmov);
2034
2035  /*
2036  // This is not as desirable as it may seem, since Min and Max
2037  // nodes do not have a full set of optimizations.
2038  // And they would interfere, anyway, with 'if' optimizations
2039  // and with CMoveI canonical forms.
2040  switch (id) {
2041  case vmIntrinsics::_min:
2042    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2043  case vmIntrinsics::_max:
2044    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2045  default:
2046    ShouldNotReachHere();
2047  }
2048  */
2049}
2050
2051inline int
2052LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2053  const TypePtr* base_type = TypePtr::NULL_PTR;
2054  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2055  if (base_type == NULL) {
2056    // Unknown type.
2057    return Type::AnyPtr;
2058  } else if (base_type == TypePtr::NULL_PTR) {
2059    // Since this is a NULL+long form, we have to switch to a rawptr.
2060    base   = _gvn.transform( new (C) CastX2PNode(offset) );
2061    offset = MakeConX(0);
2062    return Type::RawPtr;
2063  } else if (base_type->base() == Type::RawPtr) {
2064    return Type::RawPtr;
2065  } else if (base_type->isa_oopptr()) {
2066    // Base is never null => always a heap address.
2067    if (base_type->ptr() == TypePtr::NotNull) {
2068      return Type::OopPtr;
2069    }
2070    // Offset is small => always a heap address.
2071    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2072    if (offset_type != NULL &&
2073        base_type->offset() == 0 &&     // (should always be?)
2074        offset_type->_lo >= 0 &&
2075        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2076      return Type::OopPtr;
2077    }
2078    // Otherwise, it might either be oop+off or NULL+addr.
2079    return Type::AnyPtr;
2080  } else {
2081    // No information:
2082    return Type::AnyPtr;
2083  }
2084}
2085
2086inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2087  int kind = classify_unsafe_addr(base, offset);
2088  if (kind == Type::RawPtr) {
2089    return basic_plus_adr(top(), base, offset);
2090  } else {
2091    return basic_plus_adr(base, offset);
2092  }
2093}
2094
2095//--------------------------inline_number_methods-----------------------------
2096// inline int     Integer.numberOfLeadingZeros(int)
2097// inline int        Long.numberOfLeadingZeros(long)
2098//
2099// inline int     Integer.numberOfTrailingZeros(int)
2100// inline int        Long.numberOfTrailingZeros(long)
2101//
2102// inline int     Integer.bitCount(int)
2103// inline int        Long.bitCount(long)
2104//
2105// inline char  Character.reverseBytes(char)
2106// inline short     Short.reverseBytes(short)
2107// inline int     Integer.reverseBytes(int)
2108// inline long       Long.reverseBytes(long)
2109bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2110  Node* arg = argument(0);
2111  Node* n;
2112  switch (id) {
2113  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2114  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2115  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2116  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2117  case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2118  case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2119  case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2120  case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2121  case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2122  case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2123  default:  fatal_unexpected_iid(id);  break;
2124  }
2125  set_result(_gvn.transform(n));
2126  return true;
2127}
2128
2129//----------------------------inline_unsafe_access----------------------------
2130
2131const static BasicType T_ADDRESS_HOLDER = T_LONG;
2132
2133// Helper that guards and inserts a pre-barrier.
2134void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2135                                        Node* pre_val, bool need_mem_bar) {
2136  // We could be accessing the referent field of a reference object. If so, when G1
2137  // is enabled, we need to log the value in the referent field in an SATB buffer.
2138  // This routine performs some compile time filters and generates suitable
2139  // runtime filters that guard the pre-barrier code.
2140  // Also add memory barrier for non volatile load from the referent field
2141  // to prevent commoning of loads across safepoint.
2142  if (!UseG1GC && !need_mem_bar)
2143    return;
2144
2145  // Some compile time checks.
2146
2147  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2148  const TypeX* otype = offset->find_intptr_t_type();
2149  if (otype != NULL && otype->is_con() &&
2150      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2151    // Constant offset but not the reference_offset so just return
2152    return;
2153  }
2154
2155  // We only need to generate the runtime guards for instances.
2156  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2157  if (btype != NULL) {
2158    if (btype->isa_aryptr()) {
2159      // Array type so nothing to do
2160      return;
2161    }
2162
2163    const TypeInstPtr* itype = btype->isa_instptr();
2164    if (itype != NULL) {
2165      // Can the klass of base_oop be statically determined to be
2166      // _not_ a sub-class of Reference and _not_ Object?
2167      ciKlass* klass = itype->klass();
2168      if ( klass->is_loaded() &&
2169          !klass->is_subtype_of(env()->Reference_klass()) &&
2170          !env()->Object_klass()->is_subtype_of(klass)) {
2171        return;
2172      }
2173    }
2174  }
2175
2176  // The compile time filters did not reject base_oop/offset so
2177  // we need to generate the following runtime filters
2178  //
2179  // if (offset == java_lang_ref_Reference::_reference_offset) {
2180  //   if (instance_of(base, java.lang.ref.Reference)) {
2181  //     pre_barrier(_, pre_val, ...);
2182  //   }
2183  // }
2184
2185  float likely   = PROB_LIKELY(  0.999);
2186  float unlikely = PROB_UNLIKELY(0.999);
2187
2188  IdealKit ideal(this);
2189#define __ ideal.
2190
2191  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2192
2193  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2194      // Update graphKit memory and control from IdealKit.
2195      sync_kit(ideal);
2196
2197      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2198      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2199
2200      // Update IdealKit memory and control from graphKit.
2201      __ sync_kit(this);
2202
2203      Node* one = __ ConI(1);
2204      // is_instof == 0 if base_oop == NULL
2205      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2206
2207        // Update graphKit from IdeakKit.
2208        sync_kit(ideal);
2209
2210        // Use the pre-barrier to record the value in the referent field
2211        pre_barrier(false /* do_load */,
2212                    __ ctrl(),
2213                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2214                    pre_val /* pre_val */,
2215                    T_OBJECT);
2216        if (need_mem_bar) {
2217          // Add memory barrier to prevent commoning reads from this field
2218          // across safepoint since GC can change its value.
2219          insert_mem_bar(Op_MemBarCPUOrder);
2220        }
2221        // Update IdealKit from graphKit.
2222        __ sync_kit(this);
2223
2224      } __ end_if(); // _ref_type != ref_none
2225  } __ end_if(); // offset == referent_offset
2226
2227  // Final sync IdealKit and GraphKit.
2228  final_sync(ideal);
2229#undef __
2230}
2231
2232
2233// Interpret Unsafe.fieldOffset cookies correctly:
2234extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2235
2236const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2237  // Attempt to infer a sharper value type from the offset and base type.
2238  ciKlass* sharpened_klass = NULL;
2239
2240  // See if it is an instance field, with an object type.
2241  if (alias_type->field() != NULL) {
2242    assert(!is_native_ptr, "native pointer op cannot use a java address");
2243    if (alias_type->field()->type()->is_klass()) {
2244      sharpened_klass = alias_type->field()->type()->as_klass();
2245    }
2246  }
2247
2248  // See if it is a narrow oop array.
2249  if (adr_type->isa_aryptr()) {
2250    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2251      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2252      if (elem_type != NULL) {
2253        sharpened_klass = elem_type->klass();
2254      }
2255    }
2256  }
2257
2258  // The sharpened class might be unloaded if there is no class loader
2259  // contraint in place.
2260  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2261    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2262
2263#ifndef PRODUCT
2264    if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2265      tty->print("  from base type: ");  adr_type->dump();
2266      tty->print("  sharpened value: ");  tjp->dump();
2267    }
2268#endif
2269    // Sharpen the value type.
2270    return tjp;
2271  }
2272  return NULL;
2273}
2274
2275bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2276  if (callee()->is_static())  return false;  // caller must have the capability!
2277
2278#ifndef PRODUCT
2279  {
2280    ResourceMark rm;
2281    // Check the signatures.
2282    ciSignature* sig = callee()->signature();
2283#ifdef ASSERT
2284    if (!is_store) {
2285      // Object getObject(Object base, int/long offset), etc.
2286      BasicType rtype = sig->return_type()->basic_type();
2287      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2288          rtype = T_ADDRESS;  // it is really a C void*
2289      assert(rtype == type, "getter must return the expected value");
2290      if (!is_native_ptr) {
2291        assert(sig->count() == 2, "oop getter has 2 arguments");
2292        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2293        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2294      } else {
2295        assert(sig->count() == 1, "native getter has 1 argument");
2296        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2297      }
2298    } else {
2299      // void putObject(Object base, int/long offset, Object x), etc.
2300      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2301      if (!is_native_ptr) {
2302        assert(sig->count() == 3, "oop putter has 3 arguments");
2303        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2304        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2305      } else {
2306        assert(sig->count() == 2, "native putter has 2 arguments");
2307        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2308      }
2309      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2310      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2311        vtype = T_ADDRESS;  // it is really a C void*
2312      assert(vtype == type, "putter must accept the expected value");
2313    }
2314#endif // ASSERT
2315 }
2316#endif //PRODUCT
2317
2318  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2319
2320  Node* receiver = argument(0);  // type: oop
2321
2322  // Build address expression.  See the code in inline_unsafe_prefetch.
2323  Node* adr;
2324  Node* heap_base_oop = top();
2325  Node* offset = top();
2326  Node* val;
2327
2328  if (!is_native_ptr) {
2329    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2330    Node* base = argument(1);  // type: oop
2331    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2332    offset = argument(2);  // type: long
2333    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2334    // to be plain byte offsets, which are also the same as those accepted
2335    // by oopDesc::field_base.
2336    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2337           "fieldOffset must be byte-scaled");
2338    // 32-bit machines ignore the high half!
2339    offset = ConvL2X(offset);
2340    adr = make_unsafe_address(base, offset);
2341    heap_base_oop = base;
2342    val = is_store ? argument(4) : NULL;
2343  } else {
2344    Node* ptr = argument(1);  // type: long
2345    ptr = ConvL2X(ptr);  // adjust Java long to machine word
2346    adr = make_unsafe_address(NULL, ptr);
2347    val = is_store ? argument(3) : NULL;
2348  }
2349
2350  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2351
2352  // First guess at the value type.
2353  const Type *value_type = Type::get_const_basic_type(type);
2354
2355  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2356  // there was not enough information to nail it down.
2357  Compile::AliasType* alias_type = C->alias_type(adr_type);
2358  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2359
2360  // We will need memory barriers unless we can determine a unique
2361  // alias category for this reference.  (Note:  If for some reason
2362  // the barriers get omitted and the unsafe reference begins to "pollute"
2363  // the alias analysis of the rest of the graph, either Compile::can_alias
2364  // or Compile::must_alias will throw a diagnostic assert.)
2365  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2366
2367  // If we are reading the value of the referent field of a Reference
2368  // object (either by using Unsafe directly or through reflection)
2369  // then, if G1 is enabled, we need to record the referent in an
2370  // SATB log buffer using the pre-barrier mechanism.
2371  // Also we need to add memory barrier to prevent commoning reads
2372  // from this field across safepoint since GC can change its value.
2373  bool need_read_barrier = !is_native_ptr && !is_store &&
2374                           offset != top() && heap_base_oop != top();
2375
2376  if (!is_store && type == T_OBJECT) {
2377    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2378    if (tjp != NULL) {
2379      value_type = tjp;
2380    }
2381  }
2382
2383  receiver = null_check(receiver);
2384  if (stopped()) {
2385    return true;
2386  }
2387  // Heap pointers get a null-check from the interpreter,
2388  // as a courtesy.  However, this is not guaranteed by Unsafe,
2389  // and it is not possible to fully distinguish unintended nulls
2390  // from intended ones in this API.
2391
2392  if (is_volatile) {
2393    // We need to emit leading and trailing CPU membars (see below) in
2394    // addition to memory membars when is_volatile. This is a little
2395    // too strong, but avoids the need to insert per-alias-type
2396    // volatile membars (for stores; compare Parse::do_put_xxx), which
2397    // we cannot do effectively here because we probably only have a
2398    // rough approximation of type.
2399    need_mem_bar = true;
2400    // For Stores, place a memory ordering barrier now.
2401    if (is_store)
2402      insert_mem_bar(Op_MemBarRelease);
2403  }
2404
2405  // Memory barrier to prevent normal and 'unsafe' accesses from
2406  // bypassing each other.  Happens after null checks, so the
2407  // exception paths do not take memory state from the memory barrier,
2408  // so there's no problems making a strong assert about mixing users
2409  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2410  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2411  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2412
2413  if (!is_store) {
2414    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2415    // load value
2416    switch (type) {
2417    case T_BOOLEAN:
2418    case T_CHAR:
2419    case T_BYTE:
2420    case T_SHORT:
2421    case T_INT:
2422    case T_LONG:
2423    case T_FLOAT:
2424    case T_DOUBLE:
2425      break;
2426    case T_OBJECT:
2427      if (need_read_barrier) {
2428        insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2429      }
2430      break;
2431    case T_ADDRESS:
2432      // Cast to an int type.
2433      p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2434      p = ConvX2L(p);
2435      break;
2436    default:
2437      fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2438      break;
2439    }
2440    // The load node has the control of the preceding MemBarCPUOrder.  All
2441    // following nodes will have the control of the MemBarCPUOrder inserted at
2442    // the end of this method.  So, pushing the load onto the stack at a later
2443    // point is fine.
2444    set_result(p);
2445  } else {
2446    // place effect of store into memory
2447    switch (type) {
2448    case T_DOUBLE:
2449      val = dstore_rounding(val);
2450      break;
2451    case T_ADDRESS:
2452      // Repackage the long as a pointer.
2453      val = ConvL2X(val);
2454      val = _gvn.transform( new (C) CastX2PNode(val) );
2455      break;
2456    }
2457
2458    if (type != T_OBJECT ) {
2459      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2460    } else {
2461      // Possibly an oop being stored to Java heap or native memory
2462      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2463        // oop to Java heap.
2464        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2465      } else {
2466        // We can't tell at compile time if we are storing in the Java heap or outside
2467        // of it. So we need to emit code to conditionally do the proper type of
2468        // store.
2469
2470        IdealKit ideal(this);
2471#define __ ideal.
2472        // QQQ who knows what probability is here??
2473        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2474          // Sync IdealKit and graphKit.
2475          sync_kit(ideal);
2476          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2477          // Update IdealKit memory.
2478          __ sync_kit(this);
2479        } __ else_(); {
2480          __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2481        } __ end_if();
2482        // Final sync IdealKit and GraphKit.
2483        final_sync(ideal);
2484#undef __
2485      }
2486    }
2487  }
2488
2489  if (is_volatile) {
2490    if (!is_store)
2491      insert_mem_bar(Op_MemBarAcquire);
2492    else
2493      insert_mem_bar(Op_MemBarVolatile);
2494  }
2495
2496  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2497
2498  return true;
2499}
2500
2501//----------------------------inline_unsafe_prefetch----------------------------
2502
2503bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2504#ifndef PRODUCT
2505  {
2506    ResourceMark rm;
2507    // Check the signatures.
2508    ciSignature* sig = callee()->signature();
2509#ifdef ASSERT
2510    // Object getObject(Object base, int/long offset), etc.
2511    BasicType rtype = sig->return_type()->basic_type();
2512    if (!is_native_ptr) {
2513      assert(sig->count() == 2, "oop prefetch has 2 arguments");
2514      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2515      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2516    } else {
2517      assert(sig->count() == 1, "native prefetch has 1 argument");
2518      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2519    }
2520#endif // ASSERT
2521  }
2522#endif // !PRODUCT
2523
2524  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2525
2526  const int idx = is_static ? 0 : 1;
2527  if (!is_static) {
2528    null_check_receiver();
2529    if (stopped()) {
2530      return true;
2531    }
2532  }
2533
2534  // Build address expression.  See the code in inline_unsafe_access.
2535  Node *adr;
2536  if (!is_native_ptr) {
2537    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2538    Node* base   = argument(idx + 0);  // type: oop
2539    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2540    Node* offset = argument(idx + 1);  // type: long
2541    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2542    // to be plain byte offsets, which are also the same as those accepted
2543    // by oopDesc::field_base.
2544    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2545           "fieldOffset must be byte-scaled");
2546    // 32-bit machines ignore the high half!
2547    offset = ConvL2X(offset);
2548    adr = make_unsafe_address(base, offset);
2549  } else {
2550    Node* ptr = argument(idx + 0);  // type: long
2551    ptr = ConvL2X(ptr);  // adjust Java long to machine word
2552    adr = make_unsafe_address(NULL, ptr);
2553  }
2554
2555  // Generate the read or write prefetch
2556  Node *prefetch;
2557  if (is_store) {
2558    prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2559  } else {
2560    prefetch = new (C) PrefetchReadNode(i_o(), adr);
2561  }
2562  prefetch->init_req(0, control());
2563  set_i_o(_gvn.transform(prefetch));
2564
2565  return true;
2566}
2567
2568//----------------------------inline_unsafe_load_store----------------------------
2569// This method serves a couple of different customers (depending on LoadStoreKind):
2570//
2571// LS_cmpxchg:
2572//   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2573//   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2574//   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2575//
2576// LS_xadd:
2577//   public int  getAndAddInt( Object o, long offset, int  delta)
2578//   public long getAndAddLong(Object o, long offset, long delta)
2579//
2580// LS_xchg:
2581//   int    getAndSet(Object o, long offset, int    newValue)
2582//   long   getAndSet(Object o, long offset, long   newValue)
2583//   Object getAndSet(Object o, long offset, Object newValue)
2584//
2585bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2586  // This basic scheme here is the same as inline_unsafe_access, but
2587  // differs in enough details that combining them would make the code
2588  // overly confusing.  (This is a true fact! I originally combined
2589  // them, but even I was confused by it!) As much code/comments as
2590  // possible are retained from inline_unsafe_access though to make
2591  // the correspondences clearer. - dl
2592
2593  if (callee()->is_static())  return false;  // caller must have the capability!
2594
2595#ifndef PRODUCT
2596  BasicType rtype;
2597  {
2598    ResourceMark rm;
2599    // Check the signatures.
2600    ciSignature* sig = callee()->signature();
2601    rtype = sig->return_type()->basic_type();
2602    if (kind == LS_xadd || kind == LS_xchg) {
2603      // Check the signatures.
2604#ifdef ASSERT
2605      assert(rtype == type, "get and set must return the expected type");
2606      assert(sig->count() == 3, "get and set has 3 arguments");
2607      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2608      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2609      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2610#endif // ASSERT
2611    } else if (kind == LS_cmpxchg) {
2612      // Check the signatures.
2613#ifdef ASSERT
2614      assert(rtype == T_BOOLEAN, "CAS must return boolean");
2615      assert(sig->count() == 4, "CAS has 4 arguments");
2616      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2617      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2618#endif // ASSERT
2619    } else {
2620      ShouldNotReachHere();
2621    }
2622  }
2623#endif //PRODUCT
2624
2625  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2626
2627  // Get arguments:
2628  Node* receiver = NULL;
2629  Node* base     = NULL;
2630  Node* offset   = NULL;
2631  Node* oldval   = NULL;
2632  Node* newval   = NULL;
2633  if (kind == LS_cmpxchg) {
2634    const bool two_slot_type = type2size[type] == 2;
2635    receiver = argument(0);  // type: oop
2636    base     = argument(1);  // type: oop
2637    offset   = argument(2);  // type: long
2638    oldval   = argument(4);  // type: oop, int, or long
2639    newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2640  } else if (kind == LS_xadd || kind == LS_xchg){
2641    receiver = argument(0);  // type: oop
2642    base     = argument(1);  // type: oop
2643    offset   = argument(2);  // type: long
2644    oldval   = NULL;
2645    newval   = argument(4);  // type: oop, int, or long
2646  }
2647
2648  // Null check receiver.
2649  receiver = null_check(receiver);
2650  if (stopped()) {
2651    return true;
2652  }
2653
2654  // Build field offset expression.
2655  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2656  // to be plain byte offsets, which are also the same as those accepted
2657  // by oopDesc::field_base.
2658  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2659  // 32-bit machines ignore the high half of long offsets
2660  offset = ConvL2X(offset);
2661  Node* adr = make_unsafe_address(base, offset);
2662  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2663
2664  // For CAS, unlike inline_unsafe_access, there seems no point in
2665  // trying to refine types. Just use the coarse types here.
2666  const Type *value_type = Type::get_const_basic_type(type);
2667  Compile::AliasType* alias_type = C->alias_type(adr_type);
2668  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2669
2670  if (kind == LS_xchg && type == T_OBJECT) {
2671    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2672    if (tjp != NULL) {
2673      value_type = tjp;
2674    }
2675  }
2676
2677  int alias_idx = C->get_alias_index(adr_type);
2678
2679  // Memory-model-wise, a LoadStore acts like a little synchronized
2680  // block, so needs barriers on each side.  These don't translate
2681  // into actual barriers on most machines, but we still need rest of
2682  // compiler to respect ordering.
2683
2684  insert_mem_bar(Op_MemBarRelease);
2685  insert_mem_bar(Op_MemBarCPUOrder);
2686
2687  // 4984716: MemBars must be inserted before this
2688  //          memory node in order to avoid a false
2689  //          dependency which will confuse the scheduler.
2690  Node *mem = memory(alias_idx);
2691
2692  // For now, we handle only those cases that actually exist: ints,
2693  // longs, and Object. Adding others should be straightforward.
2694  Node* load_store;
2695  switch(type) {
2696  case T_INT:
2697    if (kind == LS_xadd) {
2698      load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2699    } else if (kind == LS_xchg) {
2700      load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2701    } else if (kind == LS_cmpxchg) {
2702      load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2703    } else {
2704      ShouldNotReachHere();
2705    }
2706    break;
2707  case T_LONG:
2708    if (kind == LS_xadd) {
2709      load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2710    } else if (kind == LS_xchg) {
2711      load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2712    } else if (kind == LS_cmpxchg) {
2713      load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2714    } else {
2715      ShouldNotReachHere();
2716    }
2717    break;
2718  case T_OBJECT:
2719    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2720    // could be delayed during Parse (for example, in adjust_map_after_if()).
2721    // Execute transformation here to avoid barrier generation in such case.
2722    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2723      newval = _gvn.makecon(TypePtr::NULL_PTR);
2724
2725    // Reference stores need a store barrier.
2726    pre_barrier(true /* do_load*/,
2727                control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2728                NULL /* pre_val*/,
2729                T_OBJECT);
2730#ifdef _LP64
2731    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2732      Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2733      if (kind == LS_xchg) {
2734        load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2735                                                              newval_enc, adr_type, value_type->make_narrowoop()));
2736      } else {
2737        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2738        Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2739        load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2740                                                                   newval_enc, oldval_enc));
2741      }
2742    } else
2743#endif
2744    {
2745      if (kind == LS_xchg) {
2746        load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2747      } else {
2748        assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2749        load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2750      }
2751    }
2752    post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2753    break;
2754  default:
2755    fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2756    break;
2757  }
2758
2759  // SCMemProjNodes represent the memory state of a LoadStore. Their
2760  // main role is to prevent LoadStore nodes from being optimized away
2761  // when their results aren't used.
2762  Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2763  set_memory(proj, alias_idx);
2764
2765  // Add the trailing membar surrounding the access
2766  insert_mem_bar(Op_MemBarCPUOrder);
2767  insert_mem_bar(Op_MemBarAcquire);
2768
2769#ifdef _LP64
2770  if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2771    load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->bottom_type()->make_ptr()));
2772  }
2773#endif
2774
2775  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2776  set_result(load_store);
2777  return true;
2778}
2779
2780//----------------------------inline_unsafe_ordered_store----------------------
2781// public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2782// public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2783// public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2784bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2785  // This is another variant of inline_unsafe_access, differing in
2786  // that it always issues store-store ("release") barrier and ensures
2787  // store-atomicity (which only matters for "long").
2788
2789  if (callee()->is_static())  return false;  // caller must have the capability!
2790
2791#ifndef PRODUCT
2792  {
2793    ResourceMark rm;
2794    // Check the signatures.
2795    ciSignature* sig = callee()->signature();
2796#ifdef ASSERT
2797    BasicType rtype = sig->return_type()->basic_type();
2798    assert(rtype == T_VOID, "must return void");
2799    assert(sig->count() == 3, "has 3 arguments");
2800    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2801    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2802#endif // ASSERT
2803  }
2804#endif //PRODUCT
2805
2806  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2807
2808  // Get arguments:
2809  Node* receiver = argument(0);  // type: oop
2810  Node* base     = argument(1);  // type: oop
2811  Node* offset   = argument(2);  // type: long
2812  Node* val      = argument(4);  // type: oop, int, or long
2813
2814  // Null check receiver.
2815  receiver = null_check(receiver);
2816  if (stopped()) {
2817    return true;
2818  }
2819
2820  // Build field offset expression.
2821  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2822  // 32-bit machines ignore the high half of long offsets
2823  offset = ConvL2X(offset);
2824  Node* adr = make_unsafe_address(base, offset);
2825  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2826  const Type *value_type = Type::get_const_basic_type(type);
2827  Compile::AliasType* alias_type = C->alias_type(adr_type);
2828
2829  insert_mem_bar(Op_MemBarRelease);
2830  insert_mem_bar(Op_MemBarCPUOrder);
2831  // Ensure that the store is atomic for longs:
2832  const bool require_atomic_access = true;
2833  Node* store;
2834  if (type == T_OBJECT) // reference stores need a store barrier.
2835    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2836  else {
2837    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2838  }
2839  insert_mem_bar(Op_MemBarCPUOrder);
2840  return true;
2841}
2842
2843//----------------------------inline_unsafe_allocate---------------------------
2844// public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2845bool LibraryCallKit::inline_unsafe_allocate() {
2846  if (callee()->is_static())  return false;  // caller must have the capability!
2847
2848  null_check_receiver();  // null-check, then ignore
2849  Node* cls = null_check(argument(1));
2850  if (stopped())  return true;
2851
2852  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2853  kls = null_check(kls);
2854  if (stopped())  return true;  // argument was like int.class
2855
2856  // Note:  The argument might still be an illegal value like
2857  // Serializable.class or Object[].class.   The runtime will handle it.
2858  // But we must make an explicit check for initialization.
2859  Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2860  // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2861  // can generate code to load it as unsigned byte.
2862  Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2863  Node* bits = intcon(InstanceKlass::fully_initialized);
2864  Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2865  // The 'test' is non-zero if we need to take a slow path.
2866
2867  Node* obj = new_instance(kls, test);
2868  set_result(obj);
2869  return true;
2870}
2871
2872#ifdef TRACE_HAVE_INTRINSICS
2873/*
2874 * oop -> myklass
2875 * myklass->trace_id |= USED
2876 * return myklass->trace_id & ~0x3
2877 */
2878bool LibraryCallKit::inline_native_classID() {
2879  null_check_receiver();  // null-check, then ignore
2880  Node* cls = null_check(argument(1), T_OBJECT);
2881  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2882  kls = null_check(kls, T_OBJECT);
2883  ByteSize offset = TRACE_ID_OFFSET;
2884  Node* insp = basic_plus_adr(kls, in_bytes(offset));
2885  Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2886  Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2887  Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2888  Node* clsused = longcon(0x01l); // set the class bit
2889  Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2890
2891  const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2892  store_to_memory(control(), insp, orl, T_LONG, adr_type);
2893  set_result(andl);
2894  return true;
2895}
2896
2897bool LibraryCallKit::inline_native_threadID() {
2898  Node* tls_ptr = NULL;
2899  Node* cur_thr = generate_current_thread(tls_ptr);
2900  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2901  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2902  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2903
2904  Node* threadid = NULL;
2905  size_t thread_id_size = OSThread::thread_id_size();
2906  if (thread_id_size == (size_t) BytesPerLong) {
2907    threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2908  } else if (thread_id_size == (size_t) BytesPerInt) {
2909    threadid = make_load(control(), p, TypeInt::INT, T_INT);
2910  } else {
2911    ShouldNotReachHere();
2912  }
2913  set_result(threadid);
2914  return true;
2915}
2916#endif
2917
2918//------------------------inline_native_time_funcs--------------
2919// inline code for System.currentTimeMillis() and System.nanoTime()
2920// these have the same type and signature
2921bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2922  const TypeFunc* tf = OptoRuntime::void_long_Type();
2923  const TypePtr* no_memory_effects = NULL;
2924  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2925  Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2926#ifdef ASSERT
2927  Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2928  assert(value_top == top(), "second value must be top");
2929#endif
2930  set_result(value);
2931  return true;
2932}
2933
2934//------------------------inline_native_currentThread------------------
2935bool LibraryCallKit::inline_native_currentThread() {
2936  Node* junk = NULL;
2937  set_result(generate_current_thread(junk));
2938  return true;
2939}
2940
2941//------------------------inline_native_isInterrupted------------------
2942// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2943bool LibraryCallKit::inline_native_isInterrupted() {
2944  // Add a fast path to t.isInterrupted(clear_int):
2945  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2946  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2947  // So, in the common case that the interrupt bit is false,
2948  // we avoid making a call into the VM.  Even if the interrupt bit
2949  // is true, if the clear_int argument is false, we avoid the VM call.
2950  // However, if the receiver is not currentThread, we must call the VM,
2951  // because there must be some locking done around the operation.
2952
2953  // We only go to the fast case code if we pass two guards.
2954  // Paths which do not pass are accumulated in the slow_region.
2955  RegionNode* slow_region = new (C) RegionNode(1);
2956  record_for_igvn(slow_region);
2957  RegionNode* result_rgn = new (C) RegionNode(1+3); // fast1, fast2, slow
2958  PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
2959  enum { no_int_result_path   = 1,
2960         no_clear_result_path = 2,
2961         slow_result_path     = 3
2962  };
2963
2964  // (a) Receiving thread must be the current thread.
2965  Node* rec_thr = argument(0);
2966  Node* tls_ptr = NULL;
2967  Node* cur_thr = generate_current_thread(tls_ptr);
2968  Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
2969  Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
2970
2971  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2972  if (!known_current_thread)
2973    generate_slow_guard(bol_thr, slow_region);
2974
2975  // (b) Interrupt bit on TLS must be false.
2976  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2977  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2978  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2979  // Set the control input on the field _interrupted read to prevent it floating up.
2980  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2981  Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
2982  Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
2983
2984  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2985
2986  // First fast path:  if (!TLS._interrupted) return false;
2987  Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
2988  result_rgn->init_req(no_int_result_path, false_bit);
2989  result_val->init_req(no_int_result_path, intcon(0));
2990
2991  // drop through to next case
2992  set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
2993
2994  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2995  Node* clr_arg = argument(1);
2996  Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
2997  Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
2998  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2999
3000  // Second fast path:  ... else if (!clear_int) return true;
3001  Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3002  result_rgn->init_req(no_clear_result_path, false_arg);
3003  result_val->init_req(no_clear_result_path, intcon(1));
3004
3005  // drop through to next case
3006  set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3007
3008  // (d) Otherwise, go to the slow path.
3009  slow_region->add_req(control());
3010  set_control( _gvn.transform(slow_region) );
3011
3012  if (stopped()) {
3013    // There is no slow path.
3014    result_rgn->init_req(slow_result_path, top());
3015    result_val->init_req(slow_result_path, top());
3016  } else {
3017    // non-virtual because it is a private non-static
3018    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3019
3020    Node* slow_val = set_results_for_java_call(slow_call);
3021    // this->control() comes from set_results_for_java_call
3022
3023    // If we know that the result of the slow call will be true, tell the optimizer!
3024    if (known_current_thread)  slow_val = intcon(1);
3025
3026    Node* fast_io  = slow_call->in(TypeFunc::I_O);
3027    Node* fast_mem = slow_call->in(TypeFunc::Memory);
3028    // These two phis are pre-filled with copies of of the fast IO and Memory
3029    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3030    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3031
3032    result_rgn->init_req(slow_result_path, control());
3033    io_phi    ->init_req(slow_result_path, i_o());
3034    mem_phi   ->init_req(slow_result_path, reset_memory());
3035    result_val->init_req(slow_result_path, slow_val);
3036
3037    set_all_memory( _gvn.transform(mem_phi) );
3038    set_i_o(        _gvn.transform(io_phi) );
3039  }
3040
3041  C->set_has_split_ifs(true); // Has chance for split-if optimization
3042  set_result(result_rgn, result_val);
3043  return true;
3044}
3045
3046//---------------------------load_mirror_from_klass----------------------------
3047// Given a klass oop, load its java mirror (a java.lang.Class oop).
3048Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3049  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3050  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3051}
3052
3053//-----------------------load_klass_from_mirror_common-------------------------
3054// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3055// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3056// and branch to the given path on the region.
3057// If never_see_null, take an uncommon trap on null, so we can optimistically
3058// compile for the non-null case.
3059// If the region is NULL, force never_see_null = true.
3060Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3061                                                    bool never_see_null,
3062                                                    RegionNode* region,
3063                                                    int null_path,
3064                                                    int offset) {
3065  if (region == NULL)  never_see_null = true;
3066  Node* p = basic_plus_adr(mirror, offset);
3067  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3068  Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3069  Node* null_ctl = top();
3070  kls = null_check_oop(kls, &null_ctl, never_see_null);
3071  if (region != NULL) {
3072    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3073    region->init_req(null_path, null_ctl);
3074  } else {
3075    assert(null_ctl == top(), "no loose ends");
3076  }
3077  return kls;
3078}
3079
3080//--------------------(inline_native_Class_query helpers)---------------------
3081// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3082// Fall through if (mods & mask) == bits, take the guard otherwise.
3083Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3084  // Branch around if the given klass has the given modifier bit set.
3085  // Like generate_guard, adds a new path onto the region.
3086  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3087  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3088  Node* mask = intcon(modifier_mask);
3089  Node* bits = intcon(modifier_bits);
3090  Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3091  Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3092  Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3093  return generate_fair_guard(bol, region);
3094}
3095Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3096  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3097}
3098
3099//-------------------------inline_native_Class_query-------------------
3100bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3101  const Type* return_type = TypeInt::BOOL;
3102  Node* prim_return_value = top();  // what happens if it's a primitive class?
3103  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3104  bool expect_prim = false;     // most of these guys expect to work on refs
3105
3106  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3107
3108  Node* mirror = argument(0);
3109  Node* obj    = top();
3110
3111  switch (id) {
3112  case vmIntrinsics::_isInstance:
3113    // nothing is an instance of a primitive type
3114    prim_return_value = intcon(0);
3115    obj = argument(1);
3116    break;
3117  case vmIntrinsics::_getModifiers:
3118    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3119    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3120    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3121    break;
3122  case vmIntrinsics::_isInterface:
3123    prim_return_value = intcon(0);
3124    break;
3125  case vmIntrinsics::_isArray:
3126    prim_return_value = intcon(0);
3127    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3128    break;
3129  case vmIntrinsics::_isPrimitive:
3130    prim_return_value = intcon(1);
3131    expect_prim = true;  // obviously
3132    break;
3133  case vmIntrinsics::_getSuperclass:
3134    prim_return_value = null();
3135    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3136    break;
3137  case vmIntrinsics::_getComponentType:
3138    prim_return_value = null();
3139    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3140    break;
3141  case vmIntrinsics::_getClassAccessFlags:
3142    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3143    return_type = TypeInt::INT;  // not bool!  6297094
3144    break;
3145  default:
3146    fatal_unexpected_iid(id);
3147    break;
3148  }
3149
3150  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3151  if (mirror_con == NULL)  return false;  // cannot happen?
3152
3153#ifndef PRODUCT
3154  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3155    ciType* k = mirror_con->java_mirror_type();
3156    if (k) {
3157      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3158      k->print_name();
3159      tty->cr();
3160    }
3161  }
3162#endif
3163
3164  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3165  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3166  record_for_igvn(region);
3167  PhiNode* phi = new (C) PhiNode(region, return_type);
3168
3169  // The mirror will never be null of Reflection.getClassAccessFlags, however
3170  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3171  // if it is. See bug 4774291.
3172
3173  // For Reflection.getClassAccessFlags(), the null check occurs in
3174  // the wrong place; see inline_unsafe_access(), above, for a similar
3175  // situation.
3176  mirror = null_check(mirror);
3177  // If mirror or obj is dead, only null-path is taken.
3178  if (stopped())  return true;
3179
3180  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3181
3182  // Now load the mirror's klass metaobject, and null-check it.
3183  // Side-effects region with the control path if the klass is null.
3184  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3185  // If kls is null, we have a primitive mirror.
3186  phi->init_req(_prim_path, prim_return_value);
3187  if (stopped()) { set_result(region, phi); return true; }
3188
3189  Node* p;  // handy temp
3190  Node* null_ctl;
3191
3192  // Now that we have the non-null klass, we can perform the real query.
3193  // For constant classes, the query will constant-fold in LoadNode::Value.
3194  Node* query_value = top();
3195  switch (id) {
3196  case vmIntrinsics::_isInstance:
3197    // nothing is an instance of a primitive type
3198    query_value = gen_instanceof(obj, kls);
3199    break;
3200
3201  case vmIntrinsics::_getModifiers:
3202    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3203    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3204    break;
3205
3206  case vmIntrinsics::_isInterface:
3207    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3208    if (generate_interface_guard(kls, region) != NULL)
3209      // A guard was added.  If the guard is taken, it was an interface.
3210      phi->add_req(intcon(1));
3211    // If we fall through, it's a plain class.
3212    query_value = intcon(0);
3213    break;
3214
3215  case vmIntrinsics::_isArray:
3216    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3217    if (generate_array_guard(kls, region) != NULL)
3218      // A guard was added.  If the guard is taken, it was an array.
3219      phi->add_req(intcon(1));
3220    // If we fall through, it's a plain class.
3221    query_value = intcon(0);
3222    break;
3223
3224  case vmIntrinsics::_isPrimitive:
3225    query_value = intcon(0); // "normal" path produces false
3226    break;
3227
3228  case vmIntrinsics::_getSuperclass:
3229    // The rules here are somewhat unfortunate, but we can still do better
3230    // with random logic than with a JNI call.
3231    // Interfaces store null or Object as _super, but must report null.
3232    // Arrays store an intermediate super as _super, but must report Object.
3233    // Other types can report the actual _super.
3234    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3235    if (generate_interface_guard(kls, region) != NULL)
3236      // A guard was added.  If the guard is taken, it was an interface.
3237      phi->add_req(null());
3238    if (generate_array_guard(kls, region) != NULL)
3239      // A guard was added.  If the guard is taken, it was an array.
3240      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3241    // If we fall through, it's a plain class.  Get its _super.
3242    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3243    kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3244    null_ctl = top();
3245    kls = null_check_oop(kls, &null_ctl);
3246    if (null_ctl != top()) {
3247      // If the guard is taken, Object.superClass is null (both klass and mirror).
3248      region->add_req(null_ctl);
3249      phi   ->add_req(null());
3250    }
3251    if (!stopped()) {
3252      query_value = load_mirror_from_klass(kls);
3253    }
3254    break;
3255
3256  case vmIntrinsics::_getComponentType:
3257    if (generate_array_guard(kls, region) != NULL) {
3258      // Be sure to pin the oop load to the guard edge just created:
3259      Node* is_array_ctrl = region->in(region->req()-1);
3260      Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3261      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3262      phi->add_req(cmo);
3263    }
3264    query_value = null();  // non-array case is null
3265    break;
3266
3267  case vmIntrinsics::_getClassAccessFlags:
3268    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3269    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3270    break;
3271
3272  default:
3273    fatal_unexpected_iid(id);
3274    break;
3275  }
3276
3277  // Fall-through is the normal case of a query to a real class.
3278  phi->init_req(1, query_value);
3279  region->init_req(1, control());
3280
3281  C->set_has_split_ifs(true); // Has chance for split-if optimization
3282  set_result(region, phi);
3283  return true;
3284}
3285
3286//--------------------------inline_native_subtype_check------------------------
3287// This intrinsic takes the JNI calls out of the heart of
3288// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3289bool LibraryCallKit::inline_native_subtype_check() {
3290  // Pull both arguments off the stack.
3291  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3292  args[0] = argument(0);
3293  args[1] = argument(1);
3294  Node* klasses[2];             // corresponding Klasses: superk, subk
3295  klasses[0] = klasses[1] = top();
3296
3297  enum {
3298    // A full decision tree on {superc is prim, subc is prim}:
3299    _prim_0_path = 1,           // {P,N} => false
3300                                // {P,P} & superc!=subc => false
3301    _prim_same_path,            // {P,P} & superc==subc => true
3302    _prim_1_path,               // {N,P} => false
3303    _ref_subtype_path,          // {N,N} & subtype check wins => true
3304    _both_ref_path,             // {N,N} & subtype check loses => false
3305    PATH_LIMIT
3306  };
3307
3308  RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3309  Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3310  record_for_igvn(region);
3311
3312  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3313  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3314  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3315
3316  // First null-check both mirrors and load each mirror's klass metaobject.
3317  int which_arg;
3318  for (which_arg = 0; which_arg <= 1; which_arg++) {
3319    Node* arg = args[which_arg];
3320    arg = null_check(arg);
3321    if (stopped())  break;
3322    args[which_arg] = _gvn.transform(arg);
3323
3324    Node* p = basic_plus_adr(arg, class_klass_offset);
3325    Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3326    klasses[which_arg] = _gvn.transform(kls);
3327  }
3328
3329  // Having loaded both klasses, test each for null.
3330  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3331  for (which_arg = 0; which_arg <= 1; which_arg++) {
3332    Node* kls = klasses[which_arg];
3333    Node* null_ctl = top();
3334    kls = null_check_oop(kls, &null_ctl, never_see_null);
3335    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3336    region->init_req(prim_path, null_ctl);
3337    if (stopped())  break;
3338    klasses[which_arg] = kls;
3339  }
3340
3341  if (!stopped()) {
3342    // now we have two reference types, in klasses[0..1]
3343    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3344    Node* superk = klasses[0];  // the receiver
3345    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3346    // now we have a successful reference subtype check
3347    region->set_req(_ref_subtype_path, control());
3348  }
3349
3350  // If both operands are primitive (both klasses null), then
3351  // we must return true when they are identical primitives.
3352  // It is convenient to test this after the first null klass check.
3353  set_control(region->in(_prim_0_path)); // go back to first null check
3354  if (!stopped()) {
3355    // Since superc is primitive, make a guard for the superc==subc case.
3356    Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3357    Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3358    generate_guard(bol_eq, region, PROB_FAIR);
3359    if (region->req() == PATH_LIMIT+1) {
3360      // A guard was added.  If the added guard is taken, superc==subc.
3361      region->swap_edges(PATH_LIMIT, _prim_same_path);
3362      region->del_req(PATH_LIMIT);
3363    }
3364    region->set_req(_prim_0_path, control()); // Not equal after all.
3365  }
3366
3367  // these are the only paths that produce 'true':
3368  phi->set_req(_prim_same_path,   intcon(1));
3369  phi->set_req(_ref_subtype_path, intcon(1));
3370
3371  // pull together the cases:
3372  assert(region->req() == PATH_LIMIT, "sane region");
3373  for (uint i = 1; i < region->req(); i++) {
3374    Node* ctl = region->in(i);
3375    if (ctl == NULL || ctl == top()) {
3376      region->set_req(i, top());
3377      phi   ->set_req(i, top());
3378    } else if (phi->in(i) == NULL) {
3379      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3380    }
3381  }
3382
3383  set_control(_gvn.transform(region));
3384  set_result(_gvn.transform(phi));
3385  return true;
3386}
3387
3388//---------------------generate_array_guard_common------------------------
3389Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3390                                                  bool obj_array, bool not_array) {
3391  // If obj_array/non_array==false/false:
3392  // Branch around if the given klass is in fact an array (either obj or prim).
3393  // If obj_array/non_array==false/true:
3394  // Branch around if the given klass is not an array klass of any kind.
3395  // If obj_array/non_array==true/true:
3396  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3397  // If obj_array/non_array==true/false:
3398  // Branch around if the kls is an oop array (Object[] or subtype)
3399  //
3400  // Like generate_guard, adds a new path onto the region.
3401  jint  layout_con = 0;
3402  Node* layout_val = get_layout_helper(kls, layout_con);
3403  if (layout_val == NULL) {
3404    bool query = (obj_array
3405                  ? Klass::layout_helper_is_objArray(layout_con)
3406                  : Klass::layout_helper_is_array(layout_con));
3407    if (query == not_array) {
3408      return NULL;                       // never a branch
3409    } else {                             // always a branch
3410      Node* always_branch = control();
3411      if (region != NULL)
3412        region->add_req(always_branch);
3413      set_control(top());
3414      return always_branch;
3415    }
3416  }
3417  // Now test the correct condition.
3418  jint  nval = (obj_array
3419                ? ((jint)Klass::_lh_array_tag_type_value
3420                   <<    Klass::_lh_array_tag_shift)
3421                : Klass::_lh_neutral_value);
3422  Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3423  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3424  // invert the test if we are looking for a non-array
3425  if (not_array)  btest = BoolTest(btest).negate();
3426  Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3427  return generate_fair_guard(bol, region);
3428}
3429
3430
3431//-----------------------inline_native_newArray--------------------------
3432// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3433bool LibraryCallKit::inline_native_newArray() {
3434  Node* mirror    = argument(0);
3435  Node* count_val = argument(1);
3436
3437  mirror = null_check(mirror);
3438  // If mirror or obj is dead, only null-path is taken.
3439  if (stopped())  return true;
3440
3441  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3442  RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3443  PhiNode*    result_val = new(C) PhiNode(result_reg,
3444                                          TypeInstPtr::NOTNULL);
3445  PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3446  PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3447                                          TypePtr::BOTTOM);
3448
3449  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3450  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3451                                                  result_reg, _slow_path);
3452  Node* normal_ctl   = control();
3453  Node* no_array_ctl = result_reg->in(_slow_path);
3454
3455  // Generate code for the slow case.  We make a call to newArray().
3456  set_control(no_array_ctl);
3457  if (!stopped()) {
3458    // Either the input type is void.class, or else the
3459    // array klass has not yet been cached.  Either the
3460    // ensuing call will throw an exception, or else it
3461    // will cache the array klass for next time.
3462    PreserveJVMState pjvms(this);
3463    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3464    Node* slow_result = set_results_for_java_call(slow_call);
3465    // this->control() comes from set_results_for_java_call
3466    result_reg->set_req(_slow_path, control());
3467    result_val->set_req(_slow_path, slow_result);
3468    result_io ->set_req(_slow_path, i_o());
3469    result_mem->set_req(_slow_path, reset_memory());
3470  }
3471
3472  set_control(normal_ctl);
3473  if (!stopped()) {
3474    // Normal case:  The array type has been cached in the java.lang.Class.
3475    // The following call works fine even if the array type is polymorphic.
3476    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3477    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3478    result_reg->init_req(_normal_path, control());
3479    result_val->init_req(_normal_path, obj);
3480    result_io ->init_req(_normal_path, i_o());
3481    result_mem->init_req(_normal_path, reset_memory());
3482  }
3483
3484  // Return the combined state.
3485  set_i_o(        _gvn.transform(result_io)  );
3486  set_all_memory( _gvn.transform(result_mem) );
3487
3488  C->set_has_split_ifs(true); // Has chance for split-if optimization
3489  set_result(result_reg, result_val);
3490  return true;
3491}
3492
3493//----------------------inline_native_getLength--------------------------
3494// public static native int java.lang.reflect.Array.getLength(Object array);
3495bool LibraryCallKit::inline_native_getLength() {
3496  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3497
3498  Node* array = null_check(argument(0));
3499  // If array is dead, only null-path is taken.
3500  if (stopped())  return true;
3501
3502  // Deoptimize if it is a non-array.
3503  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3504
3505  if (non_array != NULL) {
3506    PreserveJVMState pjvms(this);
3507    set_control(non_array);
3508    uncommon_trap(Deoptimization::Reason_intrinsic,
3509                  Deoptimization::Action_maybe_recompile);
3510  }
3511
3512  // If control is dead, only non-array-path is taken.
3513  if (stopped())  return true;
3514
3515  // The works fine even if the array type is polymorphic.
3516  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3517  Node* result = load_array_length(array);
3518
3519  C->set_has_split_ifs(true);  // Has chance for split-if optimization
3520  set_result(result);
3521  return true;
3522}
3523
3524//------------------------inline_array_copyOf----------------------------
3525// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3526// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3527bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3528  return false;
3529  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3530
3531  // Get the arguments.
3532  Node* original          = argument(0);
3533  Node* start             = is_copyOfRange? argument(1): intcon(0);
3534  Node* end               = is_copyOfRange? argument(2): argument(1);
3535  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3536
3537  Node* newcopy;
3538
3539  // Set the original stack and the reexecute bit for the interpreter to reexecute
3540  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3541  { PreserveReexecuteState preexecs(this);
3542    jvms()->set_should_reexecute(true);
3543
3544    array_type_mirror = null_check(array_type_mirror);
3545    original          = null_check(original);
3546
3547    // Check if a null path was taken unconditionally.
3548    if (stopped())  return true;
3549
3550    Node* orig_length = load_array_length(original);
3551
3552    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3553    klass_node = null_check(klass_node);
3554
3555    RegionNode* bailout = new (C) RegionNode(1);
3556    record_for_igvn(bailout);
3557
3558    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3559    // Bail out if that is so.
3560    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3561    if (not_objArray != NULL) {
3562      // Improve the klass node's type from the new optimistic assumption:
3563      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3564      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3565      Node* cast = new (C) CastPPNode(klass_node, akls);
3566      cast->init_req(0, control());
3567      klass_node = _gvn.transform(cast);
3568    }
3569
3570    // Bail out if either start or end is negative.
3571    generate_negative_guard(start, bailout, &start);
3572    generate_negative_guard(end,   bailout, &end);
3573
3574    Node* length = end;
3575    if (_gvn.type(start) != TypeInt::ZERO) {
3576      length = _gvn.transform(new (C) SubINode(end, start));
3577    }
3578
3579    // Bail out if length is negative.
3580    // Without this the new_array would throw
3581    // NegativeArraySizeException but IllegalArgumentException is what
3582    // should be thrown
3583    generate_negative_guard(length, bailout, &length);
3584
3585    if (bailout->req() > 1) {
3586      PreserveJVMState pjvms(this);
3587      set_control(_gvn.transform(bailout));
3588      uncommon_trap(Deoptimization::Reason_intrinsic,
3589                    Deoptimization::Action_maybe_recompile);
3590    }
3591
3592    if (!stopped()) {
3593      // How many elements will we copy from the original?
3594      // The answer is MinI(orig_length - start, length).
3595      Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3596      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3597
3598      newcopy = new_array(klass_node, length, 0);  // no argments to push
3599
3600      // Generate a direct call to the right arraycopy function(s).
3601      // We know the copy is disjoint but we might not know if the
3602      // oop stores need checking.
3603      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3604      // This will fail a store-check if x contains any non-nulls.
3605      bool disjoint_bases = true;
3606      // if start > orig_length then the length of the copy may be
3607      // negative.
3608      bool length_never_negative = !is_copyOfRange;
3609      generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3610                         original, start, newcopy, intcon(0), moved,
3611                         disjoint_bases, length_never_negative);
3612    }
3613  } // original reexecute is set back here
3614
3615  C->set_has_split_ifs(true); // Has chance for split-if optimization
3616  if (!stopped()) {
3617    set_result(newcopy);
3618  }
3619  return true;
3620}
3621
3622
3623//----------------------generate_virtual_guard---------------------------
3624// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3625Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3626                                             RegionNode* slow_region) {
3627  ciMethod* method = callee();
3628  int vtable_index = method->vtable_index();
3629  // Get the Method* out of the appropriate vtable entry.
3630  int entry_offset  = (InstanceKlass::vtable_start_offset() +
3631                     vtable_index*vtableEntry::size()) * wordSize +
3632                     vtableEntry::method_offset_in_bytes();
3633  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3634  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
3635
3636  // Compare the target method with the expected method (e.g., Object.hashCode).
3637  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3638
3639  Node* native_call = makecon(native_call_addr);
3640  Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3641  Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3642
3643  return generate_slow_guard(test_native, slow_region);
3644}
3645
3646//-----------------------generate_method_call----------------------------
3647// Use generate_method_call to make a slow-call to the real
3648// method if the fast path fails.  An alternative would be to
3649// use a stub like OptoRuntime::slow_arraycopy_Java.
3650// This only works for expanding the current library call,
3651// not another intrinsic.  (E.g., don't use this for making an
3652// arraycopy call inside of the copyOf intrinsic.)
3653CallJavaNode*
3654LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3655  // When compiling the intrinsic method itself, do not use this technique.
3656  guarantee(callee() != C->method(), "cannot make slow-call to self");
3657
3658  ciMethod* method = callee();
3659  // ensure the JVMS we have will be correct for this call
3660  guarantee(method_id == method->intrinsic_id(), "must match");
3661
3662  const TypeFunc* tf = TypeFunc::make(method);
3663  CallJavaNode* slow_call;
3664  if (is_static) {
3665    assert(!is_virtual, "");
3666    slow_call = new(C) CallStaticJavaNode(tf,
3667                           SharedRuntime::get_resolve_static_call_stub(),
3668                           method, bci());
3669  } else if (is_virtual) {
3670    null_check_receiver();
3671    int vtable_index = Method::invalid_vtable_index;
3672    if (UseInlineCaches) {
3673      // Suppress the vtable call
3674    } else {
3675      // hashCode and clone are not a miranda methods,
3676      // so the vtable index is fixed.
3677      // No need to use the linkResolver to get it.
3678       vtable_index = method->vtable_index();
3679    }
3680    slow_call = new(C) CallDynamicJavaNode(tf,
3681                          SharedRuntime::get_resolve_virtual_call_stub(),
3682                          method, vtable_index, bci());
3683  } else {  // neither virtual nor static:  opt_virtual
3684    null_check_receiver();
3685    slow_call = new(C) CallStaticJavaNode(tf,
3686                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
3687                                method, bci());
3688    slow_call->set_optimized_virtual(true);
3689  }
3690  set_arguments_for_java_call(slow_call);
3691  set_edges_for_java_call(slow_call);
3692  return slow_call;
3693}
3694
3695
3696//------------------------------inline_native_hashcode--------------------
3697// Build special case code for calls to hashCode on an object.
3698bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3699  assert(is_static == callee()->is_static(), "correct intrinsic selection");
3700  assert(!(is_virtual && is_static), "either virtual, special, or static");
3701
3702  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3703
3704  RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3705  PhiNode*    result_val = new(C) PhiNode(result_reg,
3706                                          TypeInt::INT);
3707  PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3708  PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3709                                          TypePtr::BOTTOM);
3710  Node* obj = NULL;
3711  if (!is_static) {
3712    // Check for hashing null object
3713    obj = null_check_receiver();
3714    if (stopped())  return true;        // unconditionally null
3715    result_reg->init_req(_null_path, top());
3716    result_val->init_req(_null_path, top());
3717  } else {
3718    // Do a null check, and return zero if null.
3719    // System.identityHashCode(null) == 0
3720    obj = argument(0);
3721    Node* null_ctl = top();
3722    obj = null_check_oop(obj, &null_ctl);
3723    result_reg->init_req(_null_path, null_ctl);
3724    result_val->init_req(_null_path, _gvn.intcon(0));
3725  }
3726
3727  // Unconditionally null?  Then return right away.
3728  if (stopped()) {
3729    set_control( result_reg->in(_null_path));
3730    if (!stopped())
3731      set_result(result_val->in(_null_path));
3732    return true;
3733  }
3734
3735  // After null check, get the object's klass.
3736  Node* obj_klass = load_object_klass(obj);
3737
3738  // This call may be virtual (invokevirtual) or bound (invokespecial).
3739  // For each case we generate slightly different code.
3740
3741  // We only go to the fast case code if we pass a number of guards.  The
3742  // paths which do not pass are accumulated in the slow_region.
3743  RegionNode* slow_region = new (C) RegionNode(1);
3744  record_for_igvn(slow_region);
3745
3746  // If this is a virtual call, we generate a funny guard.  We pull out
3747  // the vtable entry corresponding to hashCode() from the target object.
3748  // If the target method which we are calling happens to be the native
3749  // Object hashCode() method, we pass the guard.  We do not need this
3750  // guard for non-virtual calls -- the caller is known to be the native
3751  // Object hashCode().
3752  if (is_virtual) {
3753    generate_virtual_guard(obj_klass, slow_region);
3754  }
3755
3756  // Get the header out of the object, use LoadMarkNode when available
3757  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3758  Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3759
3760  // Test the header to see if it is unlocked.
3761  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3762  Node *lmasked_header = _gvn.transform( new (C) AndXNode(header, lock_mask) );
3763  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3764  Node *chk_unlocked   = _gvn.transform( new (C) CmpXNode( lmasked_header, unlocked_val));
3765  Node *test_unlocked  = _gvn.transform( new (C) BoolNode( chk_unlocked, BoolTest::ne) );
3766
3767  generate_slow_guard(test_unlocked, slow_region);
3768
3769  // Get the hash value and check to see that it has been properly assigned.
3770  // We depend on hash_mask being at most 32 bits and avoid the use of
3771  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3772  // vm: see markOop.hpp.
3773  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3774  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3775  Node *hshifted_header= _gvn.transform( new (C) URShiftXNode(header, hash_shift) );
3776  // This hack lets the hash bits live anywhere in the mark object now, as long
3777  // as the shift drops the relevant bits into the low 32 bits.  Note that
3778  // Java spec says that HashCode is an int so there's no point in capturing
3779  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3780  hshifted_header      = ConvX2I(hshifted_header);
3781  Node *hash_val       = _gvn.transform( new (C) AndINode(hshifted_header, hash_mask) );
3782
3783  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3784  Node *chk_assigned   = _gvn.transform( new (C) CmpINode( hash_val, no_hash_val));
3785  Node *test_assigned  = _gvn.transform( new (C) BoolNode( chk_assigned, BoolTest::eq) );
3786
3787  generate_slow_guard(test_assigned, slow_region);
3788
3789  Node* init_mem = reset_memory();
3790  // fill in the rest of the null path:
3791  result_io ->init_req(_null_path, i_o());
3792  result_mem->init_req(_null_path, init_mem);
3793
3794  result_val->init_req(_fast_path, hash_val);
3795  result_reg->init_req(_fast_path, control());
3796  result_io ->init_req(_fast_path, i_o());
3797  result_mem->init_req(_fast_path, init_mem);
3798
3799  // Generate code for the slow case.  We make a call to hashCode().
3800  set_control(_gvn.transform(slow_region));
3801  if (!stopped()) {
3802    // No need for PreserveJVMState, because we're using up the present state.
3803    set_all_memory(init_mem);
3804    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3805    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3806    Node* slow_result = set_results_for_java_call(slow_call);
3807    // this->control() comes from set_results_for_java_call
3808    result_reg->init_req(_slow_path, control());
3809    result_val->init_req(_slow_path, slow_result);
3810    result_io  ->set_req(_slow_path, i_o());
3811    result_mem ->set_req(_slow_path, reset_memory());
3812  }
3813
3814  // Return the combined state.
3815  set_i_o(        _gvn.transform(result_io)  );
3816  set_all_memory( _gvn.transform(result_mem) );
3817
3818  set_result(result_reg, result_val);
3819  return true;
3820}
3821
3822//---------------------------inline_native_getClass----------------------------
3823// public final native Class<?> java.lang.Object.getClass();
3824//
3825// Build special case code for calls to getClass on an object.
3826bool LibraryCallKit::inline_native_getClass() {
3827  Node* obj = null_check_receiver();
3828  if (stopped())  return true;
3829  set_result(load_mirror_from_klass(load_object_klass(obj)));
3830  return true;
3831}
3832
3833//-----------------inline_native_Reflection_getCallerClass---------------------
3834// public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
3835//
3836// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3837//
3838// NOTE that this code must perform the same logic as
3839// vframeStream::security_get_caller_frame in that it must skip
3840// Method.invoke() and auxiliary frames.
3841bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3842#ifndef PRODUCT
3843  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3844    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3845  }
3846#endif
3847
3848  Node* caller_depth_node = argument(0);
3849
3850  // The depth value must be a constant in order for the runtime call
3851  // to be eliminated.
3852  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3853  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3854#ifndef PRODUCT
3855    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3856      tty->print_cr("  Bailing out because caller depth was not a constant");
3857    }
3858#endif
3859    return false;
3860  }
3861  // Note that the JVM state at this point does not include the
3862  // getCallerClass() frame which we are trying to inline. The
3863  // semantics of getCallerClass(), however, are that the "first"
3864  // frame is the getCallerClass() frame, so we subtract one from the
3865  // requested depth before continuing. We don't inline requests of
3866  // getCallerClass(0).
3867  int caller_depth = caller_depth_type->get_con() - 1;
3868  if (caller_depth < 0) {
3869#ifndef PRODUCT
3870    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3871      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3872    }
3873#endif
3874    return false;
3875  }
3876
3877  if (!jvms()->has_method()) {
3878#ifndef PRODUCT
3879    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3880      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3881    }
3882#endif
3883    return false;
3884  }
3885  int _depth = jvms()->depth();  // cache call chain depth
3886
3887  // Walk back up the JVM state to find the caller at the required
3888  // depth. NOTE that this code must perform the same logic as
3889  // vframeStream::security_get_caller_frame in that it must skip
3890  // Method.invoke() and auxiliary frames. Note also that depth is
3891  // 1-based (1 is the bottom of the inlining).
3892  int inlining_depth = _depth;
3893  JVMState* caller_jvms = NULL;
3894
3895  if (inlining_depth > 0) {
3896    caller_jvms = jvms();
3897    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3898    do {
3899      // The following if-tests should be performed in this order
3900      if (is_method_invoke_or_aux_frame(caller_jvms)) {
3901        // Skip a Method.invoke() or auxiliary frame
3902      } else if (caller_depth > 0) {
3903        // Skip real frame
3904        --caller_depth;
3905      } else {
3906        // We're done: reached desired caller after skipping.
3907        break;
3908      }
3909      caller_jvms = caller_jvms->caller();
3910      --inlining_depth;
3911    } while (inlining_depth > 0);
3912  }
3913
3914  if (inlining_depth == 0) {
3915#ifndef PRODUCT
3916    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3917      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3918      tty->print_cr("  JVM state at this point:");
3919      for (int i = _depth; i >= 1; i--) {
3920        ciMethod* m = jvms()->of_depth(i)->method();
3921        tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3922      }
3923    }
3924#endif
3925    return false; // Reached end of inlining
3926  }
3927
3928  // Acquire method holder as java.lang.Class
3929  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3930  ciInstance*      caller_mirror = caller_klass->java_mirror();
3931
3932  // Push this as a constant
3933  set_result(makecon(TypeInstPtr::make(caller_mirror)));
3934
3935#ifndef PRODUCT
3936  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3937    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3938    tty->print_cr("  JVM state at this point:");
3939    for (int i = _depth; i >= 1; i--) {
3940      ciMethod* m = jvms()->of_depth(i)->method();
3941      tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3942    }
3943  }
3944#endif
3945  return true;
3946}
3947
3948// Helper routine for above
3949bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3950  ciMethod* method = jvms->method();
3951
3952  // Is this the Method.invoke method itself?
3953  if (method->intrinsic_id() == vmIntrinsics::_invoke)
3954    return true;
3955
3956  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3957  ciKlass* k = method->holder();
3958  if (k->is_instance_klass()) {
3959    ciInstanceKlass* ik = k->as_instance_klass();
3960    for (; ik != NULL; ik = ik->super()) {
3961      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3962          ik == env()->find_system_klass(ik->name())) {
3963        return true;
3964      }
3965    }
3966  }
3967  else if (method->is_method_handle_intrinsic() ||
3968           method->is_compiled_lambda_form()) {
3969    // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3970    return true;
3971  }
3972
3973  return false;
3974}
3975
3976bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3977  Node* arg = argument(0);
3978  Node* result;
3979
3980  switch (id) {
3981  case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
3982  case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
3983  case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
3984  case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
3985
3986  case vmIntrinsics::_doubleToLongBits: {
3987    // two paths (plus control) merge in a wood
3988    RegionNode *r = new (C) RegionNode(3);
3989    Node *phi = new (C) PhiNode(r, TypeLong::LONG);
3990
3991    Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
3992    // Build the boolean node
3993    Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
3994
3995    // Branch either way.
3996    // NaN case is less traveled, which makes all the difference.
3997    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3998    Node *opt_isnan = _gvn.transform(ifisnan);
3999    assert( opt_isnan->is_If(), "Expect an IfNode");
4000    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4001    Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4002
4003    set_control(iftrue);
4004
4005    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4006    Node *slow_result = longcon(nan_bits); // return NaN
4007    phi->init_req(1, _gvn.transform( slow_result ));
4008    r->init_req(1, iftrue);
4009
4010    // Else fall through
4011    Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4012    set_control(iffalse);
4013
4014    phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4015    r->init_req(2, iffalse);
4016
4017    // Post merge
4018    set_control(_gvn.transform(r));
4019    record_for_igvn(r);
4020
4021    C->set_has_split_ifs(true); // Has chance for split-if optimization
4022    result = phi;
4023    assert(result->bottom_type()->isa_long(), "must be");
4024    break;
4025  }
4026
4027  case vmIntrinsics::_floatToIntBits: {
4028    // two paths (plus control) merge in a wood
4029    RegionNode *r = new (C) RegionNode(3);
4030    Node *phi = new (C) PhiNode(r, TypeInt::INT);
4031
4032    Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4033    // Build the boolean node
4034    Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4035
4036    // Branch either way.
4037    // NaN case is less traveled, which makes all the difference.
4038    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4039    Node *opt_isnan = _gvn.transform(ifisnan);
4040    assert( opt_isnan->is_If(), "Expect an IfNode");
4041    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4042    Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4043
4044    set_control(iftrue);
4045
4046    static const jint nan_bits = 0x7fc00000;
4047    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4048    phi->init_req(1, _gvn.transform( slow_result ));
4049    r->init_req(1, iftrue);
4050
4051    // Else fall through
4052    Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4053    set_control(iffalse);
4054
4055    phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4056    r->init_req(2, iffalse);
4057
4058    // Post merge
4059    set_control(_gvn.transform(r));
4060    record_for_igvn(r);
4061
4062    C->set_has_split_ifs(true); // Has chance for split-if optimization
4063    result = phi;
4064    assert(result->bottom_type()->isa_int(), "must be");
4065    break;
4066  }
4067
4068  default:
4069    fatal_unexpected_iid(id);
4070    break;
4071  }
4072  set_result(_gvn.transform(result));
4073  return true;
4074}
4075
4076#ifdef _LP64
4077#define XTOP ,top() /*additional argument*/
4078#else  //_LP64
4079#define XTOP        /*no additional argument*/
4080#endif //_LP64
4081
4082//----------------------inline_unsafe_copyMemory-------------------------
4083// public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4084bool LibraryCallKit::inline_unsafe_copyMemory() {
4085  if (callee()->is_static())  return false;  // caller must have the capability!
4086  null_check_receiver();  // null-check receiver
4087  if (stopped())  return true;
4088
4089  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4090
4091  Node* src_ptr =         argument(1);   // type: oop
4092  Node* src_off = ConvL2X(argument(2));  // type: long
4093  Node* dst_ptr =         argument(4);   // type: oop
4094  Node* dst_off = ConvL2X(argument(5));  // type: long
4095  Node* size    = ConvL2X(argument(7));  // type: long
4096
4097  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4098         "fieldOffset must be byte-scaled");
4099
4100  Node* src = make_unsafe_address(src_ptr, src_off);
4101  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4102
4103  // Conservatively insert a memory barrier on all memory slices.
4104  // Do not let writes of the copy source or destination float below the copy.
4105  insert_mem_bar(Op_MemBarCPUOrder);
4106
4107  // Call it.  Note that the length argument is not scaled.
4108  make_runtime_call(RC_LEAF|RC_NO_FP,
4109                    OptoRuntime::fast_arraycopy_Type(),
4110                    StubRoutines::unsafe_arraycopy(),
4111                    "unsafe_arraycopy",
4112                    TypeRawPtr::BOTTOM,
4113                    src, dst, size XTOP);
4114
4115  // Do not let reads of the copy destination float above the copy.
4116  insert_mem_bar(Op_MemBarCPUOrder);
4117
4118  return true;
4119}
4120
4121//------------------------clone_coping-----------------------------------
4122// Helper function for inline_native_clone.
4123void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4124  assert(obj_size != NULL, "");
4125  Node* raw_obj = alloc_obj->in(1);
4126  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4127
4128  AllocateNode* alloc = NULL;
4129  if (ReduceBulkZeroing) {
4130    // We will be completely responsible for initializing this object -
4131    // mark Initialize node as complete.
4132    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4133    // The object was just allocated - there should be no any stores!
4134    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4135    // Mark as complete_with_arraycopy so that on AllocateNode
4136    // expansion, we know this AllocateNode is initialized by an array
4137    // copy and a StoreStore barrier exists after the array copy.
4138    alloc->initialization()->set_complete_with_arraycopy();
4139  }
4140
4141  // Copy the fastest available way.
4142  // TODO: generate fields copies for small objects instead.
4143  Node* src  = obj;
4144  Node* dest = alloc_obj;
4145  Node* size = _gvn.transform(obj_size);
4146
4147  // Exclude the header but include array length to copy by 8 bytes words.
4148  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4149  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4150                            instanceOopDesc::base_offset_in_bytes();
4151  // base_off:
4152  // 8  - 32-bit VM
4153  // 12 - 64-bit VM, compressed klass
4154  // 16 - 64-bit VM, normal klass
4155  if (base_off % BytesPerLong != 0) {
4156    assert(UseCompressedKlassPointers, "");
4157    if (is_array) {
4158      // Exclude length to copy by 8 bytes words.
4159      base_off += sizeof(int);
4160    } else {
4161      // Include klass to copy by 8 bytes words.
4162      base_off = instanceOopDesc::klass_offset_in_bytes();
4163    }
4164    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4165  }
4166  src  = basic_plus_adr(src,  base_off);
4167  dest = basic_plus_adr(dest, base_off);
4168
4169  // Compute the length also, if needed:
4170  Node* countx = size;
4171  countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4172  countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4173
4174  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4175  bool disjoint_bases = true;
4176  generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4177                               src, NULL, dest, NULL, countx,
4178                               /*dest_uninitialized*/true);
4179
4180  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4181  if (card_mark) {
4182    assert(!is_array, "");
4183    // Put in store barrier for any and all oops we are sticking
4184    // into this object.  (We could avoid this if we could prove
4185    // that the object type contains no oop fields at all.)
4186    Node* no_particular_value = NULL;
4187    Node* no_particular_field = NULL;
4188    int raw_adr_idx = Compile::AliasIdxRaw;
4189    post_barrier(control(),
4190                 memory(raw_adr_type),
4191                 alloc_obj,
4192                 no_particular_field,
4193                 raw_adr_idx,
4194                 no_particular_value,
4195                 T_OBJECT,
4196                 false);
4197  }
4198
4199  // Do not let reads from the cloned object float above the arraycopy.
4200  if (alloc != NULL) {
4201    // Do not let stores that initialize this object be reordered with
4202    // a subsequent store that would make this object accessible by
4203    // other threads.
4204    // Record what AllocateNode this StoreStore protects so that
4205    // escape analysis can go from the MemBarStoreStoreNode to the
4206    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4207    // based on the escape status of the AllocateNode.
4208    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4209  } else {
4210    insert_mem_bar(Op_MemBarCPUOrder);
4211  }
4212}
4213
4214//------------------------inline_native_clone----------------------------
4215// protected native Object java.lang.Object.clone();
4216//
4217// Here are the simple edge cases:
4218//  null receiver => normal trap
4219//  virtual and clone was overridden => slow path to out-of-line clone
4220//  not cloneable or finalizer => slow path to out-of-line Object.clone
4221//
4222// The general case has two steps, allocation and copying.
4223// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4224//
4225// Copying also has two cases, oop arrays and everything else.
4226// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4227// Everything else uses the tight inline loop supplied by CopyArrayNode.
4228//
4229// These steps fold up nicely if and when the cloned object's klass
4230// can be sharply typed as an object array, a type array, or an instance.
4231//
4232bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4233  PhiNode* result_val;
4234
4235  // Set the reexecute bit for the interpreter to reexecute
4236  // the bytecode that invokes Object.clone if deoptimization happens.
4237  { PreserveReexecuteState preexecs(this);
4238    jvms()->set_should_reexecute(true);
4239
4240    Node* obj = null_check_receiver();
4241    if (stopped())  return true;
4242
4243    Node* obj_klass = load_object_klass(obj);
4244    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4245    const TypeOopPtr*   toop   = ((tklass != NULL)
4246                                ? tklass->as_instance_type()
4247                                : TypeInstPtr::NOTNULL);
4248
4249    // Conservatively insert a memory barrier on all memory slices.
4250    // Do not let writes into the original float below the clone.
4251    insert_mem_bar(Op_MemBarCPUOrder);
4252
4253    // paths into result_reg:
4254    enum {
4255      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4256      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4257      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4258      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4259      PATH_LIMIT
4260    };
4261    RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4262    result_val             = new(C) PhiNode(result_reg,
4263                                            TypeInstPtr::NOTNULL);
4264    PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4265    PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4266                                            TypePtr::BOTTOM);
4267    record_for_igvn(result_reg);
4268
4269    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4270    int raw_adr_idx = Compile::AliasIdxRaw;
4271
4272    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4273    if (array_ctl != NULL) {
4274      // It's an array.
4275      PreserveJVMState pjvms(this);
4276      set_control(array_ctl);
4277      Node* obj_length = load_array_length(obj);
4278      Node* obj_size  = NULL;
4279      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4280
4281      if (!use_ReduceInitialCardMarks()) {
4282        // If it is an oop array, it requires very special treatment,
4283        // because card marking is required on each card of the array.
4284        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4285        if (is_obja != NULL) {
4286          PreserveJVMState pjvms2(this);
4287          set_control(is_obja);
4288          // Generate a direct call to the right arraycopy function(s).
4289          bool disjoint_bases = true;
4290          bool length_never_negative = true;
4291          generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4292                             obj, intcon(0), alloc_obj, intcon(0),
4293                             obj_length,
4294                             disjoint_bases, length_never_negative);
4295          result_reg->init_req(_objArray_path, control());
4296          result_val->init_req(_objArray_path, alloc_obj);
4297          result_i_o ->set_req(_objArray_path, i_o());
4298          result_mem ->set_req(_objArray_path, reset_memory());
4299        }
4300      }
4301      // Otherwise, there are no card marks to worry about.
4302      // (We can dispense with card marks if we know the allocation
4303      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4304      //  causes the non-eden paths to take compensating steps to
4305      //  simulate a fresh allocation, so that no further
4306      //  card marks are required in compiled code to initialize
4307      //  the object.)
4308
4309      if (!stopped()) {
4310        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4311
4312        // Present the results of the copy.
4313        result_reg->init_req(_array_path, control());
4314        result_val->init_req(_array_path, alloc_obj);
4315        result_i_o ->set_req(_array_path, i_o());
4316        result_mem ->set_req(_array_path, reset_memory());
4317      }
4318    }
4319
4320    // We only go to the instance fast case code if we pass a number of guards.
4321    // The paths which do not pass are accumulated in the slow_region.
4322    RegionNode* slow_region = new (C) RegionNode(1);
4323    record_for_igvn(slow_region);
4324    if (!stopped()) {
4325      // It's an instance (we did array above).  Make the slow-path tests.
4326      // If this is a virtual call, we generate a funny guard.  We grab
4327      // the vtable entry corresponding to clone() from the target object.
4328      // If the target method which we are calling happens to be the
4329      // Object clone() method, we pass the guard.  We do not need this
4330      // guard for non-virtual calls; the caller is known to be the native
4331      // Object clone().
4332      if (is_virtual) {
4333        generate_virtual_guard(obj_klass, slow_region);
4334      }
4335
4336      // The object must be cloneable and must not have a finalizer.
4337      // Both of these conditions may be checked in a single test.
4338      // We could optimize the cloneable test further, but we don't care.
4339      generate_access_flags_guard(obj_klass,
4340                                  // Test both conditions:
4341                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4342                                  // Must be cloneable but not finalizer:
4343                                  JVM_ACC_IS_CLONEABLE,
4344                                  slow_region);
4345    }
4346
4347    if (!stopped()) {
4348      // It's an instance, and it passed the slow-path tests.
4349      PreserveJVMState pjvms(this);
4350      Node* obj_size  = NULL;
4351      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4352
4353      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4354
4355      // Present the results of the slow call.
4356      result_reg->init_req(_instance_path, control());
4357      result_val->init_req(_instance_path, alloc_obj);
4358      result_i_o ->set_req(_instance_path, i_o());
4359      result_mem ->set_req(_instance_path, reset_memory());
4360    }
4361
4362    // Generate code for the slow case.  We make a call to clone().
4363    set_control(_gvn.transform(slow_region));
4364    if (!stopped()) {
4365      PreserveJVMState pjvms(this);
4366      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4367      Node* slow_result = set_results_for_java_call(slow_call);
4368      // this->control() comes from set_results_for_java_call
4369      result_reg->init_req(_slow_path, control());
4370      result_val->init_req(_slow_path, slow_result);
4371      result_i_o ->set_req(_slow_path, i_o());
4372      result_mem ->set_req(_slow_path, reset_memory());
4373    }
4374
4375    // Return the combined state.
4376    set_control(    _gvn.transform(result_reg) );
4377    set_i_o(        _gvn.transform(result_i_o) );
4378    set_all_memory( _gvn.transform(result_mem) );
4379  } // original reexecute is set back here
4380
4381  set_result(_gvn.transform(result_val));
4382  return true;
4383}
4384
4385//------------------------------basictype2arraycopy----------------------------
4386address LibraryCallKit::basictype2arraycopy(BasicType t,
4387                                            Node* src_offset,
4388                                            Node* dest_offset,
4389                                            bool disjoint_bases,
4390                                            const char* &name,
4391                                            bool dest_uninitialized) {
4392  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4393  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4394
4395  bool aligned = false;
4396  bool disjoint = disjoint_bases;
4397
4398  // if the offsets are the same, we can treat the memory regions as
4399  // disjoint, because either the memory regions are in different arrays,
4400  // or they are identical (which we can treat as disjoint.)  We can also
4401  // treat a copy with a destination index  less that the source index
4402  // as disjoint since a low->high copy will work correctly in this case.
4403  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4404      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4405    // both indices are constants
4406    int s_offs = src_offset_inttype->get_con();
4407    int d_offs = dest_offset_inttype->get_con();
4408    int element_size = type2aelembytes(t);
4409    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4410              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4411    if (s_offs >= d_offs)  disjoint = true;
4412  } else if (src_offset == dest_offset && src_offset != NULL) {
4413    // This can occur if the offsets are identical non-constants.
4414    disjoint = true;
4415  }
4416
4417  return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4418}
4419
4420
4421//------------------------------inline_arraycopy-----------------------
4422// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4423//                                                      Object dest, int destPos,
4424//                                                      int length);
4425bool LibraryCallKit::inline_arraycopy() {
4426  // Get the arguments.
4427  Node* src         = argument(0);  // type: oop
4428  Node* src_offset  = argument(1);  // type: int
4429  Node* dest        = argument(2);  // type: oop
4430  Node* dest_offset = argument(3);  // type: int
4431  Node* length      = argument(4);  // type: int
4432
4433  // Compile time checks.  If any of these checks cannot be verified at compile time,
4434  // we do not make a fast path for this call.  Instead, we let the call remain as it
4435  // is.  The checks we choose to mandate at compile time are:
4436  //
4437  // (1) src and dest are arrays.
4438  const Type* src_type  = src->Value(&_gvn);
4439  const Type* dest_type = dest->Value(&_gvn);
4440  const TypeAryPtr* top_src  = src_type->isa_aryptr();
4441  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4442  if (top_src  == NULL || top_src->klass()  == NULL ||
4443      top_dest == NULL || top_dest->klass() == NULL) {
4444    // Conservatively insert a memory barrier on all memory slices.
4445    // Do not let writes into the source float below the arraycopy.
4446    insert_mem_bar(Op_MemBarCPUOrder);
4447
4448    // Call StubRoutines::generic_arraycopy stub.
4449    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4450                       src, src_offset, dest, dest_offset, length);
4451
4452    // Do not let reads from the destination float above the arraycopy.
4453    // Since we cannot type the arrays, we don't know which slices
4454    // might be affected.  We could restrict this barrier only to those
4455    // memory slices which pertain to array elements--but don't bother.
4456    if (!InsertMemBarAfterArraycopy)
4457      // (If InsertMemBarAfterArraycopy, there is already one in place.)
4458      insert_mem_bar(Op_MemBarCPUOrder);
4459    return true;
4460  }
4461
4462  // (2) src and dest arrays must have elements of the same BasicType
4463  // Figure out the size and type of the elements we will be copying.
4464  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4465  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4466  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4467  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4468
4469  if (src_elem != dest_elem || dest_elem == T_VOID) {
4470    // The component types are not the same or are not recognized.  Punt.
4471    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4472    generate_slow_arraycopy(TypePtr::BOTTOM,
4473                            src, src_offset, dest, dest_offset, length,
4474                            /*dest_uninitialized*/false);
4475    return true;
4476  }
4477
4478  //---------------------------------------------------------------------------
4479  // We will make a fast path for this call to arraycopy.
4480
4481  // We have the following tests left to perform:
4482  //
4483  // (3) src and dest must not be null.
4484  // (4) src_offset must not be negative.
4485  // (5) dest_offset must not be negative.
4486  // (6) length must not be negative.
4487  // (7) src_offset + length must not exceed length of src.
4488  // (8) dest_offset + length must not exceed length of dest.
4489  // (9) each element of an oop array must be assignable
4490
4491  RegionNode* slow_region = new (C) RegionNode(1);
4492  record_for_igvn(slow_region);
4493
4494  // (3) operands must not be null
4495  // We currently perform our null checks with the null_check routine.
4496  // This means that the null exceptions will be reported in the caller
4497  // rather than (correctly) reported inside of the native arraycopy call.
4498  // This should be corrected, given time.  We do our null check with the
4499  // stack pointer restored.
4500  src  = null_check(src,  T_ARRAY);
4501  dest = null_check(dest, T_ARRAY);
4502
4503  // (4) src_offset must not be negative.
4504  generate_negative_guard(src_offset, slow_region);
4505
4506  // (5) dest_offset must not be negative.
4507  generate_negative_guard(dest_offset, slow_region);
4508
4509  // (6) length must not be negative (moved to generate_arraycopy()).
4510  // generate_negative_guard(length, slow_region);
4511
4512  // (7) src_offset + length must not exceed length of src.
4513  generate_limit_guard(src_offset, length,
4514                       load_array_length(src),
4515                       slow_region);
4516
4517  // (8) dest_offset + length must not exceed length of dest.
4518  generate_limit_guard(dest_offset, length,
4519                       load_array_length(dest),
4520                       slow_region);
4521
4522  // (9) each element of an oop array must be assignable
4523  // The generate_arraycopy subroutine checks this.
4524
4525  // This is where the memory effects are placed:
4526  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4527  generate_arraycopy(adr_type, dest_elem,
4528                     src, src_offset, dest, dest_offset, length,
4529                     false, false, slow_region);
4530
4531  return true;
4532}
4533
4534//-----------------------------generate_arraycopy----------------------
4535// Generate an optimized call to arraycopy.
4536// Caller must guard against non-arrays.
4537// Caller must determine a common array basic-type for both arrays.
4538// Caller must validate offsets against array bounds.
4539// The slow_region has already collected guard failure paths
4540// (such as out of bounds length or non-conformable array types).
4541// The generated code has this shape, in general:
4542//
4543//     if (length == 0)  return   // via zero_path
4544//     slowval = -1
4545//     if (types unknown) {
4546//       slowval = call generic copy loop
4547//       if (slowval == 0)  return  // via checked_path
4548//     } else if (indexes in bounds) {
4549//       if ((is object array) && !(array type check)) {
4550//         slowval = call checked copy loop
4551//         if (slowval == 0)  return  // via checked_path
4552//       } else {
4553//         call bulk copy loop
4554//         return  // via fast_path
4555//       }
4556//     }
4557//     // adjust params for remaining work:
4558//     if (slowval != -1) {
4559//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4560//     }
4561//   slow_region:
4562//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4563//     return  // via slow_call_path
4564//
4565// This routine is used from several intrinsics:  System.arraycopy,
4566// Object.clone (the array subcase), and Arrays.copyOf[Range].
4567//
4568void
4569LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4570                                   BasicType basic_elem_type,
4571                                   Node* src,  Node* src_offset,
4572                                   Node* dest, Node* dest_offset,
4573                                   Node* copy_length,
4574                                   bool disjoint_bases,
4575                                   bool length_never_negative,
4576                                   RegionNode* slow_region) {
4577
4578  if (slow_region == NULL) {
4579    slow_region = new(C) RegionNode(1);
4580    record_for_igvn(slow_region);
4581  }
4582
4583  Node* original_dest      = dest;
4584  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4585  bool  dest_uninitialized = false;
4586
4587  // See if this is the initialization of a newly-allocated array.
4588  // If so, we will take responsibility here for initializing it to zero.
4589  // (Note:  Because tightly_coupled_allocation performs checks on the
4590  // out-edges of the dest, we need to avoid making derived pointers
4591  // from it until we have checked its uses.)
4592  if (ReduceBulkZeroing
4593      && !ZeroTLAB              // pointless if already zeroed
4594      && basic_elem_type != T_CONFLICT // avoid corner case
4595      && !src->eqv_uncast(dest)
4596      && ((alloc = tightly_coupled_allocation(dest, slow_region))
4597          != NULL)
4598      && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4599      && alloc->maybe_set_complete(&_gvn)) {
4600    // "You break it, you buy it."
4601    InitializeNode* init = alloc->initialization();
4602    assert(init->is_complete(), "we just did this");
4603    init->set_complete_with_arraycopy();
4604    assert(dest->is_CheckCastPP(), "sanity");
4605    assert(dest->in(0)->in(0) == init, "dest pinned");
4606    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4607    // From this point on, every exit path is responsible for
4608    // initializing any non-copied parts of the object to zero.
4609    // Also, if this flag is set we make sure that arraycopy interacts properly
4610    // with G1, eliding pre-barriers. See CR 6627983.
4611    dest_uninitialized = true;
4612  } else {
4613    // No zeroing elimination here.
4614    alloc             = NULL;
4615    //original_dest   = dest;
4616    //dest_uninitialized = false;
4617  }
4618
4619  // Results are placed here:
4620  enum { fast_path        = 1,  // normal void-returning assembly stub
4621         checked_path     = 2,  // special assembly stub with cleanup
4622         slow_call_path   = 3,  // something went wrong; call the VM
4623         zero_path        = 4,  // bypass when length of copy is zero
4624         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4625         PATH_LIMIT       = 6
4626  };
4627  RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4628  PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4629  PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4630  record_for_igvn(result_region);
4631  _gvn.set_type_bottom(result_i_o);
4632  _gvn.set_type_bottom(result_memory);
4633  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4634
4635  // The slow_control path:
4636  Node* slow_control;
4637  Node* slow_i_o = i_o();
4638  Node* slow_mem = memory(adr_type);
4639  debug_only(slow_control = (Node*) badAddress);
4640
4641  // Checked control path:
4642  Node* checked_control = top();
4643  Node* checked_mem     = NULL;
4644  Node* checked_i_o     = NULL;
4645  Node* checked_value   = NULL;
4646
4647  if (basic_elem_type == T_CONFLICT) {
4648    assert(!dest_uninitialized, "");
4649    Node* cv = generate_generic_arraycopy(adr_type,
4650                                          src, src_offset, dest, dest_offset,
4651                                          copy_length, dest_uninitialized);
4652    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4653    checked_control = control();
4654    checked_i_o     = i_o();
4655    checked_mem     = memory(adr_type);
4656    checked_value   = cv;
4657    set_control(top());         // no fast path
4658  }
4659
4660  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4661  if (not_pos != NULL) {
4662    PreserveJVMState pjvms(this);
4663    set_control(not_pos);
4664
4665    // (6) length must not be negative.
4666    if (!length_never_negative) {
4667      generate_negative_guard(copy_length, slow_region);
4668    }
4669
4670    // copy_length is 0.
4671    if (!stopped() && dest_uninitialized) {
4672      Node* dest_length = alloc->in(AllocateNode::ALength);
4673      if (copy_length->eqv_uncast(dest_length)
4674          || _gvn.find_int_con(dest_length, 1) <= 0) {
4675        // There is no zeroing to do. No need for a secondary raw memory barrier.
4676      } else {
4677        // Clear the whole thing since there are no source elements to copy.
4678        generate_clear_array(adr_type, dest, basic_elem_type,
4679                             intcon(0), NULL,
4680                             alloc->in(AllocateNode::AllocSize));
4681        // Use a secondary InitializeNode as raw memory barrier.
4682        // Currently it is needed only on this path since other
4683        // paths have stub or runtime calls as raw memory barriers.
4684        InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4685                                                       Compile::AliasIdxRaw,
4686                                                       top())->as_Initialize();
4687        init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4688      }
4689    }
4690
4691    // Present the results of the fast call.
4692    result_region->init_req(zero_path, control());
4693    result_i_o   ->init_req(zero_path, i_o());
4694    result_memory->init_req(zero_path, memory(adr_type));
4695  }
4696
4697  if (!stopped() && dest_uninitialized) {
4698    // We have to initialize the *uncopied* part of the array to zero.
4699    // The copy destination is the slice dest[off..off+len].  The other slices
4700    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4701    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4702    Node* dest_length = alloc->in(AllocateNode::ALength);
4703    Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4704                                                          copy_length) );
4705
4706    // If there is a head section that needs zeroing, do it now.
4707    if (find_int_con(dest_offset, -1) != 0) {
4708      generate_clear_array(adr_type, dest, basic_elem_type,
4709                           intcon(0), dest_offset,
4710                           NULL);
4711    }
4712
4713    // Next, perform a dynamic check on the tail length.
4714    // It is often zero, and we can win big if we prove this.
4715    // There are two wins:  Avoid generating the ClearArray
4716    // with its attendant messy index arithmetic, and upgrade
4717    // the copy to a more hardware-friendly word size of 64 bits.
4718    Node* tail_ctl = NULL;
4719    if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4720      Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4721      Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4722      tail_ctl = generate_slow_guard(bol_lt, NULL);
4723      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4724    }
4725
4726    // At this point, let's assume there is no tail.
4727    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4728      // There is no tail.  Try an upgrade to a 64-bit copy.
4729      bool didit = false;
4730      { PreserveJVMState pjvms(this);
4731        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4732                                         src, src_offset, dest, dest_offset,
4733                                         dest_size, dest_uninitialized);
4734        if (didit) {
4735          // Present the results of the block-copying fast call.
4736          result_region->init_req(bcopy_path, control());
4737          result_i_o   ->init_req(bcopy_path, i_o());
4738          result_memory->init_req(bcopy_path, memory(adr_type));
4739        }
4740      }
4741      if (didit)
4742        set_control(top());     // no regular fast path
4743    }
4744
4745    // Clear the tail, if any.
4746    if (tail_ctl != NULL) {
4747      Node* notail_ctl = stopped() ? NULL : control();
4748      set_control(tail_ctl);
4749      if (notail_ctl == NULL) {
4750        generate_clear_array(adr_type, dest, basic_elem_type,
4751                             dest_tail, NULL,
4752                             dest_size);
4753      } else {
4754        // Make a local merge.
4755        Node* done_ctl = new(C) RegionNode(3);
4756        Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4757        done_ctl->init_req(1, notail_ctl);
4758        done_mem->init_req(1, memory(adr_type));
4759        generate_clear_array(adr_type, dest, basic_elem_type,
4760                             dest_tail, NULL,
4761                             dest_size);
4762        done_ctl->init_req(2, control());
4763        done_mem->init_req(2, memory(adr_type));
4764        set_control( _gvn.transform(done_ctl) );
4765        set_memory(  _gvn.transform(done_mem), adr_type );
4766      }
4767    }
4768  }
4769
4770  BasicType copy_type = basic_elem_type;
4771  assert(basic_elem_type != T_ARRAY, "caller must fix this");
4772  if (!stopped() && copy_type == T_OBJECT) {
4773    // If src and dest have compatible element types, we can copy bits.
4774    // Types S[] and D[] are compatible if D is a supertype of S.
4775    //
4776    // If they are not, we will use checked_oop_disjoint_arraycopy,
4777    // which performs a fast optimistic per-oop check, and backs off
4778    // further to JVM_ArrayCopy on the first per-oop check that fails.
4779    // (Actually, we don't move raw bits only; the GC requires card marks.)
4780
4781    // Get the Klass* for both src and dest
4782    Node* src_klass  = load_object_klass(src);
4783    Node* dest_klass = load_object_klass(dest);
4784
4785    // Generate the subtype check.
4786    // This might fold up statically, or then again it might not.
4787    //
4788    // Non-static example:  Copying List<String>.elements to a new String[].
4789    // The backing store for a List<String> is always an Object[],
4790    // but its elements are always type String, if the generic types
4791    // are correct at the source level.
4792    //
4793    // Test S[] against D[], not S against D, because (probably)
4794    // the secondary supertype cache is less busy for S[] than S.
4795    // This usually only matters when D is an interface.
4796    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4797    // Plug failing path into checked_oop_disjoint_arraycopy
4798    if (not_subtype_ctrl != top()) {
4799      PreserveJVMState pjvms(this);
4800      set_control(not_subtype_ctrl);
4801      // (At this point we can assume disjoint_bases, since types differ.)
4802      int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
4803      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4804      Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4805      Node* dest_elem_klass = _gvn.transform(n1);
4806      Node* cv = generate_checkcast_arraycopy(adr_type,
4807                                              dest_elem_klass,
4808                                              src, src_offset, dest, dest_offset,
4809                                              ConvI2X(copy_length), dest_uninitialized);
4810      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4811      checked_control = control();
4812      checked_i_o     = i_o();
4813      checked_mem     = memory(adr_type);
4814      checked_value   = cv;
4815    }
4816    // At this point we know we do not need type checks on oop stores.
4817
4818    // Let's see if we need card marks:
4819    if (alloc != NULL && use_ReduceInitialCardMarks()) {
4820      // If we do not need card marks, copy using the jint or jlong stub.
4821      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4822      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4823             "sizes agree");
4824    }
4825  }
4826
4827  if (!stopped()) {
4828    // Generate the fast path, if possible.
4829    PreserveJVMState pjvms(this);
4830    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4831                                 src, src_offset, dest, dest_offset,
4832                                 ConvI2X(copy_length), dest_uninitialized);
4833
4834    // Present the results of the fast call.
4835    result_region->init_req(fast_path, control());
4836    result_i_o   ->init_req(fast_path, i_o());
4837    result_memory->init_req(fast_path, memory(adr_type));
4838  }
4839
4840  // Here are all the slow paths up to this point, in one bundle:
4841  slow_control = top();
4842  if (slow_region != NULL)
4843    slow_control = _gvn.transform(slow_region);
4844  DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4845
4846  set_control(checked_control);
4847  if (!stopped()) {
4848    // Clean up after the checked call.
4849    // The returned value is either 0 or -1^K,
4850    // where K = number of partially transferred array elements.
4851    Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
4852    Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
4853    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4854
4855    // If it is 0, we are done, so transfer to the end.
4856    Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
4857    result_region->init_req(checked_path, checks_done);
4858    result_i_o   ->init_req(checked_path, checked_i_o);
4859    result_memory->init_req(checked_path, checked_mem);
4860
4861    // If it is not zero, merge into the slow call.
4862    set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
4863    RegionNode* slow_reg2 = new(C) RegionNode(3);
4864    PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4865    PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4866    record_for_igvn(slow_reg2);
4867    slow_reg2  ->init_req(1, slow_control);
4868    slow_i_o2  ->init_req(1, slow_i_o);
4869    slow_mem2  ->init_req(1, slow_mem);
4870    slow_reg2  ->init_req(2, control());
4871    slow_i_o2  ->init_req(2, checked_i_o);
4872    slow_mem2  ->init_req(2, checked_mem);
4873
4874    slow_control = _gvn.transform(slow_reg2);
4875    slow_i_o     = _gvn.transform(slow_i_o2);
4876    slow_mem     = _gvn.transform(slow_mem2);
4877
4878    if (alloc != NULL) {
4879      // We'll restart from the very beginning, after zeroing the whole thing.
4880      // This can cause double writes, but that's OK since dest is brand new.
4881      // So we ignore the low 31 bits of the value returned from the stub.
4882    } else {
4883      // We must continue the copy exactly where it failed, or else
4884      // another thread might see the wrong number of writes to dest.
4885      Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
4886      Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4887      slow_offset->init_req(1, intcon(0));
4888      slow_offset->init_req(2, checked_offset);
4889      slow_offset  = _gvn.transform(slow_offset);
4890
4891      // Adjust the arguments by the conditionally incoming offset.
4892      Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
4893      Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
4894      Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
4895
4896      // Tweak the node variables to adjust the code produced below:
4897      src_offset  = src_off_plus;
4898      dest_offset = dest_off_plus;
4899      copy_length = length_minus;
4900    }
4901  }
4902
4903  set_control(slow_control);
4904  if (!stopped()) {
4905    // Generate the slow path, if needed.
4906    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4907
4908    set_memory(slow_mem, adr_type);
4909    set_i_o(slow_i_o);
4910
4911    if (dest_uninitialized) {
4912      generate_clear_array(adr_type, dest, basic_elem_type,
4913                           intcon(0), NULL,
4914                           alloc->in(AllocateNode::AllocSize));
4915    }
4916
4917    generate_slow_arraycopy(adr_type,
4918                            src, src_offset, dest, dest_offset,
4919                            copy_length, /*dest_uninitialized*/false);
4920
4921    result_region->init_req(slow_call_path, control());
4922    result_i_o   ->init_req(slow_call_path, i_o());
4923    result_memory->init_req(slow_call_path, memory(adr_type));
4924  }
4925
4926  // Remove unused edges.
4927  for (uint i = 1; i < result_region->req(); i++) {
4928    if (result_region->in(i) == NULL)
4929      result_region->init_req(i, top());
4930  }
4931
4932  // Finished; return the combined state.
4933  set_control( _gvn.transform(result_region) );
4934  set_i_o(     _gvn.transform(result_i_o)    );
4935  set_memory(  _gvn.transform(result_memory), adr_type );
4936
4937  // The memory edges above are precise in order to model effects around
4938  // array copies accurately to allow value numbering of field loads around
4939  // arraycopy.  Such field loads, both before and after, are common in Java
4940  // collections and similar classes involving header/array data structures.
4941  //
4942  // But with low number of register or when some registers are used or killed
4943  // by arraycopy calls it causes registers spilling on stack. See 6544710.
4944  // The next memory barrier is added to avoid it. If the arraycopy can be
4945  // optimized away (which it can, sometimes) then we can manually remove
4946  // the membar also.
4947  //
4948  // Do not let reads from the cloned object float above the arraycopy.
4949  if (alloc != NULL) {
4950    // Do not let stores that initialize this object be reordered with
4951    // a subsequent store that would make this object accessible by
4952    // other threads.
4953    // Record what AllocateNode this StoreStore protects so that
4954    // escape analysis can go from the MemBarStoreStoreNode to the
4955    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4956    // based on the escape status of the AllocateNode.
4957    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4958  } else if (InsertMemBarAfterArraycopy)
4959    insert_mem_bar(Op_MemBarCPUOrder);
4960}
4961
4962
4963// Helper function which determines if an arraycopy immediately follows
4964// an allocation, with no intervening tests or other escapes for the object.
4965AllocateArrayNode*
4966LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4967                                           RegionNode* slow_region) {
4968  if (stopped())             return NULL;  // no fast path
4969  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4970
4971  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4972  if (alloc == NULL)  return NULL;
4973
4974  Node* rawmem = memory(Compile::AliasIdxRaw);
4975  // Is the allocation's memory state untouched?
4976  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4977    // Bail out if there have been raw-memory effects since the allocation.
4978    // (Example:  There might have been a call or safepoint.)
4979    return NULL;
4980  }
4981  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4982  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4983    return NULL;
4984  }
4985
4986  // There must be no unexpected observers of this allocation.
4987  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4988    Node* obs = ptr->fast_out(i);
4989    if (obs != this->map()) {
4990      return NULL;
4991    }
4992  }
4993
4994  // This arraycopy must unconditionally follow the allocation of the ptr.
4995  Node* alloc_ctl = ptr->in(0);
4996  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4997
4998  Node* ctl = control();
4999  while (ctl != alloc_ctl) {
5000    // There may be guards which feed into the slow_region.
5001    // Any other control flow means that we might not get a chance
5002    // to finish initializing the allocated object.
5003    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5004      IfNode* iff = ctl->in(0)->as_If();
5005      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5006      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5007      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5008        ctl = iff->in(0);       // This test feeds the known slow_region.
5009        continue;
5010      }
5011      // One more try:  Various low-level checks bottom out in
5012      // uncommon traps.  If the debug-info of the trap omits
5013      // any reference to the allocation, as we've already
5014      // observed, then there can be no objection to the trap.
5015      bool found_trap = false;
5016      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5017        Node* obs = not_ctl->fast_out(j);
5018        if (obs->in(0) == not_ctl && obs->is_Call() &&
5019            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5020          found_trap = true; break;
5021        }
5022      }
5023      if (found_trap) {
5024        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5025        continue;
5026      }
5027    }
5028    return NULL;
5029  }
5030
5031  // If we get this far, we have an allocation which immediately
5032  // precedes the arraycopy, and we can take over zeroing the new object.
5033  // The arraycopy will finish the initialization, and provide
5034  // a new control state to which we will anchor the destination pointer.
5035
5036  return alloc;
5037}
5038
5039// Helper for initialization of arrays, creating a ClearArray.
5040// It writes zero bits in [start..end), within the body of an array object.
5041// The memory effects are all chained onto the 'adr_type' alias category.
5042//
5043// Since the object is otherwise uninitialized, we are free
5044// to put a little "slop" around the edges of the cleared area,
5045// as long as it does not go back into the array's header,
5046// or beyond the array end within the heap.
5047//
5048// The lower edge can be rounded down to the nearest jint and the
5049// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5050//
5051// Arguments:
5052//   adr_type           memory slice where writes are generated
5053//   dest               oop of the destination array
5054//   basic_elem_type    element type of the destination
5055//   slice_idx          array index of first element to store
5056//   slice_len          number of elements to store (or NULL)
5057//   dest_size          total size in bytes of the array object
5058//
5059// Exactly one of slice_len or dest_size must be non-NULL.
5060// If dest_size is non-NULL, zeroing extends to the end of the object.
5061// If slice_len is non-NULL, the slice_idx value must be a constant.
5062void
5063LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5064                                     Node* dest,
5065                                     BasicType basic_elem_type,
5066                                     Node* slice_idx,
5067                                     Node* slice_len,
5068                                     Node* dest_size) {
5069  // one or the other but not both of slice_len and dest_size:
5070  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5071  if (slice_len == NULL)  slice_len = top();
5072  if (dest_size == NULL)  dest_size = top();
5073
5074  // operate on this memory slice:
5075  Node* mem = memory(adr_type); // memory slice to operate on
5076
5077  // scaling and rounding of indexes:
5078  int scale = exact_log2(type2aelembytes(basic_elem_type));
5079  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5080  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5081  int bump_bit  = (-1 << scale) & BytesPerInt;
5082
5083  // determine constant starts and ends
5084  const intptr_t BIG_NEG = -128;
5085  assert(BIG_NEG + 2*abase < 0, "neg enough");
5086  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5087  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5088  if (slice_len_con == 0) {
5089    return;                     // nothing to do here
5090  }
5091  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5092  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5093  if (slice_idx_con >= 0 && slice_len_con >= 0) {
5094    assert(end_con < 0, "not two cons");
5095    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5096                       BytesPerLong);
5097  }
5098
5099  if (start_con >= 0 && end_con >= 0) {
5100    // Constant start and end.  Simple.
5101    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5102                                       start_con, end_con, &_gvn);
5103  } else if (start_con >= 0 && dest_size != top()) {
5104    // Constant start, pre-rounded end after the tail of the array.
5105    Node* end = dest_size;
5106    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5107                                       start_con, end, &_gvn);
5108  } else if (start_con >= 0 && slice_len != top()) {
5109    // Constant start, non-constant end.  End needs rounding up.
5110    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5111    intptr_t end_base  = abase + (slice_idx_con << scale);
5112    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5113    Node*    end       = ConvI2X(slice_len);
5114    if (scale != 0)
5115      end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5116    end_base += end_round;
5117    end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5118    end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5119    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5120                                       start_con, end, &_gvn);
5121  } else if (start_con < 0 && dest_size != top()) {
5122    // Non-constant start, pre-rounded end after the tail of the array.
5123    // This is almost certainly a "round-to-end" operation.
5124    Node* start = slice_idx;
5125    start = ConvI2X(start);
5126    if (scale != 0)
5127      start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5128    start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5129    if ((bump_bit | clear_low) != 0) {
5130      int to_clear = (bump_bit | clear_low);
5131      // Align up mod 8, then store a jint zero unconditionally
5132      // just before the mod-8 boundary.
5133      if (((abase + bump_bit) & ~to_clear) - bump_bit
5134          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5135        bump_bit = 0;
5136        assert((abase & to_clear) == 0, "array base must be long-aligned");
5137      } else {
5138        // Bump 'start' up to (or past) the next jint boundary:
5139        start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5140        assert((abase & clear_low) == 0, "array base must be int-aligned");
5141      }
5142      // Round bumped 'start' down to jlong boundary in body of array.
5143      start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5144      if (bump_bit != 0) {
5145        // Store a zero to the immediately preceding jint:
5146        Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5147        Node* p1 = basic_plus_adr(dest, x1);
5148        mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5149        mem = _gvn.transform(mem);
5150      }
5151    }
5152    Node* end = dest_size; // pre-rounded
5153    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5154                                       start, end, &_gvn);
5155  } else {
5156    // Non-constant start, unrounded non-constant end.
5157    // (Nobody zeroes a random midsection of an array using this routine.)
5158    ShouldNotReachHere();       // fix caller
5159  }
5160
5161  // Done.
5162  set_memory(mem, adr_type);
5163}
5164
5165
5166bool
5167LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5168                                         BasicType basic_elem_type,
5169                                         AllocateNode* alloc,
5170                                         Node* src,  Node* src_offset,
5171                                         Node* dest, Node* dest_offset,
5172                                         Node* dest_size, bool dest_uninitialized) {
5173  // See if there is an advantage from block transfer.
5174  int scale = exact_log2(type2aelembytes(basic_elem_type));
5175  if (scale >= LogBytesPerLong)
5176    return false;               // it is already a block transfer
5177
5178  // Look at the alignment of the starting offsets.
5179  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5180
5181  intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5182  intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5183  if (src_off_con < 0 || dest_off_con < 0)
5184    // At present, we can only understand constants.
5185    return false;
5186
5187  intptr_t src_off  = abase + (src_off_con  << scale);
5188  intptr_t dest_off = abase + (dest_off_con << scale);
5189
5190  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5191    // Non-aligned; too bad.
5192    // One more chance:  Pick off an initial 32-bit word.
5193    // This is a common case, since abase can be odd mod 8.
5194    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5195        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5196      Node* sptr = basic_plus_adr(src,  src_off);
5197      Node* dptr = basic_plus_adr(dest, dest_off);
5198      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5199      store_to_memory(control(), dptr, sval, T_INT, adr_type);
5200      src_off += BytesPerInt;
5201      dest_off += BytesPerInt;
5202    } else {
5203      return false;
5204    }
5205  }
5206  assert(src_off % BytesPerLong == 0, "");
5207  assert(dest_off % BytesPerLong == 0, "");
5208
5209  // Do this copy by giant steps.
5210  Node* sptr  = basic_plus_adr(src,  src_off);
5211  Node* dptr  = basic_plus_adr(dest, dest_off);
5212  Node* countx = dest_size;
5213  countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5214  countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5215
5216  bool disjoint_bases = true;   // since alloc != NULL
5217  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5218                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5219
5220  return true;
5221}
5222
5223
5224// Helper function; generates code for the slow case.
5225// We make a call to a runtime method which emulates the native method,
5226// but without the native wrapper overhead.
5227void
5228LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5229                                        Node* src,  Node* src_offset,
5230                                        Node* dest, Node* dest_offset,
5231                                        Node* copy_length, bool dest_uninitialized) {
5232  assert(!dest_uninitialized, "Invariant");
5233  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5234                                 OptoRuntime::slow_arraycopy_Type(),
5235                                 OptoRuntime::slow_arraycopy_Java(),
5236                                 "slow_arraycopy", adr_type,
5237                                 src, src_offset, dest, dest_offset,
5238                                 copy_length);
5239
5240  // Handle exceptions thrown by this fellow:
5241  make_slow_call_ex(call, env()->Throwable_klass(), false);
5242}
5243
5244// Helper function; generates code for cases requiring runtime checks.
5245Node*
5246LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5247                                             Node* dest_elem_klass,
5248                                             Node* src,  Node* src_offset,
5249                                             Node* dest, Node* dest_offset,
5250                                             Node* copy_length, bool dest_uninitialized) {
5251  if (stopped())  return NULL;
5252
5253  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5254  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5255    return NULL;
5256  }
5257
5258  // Pick out the parameters required to perform a store-check
5259  // for the target array.  This is an optimistic check.  It will
5260  // look in each non-null element's class, at the desired klass's
5261  // super_check_offset, for the desired klass.
5262  int sco_offset = in_bytes(Klass::super_check_offset_offset());
5263  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5264  Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5265  Node* check_offset = ConvI2X(_gvn.transform(n3));
5266  Node* check_value  = dest_elem_klass;
5267
5268  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5269  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5270
5271  // (We know the arrays are never conjoint, because their types differ.)
5272  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5273                                 OptoRuntime::checkcast_arraycopy_Type(),
5274                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
5275                                 // five arguments, of which two are
5276                                 // intptr_t (jlong in LP64)
5277                                 src_start, dest_start,
5278                                 copy_length XTOP,
5279                                 check_offset XTOP,
5280                                 check_value);
5281
5282  return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5283}
5284
5285
5286// Helper function; generates code for cases requiring runtime checks.
5287Node*
5288LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5289                                           Node* src,  Node* src_offset,
5290                                           Node* dest, Node* dest_offset,
5291                                           Node* copy_length, bool dest_uninitialized) {
5292  assert(!dest_uninitialized, "Invariant");
5293  if (stopped())  return NULL;
5294  address copyfunc_addr = StubRoutines::generic_arraycopy();
5295  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5296    return NULL;
5297  }
5298
5299  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5300                    OptoRuntime::generic_arraycopy_Type(),
5301                    copyfunc_addr, "generic_arraycopy", adr_type,
5302                    src, src_offset, dest, dest_offset, copy_length);
5303
5304  return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5305}
5306
5307// Helper function; generates the fast out-of-line call to an arraycopy stub.
5308void
5309LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5310                                             BasicType basic_elem_type,
5311                                             bool disjoint_bases,
5312                                             Node* src,  Node* src_offset,
5313                                             Node* dest, Node* dest_offset,
5314                                             Node* copy_length, bool dest_uninitialized) {
5315  if (stopped())  return;               // nothing to do
5316
5317  Node* src_start  = src;
5318  Node* dest_start = dest;
5319  if (src_offset != NULL || dest_offset != NULL) {
5320    assert(src_offset != NULL && dest_offset != NULL, "");
5321    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5322    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5323  }
5324
5325  // Figure out which arraycopy runtime method to call.
5326  const char* copyfunc_name = "arraycopy";
5327  address     copyfunc_addr =
5328      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5329                          disjoint_bases, copyfunc_name, dest_uninitialized);
5330
5331  // Call it.  Note that the count_ix value is not scaled to a byte-size.
5332  make_runtime_call(RC_LEAF|RC_NO_FP,
5333                    OptoRuntime::fast_arraycopy_Type(),
5334                    copyfunc_addr, copyfunc_name, adr_type,
5335                    src_start, dest_start, copy_length XTOP);
5336}
5337
5338//----------------------------inline_reference_get----------------------------
5339// public T java.lang.ref.Reference.get();
5340bool LibraryCallKit::inline_reference_get() {
5341  const int referent_offset = java_lang_ref_Reference::referent_offset;
5342  guarantee(referent_offset > 0, "should have already been set");
5343
5344  // Get the argument:
5345  Node* reference_obj = null_check_receiver();
5346  if (stopped()) return true;
5347
5348  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5349
5350  ciInstanceKlass* klass = env()->Object_klass();
5351  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5352
5353  Node* no_ctrl = NULL;
5354  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5355
5356  // Use the pre-barrier to record the value in the referent field
5357  pre_barrier(false /* do_load */,
5358              control(),
5359              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5360              result /* pre_val */,
5361              T_OBJECT);
5362
5363  // Add memory barrier to prevent commoning reads from this field
5364  // across safepoint since GC can change its value.
5365  insert_mem_bar(Op_MemBarCPUOrder);
5366
5367  set_result(result);
5368  return true;
5369}
5370
5371
5372Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5373                                              bool is_exact=true, bool is_static=false) {
5374
5375  const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5376  assert(tinst != NULL, "obj is null");
5377  assert(tinst->klass()->is_loaded(), "obj is not loaded");
5378  assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5379
5380  ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5381                                                                          ciSymbol::make(fieldTypeString),
5382                                                                          is_static);
5383  if (field == NULL) return (Node *) NULL;
5384  assert (field != NULL, "undefined field");
5385
5386  // Next code  copied from Parse::do_get_xxx():
5387
5388  // Compute address and memory type.
5389  int offset  = field->offset_in_bytes();
5390  bool is_vol = field->is_volatile();
5391  ciType* field_klass = field->type();
5392  assert(field_klass->is_loaded(), "should be loaded");
5393  const TypePtr* adr_type = C->alias_type(field)->adr_type();
5394  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5395  BasicType bt = field->layout_type();
5396
5397  // Build the resultant type of the load
5398  const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5399
5400  // Build the load.
5401  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5402  return loadedField;
5403}
5404
5405
5406//------------------------------inline_aescrypt_Block-----------------------
5407bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5408  address stubAddr;
5409  const char *stubName;
5410  assert(UseAES, "need AES instruction support");
5411
5412  switch(id) {
5413  case vmIntrinsics::_aescrypt_encryptBlock:
5414    stubAddr = StubRoutines::aescrypt_encryptBlock();
5415    stubName = "aescrypt_encryptBlock";
5416    break;
5417  case vmIntrinsics::_aescrypt_decryptBlock:
5418    stubAddr = StubRoutines::aescrypt_decryptBlock();
5419    stubName = "aescrypt_decryptBlock";
5420    break;
5421  }
5422  if (stubAddr == NULL) return false;
5423
5424  Node* aescrypt_object = argument(0);
5425  Node* src             = argument(1);
5426  Node* src_offset      = argument(2);
5427  Node* dest            = argument(3);
5428  Node* dest_offset     = argument(4);
5429
5430  // (1) src and dest are arrays.
5431  const Type* src_type = src->Value(&_gvn);
5432  const Type* dest_type = dest->Value(&_gvn);
5433  const TypeAryPtr* top_src = src_type->isa_aryptr();
5434  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5435  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5436
5437  // for the quick and dirty code we will skip all the checks.
5438  // we are just trying to get the call to be generated.
5439  Node* src_start  = src;
5440  Node* dest_start = dest;
5441  if (src_offset != NULL || dest_offset != NULL) {
5442    assert(src_offset != NULL && dest_offset != NULL, "");
5443    src_start  = array_element_address(src,  src_offset,  T_BYTE);
5444    dest_start = array_element_address(dest, dest_offset, T_BYTE);
5445  }
5446
5447  // now need to get the start of its expanded key array
5448  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5449  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5450  if (k_start == NULL) return false;
5451
5452  // Call the stub.
5453  make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5454                    stubAddr, stubName, TypePtr::BOTTOM,
5455                    src_start, dest_start, k_start);
5456
5457  return true;
5458}
5459
5460//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5461bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5462  address stubAddr;
5463  const char *stubName;
5464
5465  assert(UseAES, "need AES instruction support");
5466
5467  switch(id) {
5468  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5469    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5470    stubName = "cipherBlockChaining_encryptAESCrypt";
5471    break;
5472  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5473    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5474    stubName = "cipherBlockChaining_decryptAESCrypt";
5475    break;
5476  }
5477  if (stubAddr == NULL) return false;
5478
5479  Node* cipherBlockChaining_object = argument(0);
5480  Node* src                        = argument(1);
5481  Node* src_offset                 = argument(2);
5482  Node* len                        = argument(3);
5483  Node* dest                       = argument(4);
5484  Node* dest_offset                = argument(5);
5485
5486  // (1) src and dest are arrays.
5487  const Type* src_type = src->Value(&_gvn);
5488  const Type* dest_type = dest->Value(&_gvn);
5489  const TypeAryPtr* top_src = src_type->isa_aryptr();
5490  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5491  assert (top_src  != NULL && top_src->klass()  != NULL
5492          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5493
5494  // checks are the responsibility of the caller
5495  Node* src_start  = src;
5496  Node* dest_start = dest;
5497  if (src_offset != NULL || dest_offset != NULL) {
5498    assert(src_offset != NULL && dest_offset != NULL, "");
5499    src_start  = array_element_address(src,  src_offset,  T_BYTE);
5500    dest_start = array_element_address(dest, dest_offset, T_BYTE);
5501  }
5502
5503  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5504  // (because of the predicated logic executed earlier).
5505  // so we cast it here safely.
5506  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5507
5508  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5509  if (embeddedCipherObj == NULL) return false;
5510
5511  // cast it to what we know it will be at runtime
5512  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5513  assert(tinst != NULL, "CBC obj is null");
5514  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5515  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5516  if (!klass_AESCrypt->is_loaded()) return false;
5517
5518  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5519  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5520  const TypeOopPtr* xtype = aklass->as_instance_type();
5521  Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5522  aescrypt_object = _gvn.transform(aescrypt_object);
5523
5524  // we need to get the start of the aescrypt_object's expanded key array
5525  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5526  if (k_start == NULL) return false;
5527
5528  // similarly, get the start address of the r vector
5529  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5530  if (objRvec == NULL) return false;
5531  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5532
5533  // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5534  make_runtime_call(RC_LEAF|RC_NO_FP,
5535                    OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5536                    stubAddr, stubName, TypePtr::BOTTOM,
5537                    src_start, dest_start, k_start, r_start, len);
5538
5539  // return is void so no result needs to be pushed
5540
5541  return true;
5542}
5543
5544//------------------------------get_key_start_from_aescrypt_object-----------------------
5545Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5546  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5547  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5548  if (objAESCryptKey == NULL) return (Node *) NULL;
5549
5550  // now have the array, need to get the start address of the K array
5551  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5552  return k_start;
5553}
5554
5555//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5556// Return node representing slow path of predicate check.
5557// the pseudo code we want to emulate with this predicate is:
5558// for encryption:
5559//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5560// for decryption:
5561//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5562//    note cipher==plain is more conservative than the original java code but that's OK
5563//
5564Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5565  // First, check receiver for NULL since it is virtual method.
5566  Node* objCBC = argument(0);
5567  objCBC = null_check(objCBC);
5568
5569  if (stopped()) return NULL; // Always NULL
5570
5571  // Load embeddedCipher field of CipherBlockChaining object.
5572  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5573
5574  // get AESCrypt klass for instanceOf check
5575  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5576  // will have same classloader as CipherBlockChaining object
5577  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5578  assert(tinst != NULL, "CBCobj is null");
5579  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5580
5581  // we want to do an instanceof comparison against the AESCrypt class
5582  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5583  if (!klass_AESCrypt->is_loaded()) {
5584    // if AESCrypt is not even loaded, we never take the intrinsic fast path
5585    Node* ctrl = control();
5586    set_control(top()); // no regular fast path
5587    return ctrl;
5588  }
5589  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5590
5591  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5592  Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5593  Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5594
5595  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5596
5597  // for encryption, we are done
5598  if (!decrypting)
5599    return instof_false;  // even if it is NULL
5600
5601  // for decryption, we need to add a further check to avoid
5602  // taking the intrinsic path when cipher and plain are the same
5603  // see the original java code for why.
5604  RegionNode* region = new(C) RegionNode(3);
5605  region->init_req(1, instof_false);
5606  Node* src = argument(1);
5607  Node* dest = argument(4);
5608  Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5609  Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5610  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5611  region->init_req(2, src_dest_conjoint);
5612
5613  record_for_igvn(region);
5614  return _gvn.transform(region);
5615}
5616