library_call.cpp revision 3086:b9bc6cae88f2
1/*
2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "classfile/vmSymbols.hpp"
28#include "compiler/compileBroker.hpp"
29#include "compiler/compileLog.hpp"
30#include "oops/objArrayKlass.hpp"
31#include "opto/addnode.hpp"
32#include "opto/callGenerator.hpp"
33#include "opto/cfgnode.hpp"
34#include "opto/idealKit.hpp"
35#include "opto/mulnode.hpp"
36#include "opto/parse.hpp"
37#include "opto/runtime.hpp"
38#include "opto/subnode.hpp"
39#include "prims/nativeLookup.hpp"
40#include "runtime/sharedRuntime.hpp"
41
42class LibraryIntrinsic : public InlineCallGenerator {
43  // Extend the set of intrinsics known to the runtime:
44 public:
45 private:
46  bool             _is_virtual;
47  vmIntrinsics::ID _intrinsic_id;
48
49 public:
50  LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
51    : InlineCallGenerator(m),
52      _is_virtual(is_virtual),
53      _intrinsic_id(id)
54  {
55  }
56  virtual bool is_intrinsic() const { return true; }
57  virtual bool is_virtual()   const { return _is_virtual; }
58  virtual JVMState* generate(JVMState* jvms);
59  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
60};
61
62
63// Local helper class for LibraryIntrinsic:
64class LibraryCallKit : public GraphKit {
65 private:
66  LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
67
68 public:
69  LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
70    : GraphKit(caller),
71      _intrinsic(intrinsic)
72  {
73  }
74
75  ciMethod*         caller()    const    { return jvms()->method(); }
76  int               bci()       const    { return jvms()->bci(); }
77  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
78  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
79  ciMethod*         callee()    const    { return _intrinsic->method(); }
80  ciSignature*      signature() const    { return callee()->signature(); }
81  int               arg_size()  const    { return callee()->arg_size(); }
82
83  bool try_to_inline();
84
85  // Helper functions to inline natives
86  void push_result(RegionNode* region, PhiNode* value);
87  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
88  Node* generate_slow_guard(Node* test, RegionNode* region);
89  Node* generate_fair_guard(Node* test, RegionNode* region);
90  Node* generate_negative_guard(Node* index, RegionNode* region,
91                                // resulting CastII of index:
92                                Node* *pos_index = NULL);
93  Node* generate_nonpositive_guard(Node* index, bool never_negative,
94                                   // resulting CastII of index:
95                                   Node* *pos_index = NULL);
96  Node* generate_limit_guard(Node* offset, Node* subseq_length,
97                             Node* array_length,
98                             RegionNode* region);
99  Node* generate_current_thread(Node* &tls_output);
100  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
101                              bool disjoint_bases, const char* &name, bool dest_uninitialized);
102  Node* load_mirror_from_klass(Node* klass);
103  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
104                                      int nargs,
105                                      RegionNode* region, int null_path,
106                                      int offset);
107  Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
108                               RegionNode* region, int null_path) {
109    int offset = java_lang_Class::klass_offset_in_bytes();
110    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
111                                         region, null_path,
112                                         offset);
113  }
114  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
115                                     int nargs,
116                                     RegionNode* region, int null_path) {
117    int offset = java_lang_Class::array_klass_offset_in_bytes();
118    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
119                                         region, null_path,
120                                         offset);
121  }
122  Node* generate_access_flags_guard(Node* kls,
123                                    int modifier_mask, int modifier_bits,
124                                    RegionNode* region);
125  Node* generate_interface_guard(Node* kls, RegionNode* region);
126  Node* generate_array_guard(Node* kls, RegionNode* region) {
127    return generate_array_guard_common(kls, region, false, false);
128  }
129  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
130    return generate_array_guard_common(kls, region, false, true);
131  }
132  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
133    return generate_array_guard_common(kls, region, true, false);
134  }
135  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
136    return generate_array_guard_common(kls, region, true, true);
137  }
138  Node* generate_array_guard_common(Node* kls, RegionNode* region,
139                                    bool obj_array, bool not_array);
140  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
141  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
142                                     bool is_virtual = false, bool is_static = false);
143  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
144    return generate_method_call(method_id, false, true);
145  }
146  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
147    return generate_method_call(method_id, true, false);
148  }
149
150  Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
151  bool inline_string_compareTo();
152  bool inline_string_indexOf();
153  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
154  bool inline_string_equals();
155  Node* pop_math_arg();
156  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
157  bool inline_math_native(vmIntrinsics::ID id);
158  bool inline_trig(vmIntrinsics::ID id);
159  bool inline_trans(vmIntrinsics::ID id);
160  bool inline_abs(vmIntrinsics::ID id);
161  bool inline_sqrt(vmIntrinsics::ID id);
162  bool inline_pow(vmIntrinsics::ID id);
163  bool inline_exp(vmIntrinsics::ID id);
164  bool inline_min_max(vmIntrinsics::ID id);
165  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
166  // This returns Type::AnyPtr, RawPtr, or OopPtr.
167  int classify_unsafe_addr(Node* &base, Node* &offset);
168  Node* make_unsafe_address(Node* base, Node* offset);
169  // Helper for inline_unsafe_access.
170  // Generates the guards that check whether the result of
171  // Unsafe.getObject should be recorded in an SATB log buffer.
172  void insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val);
173  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
174  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
175  bool inline_unsafe_allocate();
176  bool inline_unsafe_copyMemory();
177  bool inline_native_currentThread();
178  bool inline_native_time_funcs(bool isNano);
179  bool inline_native_isInterrupted();
180  bool inline_native_Class_query(vmIntrinsics::ID id);
181  bool inline_native_subtype_check();
182
183  bool inline_native_newArray();
184  bool inline_native_getLength();
185  bool inline_array_copyOf(bool is_copyOfRange);
186  bool inline_array_equals();
187  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
188  bool inline_native_clone(bool is_virtual);
189  bool inline_native_Reflection_getCallerClass();
190  bool inline_native_AtomicLong_get();
191  bool inline_native_AtomicLong_attemptUpdate();
192  bool is_method_invoke_or_aux_frame(JVMState* jvms);
193  // Helper function for inlining native object hash method
194  bool inline_native_hashcode(bool is_virtual, bool is_static);
195  bool inline_native_getClass();
196
197  // Helper functions for inlining arraycopy
198  bool inline_arraycopy();
199  void generate_arraycopy(const TypePtr* adr_type,
200                          BasicType basic_elem_type,
201                          Node* src,  Node* src_offset,
202                          Node* dest, Node* dest_offset,
203                          Node* copy_length,
204                          bool disjoint_bases = false,
205                          bool length_never_negative = false,
206                          RegionNode* slow_region = NULL);
207  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
208                                                RegionNode* slow_region);
209  void generate_clear_array(const TypePtr* adr_type,
210                            Node* dest,
211                            BasicType basic_elem_type,
212                            Node* slice_off,
213                            Node* slice_len,
214                            Node* slice_end);
215  bool generate_block_arraycopy(const TypePtr* adr_type,
216                                BasicType basic_elem_type,
217                                AllocateNode* alloc,
218                                Node* src,  Node* src_offset,
219                                Node* dest, Node* dest_offset,
220                                Node* dest_size, bool dest_uninitialized);
221  void generate_slow_arraycopy(const TypePtr* adr_type,
222                               Node* src,  Node* src_offset,
223                               Node* dest, Node* dest_offset,
224                               Node* copy_length, bool dest_uninitialized);
225  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
226                                     Node* dest_elem_klass,
227                                     Node* src,  Node* src_offset,
228                                     Node* dest, Node* dest_offset,
229                                     Node* copy_length, bool dest_uninitialized);
230  Node* generate_generic_arraycopy(const TypePtr* adr_type,
231                                   Node* src,  Node* src_offset,
232                                   Node* dest, Node* dest_offset,
233                                   Node* copy_length, bool dest_uninitialized);
234  void generate_unchecked_arraycopy(const TypePtr* adr_type,
235                                    BasicType basic_elem_type,
236                                    bool disjoint_bases,
237                                    Node* src,  Node* src_offset,
238                                    Node* dest, Node* dest_offset,
239                                    Node* copy_length, bool dest_uninitialized);
240  bool inline_unsafe_CAS(BasicType type);
241  bool inline_unsafe_ordered_store(BasicType type);
242  bool inline_fp_conversions(vmIntrinsics::ID id);
243  bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
244  bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
245  bool inline_bitCount(vmIntrinsics::ID id);
246  bool inline_reverseBytes(vmIntrinsics::ID id);
247
248  bool inline_reference_get();
249};
250
251
252//---------------------------make_vm_intrinsic----------------------------
253CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
254  vmIntrinsics::ID id = m->intrinsic_id();
255  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
256
257  if (DisableIntrinsic[0] != '\0'
258      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
259    // disabled by a user request on the command line:
260    // example: -XX:DisableIntrinsic=_hashCode,_getClass
261    return NULL;
262  }
263
264  if (!m->is_loaded()) {
265    // do not attempt to inline unloaded methods
266    return NULL;
267  }
268
269  // Only a few intrinsics implement a virtual dispatch.
270  // They are expensive calls which are also frequently overridden.
271  if (is_virtual) {
272    switch (id) {
273    case vmIntrinsics::_hashCode:
274    case vmIntrinsics::_clone:
275      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
276      break;
277    default:
278      return NULL;
279    }
280  }
281
282  // -XX:-InlineNatives disables nearly all intrinsics:
283  if (!InlineNatives) {
284    switch (id) {
285    case vmIntrinsics::_indexOf:
286    case vmIntrinsics::_compareTo:
287    case vmIntrinsics::_equals:
288    case vmIntrinsics::_equalsC:
289      break;  // InlineNatives does not control String.compareTo
290    default:
291      return NULL;
292    }
293  }
294
295  switch (id) {
296  case vmIntrinsics::_compareTo:
297    if (!SpecialStringCompareTo)  return NULL;
298    break;
299  case vmIntrinsics::_indexOf:
300    if (!SpecialStringIndexOf)  return NULL;
301    break;
302  case vmIntrinsics::_equals:
303    if (!SpecialStringEquals)  return NULL;
304    break;
305  case vmIntrinsics::_equalsC:
306    if (!SpecialArraysEquals)  return NULL;
307    break;
308  case vmIntrinsics::_arraycopy:
309    if (!InlineArrayCopy)  return NULL;
310    break;
311  case vmIntrinsics::_copyMemory:
312    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
313    if (!InlineArrayCopy)  return NULL;
314    break;
315  case vmIntrinsics::_hashCode:
316    if (!InlineObjectHash)  return NULL;
317    break;
318  case vmIntrinsics::_clone:
319  case vmIntrinsics::_copyOf:
320  case vmIntrinsics::_copyOfRange:
321    if (!InlineObjectCopy)  return NULL;
322    // These also use the arraycopy intrinsic mechanism:
323    if (!InlineArrayCopy)  return NULL;
324    break;
325  case vmIntrinsics::_checkIndex:
326    // We do not intrinsify this.  The optimizer does fine with it.
327    return NULL;
328
329  case vmIntrinsics::_get_AtomicLong:
330  case vmIntrinsics::_attemptUpdate:
331    if (!InlineAtomicLong)  return NULL;
332    break;
333
334  case vmIntrinsics::_getCallerClass:
335    if (!UseNewReflection)  return NULL;
336    if (!InlineReflectionGetCallerClass)  return NULL;
337    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
338    break;
339
340  case vmIntrinsics::_bitCount_i:
341  case vmIntrinsics::_bitCount_l:
342    if (!UsePopCountInstruction)  return NULL;
343    break;
344
345  case vmIntrinsics::_Reference_get:
346    // It is only when G1 is enabled that we absolutely
347    // need to use the intrinsic version of Reference.get()
348    // so that the value in the referent field, if necessary,
349    // can be registered by the pre-barrier code.
350    if (!UseG1GC) return NULL;
351    break;
352
353 default:
354    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
355    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
356    break;
357  }
358
359  // -XX:-InlineClassNatives disables natives from the Class class.
360  // The flag applies to all reflective calls, notably Array.newArray
361  // (visible to Java programmers as Array.newInstance).
362  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
363      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
364    if (!InlineClassNatives)  return NULL;
365  }
366
367  // -XX:-InlineThreadNatives disables natives from the Thread class.
368  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
369    if (!InlineThreadNatives)  return NULL;
370  }
371
372  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
373  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
374      m->holder()->name() == ciSymbol::java_lang_Float() ||
375      m->holder()->name() == ciSymbol::java_lang_Double()) {
376    if (!InlineMathNatives)  return NULL;
377  }
378
379  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
380  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
381    if (!InlineUnsafeOps)  return NULL;
382  }
383
384  return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
385}
386
387//----------------------register_library_intrinsics-----------------------
388// Initialize this file's data structures, for each Compile instance.
389void Compile::register_library_intrinsics() {
390  // Nothing to do here.
391}
392
393JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
394  LibraryCallKit kit(jvms, this);
395  Compile* C = kit.C;
396  int nodes = C->unique();
397#ifndef PRODUCT
398  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
399    char buf[1000];
400    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
401    tty->print_cr("Intrinsic %s", str);
402  }
403#endif
404
405  if (kit.try_to_inline()) {
406    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
407      CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
408    }
409    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
410    if (C->log()) {
411      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
412                     vmIntrinsics::name_at(intrinsic_id()),
413                     (is_virtual() ? " virtual='1'" : ""),
414                     C->unique() - nodes);
415    }
416    return kit.transfer_exceptions_into_jvms();
417  }
418
419  if (PrintIntrinsics) {
420    if (jvms->has_method()) {
421      // Not a root compile.
422      tty->print("Did not inline intrinsic %s%s at bci:%d in",
423                 vmIntrinsics::name_at(intrinsic_id()),
424                 (is_virtual() ? " (virtual)" : ""), kit.bci());
425      kit.caller()->print_short_name(tty);
426      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
427    } else {
428      // Root compile
429      tty->print("Did not generate intrinsic %s%s at bci:%d in",
430               vmIntrinsics::name_at(intrinsic_id()),
431               (is_virtual() ? " (virtual)" : ""), kit.bci());
432    }
433  }
434  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
435  return NULL;
436}
437
438bool LibraryCallKit::try_to_inline() {
439  // Handle symbolic names for otherwise undistinguished boolean switches:
440  const bool is_store       = true;
441  const bool is_native_ptr  = true;
442  const bool is_static      = true;
443
444  if (!jvms()->has_method()) {
445    // Root JVMState has a null method.
446    assert(map()->memory()->Opcode() == Op_Parm, "");
447    // Insert the memory aliasing node
448    set_all_memory(reset_memory());
449  }
450  assert(merged_memory(), "");
451
452  switch (intrinsic_id()) {
453  case vmIntrinsics::_hashCode:
454    return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
455  case vmIntrinsics::_identityHashCode:
456    return inline_native_hashcode(/*!virtual*/ false, is_static);
457  case vmIntrinsics::_getClass:
458    return inline_native_getClass();
459
460  case vmIntrinsics::_dsin:
461  case vmIntrinsics::_dcos:
462  case vmIntrinsics::_dtan:
463  case vmIntrinsics::_dabs:
464  case vmIntrinsics::_datan2:
465  case vmIntrinsics::_dsqrt:
466  case vmIntrinsics::_dexp:
467  case vmIntrinsics::_dlog:
468  case vmIntrinsics::_dlog10:
469  case vmIntrinsics::_dpow:
470    return inline_math_native(intrinsic_id());
471
472  case vmIntrinsics::_min:
473  case vmIntrinsics::_max:
474    return inline_min_max(intrinsic_id());
475
476  case vmIntrinsics::_arraycopy:
477    return inline_arraycopy();
478
479  case vmIntrinsics::_compareTo:
480    return inline_string_compareTo();
481  case vmIntrinsics::_indexOf:
482    return inline_string_indexOf();
483  case vmIntrinsics::_equals:
484    return inline_string_equals();
485
486  case vmIntrinsics::_getObject:
487    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
488  case vmIntrinsics::_getBoolean:
489    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
490  case vmIntrinsics::_getByte:
491    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
492  case vmIntrinsics::_getShort:
493    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
494  case vmIntrinsics::_getChar:
495    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
496  case vmIntrinsics::_getInt:
497    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
498  case vmIntrinsics::_getLong:
499    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
500  case vmIntrinsics::_getFloat:
501    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
502  case vmIntrinsics::_getDouble:
503    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
504
505  case vmIntrinsics::_putObject:
506    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
507  case vmIntrinsics::_putBoolean:
508    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
509  case vmIntrinsics::_putByte:
510    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
511  case vmIntrinsics::_putShort:
512    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
513  case vmIntrinsics::_putChar:
514    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
515  case vmIntrinsics::_putInt:
516    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
517  case vmIntrinsics::_putLong:
518    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
519  case vmIntrinsics::_putFloat:
520    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
521  case vmIntrinsics::_putDouble:
522    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
523
524  case vmIntrinsics::_getByte_raw:
525    return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
526  case vmIntrinsics::_getShort_raw:
527    return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
528  case vmIntrinsics::_getChar_raw:
529    return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
530  case vmIntrinsics::_getInt_raw:
531    return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
532  case vmIntrinsics::_getLong_raw:
533    return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
534  case vmIntrinsics::_getFloat_raw:
535    return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
536  case vmIntrinsics::_getDouble_raw:
537    return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
538  case vmIntrinsics::_getAddress_raw:
539    return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
540
541  case vmIntrinsics::_putByte_raw:
542    return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
543  case vmIntrinsics::_putShort_raw:
544    return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
545  case vmIntrinsics::_putChar_raw:
546    return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
547  case vmIntrinsics::_putInt_raw:
548    return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
549  case vmIntrinsics::_putLong_raw:
550    return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
551  case vmIntrinsics::_putFloat_raw:
552    return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
553  case vmIntrinsics::_putDouble_raw:
554    return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
555  case vmIntrinsics::_putAddress_raw:
556    return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
557
558  case vmIntrinsics::_getObjectVolatile:
559    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
560  case vmIntrinsics::_getBooleanVolatile:
561    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
562  case vmIntrinsics::_getByteVolatile:
563    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
564  case vmIntrinsics::_getShortVolatile:
565    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
566  case vmIntrinsics::_getCharVolatile:
567    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
568  case vmIntrinsics::_getIntVolatile:
569    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
570  case vmIntrinsics::_getLongVolatile:
571    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
572  case vmIntrinsics::_getFloatVolatile:
573    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
574  case vmIntrinsics::_getDoubleVolatile:
575    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
576
577  case vmIntrinsics::_putObjectVolatile:
578    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
579  case vmIntrinsics::_putBooleanVolatile:
580    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
581  case vmIntrinsics::_putByteVolatile:
582    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
583  case vmIntrinsics::_putShortVolatile:
584    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
585  case vmIntrinsics::_putCharVolatile:
586    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
587  case vmIntrinsics::_putIntVolatile:
588    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
589  case vmIntrinsics::_putLongVolatile:
590    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
591  case vmIntrinsics::_putFloatVolatile:
592    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
593  case vmIntrinsics::_putDoubleVolatile:
594    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
595
596  case vmIntrinsics::_prefetchRead:
597    return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
598  case vmIntrinsics::_prefetchWrite:
599    return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
600  case vmIntrinsics::_prefetchReadStatic:
601    return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
602  case vmIntrinsics::_prefetchWriteStatic:
603    return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
604
605  case vmIntrinsics::_compareAndSwapObject:
606    return inline_unsafe_CAS(T_OBJECT);
607  case vmIntrinsics::_compareAndSwapInt:
608    return inline_unsafe_CAS(T_INT);
609  case vmIntrinsics::_compareAndSwapLong:
610    return inline_unsafe_CAS(T_LONG);
611
612  case vmIntrinsics::_putOrderedObject:
613    return inline_unsafe_ordered_store(T_OBJECT);
614  case vmIntrinsics::_putOrderedInt:
615    return inline_unsafe_ordered_store(T_INT);
616  case vmIntrinsics::_putOrderedLong:
617    return inline_unsafe_ordered_store(T_LONG);
618
619  case vmIntrinsics::_currentThread:
620    return inline_native_currentThread();
621  case vmIntrinsics::_isInterrupted:
622    return inline_native_isInterrupted();
623
624  case vmIntrinsics::_currentTimeMillis:
625    return inline_native_time_funcs(false);
626  case vmIntrinsics::_nanoTime:
627    return inline_native_time_funcs(true);
628  case vmIntrinsics::_allocateInstance:
629    return inline_unsafe_allocate();
630  case vmIntrinsics::_copyMemory:
631    return inline_unsafe_copyMemory();
632  case vmIntrinsics::_newArray:
633    return inline_native_newArray();
634  case vmIntrinsics::_getLength:
635    return inline_native_getLength();
636  case vmIntrinsics::_copyOf:
637    return inline_array_copyOf(false);
638  case vmIntrinsics::_copyOfRange:
639    return inline_array_copyOf(true);
640  case vmIntrinsics::_equalsC:
641    return inline_array_equals();
642  case vmIntrinsics::_clone:
643    return inline_native_clone(intrinsic()->is_virtual());
644
645  case vmIntrinsics::_isAssignableFrom:
646    return inline_native_subtype_check();
647
648  case vmIntrinsics::_isInstance:
649  case vmIntrinsics::_getModifiers:
650  case vmIntrinsics::_isInterface:
651  case vmIntrinsics::_isArray:
652  case vmIntrinsics::_isPrimitive:
653  case vmIntrinsics::_getSuperclass:
654  case vmIntrinsics::_getComponentType:
655  case vmIntrinsics::_getClassAccessFlags:
656    return inline_native_Class_query(intrinsic_id());
657
658  case vmIntrinsics::_floatToRawIntBits:
659  case vmIntrinsics::_floatToIntBits:
660  case vmIntrinsics::_intBitsToFloat:
661  case vmIntrinsics::_doubleToRawLongBits:
662  case vmIntrinsics::_doubleToLongBits:
663  case vmIntrinsics::_longBitsToDouble:
664    return inline_fp_conversions(intrinsic_id());
665
666  case vmIntrinsics::_numberOfLeadingZeros_i:
667  case vmIntrinsics::_numberOfLeadingZeros_l:
668    return inline_numberOfLeadingZeros(intrinsic_id());
669
670  case vmIntrinsics::_numberOfTrailingZeros_i:
671  case vmIntrinsics::_numberOfTrailingZeros_l:
672    return inline_numberOfTrailingZeros(intrinsic_id());
673
674  case vmIntrinsics::_bitCount_i:
675  case vmIntrinsics::_bitCount_l:
676    return inline_bitCount(intrinsic_id());
677
678  case vmIntrinsics::_reverseBytes_i:
679  case vmIntrinsics::_reverseBytes_l:
680  case vmIntrinsics::_reverseBytes_s:
681  case vmIntrinsics::_reverseBytes_c:
682    return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
683
684  case vmIntrinsics::_get_AtomicLong:
685    return inline_native_AtomicLong_get();
686  case vmIntrinsics::_attemptUpdate:
687    return inline_native_AtomicLong_attemptUpdate();
688
689  case vmIntrinsics::_getCallerClass:
690    return inline_native_Reflection_getCallerClass();
691
692  case vmIntrinsics::_Reference_get:
693    return inline_reference_get();
694
695  default:
696    // If you get here, it may be that someone has added a new intrinsic
697    // to the list in vmSymbols.hpp without implementing it here.
698#ifndef PRODUCT
699    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
700      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
701                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
702    }
703#endif
704    return false;
705  }
706}
707
708//------------------------------push_result------------------------------
709// Helper function for finishing intrinsics.
710void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
711  record_for_igvn(region);
712  set_control(_gvn.transform(region));
713  BasicType value_type = value->type()->basic_type();
714  push_node(value_type, _gvn.transform(value));
715}
716
717//------------------------------generate_guard---------------------------
718// Helper function for generating guarded fast-slow graph structures.
719// The given 'test', if true, guards a slow path.  If the test fails
720// then a fast path can be taken.  (We generally hope it fails.)
721// In all cases, GraphKit::control() is updated to the fast path.
722// The returned value represents the control for the slow path.
723// The return value is never 'top'; it is either a valid control
724// or NULL if it is obvious that the slow path can never be taken.
725// Also, if region and the slow control are not NULL, the slow edge
726// is appended to the region.
727Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
728  if (stopped()) {
729    // Already short circuited.
730    return NULL;
731  }
732
733  // Build an if node and its projections.
734  // If test is true we take the slow path, which we assume is uncommon.
735  if (_gvn.type(test) == TypeInt::ZERO) {
736    // The slow branch is never taken.  No need to build this guard.
737    return NULL;
738  }
739
740  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
741
742  Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
743  if (if_slow == top()) {
744    // The slow branch is never taken.  No need to build this guard.
745    return NULL;
746  }
747
748  if (region != NULL)
749    region->add_req(if_slow);
750
751  Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
752  set_control(if_fast);
753
754  return if_slow;
755}
756
757inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
758  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
759}
760inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
761  return generate_guard(test, region, PROB_FAIR);
762}
763
764inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
765                                                     Node* *pos_index) {
766  if (stopped())
767    return NULL;                // already stopped
768  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
769    return NULL;                // index is already adequately typed
770  Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
771  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
772  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
773  if (is_neg != NULL && pos_index != NULL) {
774    // Emulate effect of Parse::adjust_map_after_if.
775    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
776    ccast->set_req(0, control());
777    (*pos_index) = _gvn.transform(ccast);
778  }
779  return is_neg;
780}
781
782inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
783                                                        Node* *pos_index) {
784  if (stopped())
785    return NULL;                // already stopped
786  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
787    return NULL;                // index is already adequately typed
788  Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
789  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
790  Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
791  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
792  if (is_notp != NULL && pos_index != NULL) {
793    // Emulate effect of Parse::adjust_map_after_if.
794    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
795    ccast->set_req(0, control());
796    (*pos_index) = _gvn.transform(ccast);
797  }
798  return is_notp;
799}
800
801// Make sure that 'position' is a valid limit index, in [0..length].
802// There are two equivalent plans for checking this:
803//   A. (offset + copyLength)  unsigned<=  arrayLength
804//   B. offset  <=  (arrayLength - copyLength)
805// We require that all of the values above, except for the sum and
806// difference, are already known to be non-negative.
807// Plan A is robust in the face of overflow, if offset and copyLength
808// are both hugely positive.
809//
810// Plan B is less direct and intuitive, but it does not overflow at
811// all, since the difference of two non-negatives is always
812// representable.  Whenever Java methods must perform the equivalent
813// check they generally use Plan B instead of Plan A.
814// For the moment we use Plan A.
815inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
816                                                  Node* subseq_length,
817                                                  Node* array_length,
818                                                  RegionNode* region) {
819  if (stopped())
820    return NULL;                // already stopped
821  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
822  if (zero_offset && subseq_length->eqv_uncast(array_length))
823    return NULL;                // common case of whole-array copy
824  Node* last = subseq_length;
825  if (!zero_offset)             // last += offset
826    last = _gvn.transform( new (C, 3) AddINode(last, offset));
827  Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
828  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
829  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
830  return is_over;
831}
832
833
834//--------------------------generate_current_thread--------------------
835Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
836  ciKlass*    thread_klass = env()->Thread_klass();
837  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
838  Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
839  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
840  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
841  tls_output = thread;
842  return threadObj;
843}
844
845
846//------------------------------make_string_method_node------------------------
847// Helper method for String intrinsic finctions.
848Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
849  const int value_offset  = java_lang_String::value_offset_in_bytes();
850  const int count_offset  = java_lang_String::count_offset_in_bytes();
851  const int offset_offset = java_lang_String::offset_offset_in_bytes();
852
853  Node* no_ctrl = NULL;
854
855  ciInstanceKlass* klass = env()->String_klass();
856  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
857
858  const TypeAryPtr* value_type =
859        TypeAryPtr::make(TypePtr::NotNull,
860                         TypeAry::make(TypeInt::CHAR,TypeInt::POS),
861                         ciTypeArrayKlass::make(T_CHAR), true, 0);
862
863  // Get start addr of string and substring
864  Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
865  Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
866  Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
867  Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
868  Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
869
870  Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
871  Node* str2_value   = make_load(no_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
872  Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
873  Node* str2_offset  = make_load(no_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
874  Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
875
876  Node* result = NULL;
877  switch (opcode) {
878  case Op_StrIndexOf:
879    result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
880                                       str1_start, cnt1, str2_start, cnt2);
881    break;
882  case Op_StrComp:
883    result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
884                                    str1_start, cnt1, str2_start, cnt2);
885    break;
886  case Op_StrEquals:
887    result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
888                                      str1_start, str2_start, cnt1);
889    break;
890  default:
891    ShouldNotReachHere();
892    return NULL;
893  }
894
895  // All these intrinsics have checks.
896  C->set_has_split_ifs(true); // Has chance for split-if optimization
897
898  return _gvn.transform(result);
899}
900
901//------------------------------inline_string_compareTo------------------------
902bool LibraryCallKit::inline_string_compareTo() {
903
904  if (!Matcher::has_match_rule(Op_StrComp)) return false;
905
906  const int value_offset = java_lang_String::value_offset_in_bytes();
907  const int count_offset = java_lang_String::count_offset_in_bytes();
908  const int offset_offset = java_lang_String::offset_offset_in_bytes();
909
910  _sp += 2;
911  Node *argument = pop();  // pop non-receiver first:  it was pushed second
912  Node *receiver = pop();
913
914  // Null check on self without removing any arguments.  The argument
915  // null check technically happens in the wrong place, which can lead to
916  // invalid stack traces when string compare is inlined into a method
917  // which handles NullPointerExceptions.
918  _sp += 2;
919  receiver = do_null_check(receiver, T_OBJECT);
920  argument = do_null_check(argument, T_OBJECT);
921  _sp -= 2;
922  if (stopped()) {
923    return true;
924  }
925
926  ciInstanceKlass* klass = env()->String_klass();
927  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
928  Node* no_ctrl = NULL;
929
930  // Get counts for string and argument
931  Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
932  Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
933
934  Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
935  Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
936
937  Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
938  push(compare);
939  return true;
940}
941
942//------------------------------inline_string_equals------------------------
943bool LibraryCallKit::inline_string_equals() {
944
945  if (!Matcher::has_match_rule(Op_StrEquals)) return false;
946
947  const int value_offset = java_lang_String::value_offset_in_bytes();
948  const int count_offset = java_lang_String::count_offset_in_bytes();
949  const int offset_offset = java_lang_String::offset_offset_in_bytes();
950
951  int nargs = 2;
952  _sp += nargs;
953  Node* argument = pop();  // pop non-receiver first:  it was pushed second
954  Node* receiver = pop();
955
956  // Null check on self without removing any arguments.  The argument
957  // null check technically happens in the wrong place, which can lead to
958  // invalid stack traces when string compare is inlined into a method
959  // which handles NullPointerExceptions.
960  _sp += nargs;
961  receiver = do_null_check(receiver, T_OBJECT);
962  //should not do null check for argument for String.equals(), because spec
963  //allows to specify NULL as argument.
964  _sp -= nargs;
965
966  if (stopped()) {
967    return true;
968  }
969
970  // paths (plus control) merge
971  RegionNode* region = new (C, 5) RegionNode(5);
972  Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
973
974  // does source == target string?
975  Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
976  Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
977
978  Node* if_eq = generate_slow_guard(bol, NULL);
979  if (if_eq != NULL) {
980    // receiver == argument
981    phi->init_req(2, intcon(1));
982    region->init_req(2, if_eq);
983  }
984
985  // get String klass for instanceOf
986  ciInstanceKlass* klass = env()->String_klass();
987
988  if (!stopped()) {
989    _sp += nargs;          // gen_instanceof might do an uncommon trap
990    Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
991    _sp -= nargs;
992    Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
993    Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
994
995    Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
996    //instanceOf == true, fallthrough
997
998    if (inst_false != NULL) {
999      phi->init_req(3, intcon(0));
1000      region->init_req(3, inst_false);
1001    }
1002  }
1003
1004  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1005
1006  Node* no_ctrl = NULL;
1007  Node* receiver_cnt;
1008  Node* argument_cnt;
1009
1010  if (!stopped()) {
1011    // Properly cast the argument to String
1012    argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
1013    // This path is taken only when argument's type is String:NotNull.
1014    argument = cast_not_null(argument, false);
1015
1016    // Get counts for string and argument
1017    Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
1018    receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1019
1020    Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
1021    argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1022
1023    // Check for receiver count != argument count
1024    Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
1025    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
1026    Node* if_ne = generate_slow_guard(bol, NULL);
1027    if (if_ne != NULL) {
1028      phi->init_req(4, intcon(0));
1029      region->init_req(4, if_ne);
1030    }
1031  }
1032
1033  // Check for count == 0 is done by mach node StrEquals.
1034
1035  if (!stopped()) {
1036    Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
1037    phi->init_req(1, equals);
1038    region->init_req(1, control());
1039  }
1040
1041  // post merge
1042  set_control(_gvn.transform(region));
1043  record_for_igvn(region);
1044
1045  push(_gvn.transform(phi));
1046
1047  return true;
1048}
1049
1050//------------------------------inline_array_equals----------------------------
1051bool LibraryCallKit::inline_array_equals() {
1052
1053  if (!Matcher::has_match_rule(Op_AryEq)) return false;
1054
1055  _sp += 2;
1056  Node *argument2 = pop();
1057  Node *argument1 = pop();
1058
1059  Node* equals =
1060    _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1061                                        argument1, argument2) );
1062  push(equals);
1063  return true;
1064}
1065
1066// Java version of String.indexOf(constant string)
1067// class StringDecl {
1068//   StringDecl(char[] ca) {
1069//     offset = 0;
1070//     count = ca.length;
1071//     value = ca;
1072//   }
1073//   int offset;
1074//   int count;
1075//   char[] value;
1076// }
1077//
1078// static int string_indexOf_J(StringDecl string_object, char[] target_object,
1079//                             int targetOffset, int cache_i, int md2) {
1080//   int cache = cache_i;
1081//   int sourceOffset = string_object.offset;
1082//   int sourceCount = string_object.count;
1083//   int targetCount = target_object.length;
1084//
1085//   int targetCountLess1 = targetCount - 1;
1086//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1087//
1088//   char[] source = string_object.value;
1089//   char[] target = target_object;
1090//   int lastChar = target[targetCountLess1];
1091//
1092//  outer_loop:
1093//   for (int i = sourceOffset; i < sourceEnd; ) {
1094//     int src = source[i + targetCountLess1];
1095//     if (src == lastChar) {
1096//       // With random strings and a 4-character alphabet,
1097//       // reverse matching at this point sets up 0.8% fewer
1098//       // frames, but (paradoxically) makes 0.3% more probes.
1099//       // Since those probes are nearer the lastChar probe,
1100//       // there is may be a net D$ win with reverse matching.
1101//       // But, reversing loop inhibits unroll of inner loop
1102//       // for unknown reason.  So, does running outer loop from
1103//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1104//       for (int j = 0; j < targetCountLess1; j++) {
1105//         if (target[targetOffset + j] != source[i+j]) {
1106//           if ((cache & (1 << source[i+j])) == 0) {
1107//             if (md2 < j+1) {
1108//               i += j+1;
1109//               continue outer_loop;
1110//             }
1111//           }
1112//           i += md2;
1113//           continue outer_loop;
1114//         }
1115//       }
1116//       return i - sourceOffset;
1117//     }
1118//     if ((cache & (1 << src)) == 0) {
1119//       i += targetCountLess1;
1120//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1121//     i++;
1122//   }
1123//   return -1;
1124// }
1125
1126//------------------------------string_indexOf------------------------
1127Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1128                                     jint cache_i, jint md2_i) {
1129
1130  Node* no_ctrl  = NULL;
1131  float likely   = PROB_LIKELY(0.9);
1132  float unlikely = PROB_UNLIKELY(0.9);
1133
1134  const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
1135
1136  const int value_offset  = java_lang_String::value_offset_in_bytes();
1137  const int count_offset  = java_lang_String::count_offset_in_bytes();
1138  const int offset_offset = java_lang_String::offset_offset_in_bytes();
1139
1140  ciInstanceKlass* klass = env()->String_klass();
1141  const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1142  const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1143
1144  Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1145  Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1146  Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1147  Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1148  Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1149  Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1150
1151  Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1152  jint target_length = target_array->length();
1153  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1154  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1155
1156  IdealKit kit(this, false, true);
1157#define __ kit.
1158  Node* zero             = __ ConI(0);
1159  Node* one              = __ ConI(1);
1160  Node* cache            = __ ConI(cache_i);
1161  Node* md2              = __ ConI(md2_i);
1162  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1163  Node* targetCount      = __ ConI(target_length);
1164  Node* targetCountLess1 = __ ConI(target_length - 1);
1165  Node* targetOffset     = __ ConI(targetOffset_i);
1166  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1167
1168  IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1169  Node* outer_loop = __ make_label(2 /* goto */);
1170  Node* return_    = __ make_label(1);
1171
1172  __ set(rtn,__ ConI(-1));
1173  __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1174       Node* i2  = __ AddI(__ value(i), targetCountLess1);
1175       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1176       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1177       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1178         __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1179              Node* tpj = __ AddI(targetOffset, __ value(j));
1180              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1181              Node* ipj  = __ AddI(__ value(i), __ value(j));
1182              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1183              __ if_then(targ, BoolTest::ne, src2); {
1184                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1185                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1186                    __ increment(i, __ AddI(__ value(j), one));
1187                    __ goto_(outer_loop);
1188                  } __ end_if(); __ dead(j);
1189                }__ end_if(); __ dead(j);
1190                __ increment(i, md2);
1191                __ goto_(outer_loop);
1192              }__ end_if();
1193              __ increment(j, one);
1194         }__ end_loop(); __ dead(j);
1195         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1196         __ goto_(return_);
1197       }__ end_if();
1198       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1199         __ increment(i, targetCountLess1);
1200       }__ end_if();
1201       __ increment(i, one);
1202       __ bind(outer_loop);
1203  }__ end_loop(); __ dead(i);
1204  __ bind(return_);
1205
1206  // Final sync IdealKit and GraphKit.
1207  final_sync(kit);
1208  Node* result = __ value(rtn);
1209#undef __
1210  C->set_has_loops(true);
1211  return result;
1212}
1213
1214//------------------------------inline_string_indexOf------------------------
1215bool LibraryCallKit::inline_string_indexOf() {
1216
1217  const int value_offset  = java_lang_String::value_offset_in_bytes();
1218  const int count_offset  = java_lang_String::count_offset_in_bytes();
1219  const int offset_offset = java_lang_String::offset_offset_in_bytes();
1220
1221  _sp += 2;
1222  Node *argument = pop();  // pop non-receiver first:  it was pushed second
1223  Node *receiver = pop();
1224
1225  Node* result;
1226  // Disable the use of pcmpestri until it can be guaranteed that
1227  // the load doesn't cross into the uncommited space.
1228  if (Matcher::has_match_rule(Op_StrIndexOf) &&
1229      UseSSE42Intrinsics) {
1230    // Generate SSE4.2 version of indexOf
1231    // We currently only have match rules that use SSE4.2
1232
1233    // Null check on self without removing any arguments.  The argument
1234    // null check technically happens in the wrong place, which can lead to
1235    // invalid stack traces when string compare is inlined into a method
1236    // which handles NullPointerExceptions.
1237    _sp += 2;
1238    receiver = do_null_check(receiver, T_OBJECT);
1239    argument = do_null_check(argument, T_OBJECT);
1240    _sp -= 2;
1241
1242    if (stopped()) {
1243      return true;
1244    }
1245
1246    ciInstanceKlass* str_klass = env()->String_klass();
1247    const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1248
1249    // Make the merge point
1250    RegionNode* result_rgn = new (C, 4) RegionNode(4);
1251    Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
1252    Node* no_ctrl  = NULL;
1253
1254    // Get counts for string and substr
1255    Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1256    Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1257
1258    Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1259    Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1260
1261    // Check for substr count > string count
1262    Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1263    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1264    Node* if_gt = generate_slow_guard(bol, NULL);
1265    if (if_gt != NULL) {
1266      result_phi->init_req(2, intcon(-1));
1267      result_rgn->init_req(2, if_gt);
1268    }
1269
1270    if (!stopped()) {
1271      // Check for substr count == 0
1272      cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
1273      bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
1274      Node* if_zero = generate_slow_guard(bol, NULL);
1275      if (if_zero != NULL) {
1276        result_phi->init_req(3, intcon(0));
1277        result_rgn->init_req(3, if_zero);
1278      }
1279    }
1280
1281    if (!stopped()) {
1282      result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1283      result_phi->init_req(1, result);
1284      result_rgn->init_req(1, control());
1285    }
1286    set_control(_gvn.transform(result_rgn));
1287    record_for_igvn(result_rgn);
1288    result = _gvn.transform(result_phi);
1289
1290  } else { // Use LibraryCallKit::string_indexOf
1291    // don't intrinsify if argument isn't a constant string.
1292    if (!argument->is_Con()) {
1293     return false;
1294    }
1295    const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1296    if (str_type == NULL) {
1297      return false;
1298    }
1299    ciInstanceKlass* klass = env()->String_klass();
1300    ciObject* str_const = str_type->const_oop();
1301    if (str_const == NULL || str_const->klass() != klass) {
1302      return false;
1303    }
1304    ciInstance* str = str_const->as_instance();
1305    assert(str != NULL, "must be instance");
1306
1307    ciObject* v = str->field_value_by_offset(value_offset).as_object();
1308    int       o = str->field_value_by_offset(offset_offset).as_int();
1309    int       c = str->field_value_by_offset(count_offset).as_int();
1310    ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1311
1312    // constant strings have no offset and count == length which
1313    // simplifies the resulting code somewhat so lets optimize for that.
1314    if (o != 0 || c != pat->length()) {
1315     return false;
1316    }
1317
1318    // Null check on self without removing any arguments.  The argument
1319    // null check technically happens in the wrong place, which can lead to
1320    // invalid stack traces when string compare is inlined into a method
1321    // which handles NullPointerExceptions.
1322    _sp += 2;
1323    receiver = do_null_check(receiver, T_OBJECT);
1324    // No null check on the argument is needed since it's a constant String oop.
1325    _sp -= 2;
1326    if (stopped()) {
1327      return true;
1328    }
1329
1330    // The null string as a pattern always returns 0 (match at beginning of string)
1331    if (c == 0) {
1332      push(intcon(0));
1333      return true;
1334    }
1335
1336    // Generate default indexOf
1337    jchar lastChar = pat->char_at(o + (c - 1));
1338    int cache = 0;
1339    int i;
1340    for (i = 0; i < c - 1; i++) {
1341      assert(i < pat->length(), "out of range");
1342      cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1343    }
1344
1345    int md2 = c;
1346    for (i = 0; i < c - 1; i++) {
1347      assert(i < pat->length(), "out of range");
1348      if (pat->char_at(o + i) == lastChar) {
1349        md2 = (c - 1) - i;
1350      }
1351    }
1352
1353    result = string_indexOf(receiver, pat, o, cache, md2);
1354  }
1355
1356  push(result);
1357  return true;
1358}
1359
1360//--------------------------pop_math_arg--------------------------------
1361// Pop a double argument to a math function from the stack
1362// rounding it if necessary.
1363Node * LibraryCallKit::pop_math_arg() {
1364  Node *arg = pop_pair();
1365  if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1366    arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1367  return arg;
1368}
1369
1370//------------------------------inline_trig----------------------------------
1371// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1372// argument reduction which will turn into a fast/slow diamond.
1373bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1374  _sp += arg_size();            // restore stack pointer
1375  Node* arg = pop_math_arg();
1376  Node* trig = NULL;
1377
1378  switch (id) {
1379  case vmIntrinsics::_dsin:
1380    trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1381    break;
1382  case vmIntrinsics::_dcos:
1383    trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1384    break;
1385  case vmIntrinsics::_dtan:
1386    trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1387    break;
1388  default:
1389    assert(false, "bad intrinsic was passed in");
1390    return false;
1391  }
1392
1393  // Rounding required?  Check for argument reduction!
1394  if( Matcher::strict_fp_requires_explicit_rounding ) {
1395
1396    static const double     pi_4 =  0.7853981633974483;
1397    static const double neg_pi_4 = -0.7853981633974483;
1398    // pi/2 in 80-bit extended precision
1399    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1400    // -pi/2 in 80-bit extended precision
1401    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1402    // Cutoff value for using this argument reduction technique
1403    //static const double    pi_2_minus_epsilon =  1.564660403643354;
1404    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1405
1406    // Pseudocode for sin:
1407    // if (x <= Math.PI / 4.0) {
1408    //   if (x >= -Math.PI / 4.0) return  fsin(x);
1409    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1410    // } else {
1411    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1412    // }
1413    // return StrictMath.sin(x);
1414
1415    // Pseudocode for cos:
1416    // if (x <= Math.PI / 4.0) {
1417    //   if (x >= -Math.PI / 4.0) return  fcos(x);
1418    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1419    // } else {
1420    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1421    // }
1422    // return StrictMath.cos(x);
1423
1424    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1425    // requires a special machine instruction to load it.  Instead we'll try
1426    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1427    // probably do the math inside the SIN encoding.
1428
1429    // Make the merge point
1430    RegionNode *r = new (C, 3) RegionNode(3);
1431    Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1432
1433    // Flatten arg so we need only 1 test
1434    Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1435    // Node for PI/4 constant
1436    Node *pi4 = makecon(TypeD::make(pi_4));
1437    // Check PI/4 : abs(arg)
1438    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1439    // Check: If PI/4 < abs(arg) then go slow
1440    Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1441    // Branch either way
1442    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1443    set_control(opt_iff(r,iff));
1444
1445    // Set fast path result
1446    phi->init_req(2,trig);
1447
1448    // Slow path - non-blocking leaf call
1449    Node* call = NULL;
1450    switch (id) {
1451    case vmIntrinsics::_dsin:
1452      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1453                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1454                               "Sin", NULL, arg, top());
1455      break;
1456    case vmIntrinsics::_dcos:
1457      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1458                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1459                               "Cos", NULL, arg, top());
1460      break;
1461    case vmIntrinsics::_dtan:
1462      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1463                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1464                               "Tan", NULL, arg, top());
1465      break;
1466    }
1467    assert(control()->in(0) == call, "");
1468    Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1469    r->init_req(1,control());
1470    phi->init_req(1,slow_result);
1471
1472    // Post-merge
1473    set_control(_gvn.transform(r));
1474    record_for_igvn(r);
1475    trig = _gvn.transform(phi);
1476
1477    C->set_has_split_ifs(true); // Has chance for split-if optimization
1478  }
1479  // Push result back on JVM stack
1480  push_pair(trig);
1481  return true;
1482}
1483
1484//------------------------------inline_sqrt-------------------------------------
1485// Inline square root instruction, if possible.
1486bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1487  assert(id == vmIntrinsics::_dsqrt, "Not square root");
1488  _sp += arg_size();        // restore stack pointer
1489  push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1490  return true;
1491}
1492
1493//------------------------------inline_abs-------------------------------------
1494// Inline absolute value instruction, if possible.
1495bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1496  assert(id == vmIntrinsics::_dabs, "Not absolute value");
1497  _sp += arg_size();        // restore stack pointer
1498  push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1499  return true;
1500}
1501
1502//------------------------------inline_exp-------------------------------------
1503// Inline exp instructions, if possible.  The Intel hardware only misses
1504// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1505bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1506  assert(id == vmIntrinsics::_dexp, "Not exp");
1507
1508  // If this inlining ever returned NaN in the past, we do not intrinsify it
1509  // every again.  NaN results requires StrictMath.exp handling.
1510  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1511
1512  // Do not intrinsify on older platforms which lack cmove.
1513  if (ConditionalMoveLimit == 0)  return false;
1514
1515  _sp += arg_size();        // restore stack pointer
1516  Node *x = pop_math_arg();
1517  Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1518
1519  //-------------------
1520  //result=(result.isNaN())? StrictMath::exp():result;
1521  // Check: If isNaN() by checking result!=result? then go to Strict Math
1522  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1523  // Build the boolean node
1524  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1525
1526  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1527    // End the current control-flow path
1528    push_pair(x);
1529    // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1530    // to handle.  Recompile without intrinsifying Math.exp
1531    uncommon_trap(Deoptimization::Reason_intrinsic,
1532                  Deoptimization::Action_make_not_entrant);
1533  }
1534
1535  C->set_has_split_ifs(true); // Has chance for split-if optimization
1536
1537  push_pair(result);
1538
1539  return true;
1540}
1541
1542//------------------------------inline_pow-------------------------------------
1543// Inline power instructions, if possible.
1544bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1545  assert(id == vmIntrinsics::_dpow, "Not pow");
1546
1547  // If this inlining ever returned NaN in the past, we do not intrinsify it
1548  // every again.  NaN results requires StrictMath.pow handling.
1549  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1550
1551  // Do not intrinsify on older platforms which lack cmove.
1552  if (ConditionalMoveLimit == 0)  return false;
1553
1554  // Pseudocode for pow
1555  // if (x <= 0.0) {
1556  //   if ((double)((int)y)==y) { // if y is int
1557  //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1558  //   } else {
1559  //     result = NaN;
1560  //   }
1561  // } else {
1562  //   result = DPow(x,y);
1563  // }
1564  // if (result != result)?  {
1565  //   uncommon_trap();
1566  // }
1567  // return result;
1568
1569  _sp += arg_size();        // restore stack pointer
1570  Node* y = pop_math_arg();
1571  Node* x = pop_math_arg();
1572
1573  Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1574
1575  // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1576  // inside of something) then skip the fancy tests and just check for
1577  // NaN result.
1578  Node *result = NULL;
1579  if( jvms()->depth() >= 1 ) {
1580    result = fast_result;
1581  } else {
1582
1583    // Set the merge point for If node with condition of (x <= 0.0)
1584    // There are four possible paths to region node and phi node
1585    RegionNode *r = new (C, 4) RegionNode(4);
1586    Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1587
1588    // Build the first if node: if (x <= 0.0)
1589    // Node for 0 constant
1590    Node *zeronode = makecon(TypeD::ZERO);
1591    // Check x:0
1592    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1593    // Check: If (x<=0) then go complex path
1594    Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1595    // Branch either way
1596    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1597    Node *opt_test = _gvn.transform(if1);
1598    //assert( opt_test->is_If(), "Expect an IfNode");
1599    IfNode *opt_if1 = (IfNode*)opt_test;
1600    // Fast path taken; set region slot 3
1601    Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1602    r->init_req(3,fast_taken); // Capture fast-control
1603
1604    // Fast path not-taken, i.e. slow path
1605    Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1606
1607    // Set fast path result
1608    Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1609    phi->init_req(3, fast_result);
1610
1611    // Complex path
1612    // Build the second if node (if y is int)
1613    // Node for (int)y
1614    Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1615    // Node for (double)((int) y)
1616    Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1617    // Check (double)((int) y) : y
1618    Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1619    // Check if (y isn't int) then go to slow path
1620
1621    Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1622    // Branch either way
1623    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1624    Node *slow_path = opt_iff(r,if2); // Set region path 2
1625
1626    // Calculate DPow(abs(x), y)*(1 & (int)y)
1627    // Node for constant 1
1628    Node *conone = intcon(1);
1629    // 1& (int)y
1630    Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1631    // zero node
1632    Node *conzero = intcon(0);
1633    // Check (1&(int)y)==0?
1634    Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1635    // Check if (1&(int)y)!=0?, if so the result is negative
1636    Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1637    // abs(x)
1638    Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1639    // abs(x)^y
1640    Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1641    // -abs(x)^y
1642    Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1643    // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1644    Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1645    // Set complex path fast result
1646    phi->init_req(2, signresult);
1647
1648    static const jlong nan_bits = CONST64(0x7ff8000000000000);
1649    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1650    r->init_req(1,slow_path);
1651    phi->init_req(1,slow_result);
1652
1653    // Post merge
1654    set_control(_gvn.transform(r));
1655    record_for_igvn(r);
1656    result=_gvn.transform(phi);
1657  }
1658
1659  //-------------------
1660  //result=(result.isNaN())? uncommon_trap():result;
1661  // Check: If isNaN() by checking result!=result? then go to Strict Math
1662  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1663  // Build the boolean node
1664  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1665
1666  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1667    // End the current control-flow path
1668    push_pair(x);
1669    push_pair(y);
1670    // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1671    // to handle.  Recompile without intrinsifying Math.pow.
1672    uncommon_trap(Deoptimization::Reason_intrinsic,
1673                  Deoptimization::Action_make_not_entrant);
1674  }
1675
1676  C->set_has_split_ifs(true); // Has chance for split-if optimization
1677
1678  push_pair(result);
1679
1680  return true;
1681}
1682
1683//------------------------------inline_trans-------------------------------------
1684// Inline transcendental instructions, if possible.  The Intel hardware gets
1685// these right, no funny corner cases missed.
1686bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1687  _sp += arg_size();        // restore stack pointer
1688  Node* arg = pop_math_arg();
1689  Node* trans = NULL;
1690
1691  switch (id) {
1692  case vmIntrinsics::_dlog:
1693    trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1694    break;
1695  case vmIntrinsics::_dlog10:
1696    trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1697    break;
1698  default:
1699    assert(false, "bad intrinsic was passed in");
1700    return false;
1701  }
1702
1703  // Push result back on JVM stack
1704  push_pair(trans);
1705  return true;
1706}
1707
1708//------------------------------runtime_math-----------------------------
1709bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1710  Node* a = NULL;
1711  Node* b = NULL;
1712
1713  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1714         "must be (DD)D or (D)D type");
1715
1716  // Inputs
1717  _sp += arg_size();        // restore stack pointer
1718  if (call_type == OptoRuntime::Math_DD_D_Type()) {
1719    b = pop_math_arg();
1720  }
1721  a = pop_math_arg();
1722
1723  const TypePtr* no_memory_effects = NULL;
1724  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1725                                 no_memory_effects,
1726                                 a, top(), b, b ? top() : NULL);
1727  Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1728#ifdef ASSERT
1729  Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1730  assert(value_top == top(), "second value must be top");
1731#endif
1732
1733  push_pair(value);
1734  return true;
1735}
1736
1737//------------------------------inline_math_native-----------------------------
1738bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1739  switch (id) {
1740    // These intrinsics are not properly supported on all hardware
1741  case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1742    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1743  case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1744    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1745  case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1746    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1747
1748  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1749    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1750  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1751    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1752
1753    // These intrinsics are supported on all hardware
1754  case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1755  case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1756
1757    // These intrinsics don't work on X86.  The ad implementation doesn't
1758    // handle NaN's properly.  Instead of returning infinity, the ad
1759    // implementation returns a NaN on overflow. See bug: 6304089
1760    // Once the ad implementations are fixed, change the code below
1761    // to match the intrinsics above
1762
1763  case vmIntrinsics::_dexp:  return
1764    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1765  case vmIntrinsics::_dpow:  return
1766    runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1767
1768   // These intrinsics are not yet correctly implemented
1769  case vmIntrinsics::_datan2:
1770    return false;
1771
1772  default:
1773    ShouldNotReachHere();
1774    return false;
1775  }
1776}
1777
1778static bool is_simple_name(Node* n) {
1779  return (n->req() == 1         // constant
1780          || (n->is_Type() && n->as_Type()->type()->singleton())
1781          || n->is_Proj()       // parameter or return value
1782          || n->is_Phi()        // local of some sort
1783          );
1784}
1785
1786//----------------------------inline_min_max-----------------------------------
1787bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1788  push(generate_min_max(id, argument(0), argument(1)));
1789
1790  return true;
1791}
1792
1793Node*
1794LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1795  // These are the candidate return value:
1796  Node* xvalue = x0;
1797  Node* yvalue = y0;
1798
1799  if (xvalue == yvalue) {
1800    return xvalue;
1801  }
1802
1803  bool want_max = (id == vmIntrinsics::_max);
1804
1805  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1806  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1807  if (txvalue == NULL || tyvalue == NULL)  return top();
1808  // This is not really necessary, but it is consistent with a
1809  // hypothetical MaxINode::Value method:
1810  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1811
1812  // %%% This folding logic should (ideally) be in a different place.
1813  // Some should be inside IfNode, and there to be a more reliable
1814  // transformation of ?: style patterns into cmoves.  We also want
1815  // more powerful optimizations around cmove and min/max.
1816
1817  // Try to find a dominating comparison of these guys.
1818  // It can simplify the index computation for Arrays.copyOf
1819  // and similar uses of System.arraycopy.
1820  // First, compute the normalized version of CmpI(x, y).
1821  int   cmp_op = Op_CmpI;
1822  Node* xkey = xvalue;
1823  Node* ykey = yvalue;
1824  Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1825  if (ideal_cmpxy->is_Cmp()) {
1826    // E.g., if we have CmpI(length - offset, count),
1827    // it might idealize to CmpI(length, count + offset)
1828    cmp_op = ideal_cmpxy->Opcode();
1829    xkey = ideal_cmpxy->in(1);
1830    ykey = ideal_cmpxy->in(2);
1831  }
1832
1833  // Start by locating any relevant comparisons.
1834  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1835  Node* cmpxy = NULL;
1836  Node* cmpyx = NULL;
1837  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1838    Node* cmp = start_from->fast_out(k);
1839    if (cmp->outcnt() > 0 &&            // must have prior uses
1840        cmp->in(0) == NULL &&           // must be context-independent
1841        cmp->Opcode() == cmp_op) {      // right kind of compare
1842      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1843      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1844    }
1845  }
1846
1847  const int NCMPS = 2;
1848  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1849  int cmpn;
1850  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1851    if (cmps[cmpn] != NULL)  break;     // find a result
1852  }
1853  if (cmpn < NCMPS) {
1854    // Look for a dominating test that tells us the min and max.
1855    int depth = 0;                // Limit search depth for speed
1856    Node* dom = control();
1857    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1858      if (++depth >= 100)  break;
1859      Node* ifproj = dom;
1860      if (!ifproj->is_Proj())  continue;
1861      Node* iff = ifproj->in(0);
1862      if (!iff->is_If())  continue;
1863      Node* bol = iff->in(1);
1864      if (!bol->is_Bool())  continue;
1865      Node* cmp = bol->in(1);
1866      if (cmp == NULL)  continue;
1867      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1868        if (cmps[cmpn] == cmp)  break;
1869      if (cmpn == NCMPS)  continue;
1870      BoolTest::mask btest = bol->as_Bool()->_test._test;
1871      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1872      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1873      // At this point, we know that 'x btest y' is true.
1874      switch (btest) {
1875      case BoolTest::eq:
1876        // They are proven equal, so we can collapse the min/max.
1877        // Either value is the answer.  Choose the simpler.
1878        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1879          return yvalue;
1880        return xvalue;
1881      case BoolTest::lt:          // x < y
1882      case BoolTest::le:          // x <= y
1883        return (want_max ? yvalue : xvalue);
1884      case BoolTest::gt:          // x > y
1885      case BoolTest::ge:          // x >= y
1886        return (want_max ? xvalue : yvalue);
1887      }
1888    }
1889  }
1890
1891  // We failed to find a dominating test.
1892  // Let's pick a test that might GVN with prior tests.
1893  Node*          best_bol   = NULL;
1894  BoolTest::mask best_btest = BoolTest::illegal;
1895  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1896    Node* cmp = cmps[cmpn];
1897    if (cmp == NULL)  continue;
1898    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1899      Node* bol = cmp->fast_out(j);
1900      if (!bol->is_Bool())  continue;
1901      BoolTest::mask btest = bol->as_Bool()->_test._test;
1902      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1903      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1904      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1905        best_bol   = bol->as_Bool();
1906        best_btest = btest;
1907      }
1908    }
1909  }
1910
1911  Node* answer_if_true  = NULL;
1912  Node* answer_if_false = NULL;
1913  switch (best_btest) {
1914  default:
1915    if (cmpxy == NULL)
1916      cmpxy = ideal_cmpxy;
1917    best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1918    // and fall through:
1919  case BoolTest::lt:          // x < y
1920  case BoolTest::le:          // x <= y
1921    answer_if_true  = (want_max ? yvalue : xvalue);
1922    answer_if_false = (want_max ? xvalue : yvalue);
1923    break;
1924  case BoolTest::gt:          // x > y
1925  case BoolTest::ge:          // x >= y
1926    answer_if_true  = (want_max ? xvalue : yvalue);
1927    answer_if_false = (want_max ? yvalue : xvalue);
1928    break;
1929  }
1930
1931  jint hi, lo;
1932  if (want_max) {
1933    // We can sharpen the minimum.
1934    hi = MAX2(txvalue->_hi, tyvalue->_hi);
1935    lo = MAX2(txvalue->_lo, tyvalue->_lo);
1936  } else {
1937    // We can sharpen the maximum.
1938    hi = MIN2(txvalue->_hi, tyvalue->_hi);
1939    lo = MIN2(txvalue->_lo, tyvalue->_lo);
1940  }
1941
1942  // Use a flow-free graph structure, to avoid creating excess control edges
1943  // which could hinder other optimizations.
1944  // Since Math.min/max is often used with arraycopy, we want
1945  // tightly_coupled_allocation to be able to see beyond min/max expressions.
1946  Node* cmov = CMoveNode::make(C, NULL, best_bol,
1947                               answer_if_false, answer_if_true,
1948                               TypeInt::make(lo, hi, widen));
1949
1950  return _gvn.transform(cmov);
1951
1952  /*
1953  // This is not as desirable as it may seem, since Min and Max
1954  // nodes do not have a full set of optimizations.
1955  // And they would interfere, anyway, with 'if' optimizations
1956  // and with CMoveI canonical forms.
1957  switch (id) {
1958  case vmIntrinsics::_min:
1959    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1960  case vmIntrinsics::_max:
1961    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1962  default:
1963    ShouldNotReachHere();
1964  }
1965  */
1966}
1967
1968inline int
1969LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1970  const TypePtr* base_type = TypePtr::NULL_PTR;
1971  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1972  if (base_type == NULL) {
1973    // Unknown type.
1974    return Type::AnyPtr;
1975  } else if (base_type == TypePtr::NULL_PTR) {
1976    // Since this is a NULL+long form, we have to switch to a rawptr.
1977    base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1978    offset = MakeConX(0);
1979    return Type::RawPtr;
1980  } else if (base_type->base() == Type::RawPtr) {
1981    return Type::RawPtr;
1982  } else if (base_type->isa_oopptr()) {
1983    // Base is never null => always a heap address.
1984    if (base_type->ptr() == TypePtr::NotNull) {
1985      return Type::OopPtr;
1986    }
1987    // Offset is small => always a heap address.
1988    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1989    if (offset_type != NULL &&
1990        base_type->offset() == 0 &&     // (should always be?)
1991        offset_type->_lo >= 0 &&
1992        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1993      return Type::OopPtr;
1994    }
1995    // Otherwise, it might either be oop+off or NULL+addr.
1996    return Type::AnyPtr;
1997  } else {
1998    // No information:
1999    return Type::AnyPtr;
2000  }
2001}
2002
2003inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2004  int kind = classify_unsafe_addr(base, offset);
2005  if (kind == Type::RawPtr) {
2006    return basic_plus_adr(top(), base, offset);
2007  } else {
2008    return basic_plus_adr(base, offset);
2009  }
2010}
2011
2012//-------------------inline_numberOfLeadingZeros_int/long-----------------------
2013// inline int Integer.numberOfLeadingZeros(int)
2014// inline int Long.numberOfLeadingZeros(long)
2015bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
2016  assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
2017  if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
2018  if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
2019  _sp += arg_size();  // restore stack pointer
2020  switch (id) {
2021  case vmIntrinsics::_numberOfLeadingZeros_i:
2022    push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
2023    break;
2024  case vmIntrinsics::_numberOfLeadingZeros_l:
2025    push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
2026    break;
2027  default:
2028    ShouldNotReachHere();
2029  }
2030  return true;
2031}
2032
2033//-------------------inline_numberOfTrailingZeros_int/long----------------------
2034// inline int Integer.numberOfTrailingZeros(int)
2035// inline int Long.numberOfTrailingZeros(long)
2036bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
2037  assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
2038  if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
2039  if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
2040  _sp += arg_size();  // restore stack pointer
2041  switch (id) {
2042  case vmIntrinsics::_numberOfTrailingZeros_i:
2043    push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
2044    break;
2045  case vmIntrinsics::_numberOfTrailingZeros_l:
2046    push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
2047    break;
2048  default:
2049    ShouldNotReachHere();
2050  }
2051  return true;
2052}
2053
2054//----------------------------inline_bitCount_int/long-----------------------
2055// inline int Integer.bitCount(int)
2056// inline int Long.bitCount(long)
2057bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2058  assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2059  if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2060  if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2061  _sp += arg_size();  // restore stack pointer
2062  switch (id) {
2063  case vmIntrinsics::_bitCount_i:
2064    push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2065    break;
2066  case vmIntrinsics::_bitCount_l:
2067    push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2068    break;
2069  default:
2070    ShouldNotReachHere();
2071  }
2072  return true;
2073}
2074
2075//----------------------------inline_reverseBytes_int/long/char/short-------------------
2076// inline Integer.reverseBytes(int)
2077// inline Long.reverseBytes(long)
2078// inline Character.reverseBytes(char)
2079// inline Short.reverseBytes(short)
2080bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2081  assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2082         id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2083         "not reverse Bytes");
2084  if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2085  if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2086  if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2087  if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2088  _sp += arg_size();        // restore stack pointer
2089  switch (id) {
2090  case vmIntrinsics::_reverseBytes_i:
2091    push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2092    break;
2093  case vmIntrinsics::_reverseBytes_l:
2094    push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2095    break;
2096  case vmIntrinsics::_reverseBytes_c:
2097    push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2098    break;
2099  case vmIntrinsics::_reverseBytes_s:
2100    push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2101    break;
2102  default:
2103    ;
2104  }
2105  return true;
2106}
2107
2108//----------------------------inline_unsafe_access----------------------------
2109
2110const static BasicType T_ADDRESS_HOLDER = T_LONG;
2111
2112// Helper that guards and inserts a G1 pre-barrier.
2113void LibraryCallKit::insert_g1_pre_barrier(Node* base_oop, Node* offset, Node* pre_val) {
2114  assert(UseG1GC, "should not call this otherwise");
2115
2116  // We could be accessing the referent field of a reference object. If so, when G1
2117  // is enabled, we need to log the value in the referent field in an SATB buffer.
2118  // This routine performs some compile time filters and generates suitable
2119  // runtime filters that guard the pre-barrier code.
2120
2121  // Some compile time checks.
2122
2123  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2124  const TypeX* otype = offset->find_intptr_t_type();
2125  if (otype != NULL && otype->is_con() &&
2126      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2127    // Constant offset but not the reference_offset so just return
2128    return;
2129  }
2130
2131  // We only need to generate the runtime guards for instances.
2132  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2133  if (btype != NULL) {
2134    if (btype->isa_aryptr()) {
2135      // Array type so nothing to do
2136      return;
2137    }
2138
2139    const TypeInstPtr* itype = btype->isa_instptr();
2140    if (itype != NULL) {
2141      // Can the klass of base_oop be statically determined
2142      // to be _not_ a sub-class of Reference?
2143      ciKlass* klass = itype->klass();
2144      if (klass->is_subtype_of(env()->Reference_klass()) &&
2145          !env()->Reference_klass()->is_subtype_of(klass)) {
2146        return;
2147      }
2148    }
2149  }
2150
2151  // The compile time filters did not reject base_oop/offset so
2152  // we need to generate the following runtime filters
2153  //
2154  // if (offset == java_lang_ref_Reference::_reference_offset) {
2155  //   if (base != null) {
2156  //     if (klass(base)->reference_type() != REF_NONE)) {
2157  //       pre_barrier(_, pre_val, ...);
2158  //     }
2159  //   }
2160  // }
2161
2162  float likely  = PROB_LIKELY(0.999);
2163  float unlikely  = PROB_UNLIKELY(0.999);
2164
2165  IdealKit ideal(this);
2166#define __ ideal.
2167
2168  const int reference_type_offset = in_bytes(instanceKlass::reference_type_offset());
2169
2170  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2171
2172  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2173    __ if_then(base_oop, BoolTest::ne, null(), likely); {
2174
2175      // Update graphKit memory and control from IdealKit.
2176      sync_kit(ideal);
2177
2178      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2179      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2180
2181      // Update IdealKit memory and control from graphKit.
2182      __ sync_kit(this);
2183
2184      Node* one = __ ConI(1);
2185
2186      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2187
2188        // Update graphKit from IdeakKit.
2189        sync_kit(ideal);
2190
2191        // Use the pre-barrier to record the value in the referent field
2192        pre_barrier(false /* do_load */,
2193                    __ ctrl(),
2194                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2195                    pre_val /* pre_val */,
2196                    T_OBJECT);
2197
2198        // Update IdealKit from graphKit.
2199        __ sync_kit(this);
2200
2201      } __ end_if(); // _ref_type != ref_none
2202    } __ end_if(); // base  != NULL
2203  } __ end_if(); // offset == referent_offset
2204
2205  // Final sync IdealKit and GraphKit.
2206  final_sync(ideal);
2207#undef __
2208}
2209
2210
2211// Interpret Unsafe.fieldOffset cookies correctly:
2212extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2213
2214bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2215  if (callee()->is_static())  return false;  // caller must have the capability!
2216
2217#ifndef PRODUCT
2218  {
2219    ResourceMark rm;
2220    // Check the signatures.
2221    ciSignature* sig = signature();
2222#ifdef ASSERT
2223    if (!is_store) {
2224      // Object getObject(Object base, int/long offset), etc.
2225      BasicType rtype = sig->return_type()->basic_type();
2226      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2227          rtype = T_ADDRESS;  // it is really a C void*
2228      assert(rtype == type, "getter must return the expected value");
2229      if (!is_native_ptr) {
2230        assert(sig->count() == 2, "oop getter has 2 arguments");
2231        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2232        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2233      } else {
2234        assert(sig->count() == 1, "native getter has 1 argument");
2235        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2236      }
2237    } else {
2238      // void putObject(Object base, int/long offset, Object x), etc.
2239      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2240      if (!is_native_ptr) {
2241        assert(sig->count() == 3, "oop putter has 3 arguments");
2242        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2243        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2244      } else {
2245        assert(sig->count() == 2, "native putter has 2 arguments");
2246        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2247      }
2248      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2249      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2250        vtype = T_ADDRESS;  // it is really a C void*
2251      assert(vtype == type, "putter must accept the expected value");
2252    }
2253#endif // ASSERT
2254 }
2255#endif //PRODUCT
2256
2257  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2258
2259  int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2260
2261  // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2262  int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2263
2264  debug_only(int saved_sp = _sp);
2265  _sp += nargs;
2266
2267  Node* val;
2268  debug_only(val = (Node*)(uintptr_t)-1);
2269
2270
2271  if (is_store) {
2272    // Get the value being stored.  (Pop it first; it was pushed last.)
2273    switch (type) {
2274    case T_DOUBLE:
2275    case T_LONG:
2276    case T_ADDRESS:
2277      val = pop_pair();
2278      break;
2279    default:
2280      val = pop();
2281    }
2282  }
2283
2284  // Build address expression.  See the code in inline_unsafe_prefetch.
2285  Node *adr;
2286  Node *heap_base_oop = top();
2287  Node* offset = top();
2288
2289  if (!is_native_ptr) {
2290    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2291    offset = pop_pair();
2292    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2293    Node* base   = pop();
2294    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2295    // to be plain byte offsets, which are also the same as those accepted
2296    // by oopDesc::field_base.
2297    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2298           "fieldOffset must be byte-scaled");
2299    // 32-bit machines ignore the high half!
2300    offset = ConvL2X(offset);
2301    adr = make_unsafe_address(base, offset);
2302    heap_base_oop = base;
2303  } else {
2304    Node* ptr = pop_pair();
2305    // Adjust Java long to machine word:
2306    ptr = ConvL2X(ptr);
2307    adr = make_unsafe_address(NULL, ptr);
2308  }
2309
2310  // Pop receiver last:  it was pushed first.
2311  Node *receiver = pop();
2312
2313  assert(saved_sp == _sp, "must have correct argument count");
2314
2315  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2316
2317  // First guess at the value type.
2318  const Type *value_type = Type::get_const_basic_type(type);
2319
2320  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2321  // there was not enough information to nail it down.
2322  Compile::AliasType* alias_type = C->alias_type(adr_type);
2323  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2324
2325  // We will need memory barriers unless we can determine a unique
2326  // alias category for this reference.  (Note:  If for some reason
2327  // the barriers get omitted and the unsafe reference begins to "pollute"
2328  // the alias analysis of the rest of the graph, either Compile::can_alias
2329  // or Compile::must_alias will throw a diagnostic assert.)
2330  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2331
2332  // If we are reading the value of the referent field of a Reference
2333  // object (either by using Unsafe directly or through reflection)
2334  // then, if G1 is enabled, we need to record the referent in an
2335  // SATB log buffer using the pre-barrier mechanism.
2336  bool need_read_barrier = UseG1GC && !is_native_ptr && !is_store &&
2337                           offset != top() && heap_base_oop != top();
2338
2339  if (!is_store && type == T_OBJECT) {
2340    // Attempt to infer a sharper value type from the offset and base type.
2341    ciKlass* sharpened_klass = NULL;
2342
2343    // See if it is an instance field, with an object type.
2344    if (alias_type->field() != NULL) {
2345      assert(!is_native_ptr, "native pointer op cannot use a java address");
2346      if (alias_type->field()->type()->is_klass()) {
2347        sharpened_klass = alias_type->field()->type()->as_klass();
2348      }
2349    }
2350
2351    // See if it is a narrow oop array.
2352    if (adr_type->isa_aryptr()) {
2353      if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2354        const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2355        if (elem_type != NULL) {
2356          sharpened_klass = elem_type->klass();
2357        }
2358      }
2359    }
2360
2361    if (sharpened_klass != NULL) {
2362      const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2363
2364      // Sharpen the value type.
2365      value_type = tjp;
2366
2367#ifndef PRODUCT
2368      if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2369        tty->print("  from base type:  ");   adr_type->dump();
2370        tty->print("  sharpened value: "); value_type->dump();
2371      }
2372#endif
2373    }
2374  }
2375
2376  // Null check on self without removing any arguments.  The argument
2377  // null check technically happens in the wrong place, which can lead to
2378  // invalid stack traces when the primitive is inlined into a method
2379  // which handles NullPointerExceptions.
2380  _sp += nargs;
2381  do_null_check(receiver, T_OBJECT);
2382  _sp -= nargs;
2383  if (stopped()) {
2384    return true;
2385  }
2386  // Heap pointers get a null-check from the interpreter,
2387  // as a courtesy.  However, this is not guaranteed by Unsafe,
2388  // and it is not possible to fully distinguish unintended nulls
2389  // from intended ones in this API.
2390
2391  if (is_volatile) {
2392    // We need to emit leading and trailing CPU membars (see below) in
2393    // addition to memory membars when is_volatile. This is a little
2394    // too strong, but avoids the need to insert per-alias-type
2395    // volatile membars (for stores; compare Parse::do_put_xxx), which
2396    // we cannot do effectively here because we probably only have a
2397    // rough approximation of type.
2398    need_mem_bar = true;
2399    // For Stores, place a memory ordering barrier now.
2400    if (is_store)
2401      insert_mem_bar(Op_MemBarRelease);
2402  }
2403
2404  // Memory barrier to prevent normal and 'unsafe' accesses from
2405  // bypassing each other.  Happens after null checks, so the
2406  // exception paths do not take memory state from the memory barrier,
2407  // so there's no problems making a strong assert about mixing users
2408  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2409  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2410  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2411
2412  if (!is_store) {
2413    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2414    // load value and push onto stack
2415    switch (type) {
2416    case T_BOOLEAN:
2417    case T_CHAR:
2418    case T_BYTE:
2419    case T_SHORT:
2420    case T_INT:
2421    case T_FLOAT:
2422      push(p);
2423      break;
2424    case T_OBJECT:
2425      if (need_read_barrier) {
2426        insert_g1_pre_barrier(heap_base_oop, offset, p);
2427      }
2428      push(p);
2429      break;
2430    case T_ADDRESS:
2431      // Cast to an int type.
2432      p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2433      p = ConvX2L(p);
2434      push_pair(p);
2435      break;
2436    case T_DOUBLE:
2437    case T_LONG:
2438      push_pair( p );
2439      break;
2440    default: ShouldNotReachHere();
2441    }
2442  } else {
2443    // place effect of store into memory
2444    switch (type) {
2445    case T_DOUBLE:
2446      val = dstore_rounding(val);
2447      break;
2448    case T_ADDRESS:
2449      // Repackage the long as a pointer.
2450      val = ConvL2X(val);
2451      val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2452      break;
2453    }
2454
2455    if (type != T_OBJECT ) {
2456      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2457    } else {
2458      // Possibly an oop being stored to Java heap or native memory
2459      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2460        // oop to Java heap.
2461        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2462      } else {
2463        // We can't tell at compile time if we are storing in the Java heap or outside
2464        // of it. So we need to emit code to conditionally do the proper type of
2465        // store.
2466
2467        IdealKit ideal(this);
2468#define __ ideal.
2469        // QQQ who knows what probability is here??
2470        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2471          // Sync IdealKit and graphKit.
2472          sync_kit(ideal);
2473          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2474          // Update IdealKit memory.
2475          __ sync_kit(this);
2476        } __ else_(); {
2477          __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2478        } __ end_if();
2479        // Final sync IdealKit and GraphKit.
2480        final_sync(ideal);
2481#undef __
2482      }
2483    }
2484  }
2485
2486  if (is_volatile) {
2487    if (!is_store)
2488      insert_mem_bar(Op_MemBarAcquire);
2489    else
2490      insert_mem_bar(Op_MemBarVolatile);
2491  }
2492
2493  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2494
2495  return true;
2496}
2497
2498//----------------------------inline_unsafe_prefetch----------------------------
2499
2500bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2501#ifndef PRODUCT
2502  {
2503    ResourceMark rm;
2504    // Check the signatures.
2505    ciSignature* sig = signature();
2506#ifdef ASSERT
2507    // Object getObject(Object base, int/long offset), etc.
2508    BasicType rtype = sig->return_type()->basic_type();
2509    if (!is_native_ptr) {
2510      assert(sig->count() == 2, "oop prefetch has 2 arguments");
2511      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2512      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2513    } else {
2514      assert(sig->count() == 1, "native prefetch has 1 argument");
2515      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2516    }
2517#endif // ASSERT
2518  }
2519#endif // !PRODUCT
2520
2521  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2522
2523  // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2524  int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2525
2526  debug_only(int saved_sp = _sp);
2527  _sp += nargs;
2528
2529  // Build address expression.  See the code in inline_unsafe_access.
2530  Node *adr;
2531  if (!is_native_ptr) {
2532    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2533    Node* offset = pop_pair();
2534    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2535    Node* base   = pop();
2536    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2537    // to be plain byte offsets, which are also the same as those accepted
2538    // by oopDesc::field_base.
2539    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2540           "fieldOffset must be byte-scaled");
2541    // 32-bit machines ignore the high half!
2542    offset = ConvL2X(offset);
2543    adr = make_unsafe_address(base, offset);
2544  } else {
2545    Node* ptr = pop_pair();
2546    // Adjust Java long to machine word:
2547    ptr = ConvL2X(ptr);
2548    adr = make_unsafe_address(NULL, ptr);
2549  }
2550
2551  if (is_static) {
2552    assert(saved_sp == _sp, "must have correct argument count");
2553  } else {
2554    // Pop receiver last:  it was pushed first.
2555    Node *receiver = pop();
2556    assert(saved_sp == _sp, "must have correct argument count");
2557
2558    // Null check on self without removing any arguments.  The argument
2559    // null check technically happens in the wrong place, which can lead to
2560    // invalid stack traces when the primitive is inlined into a method
2561    // which handles NullPointerExceptions.
2562    _sp += nargs;
2563    do_null_check(receiver, T_OBJECT);
2564    _sp -= nargs;
2565    if (stopped()) {
2566      return true;
2567    }
2568  }
2569
2570  // Generate the read or write prefetch
2571  Node *prefetch;
2572  if (is_store) {
2573    prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2574  } else {
2575    prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2576  }
2577  prefetch->init_req(0, control());
2578  set_i_o(_gvn.transform(prefetch));
2579
2580  return true;
2581}
2582
2583//----------------------------inline_unsafe_CAS----------------------------
2584
2585bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2586  // This basic scheme here is the same as inline_unsafe_access, but
2587  // differs in enough details that combining them would make the code
2588  // overly confusing.  (This is a true fact! I originally combined
2589  // them, but even I was confused by it!) As much code/comments as
2590  // possible are retained from inline_unsafe_access though to make
2591  // the correspondences clearer. - dl
2592
2593  if (callee()->is_static())  return false;  // caller must have the capability!
2594
2595#ifndef PRODUCT
2596  {
2597    ResourceMark rm;
2598    // Check the signatures.
2599    ciSignature* sig = signature();
2600#ifdef ASSERT
2601    BasicType rtype = sig->return_type()->basic_type();
2602    assert(rtype == T_BOOLEAN, "CAS must return boolean");
2603    assert(sig->count() == 4, "CAS has 4 arguments");
2604    assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2605    assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2606#endif // ASSERT
2607  }
2608#endif //PRODUCT
2609
2610  // number of stack slots per value argument (1 or 2)
2611  int type_words = type2size[type];
2612
2613  // Cannot inline wide CAS on machines that don't support it natively
2614  if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2615    return false;
2616
2617  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2618
2619  // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2620  int nargs = 1 + 1 + 2  + type_words + type_words;
2621
2622  // pop arguments: newval, oldval, offset, base, and receiver
2623  debug_only(int saved_sp = _sp);
2624  _sp += nargs;
2625  Node* newval   = (type_words == 1) ? pop() : pop_pair();
2626  Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2627  Node *offset   = pop_pair();
2628  Node *base     = pop();
2629  Node *receiver = pop();
2630  assert(saved_sp == _sp, "must have correct argument count");
2631
2632  //  Null check receiver.
2633  _sp += nargs;
2634  do_null_check(receiver, T_OBJECT);
2635  _sp -= nargs;
2636  if (stopped()) {
2637    return true;
2638  }
2639
2640  // Build field offset expression.
2641  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2642  // to be plain byte offsets, which are also the same as those accepted
2643  // by oopDesc::field_base.
2644  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2645  // 32-bit machines ignore the high half of long offsets
2646  offset = ConvL2X(offset);
2647  Node* adr = make_unsafe_address(base, offset);
2648  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2649
2650  // (Unlike inline_unsafe_access, there seems no point in trying
2651  // to refine types. Just use the coarse types here.
2652  const Type *value_type = Type::get_const_basic_type(type);
2653  Compile::AliasType* alias_type = C->alias_type(adr_type);
2654  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2655  int alias_idx = C->get_alias_index(adr_type);
2656
2657  // Memory-model-wise, a CAS acts like a little synchronized block,
2658  // so needs barriers on each side.  These don't translate into
2659  // actual barriers on most machines, but we still need rest of
2660  // compiler to respect ordering.
2661
2662  insert_mem_bar(Op_MemBarRelease);
2663  insert_mem_bar(Op_MemBarCPUOrder);
2664
2665  // 4984716: MemBars must be inserted before this
2666  //          memory node in order to avoid a false
2667  //          dependency which will confuse the scheduler.
2668  Node *mem = memory(alias_idx);
2669
2670  // For now, we handle only those cases that actually exist: ints,
2671  // longs, and Object. Adding others should be straightforward.
2672  Node* cas;
2673  switch(type) {
2674  case T_INT:
2675    cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2676    break;
2677  case T_LONG:
2678    cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2679    break;
2680  case T_OBJECT:
2681    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2682    // could be delayed during Parse (for example, in adjust_map_after_if()).
2683    // Execute transformation here to avoid barrier generation in such case.
2684    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2685      newval = _gvn.makecon(TypePtr::NULL_PTR);
2686
2687    // Reference stores need a store barrier.
2688    // (They don't if CAS fails, but it isn't worth checking.)
2689    pre_barrier(true /* do_load*/,
2690                control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2691                NULL /* pre_val*/,
2692                T_OBJECT);
2693#ifdef _LP64
2694    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2695      Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2696      Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2697      cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2698                                                          newval_enc, oldval_enc));
2699    } else
2700#endif
2701    {
2702      cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2703    }
2704    post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2705    break;
2706  default:
2707    ShouldNotReachHere();
2708    break;
2709  }
2710
2711  // SCMemProjNodes represent the memory state of CAS. Their main
2712  // role is to prevent CAS nodes from being optimized away when their
2713  // results aren't used.
2714  Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2715  set_memory(proj, alias_idx);
2716
2717  // Add the trailing membar surrounding the access
2718  insert_mem_bar(Op_MemBarCPUOrder);
2719  insert_mem_bar(Op_MemBarAcquire);
2720
2721  push(cas);
2722  return true;
2723}
2724
2725bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2726  // This is another variant of inline_unsafe_access, differing in
2727  // that it always issues store-store ("release") barrier and ensures
2728  // store-atomicity (which only matters for "long").
2729
2730  if (callee()->is_static())  return false;  // caller must have the capability!
2731
2732#ifndef PRODUCT
2733  {
2734    ResourceMark rm;
2735    // Check the signatures.
2736    ciSignature* sig = signature();
2737#ifdef ASSERT
2738    BasicType rtype = sig->return_type()->basic_type();
2739    assert(rtype == T_VOID, "must return void");
2740    assert(sig->count() == 3, "has 3 arguments");
2741    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2742    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2743#endif // ASSERT
2744  }
2745#endif //PRODUCT
2746
2747  // number of stack slots per value argument (1 or 2)
2748  int type_words = type2size[type];
2749
2750  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2751
2752  // Argument words:  "this" plus oop plus offset plus value;
2753  int nargs = 1 + 1 + 2 + type_words;
2754
2755  // pop arguments: val, offset, base, and receiver
2756  debug_only(int saved_sp = _sp);
2757  _sp += nargs;
2758  Node* val      = (type_words == 1) ? pop() : pop_pair();
2759  Node *offset   = pop_pair();
2760  Node *base     = pop();
2761  Node *receiver = pop();
2762  assert(saved_sp == _sp, "must have correct argument count");
2763
2764  //  Null check receiver.
2765  _sp += nargs;
2766  do_null_check(receiver, T_OBJECT);
2767  _sp -= nargs;
2768  if (stopped()) {
2769    return true;
2770  }
2771
2772  // Build field offset expression.
2773  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2774  // 32-bit machines ignore the high half of long offsets
2775  offset = ConvL2X(offset);
2776  Node* adr = make_unsafe_address(base, offset);
2777  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2778  const Type *value_type = Type::get_const_basic_type(type);
2779  Compile::AliasType* alias_type = C->alias_type(adr_type);
2780
2781  insert_mem_bar(Op_MemBarRelease);
2782  insert_mem_bar(Op_MemBarCPUOrder);
2783  // Ensure that the store is atomic for longs:
2784  bool require_atomic_access = true;
2785  Node* store;
2786  if (type == T_OBJECT) // reference stores need a store barrier.
2787    store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2788  else {
2789    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2790  }
2791  insert_mem_bar(Op_MemBarCPUOrder);
2792  return true;
2793}
2794
2795bool LibraryCallKit::inline_unsafe_allocate() {
2796  if (callee()->is_static())  return false;  // caller must have the capability!
2797  int nargs = 1 + 1;
2798  assert(signature()->size() == nargs-1, "alloc has 1 argument");
2799  null_check_receiver(callee());  // check then ignore argument(0)
2800  _sp += nargs;  // set original stack for use by uncommon_trap
2801  Node* cls = do_null_check(argument(1), T_OBJECT);
2802  _sp -= nargs;
2803  if (stopped())  return true;
2804
2805  Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2806  _sp += nargs;  // set original stack for use by uncommon_trap
2807  kls = do_null_check(kls, T_OBJECT);
2808  _sp -= nargs;
2809  if (stopped())  return true;  // argument was like int.class
2810
2811  // Note:  The argument might still be an illegal value like
2812  // Serializable.class or Object[].class.   The runtime will handle it.
2813  // But we must make an explicit check for initialization.
2814  Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
2815  // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
2816  // can generate code to load it as unsigned byte.
2817  Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2818  Node* bits = intcon(instanceKlass::fully_initialized);
2819  Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2820  // The 'test' is non-zero if we need to take a slow path.
2821
2822  Node* obj = new_instance(kls, test);
2823  push(obj);
2824
2825  return true;
2826}
2827
2828//------------------------inline_native_time_funcs--------------
2829// inline code for System.currentTimeMillis() and System.nanoTime()
2830// these have the same type and signature
2831bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2832  address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2833                              CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2834  const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2835  const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2836  const TypePtr* no_memory_effects = NULL;
2837  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2838  Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2839#ifdef ASSERT
2840  Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2841  assert(value_top == top(), "second value must be top");
2842#endif
2843  push_pair(value);
2844  return true;
2845}
2846
2847//------------------------inline_native_currentThread------------------
2848bool LibraryCallKit::inline_native_currentThread() {
2849  Node* junk = NULL;
2850  push(generate_current_thread(junk));
2851  return true;
2852}
2853
2854//------------------------inline_native_isInterrupted------------------
2855bool LibraryCallKit::inline_native_isInterrupted() {
2856  const int nargs = 1+1;  // receiver + boolean
2857  assert(nargs == arg_size(), "sanity");
2858  // Add a fast path to t.isInterrupted(clear_int):
2859  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2860  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2861  // So, in the common case that the interrupt bit is false,
2862  // we avoid making a call into the VM.  Even if the interrupt bit
2863  // is true, if the clear_int argument is false, we avoid the VM call.
2864  // However, if the receiver is not currentThread, we must call the VM,
2865  // because there must be some locking done around the operation.
2866
2867  // We only go to the fast case code if we pass two guards.
2868  // Paths which do not pass are accumulated in the slow_region.
2869  RegionNode* slow_region = new (C, 1) RegionNode(1);
2870  record_for_igvn(slow_region);
2871  RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2872  PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2873  enum { no_int_result_path   = 1,
2874         no_clear_result_path = 2,
2875         slow_result_path     = 3
2876  };
2877
2878  // (a) Receiving thread must be the current thread.
2879  Node* rec_thr = argument(0);
2880  Node* tls_ptr = NULL;
2881  Node* cur_thr = generate_current_thread(tls_ptr);
2882  Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2883  Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2884
2885  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2886  if (!known_current_thread)
2887    generate_slow_guard(bol_thr, slow_region);
2888
2889  // (b) Interrupt bit on TLS must be false.
2890  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2891  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2892  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2893  // Set the control input on the field _interrupted read to prevent it floating up.
2894  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2895  Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2896  Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2897
2898  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2899
2900  // First fast path:  if (!TLS._interrupted) return false;
2901  Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2902  result_rgn->init_req(no_int_result_path, false_bit);
2903  result_val->init_req(no_int_result_path, intcon(0));
2904
2905  // drop through to next case
2906  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2907
2908  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2909  Node* clr_arg = argument(1);
2910  Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2911  Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2912  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2913
2914  // Second fast path:  ... else if (!clear_int) return true;
2915  Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2916  result_rgn->init_req(no_clear_result_path, false_arg);
2917  result_val->init_req(no_clear_result_path, intcon(1));
2918
2919  // drop through to next case
2920  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2921
2922  // (d) Otherwise, go to the slow path.
2923  slow_region->add_req(control());
2924  set_control( _gvn.transform(slow_region) );
2925
2926  if (stopped()) {
2927    // There is no slow path.
2928    result_rgn->init_req(slow_result_path, top());
2929    result_val->init_req(slow_result_path, top());
2930  } else {
2931    // non-virtual because it is a private non-static
2932    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2933
2934    Node* slow_val = set_results_for_java_call(slow_call);
2935    // this->control() comes from set_results_for_java_call
2936
2937    // If we know that the result of the slow call will be true, tell the optimizer!
2938    if (known_current_thread)  slow_val = intcon(1);
2939
2940    Node* fast_io  = slow_call->in(TypeFunc::I_O);
2941    Node* fast_mem = slow_call->in(TypeFunc::Memory);
2942    // These two phis are pre-filled with copies of of the fast IO and Memory
2943    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2944    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2945
2946    result_rgn->init_req(slow_result_path, control());
2947    io_phi    ->init_req(slow_result_path, i_o());
2948    mem_phi   ->init_req(slow_result_path, reset_memory());
2949    result_val->init_req(slow_result_path, slow_val);
2950
2951    set_all_memory( _gvn.transform(mem_phi) );
2952    set_i_o(        _gvn.transform(io_phi) );
2953  }
2954
2955  push_result(result_rgn, result_val);
2956  C->set_has_split_ifs(true); // Has chance for split-if optimization
2957
2958  return true;
2959}
2960
2961//---------------------------load_mirror_from_klass----------------------------
2962// Given a klass oop, load its java mirror (a java.lang.Class oop).
2963Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2964  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
2965  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2966}
2967
2968//-----------------------load_klass_from_mirror_common-------------------------
2969// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2970// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2971// and branch to the given path on the region.
2972// If never_see_null, take an uncommon trap on null, so we can optimistically
2973// compile for the non-null case.
2974// If the region is NULL, force never_see_null = true.
2975Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2976                                                    bool never_see_null,
2977                                                    int nargs,
2978                                                    RegionNode* region,
2979                                                    int null_path,
2980                                                    int offset) {
2981  if (region == NULL)  never_see_null = true;
2982  Node* p = basic_plus_adr(mirror, offset);
2983  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2984  Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2985  _sp += nargs; // any deopt will start just before call to enclosing method
2986  Node* null_ctl = top();
2987  kls = null_check_oop(kls, &null_ctl, never_see_null);
2988  if (region != NULL) {
2989    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2990    region->init_req(null_path, null_ctl);
2991  } else {
2992    assert(null_ctl == top(), "no loose ends");
2993  }
2994  _sp -= nargs;
2995  return kls;
2996}
2997
2998//--------------------(inline_native_Class_query helpers)---------------------
2999// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3000// Fall through if (mods & mask) == bits, take the guard otherwise.
3001Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3002  // Branch around if the given klass has the given modifier bit set.
3003  // Like generate_guard, adds a new path onto the region.
3004  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3005  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3006  Node* mask = intcon(modifier_mask);
3007  Node* bits = intcon(modifier_bits);
3008  Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
3009  Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
3010  Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
3011  return generate_fair_guard(bol, region);
3012}
3013Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3014  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3015}
3016
3017//-------------------------inline_native_Class_query-------------------
3018bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3019  int nargs = 1+0;  // just the Class mirror, in most cases
3020  const Type* return_type = TypeInt::BOOL;
3021  Node* prim_return_value = top();  // what happens if it's a primitive class?
3022  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3023  bool expect_prim = false;     // most of these guys expect to work on refs
3024
3025  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3026
3027  switch (id) {
3028  case vmIntrinsics::_isInstance:
3029    nargs = 1+1;  // the Class mirror, plus the object getting queried about
3030    // nothing is an instance of a primitive type
3031    prim_return_value = intcon(0);
3032    break;
3033  case vmIntrinsics::_getModifiers:
3034    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3035    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3036    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3037    break;
3038  case vmIntrinsics::_isInterface:
3039    prim_return_value = intcon(0);
3040    break;
3041  case vmIntrinsics::_isArray:
3042    prim_return_value = intcon(0);
3043    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3044    break;
3045  case vmIntrinsics::_isPrimitive:
3046    prim_return_value = intcon(1);
3047    expect_prim = true;  // obviously
3048    break;
3049  case vmIntrinsics::_getSuperclass:
3050    prim_return_value = null();
3051    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3052    break;
3053  case vmIntrinsics::_getComponentType:
3054    prim_return_value = null();
3055    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3056    break;
3057  case vmIntrinsics::_getClassAccessFlags:
3058    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3059    return_type = TypeInt::INT;  // not bool!  6297094
3060    break;
3061  default:
3062    ShouldNotReachHere();
3063  }
3064
3065  Node* mirror =                      argument(0);
3066  Node* obj    = (nargs <= 1)? top(): argument(1);
3067
3068  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3069  if (mirror_con == NULL)  return false;  // cannot happen?
3070
3071#ifndef PRODUCT
3072  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
3073    ciType* k = mirror_con->java_mirror_type();
3074    if (k) {
3075      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3076      k->print_name();
3077      tty->cr();
3078    }
3079  }
3080#endif
3081
3082  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3083  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3084  record_for_igvn(region);
3085  PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
3086
3087  // The mirror will never be null of Reflection.getClassAccessFlags, however
3088  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3089  // if it is. See bug 4774291.
3090
3091  // For Reflection.getClassAccessFlags(), the null check occurs in
3092  // the wrong place; see inline_unsafe_access(), above, for a similar
3093  // situation.
3094  _sp += nargs;  // set original stack for use by uncommon_trap
3095  mirror = do_null_check(mirror, T_OBJECT);
3096  _sp -= nargs;
3097  // If mirror or obj is dead, only null-path is taken.
3098  if (stopped())  return true;
3099
3100  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3101
3102  // Now load the mirror's klass metaobject, and null-check it.
3103  // Side-effects region with the control path if the klass is null.
3104  Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
3105                                     region, _prim_path);
3106  // If kls is null, we have a primitive mirror.
3107  phi->init_req(_prim_path, prim_return_value);
3108  if (stopped()) { push_result(region, phi); return true; }
3109
3110  Node* p;  // handy temp
3111  Node* null_ctl;
3112
3113  // Now that we have the non-null klass, we can perform the real query.
3114  // For constant classes, the query will constant-fold in LoadNode::Value.
3115  Node* query_value = top();
3116  switch (id) {
3117  case vmIntrinsics::_isInstance:
3118    // nothing is an instance of a primitive type
3119    _sp += nargs;          // gen_instanceof might do an uncommon trap
3120    query_value = gen_instanceof(obj, kls);
3121    _sp -= nargs;
3122    break;
3123
3124  case vmIntrinsics::_getModifiers:
3125    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3126    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3127    break;
3128
3129  case vmIntrinsics::_isInterface:
3130    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3131    if (generate_interface_guard(kls, region) != NULL)
3132      // A guard was added.  If the guard is taken, it was an interface.
3133      phi->add_req(intcon(1));
3134    // If we fall through, it's a plain class.
3135    query_value = intcon(0);
3136    break;
3137
3138  case vmIntrinsics::_isArray:
3139    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3140    if (generate_array_guard(kls, region) != NULL)
3141      // A guard was added.  If the guard is taken, it was an array.
3142      phi->add_req(intcon(1));
3143    // If we fall through, it's a plain class.
3144    query_value = intcon(0);
3145    break;
3146
3147  case vmIntrinsics::_isPrimitive:
3148    query_value = intcon(0); // "normal" path produces false
3149    break;
3150
3151  case vmIntrinsics::_getSuperclass:
3152    // The rules here are somewhat unfortunate, but we can still do better
3153    // with random logic than with a JNI call.
3154    // Interfaces store null or Object as _super, but must report null.
3155    // Arrays store an intermediate super as _super, but must report Object.
3156    // Other types can report the actual _super.
3157    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3158    if (generate_interface_guard(kls, region) != NULL)
3159      // A guard was added.  If the guard is taken, it was an interface.
3160      phi->add_req(null());
3161    if (generate_array_guard(kls, region) != NULL)
3162      // A guard was added.  If the guard is taken, it was an array.
3163      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3164    // If we fall through, it's a plain class.  Get its _super.
3165    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3166    kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3167    null_ctl = top();
3168    kls = null_check_oop(kls, &null_ctl);
3169    if (null_ctl != top()) {
3170      // If the guard is taken, Object.superClass is null (both klass and mirror).
3171      region->add_req(null_ctl);
3172      phi   ->add_req(null());
3173    }
3174    if (!stopped()) {
3175      query_value = load_mirror_from_klass(kls);
3176    }
3177    break;
3178
3179  case vmIntrinsics::_getComponentType:
3180    if (generate_array_guard(kls, region) != NULL) {
3181      // Be sure to pin the oop load to the guard edge just created:
3182      Node* is_array_ctrl = region->in(region->req()-1);
3183      Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
3184      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3185      phi->add_req(cmo);
3186    }
3187    query_value = null();  // non-array case is null
3188    break;
3189
3190  case vmIntrinsics::_getClassAccessFlags:
3191    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3192    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3193    break;
3194
3195  default:
3196    ShouldNotReachHere();
3197  }
3198
3199  // Fall-through is the normal case of a query to a real class.
3200  phi->init_req(1, query_value);
3201  region->init_req(1, control());
3202
3203  push_result(region, phi);
3204  C->set_has_split_ifs(true); // Has chance for split-if optimization
3205
3206  return true;
3207}
3208
3209//--------------------------inline_native_subtype_check------------------------
3210// This intrinsic takes the JNI calls out of the heart of
3211// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3212bool LibraryCallKit::inline_native_subtype_check() {
3213  int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3214
3215  // Pull both arguments off the stack.
3216  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3217  args[0] = argument(0);
3218  args[1] = argument(1);
3219  Node* klasses[2];             // corresponding Klasses: superk, subk
3220  klasses[0] = klasses[1] = top();
3221
3222  enum {
3223    // A full decision tree on {superc is prim, subc is prim}:
3224    _prim_0_path = 1,           // {P,N} => false
3225                                // {P,P} & superc!=subc => false
3226    _prim_same_path,            // {P,P} & superc==subc => true
3227    _prim_1_path,               // {N,P} => false
3228    _ref_subtype_path,          // {N,N} & subtype check wins => true
3229    _both_ref_path,             // {N,N} & subtype check loses => false
3230    PATH_LIMIT
3231  };
3232
3233  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3234  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3235  record_for_igvn(region);
3236
3237  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3238  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3239  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3240
3241  // First null-check both mirrors and load each mirror's klass metaobject.
3242  int which_arg;
3243  for (which_arg = 0; which_arg <= 1; which_arg++) {
3244    Node* arg = args[which_arg];
3245    _sp += nargs;  // set original stack for use by uncommon_trap
3246    arg = do_null_check(arg, T_OBJECT);
3247    _sp -= nargs;
3248    if (stopped())  break;
3249    args[which_arg] = _gvn.transform(arg);
3250
3251    Node* p = basic_plus_adr(arg, class_klass_offset);
3252    Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3253    klasses[which_arg] = _gvn.transform(kls);
3254  }
3255
3256  // Having loaded both klasses, test each for null.
3257  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3258  for (which_arg = 0; which_arg <= 1; which_arg++) {
3259    Node* kls = klasses[which_arg];
3260    Node* null_ctl = top();
3261    _sp += nargs;  // set original stack for use by uncommon_trap
3262    kls = null_check_oop(kls, &null_ctl, never_see_null);
3263    _sp -= nargs;
3264    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3265    region->init_req(prim_path, null_ctl);
3266    if (stopped())  break;
3267    klasses[which_arg] = kls;
3268  }
3269
3270  if (!stopped()) {
3271    // now we have two reference types, in klasses[0..1]
3272    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3273    Node* superk = klasses[0];  // the receiver
3274    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3275    // now we have a successful reference subtype check
3276    region->set_req(_ref_subtype_path, control());
3277  }
3278
3279  // If both operands are primitive (both klasses null), then
3280  // we must return true when they are identical primitives.
3281  // It is convenient to test this after the first null klass check.
3282  set_control(region->in(_prim_0_path)); // go back to first null check
3283  if (!stopped()) {
3284    // Since superc is primitive, make a guard for the superc==subc case.
3285    Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3286    Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3287    generate_guard(bol_eq, region, PROB_FAIR);
3288    if (region->req() == PATH_LIMIT+1) {
3289      // A guard was added.  If the added guard is taken, superc==subc.
3290      region->swap_edges(PATH_LIMIT, _prim_same_path);
3291      region->del_req(PATH_LIMIT);
3292    }
3293    region->set_req(_prim_0_path, control()); // Not equal after all.
3294  }
3295
3296  // these are the only paths that produce 'true':
3297  phi->set_req(_prim_same_path,   intcon(1));
3298  phi->set_req(_ref_subtype_path, intcon(1));
3299
3300  // pull together the cases:
3301  assert(region->req() == PATH_LIMIT, "sane region");
3302  for (uint i = 1; i < region->req(); i++) {
3303    Node* ctl = region->in(i);
3304    if (ctl == NULL || ctl == top()) {
3305      region->set_req(i, top());
3306      phi   ->set_req(i, top());
3307    } else if (phi->in(i) == NULL) {
3308      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3309    }
3310  }
3311
3312  set_control(_gvn.transform(region));
3313  push(_gvn.transform(phi));
3314
3315  return true;
3316}
3317
3318//---------------------generate_array_guard_common------------------------
3319Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3320                                                  bool obj_array, bool not_array) {
3321  // If obj_array/non_array==false/false:
3322  // Branch around if the given klass is in fact an array (either obj or prim).
3323  // If obj_array/non_array==false/true:
3324  // Branch around if the given klass is not an array klass of any kind.
3325  // If obj_array/non_array==true/true:
3326  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3327  // If obj_array/non_array==true/false:
3328  // Branch around if the kls is an oop array (Object[] or subtype)
3329  //
3330  // Like generate_guard, adds a new path onto the region.
3331  jint  layout_con = 0;
3332  Node* layout_val = get_layout_helper(kls, layout_con);
3333  if (layout_val == NULL) {
3334    bool query = (obj_array
3335                  ? Klass::layout_helper_is_objArray(layout_con)
3336                  : Klass::layout_helper_is_javaArray(layout_con));
3337    if (query == not_array) {
3338      return NULL;                       // never a branch
3339    } else {                             // always a branch
3340      Node* always_branch = control();
3341      if (region != NULL)
3342        region->add_req(always_branch);
3343      set_control(top());
3344      return always_branch;
3345    }
3346  }
3347  // Now test the correct condition.
3348  jint  nval = (obj_array
3349                ? ((jint)Klass::_lh_array_tag_type_value
3350                   <<    Klass::_lh_array_tag_shift)
3351                : Klass::_lh_neutral_value);
3352  Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3353  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3354  // invert the test if we are looking for a non-array
3355  if (not_array)  btest = BoolTest(btest).negate();
3356  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3357  return generate_fair_guard(bol, region);
3358}
3359
3360
3361//-----------------------inline_native_newArray--------------------------
3362bool LibraryCallKit::inline_native_newArray() {
3363  int nargs = 2;
3364  Node* mirror    = argument(0);
3365  Node* count_val = argument(1);
3366
3367  _sp += nargs;  // set original stack for use by uncommon_trap
3368  mirror = do_null_check(mirror, T_OBJECT);
3369  _sp -= nargs;
3370  // If mirror or obj is dead, only null-path is taken.
3371  if (stopped())  return true;
3372
3373  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3374  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3375  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3376                                                      TypeInstPtr::NOTNULL);
3377  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3378  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3379                                                      TypePtr::BOTTOM);
3380
3381  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3382  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3383                                                  nargs,
3384                                                  result_reg, _slow_path);
3385  Node* normal_ctl   = control();
3386  Node* no_array_ctl = result_reg->in(_slow_path);
3387
3388  // Generate code for the slow case.  We make a call to newArray().
3389  set_control(no_array_ctl);
3390  if (!stopped()) {
3391    // Either the input type is void.class, or else the
3392    // array klass has not yet been cached.  Either the
3393    // ensuing call will throw an exception, or else it
3394    // will cache the array klass for next time.
3395    PreserveJVMState pjvms(this);
3396    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3397    Node* slow_result = set_results_for_java_call(slow_call);
3398    // this->control() comes from set_results_for_java_call
3399    result_reg->set_req(_slow_path, control());
3400    result_val->set_req(_slow_path, slow_result);
3401    result_io ->set_req(_slow_path, i_o());
3402    result_mem->set_req(_slow_path, reset_memory());
3403  }
3404
3405  set_control(normal_ctl);
3406  if (!stopped()) {
3407    // Normal case:  The array type has been cached in the java.lang.Class.
3408    // The following call works fine even if the array type is polymorphic.
3409    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3410    Node* obj = new_array(klass_node, count_val, nargs);
3411    result_reg->init_req(_normal_path, control());
3412    result_val->init_req(_normal_path, obj);
3413    result_io ->init_req(_normal_path, i_o());
3414    result_mem->init_req(_normal_path, reset_memory());
3415  }
3416
3417  // Return the combined state.
3418  set_i_o(        _gvn.transform(result_io)  );
3419  set_all_memory( _gvn.transform(result_mem) );
3420  push_result(result_reg, result_val);
3421  C->set_has_split_ifs(true); // Has chance for split-if optimization
3422
3423  return true;
3424}
3425
3426//----------------------inline_native_getLength--------------------------
3427bool LibraryCallKit::inline_native_getLength() {
3428  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3429
3430  int nargs = 1;
3431  Node* array = argument(0);
3432
3433  _sp += nargs;  // set original stack for use by uncommon_trap
3434  array = do_null_check(array, T_OBJECT);
3435  _sp -= nargs;
3436
3437  // If array is dead, only null-path is taken.
3438  if (stopped())  return true;
3439
3440  // Deoptimize if it is a non-array.
3441  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3442
3443  if (non_array != NULL) {
3444    PreserveJVMState pjvms(this);
3445    set_control(non_array);
3446    _sp += nargs;  // push the arguments back on the stack
3447    uncommon_trap(Deoptimization::Reason_intrinsic,
3448                  Deoptimization::Action_maybe_recompile);
3449  }
3450
3451  // If control is dead, only non-array-path is taken.
3452  if (stopped())  return true;
3453
3454  // The works fine even if the array type is polymorphic.
3455  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3456  push( load_array_length(array) );
3457
3458  C->set_has_split_ifs(true); // Has chance for split-if optimization
3459
3460  return true;
3461}
3462
3463//------------------------inline_array_copyOf----------------------------
3464bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3465  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3466
3467  // Restore the stack and pop off the arguments.
3468  int nargs = 3 + (is_copyOfRange? 1: 0);
3469  Node* original          = argument(0);
3470  Node* start             = is_copyOfRange? argument(1): intcon(0);
3471  Node* end               = is_copyOfRange? argument(2): argument(1);
3472  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3473
3474  Node* newcopy;
3475
3476  //set the original stack and the reexecute bit for the interpreter to reexecute
3477  //the bytecode that invokes Arrays.copyOf if deoptimization happens
3478  { PreserveReexecuteState preexecs(this);
3479    _sp += nargs;
3480    jvms()->set_should_reexecute(true);
3481
3482    array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3483    original          = do_null_check(original, T_OBJECT);
3484
3485    // Check if a null path was taken unconditionally.
3486    if (stopped())  return true;
3487
3488    Node* orig_length = load_array_length(original);
3489
3490    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3491                                              NULL, 0);
3492    klass_node = do_null_check(klass_node, T_OBJECT);
3493
3494    RegionNode* bailout = new (C, 1) RegionNode(1);
3495    record_for_igvn(bailout);
3496
3497    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3498    // Bail out if that is so.
3499    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3500    if (not_objArray != NULL) {
3501      // Improve the klass node's type from the new optimistic assumption:
3502      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3503      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3504      Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3505      cast->init_req(0, control());
3506      klass_node = _gvn.transform(cast);
3507    }
3508
3509    // Bail out if either start or end is negative.
3510    generate_negative_guard(start, bailout, &start);
3511    generate_negative_guard(end,   bailout, &end);
3512
3513    Node* length = end;
3514    if (_gvn.type(start) != TypeInt::ZERO) {
3515      length = _gvn.transform( new (C, 3) SubINode(end, start) );
3516    }
3517
3518    // Bail out if length is negative.
3519    // ...Not needed, since the new_array will throw the right exception.
3520    //generate_negative_guard(length, bailout, &length);
3521
3522    if (bailout->req() > 1) {
3523      PreserveJVMState pjvms(this);
3524      set_control( _gvn.transform(bailout) );
3525      uncommon_trap(Deoptimization::Reason_intrinsic,
3526                    Deoptimization::Action_maybe_recompile);
3527    }
3528
3529    if (!stopped()) {
3530
3531      // How many elements will we copy from the original?
3532      // The answer is MinI(orig_length - start, length).
3533      Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3534      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3535
3536      newcopy = new_array(klass_node, length, 0);
3537
3538      // Generate a direct call to the right arraycopy function(s).
3539      // We know the copy is disjoint but we might not know if the
3540      // oop stores need checking.
3541      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3542      // This will fail a store-check if x contains any non-nulls.
3543      bool disjoint_bases = true;
3544      bool length_never_negative = true;
3545      generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3546                         original, start, newcopy, intcon(0), moved,
3547                         disjoint_bases, length_never_negative);
3548    }
3549  } //original reexecute and sp are set back here
3550
3551  if(!stopped()) {
3552    push(newcopy);
3553  }
3554
3555  C->set_has_split_ifs(true); // Has chance for split-if optimization
3556
3557  return true;
3558}
3559
3560
3561//----------------------generate_virtual_guard---------------------------
3562// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3563Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3564                                             RegionNode* slow_region) {
3565  ciMethod* method = callee();
3566  int vtable_index = method->vtable_index();
3567  // Get the methodOop out of the appropriate vtable entry.
3568  int entry_offset  = (instanceKlass::vtable_start_offset() +
3569                     vtable_index*vtableEntry::size()) * wordSize +
3570                     vtableEntry::method_offset_in_bytes();
3571  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3572  Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3573
3574  // Compare the target method with the expected method (e.g., Object.hashCode).
3575  const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3576
3577  Node* native_call = makecon(native_call_addr);
3578  Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3579  Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3580
3581  return generate_slow_guard(test_native, slow_region);
3582}
3583
3584//-----------------------generate_method_call----------------------------
3585// Use generate_method_call to make a slow-call to the real
3586// method if the fast path fails.  An alternative would be to
3587// use a stub like OptoRuntime::slow_arraycopy_Java.
3588// This only works for expanding the current library call,
3589// not another intrinsic.  (E.g., don't use this for making an
3590// arraycopy call inside of the copyOf intrinsic.)
3591CallJavaNode*
3592LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3593  // When compiling the intrinsic method itself, do not use this technique.
3594  guarantee(callee() != C->method(), "cannot make slow-call to self");
3595
3596  ciMethod* method = callee();
3597  // ensure the JVMS we have will be correct for this call
3598  guarantee(method_id == method->intrinsic_id(), "must match");
3599
3600  const TypeFunc* tf = TypeFunc::make(method);
3601  int tfdc = tf->domain()->cnt();
3602  CallJavaNode* slow_call;
3603  if (is_static) {
3604    assert(!is_virtual, "");
3605    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3606                                SharedRuntime::get_resolve_static_call_stub(),
3607                                method, bci());
3608  } else if (is_virtual) {
3609    null_check_receiver(method);
3610    int vtable_index = methodOopDesc::invalid_vtable_index;
3611    if (UseInlineCaches) {
3612      // Suppress the vtable call
3613    } else {
3614      // hashCode and clone are not a miranda methods,
3615      // so the vtable index is fixed.
3616      // No need to use the linkResolver to get it.
3617       vtable_index = method->vtable_index();
3618    }
3619    slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3620                                SharedRuntime::get_resolve_virtual_call_stub(),
3621                                method, vtable_index, bci());
3622  } else {  // neither virtual nor static:  opt_virtual
3623    null_check_receiver(method);
3624    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3625                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
3626                                method, bci());
3627    slow_call->set_optimized_virtual(true);
3628  }
3629  set_arguments_for_java_call(slow_call);
3630  set_edges_for_java_call(slow_call);
3631  return slow_call;
3632}
3633
3634
3635//------------------------------inline_native_hashcode--------------------
3636// Build special case code for calls to hashCode on an object.
3637bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3638  assert(is_static == callee()->is_static(), "correct intrinsic selection");
3639  assert(!(is_virtual && is_static), "either virtual, special, or static");
3640
3641  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3642
3643  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3644  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3645                                                      TypeInt::INT);
3646  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3647  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3648                                                      TypePtr::BOTTOM);
3649  Node* obj = NULL;
3650  if (!is_static) {
3651    // Check for hashing null object
3652    obj = null_check_receiver(callee());
3653    if (stopped())  return true;        // unconditionally null
3654    result_reg->init_req(_null_path, top());
3655    result_val->init_req(_null_path, top());
3656  } else {
3657    // Do a null check, and return zero if null.
3658    // System.identityHashCode(null) == 0
3659    obj = argument(0);
3660    Node* null_ctl = top();
3661    obj = null_check_oop(obj, &null_ctl);
3662    result_reg->init_req(_null_path, null_ctl);
3663    result_val->init_req(_null_path, _gvn.intcon(0));
3664  }
3665
3666  // Unconditionally null?  Then return right away.
3667  if (stopped()) {
3668    set_control( result_reg->in(_null_path) );
3669    if (!stopped())
3670      push(      result_val ->in(_null_path) );
3671    return true;
3672  }
3673
3674  // After null check, get the object's klass.
3675  Node* obj_klass = load_object_klass(obj);
3676
3677  // This call may be virtual (invokevirtual) or bound (invokespecial).
3678  // For each case we generate slightly different code.
3679
3680  // We only go to the fast case code if we pass a number of guards.  The
3681  // paths which do not pass are accumulated in the slow_region.
3682  RegionNode* slow_region = new (C, 1) RegionNode(1);
3683  record_for_igvn(slow_region);
3684
3685  // If this is a virtual call, we generate a funny guard.  We pull out
3686  // the vtable entry corresponding to hashCode() from the target object.
3687  // If the target method which we are calling happens to be the native
3688  // Object hashCode() method, we pass the guard.  We do not need this
3689  // guard for non-virtual calls -- the caller is known to be the native
3690  // Object hashCode().
3691  if (is_virtual) {
3692    generate_virtual_guard(obj_klass, slow_region);
3693  }
3694
3695  // Get the header out of the object, use LoadMarkNode when available
3696  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3697  Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
3698
3699  // Test the header to see if it is unlocked.
3700  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3701  Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3702  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3703  Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3704  Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3705
3706  generate_slow_guard(test_unlocked, slow_region);
3707
3708  // Get the hash value and check to see that it has been properly assigned.
3709  // We depend on hash_mask being at most 32 bits and avoid the use of
3710  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3711  // vm: see markOop.hpp.
3712  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3713  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3714  Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3715  // This hack lets the hash bits live anywhere in the mark object now, as long
3716  // as the shift drops the relevant bits into the low 32 bits.  Note that
3717  // Java spec says that HashCode is an int so there's no point in capturing
3718  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3719  hshifted_header      = ConvX2I(hshifted_header);
3720  Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3721
3722  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3723  Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3724  Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3725
3726  generate_slow_guard(test_assigned, slow_region);
3727
3728  Node* init_mem = reset_memory();
3729  // fill in the rest of the null path:
3730  result_io ->init_req(_null_path, i_o());
3731  result_mem->init_req(_null_path, init_mem);
3732
3733  result_val->init_req(_fast_path, hash_val);
3734  result_reg->init_req(_fast_path, control());
3735  result_io ->init_req(_fast_path, i_o());
3736  result_mem->init_req(_fast_path, init_mem);
3737
3738  // Generate code for the slow case.  We make a call to hashCode().
3739  set_control(_gvn.transform(slow_region));
3740  if (!stopped()) {
3741    // No need for PreserveJVMState, because we're using up the present state.
3742    set_all_memory(init_mem);
3743    vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3744    if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3745    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3746    Node* slow_result = set_results_for_java_call(slow_call);
3747    // this->control() comes from set_results_for_java_call
3748    result_reg->init_req(_slow_path, control());
3749    result_val->init_req(_slow_path, slow_result);
3750    result_io  ->set_req(_slow_path, i_o());
3751    result_mem ->set_req(_slow_path, reset_memory());
3752  }
3753
3754  // Return the combined state.
3755  set_i_o(        _gvn.transform(result_io)  );
3756  set_all_memory( _gvn.transform(result_mem) );
3757  push_result(result_reg, result_val);
3758
3759  return true;
3760}
3761
3762//---------------------------inline_native_getClass----------------------------
3763// Build special case code for calls to getClass on an object.
3764bool LibraryCallKit::inline_native_getClass() {
3765  Node* obj = null_check_receiver(callee());
3766  if (stopped())  return true;
3767  push( load_mirror_from_klass(load_object_klass(obj)) );
3768  return true;
3769}
3770
3771//-----------------inline_native_Reflection_getCallerClass---------------------
3772// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3773//
3774// NOTE that this code must perform the same logic as
3775// vframeStream::security_get_caller_frame in that it must skip
3776// Method.invoke() and auxiliary frames.
3777
3778
3779
3780
3781bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3782  ciMethod*       method = callee();
3783
3784#ifndef PRODUCT
3785  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3786    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3787  }
3788#endif
3789
3790  debug_only(int saved_sp = _sp);
3791
3792  // Argument words:  (int depth)
3793  int nargs = 1;
3794
3795  _sp += nargs;
3796  Node* caller_depth_node = pop();
3797
3798  assert(saved_sp == _sp, "must have correct argument count");
3799
3800  // The depth value must be a constant in order for the runtime call
3801  // to be eliminated.
3802  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3803  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3804#ifndef PRODUCT
3805    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3806      tty->print_cr("  Bailing out because caller depth was not a constant");
3807    }
3808#endif
3809    return false;
3810  }
3811  // Note that the JVM state at this point does not include the
3812  // getCallerClass() frame which we are trying to inline. The
3813  // semantics of getCallerClass(), however, are that the "first"
3814  // frame is the getCallerClass() frame, so we subtract one from the
3815  // requested depth before continuing. We don't inline requests of
3816  // getCallerClass(0).
3817  int caller_depth = caller_depth_type->get_con() - 1;
3818  if (caller_depth < 0) {
3819#ifndef PRODUCT
3820    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3821      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3822    }
3823#endif
3824    return false;
3825  }
3826
3827  if (!jvms()->has_method()) {
3828#ifndef PRODUCT
3829    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3830      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3831    }
3832#endif
3833    return false;
3834  }
3835  int _depth = jvms()->depth();  // cache call chain depth
3836
3837  // Walk back up the JVM state to find the caller at the required
3838  // depth. NOTE that this code must perform the same logic as
3839  // vframeStream::security_get_caller_frame in that it must skip
3840  // Method.invoke() and auxiliary frames. Note also that depth is
3841  // 1-based (1 is the bottom of the inlining).
3842  int inlining_depth = _depth;
3843  JVMState* caller_jvms = NULL;
3844
3845  if (inlining_depth > 0) {
3846    caller_jvms = jvms();
3847    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3848    do {
3849      // The following if-tests should be performed in this order
3850      if (is_method_invoke_or_aux_frame(caller_jvms)) {
3851        // Skip a Method.invoke() or auxiliary frame
3852      } else if (caller_depth > 0) {
3853        // Skip real frame
3854        --caller_depth;
3855      } else {
3856        // We're done: reached desired caller after skipping.
3857        break;
3858      }
3859      caller_jvms = caller_jvms->caller();
3860      --inlining_depth;
3861    } while (inlining_depth > 0);
3862  }
3863
3864  if (inlining_depth == 0) {
3865#ifndef PRODUCT
3866    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3867      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3868      tty->print_cr("  JVM state at this point:");
3869      for (int i = _depth; i >= 1; i--) {
3870        tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3871      }
3872    }
3873#endif
3874    return false; // Reached end of inlining
3875  }
3876
3877  // Acquire method holder as java.lang.Class
3878  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3879  ciInstance*      caller_mirror = caller_klass->java_mirror();
3880  // Push this as a constant
3881  push(makecon(TypeInstPtr::make(caller_mirror)));
3882#ifndef PRODUCT
3883  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3884    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3885    tty->print_cr("  JVM state at this point:");
3886    for (int i = _depth; i >= 1; i--) {
3887      tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3888    }
3889  }
3890#endif
3891  return true;
3892}
3893
3894// Helper routine for above
3895bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3896  ciMethod* method = jvms->method();
3897
3898  // Is this the Method.invoke method itself?
3899  if (method->intrinsic_id() == vmIntrinsics::_invoke)
3900    return true;
3901
3902  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3903  ciKlass* k = method->holder();
3904  if (k->is_instance_klass()) {
3905    ciInstanceKlass* ik = k->as_instance_klass();
3906    for (; ik != NULL; ik = ik->super()) {
3907      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3908          ik == env()->find_system_klass(ik->name())) {
3909        return true;
3910      }
3911    }
3912  }
3913  else if (method->is_method_handle_adapter()) {
3914    // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3915    return true;
3916  }
3917
3918  return false;
3919}
3920
3921static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3922                                     // inline_native_AtomicLong_attemptUpdate() but it has no way of
3923                                     // computing it since there is no lookup field by name function in the
3924                                     // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3925                                     // Using a static variable here is safe even if we have multiple compilation
3926                                     // threads because the offset is constant.  At worst the same offset will be
3927                                     // computed and  stored multiple
3928
3929bool LibraryCallKit::inline_native_AtomicLong_get() {
3930  // Restore the stack and pop off the argument
3931  _sp+=1;
3932  Node *obj = pop();
3933
3934  // get the offset of the "value" field. Since the CI interfaces
3935  // does not provide a way to look up a field by name, we scan the bytecodes
3936  // to get the field index.  We expect the first 2 instructions of the method
3937  // to be:
3938  //    0 aload_0
3939  //    1 getfield "value"
3940  ciMethod* method = callee();
3941  if (value_field_offset == -1)
3942  {
3943    ciField* value_field;
3944    ciBytecodeStream iter(method);
3945    Bytecodes::Code bc = iter.next();
3946
3947    if ((bc != Bytecodes::_aload_0) &&
3948              ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3949      return false;
3950    bc = iter.next();
3951    if (bc != Bytecodes::_getfield)
3952      return false;
3953    bool ignore;
3954    value_field = iter.get_field(ignore);
3955    value_field_offset = value_field->offset_in_bytes();
3956  }
3957
3958  // Null check without removing any arguments.
3959  _sp++;
3960  obj = do_null_check(obj, T_OBJECT);
3961  _sp--;
3962  // Check for locking null object
3963  if (stopped()) return true;
3964
3965  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3966  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3967  int alias_idx = C->get_alias_index(adr_type);
3968
3969  Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3970
3971  push_pair(result);
3972
3973  return true;
3974}
3975
3976bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3977  // Restore the stack and pop off the arguments
3978  _sp+=5;
3979  Node *newVal = pop_pair();
3980  Node *oldVal = pop_pair();
3981  Node *obj = pop();
3982
3983  // we need the offset of the "value" field which was computed when
3984  // inlining the get() method.  Give up if we don't have it.
3985  if (value_field_offset == -1)
3986    return false;
3987
3988  // Null check without removing any arguments.
3989  _sp+=5;
3990  obj = do_null_check(obj, T_OBJECT);
3991  _sp-=5;
3992  // Check for locking null object
3993  if (stopped()) return true;
3994
3995  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3996  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3997  int alias_idx = C->get_alias_index(adr_type);
3998
3999  Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
4000  Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
4001  set_memory(store_proj, alias_idx);
4002  Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
4003
4004  Node *result;
4005  // CMove node is not used to be able fold a possible check code
4006  // after attemptUpdate() call. This code could be transformed
4007  // into CMove node by loop optimizations.
4008  {
4009    RegionNode *r = new (C, 3) RegionNode(3);
4010    result = new (C, 3) PhiNode(r, TypeInt::BOOL);
4011
4012    Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4013    Node *iftrue = opt_iff(r, iff);
4014    r->init_req(1, iftrue);
4015    result->init_req(1, intcon(1));
4016    result->init_req(2, intcon(0));
4017
4018    set_control(_gvn.transform(r));
4019    record_for_igvn(r);
4020
4021    C->set_has_split_ifs(true); // Has chance for split-if optimization
4022  }
4023
4024  push(_gvn.transform(result));
4025  return true;
4026}
4027
4028bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4029  // restore the arguments
4030  _sp += arg_size();
4031
4032  switch (id) {
4033  case vmIntrinsics::_floatToRawIntBits:
4034    push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
4035    break;
4036
4037  case vmIntrinsics::_intBitsToFloat:
4038    push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
4039    break;
4040
4041  case vmIntrinsics::_doubleToRawLongBits:
4042    push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
4043    break;
4044
4045  case vmIntrinsics::_longBitsToDouble:
4046    push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
4047    break;
4048
4049  case vmIntrinsics::_doubleToLongBits: {
4050    Node* value = pop_pair();
4051
4052    // two paths (plus control) merge in a wood
4053    RegionNode *r = new (C, 3) RegionNode(3);
4054    Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
4055
4056    Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
4057    // Build the boolean node
4058    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4059
4060    // Branch either way.
4061    // NaN case is less traveled, which makes all the difference.
4062    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4063    Node *opt_isnan = _gvn.transform(ifisnan);
4064    assert( opt_isnan->is_If(), "Expect an IfNode");
4065    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4066    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4067
4068    set_control(iftrue);
4069
4070    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4071    Node *slow_result = longcon(nan_bits); // return NaN
4072    phi->init_req(1, _gvn.transform( slow_result ));
4073    r->init_req(1, iftrue);
4074
4075    // Else fall through
4076    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4077    set_control(iffalse);
4078
4079    phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
4080    r->init_req(2, iffalse);
4081
4082    // Post merge
4083    set_control(_gvn.transform(r));
4084    record_for_igvn(r);
4085
4086    Node* result = _gvn.transform(phi);
4087    assert(result->bottom_type()->isa_long(), "must be");
4088    push_pair(result);
4089
4090    C->set_has_split_ifs(true); // Has chance for split-if optimization
4091
4092    break;
4093  }
4094
4095  case vmIntrinsics::_floatToIntBits: {
4096    Node* value = pop();
4097
4098    // two paths (plus control) merge in a wood
4099    RegionNode *r = new (C, 3) RegionNode(3);
4100    Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
4101
4102    Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
4103    // Build the boolean node
4104    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
4105
4106    // Branch either way.
4107    // NaN case is less traveled, which makes all the difference.
4108    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4109    Node *opt_isnan = _gvn.transform(ifisnan);
4110    assert( opt_isnan->is_If(), "Expect an IfNode");
4111    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4112    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
4113
4114    set_control(iftrue);
4115
4116    static const jint nan_bits = 0x7fc00000;
4117    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4118    phi->init_req(1, _gvn.transform( slow_result ));
4119    r->init_req(1, iftrue);
4120
4121    // Else fall through
4122    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
4123    set_control(iffalse);
4124
4125    phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
4126    r->init_req(2, iffalse);
4127
4128    // Post merge
4129    set_control(_gvn.transform(r));
4130    record_for_igvn(r);
4131
4132    Node* result = _gvn.transform(phi);
4133    assert(result->bottom_type()->isa_int(), "must be");
4134    push(result);
4135
4136    C->set_has_split_ifs(true); // Has chance for split-if optimization
4137
4138    break;
4139  }
4140
4141  default:
4142    ShouldNotReachHere();
4143  }
4144
4145  return true;
4146}
4147
4148#ifdef _LP64
4149#define XTOP ,top() /*additional argument*/
4150#else  //_LP64
4151#define XTOP        /*no additional argument*/
4152#endif //_LP64
4153
4154//----------------------inline_unsafe_copyMemory-------------------------
4155bool LibraryCallKit::inline_unsafe_copyMemory() {
4156  if (callee()->is_static())  return false;  // caller must have the capability!
4157  int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
4158  assert(signature()->size() == nargs-1, "copy has 5 arguments");
4159  null_check_receiver(callee());  // check then ignore argument(0)
4160  if (stopped())  return true;
4161
4162  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4163
4164  Node* src_ptr = argument(1);
4165  Node* src_off = ConvL2X(argument(2));
4166  assert(argument(3)->is_top(), "2nd half of long");
4167  Node* dst_ptr = argument(4);
4168  Node* dst_off = ConvL2X(argument(5));
4169  assert(argument(6)->is_top(), "2nd half of long");
4170  Node* size    = ConvL2X(argument(7));
4171  assert(argument(8)->is_top(), "2nd half of long");
4172
4173  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4174         "fieldOffset must be byte-scaled");
4175
4176  Node* src = make_unsafe_address(src_ptr, src_off);
4177  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4178
4179  // Conservatively insert a memory barrier on all memory slices.
4180  // Do not let writes of the copy source or destination float below the copy.
4181  insert_mem_bar(Op_MemBarCPUOrder);
4182
4183  // Call it.  Note that the length argument is not scaled.
4184  make_runtime_call(RC_LEAF|RC_NO_FP,
4185                    OptoRuntime::fast_arraycopy_Type(),
4186                    StubRoutines::unsafe_arraycopy(),
4187                    "unsafe_arraycopy",
4188                    TypeRawPtr::BOTTOM,
4189                    src, dst, size XTOP);
4190
4191  // Do not let reads of the copy destination float above the copy.
4192  insert_mem_bar(Op_MemBarCPUOrder);
4193
4194  return true;
4195}
4196
4197//------------------------clone_coping-----------------------------------
4198// Helper function for inline_native_clone.
4199void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4200  assert(obj_size != NULL, "");
4201  Node* raw_obj = alloc_obj->in(1);
4202  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4203
4204  AllocateNode* alloc = NULL;
4205  if (ReduceBulkZeroing) {
4206    // We will be completely responsible for initializing this object -
4207    // mark Initialize node as complete.
4208    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4209    // The object was just allocated - there should be no any stores!
4210    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4211    // Mark as complete_with_arraycopy so that on AllocateNode
4212    // expansion, we know this AllocateNode is initialized by an array
4213    // copy and a StoreStore barrier exists after the array copy.
4214    alloc->initialization()->set_complete_with_arraycopy();
4215  }
4216
4217  // Copy the fastest available way.
4218  // TODO: generate fields copies for small objects instead.
4219  Node* src  = obj;
4220  Node* dest = alloc_obj;
4221  Node* size = _gvn.transform(obj_size);
4222
4223  // Exclude the header but include array length to copy by 8 bytes words.
4224  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4225  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4226                            instanceOopDesc::base_offset_in_bytes();
4227  // base_off:
4228  // 8  - 32-bit VM
4229  // 12 - 64-bit VM, compressed oops
4230  // 16 - 64-bit VM, normal oops
4231  if (base_off % BytesPerLong != 0) {
4232    assert(UseCompressedOops, "");
4233    if (is_array) {
4234      // Exclude length to copy by 8 bytes words.
4235      base_off += sizeof(int);
4236    } else {
4237      // Include klass to copy by 8 bytes words.
4238      base_off = instanceOopDesc::klass_offset_in_bytes();
4239    }
4240    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4241  }
4242  src  = basic_plus_adr(src,  base_off);
4243  dest = basic_plus_adr(dest, base_off);
4244
4245  // Compute the length also, if needed:
4246  Node* countx = size;
4247  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4248  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4249
4250  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4251  bool disjoint_bases = true;
4252  generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4253                               src, NULL, dest, NULL, countx,
4254                               /*dest_uninitialized*/true);
4255
4256  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4257  if (card_mark) {
4258    assert(!is_array, "");
4259    // Put in store barrier for any and all oops we are sticking
4260    // into this object.  (We could avoid this if we could prove
4261    // that the object type contains no oop fields at all.)
4262    Node* no_particular_value = NULL;
4263    Node* no_particular_field = NULL;
4264    int raw_adr_idx = Compile::AliasIdxRaw;
4265    post_barrier(control(),
4266                 memory(raw_adr_type),
4267                 alloc_obj,
4268                 no_particular_field,
4269                 raw_adr_idx,
4270                 no_particular_value,
4271                 T_OBJECT,
4272                 false);
4273  }
4274
4275  // Do not let reads from the cloned object float above the arraycopy.
4276  if (alloc != NULL) {
4277    // Do not let stores that initialize this object be reordered with
4278    // a subsequent store that would make this object accessible by
4279    // other threads.
4280    // Record what AllocateNode this StoreStore protects so that
4281    // escape analysis can go from the MemBarStoreStoreNode to the
4282    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4283    // based on the escape status of the AllocateNode.
4284    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4285  } else {
4286    insert_mem_bar(Op_MemBarCPUOrder);
4287  }
4288}
4289
4290//------------------------inline_native_clone----------------------------
4291// Here are the simple edge cases:
4292//  null receiver => normal trap
4293//  virtual and clone was overridden => slow path to out-of-line clone
4294//  not cloneable or finalizer => slow path to out-of-line Object.clone
4295//
4296// The general case has two steps, allocation and copying.
4297// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4298//
4299// Copying also has two cases, oop arrays and everything else.
4300// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4301// Everything else uses the tight inline loop supplied by CopyArrayNode.
4302//
4303// These steps fold up nicely if and when the cloned object's klass
4304// can be sharply typed as an object array, a type array, or an instance.
4305//
4306bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4307  int nargs = 1;
4308  PhiNode* result_val;
4309
4310  //set the original stack and the reexecute bit for the interpreter to reexecute
4311  //the bytecode that invokes Object.clone if deoptimization happens
4312  { PreserveReexecuteState preexecs(this);
4313    jvms()->set_should_reexecute(true);
4314
4315    //null_check_receiver will adjust _sp (push and pop)
4316    Node* obj = null_check_receiver(callee());
4317    if (stopped())  return true;
4318
4319    _sp += nargs;
4320
4321    Node* obj_klass = load_object_klass(obj);
4322    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4323    const TypeOopPtr*   toop   = ((tklass != NULL)
4324                                ? tklass->as_instance_type()
4325                                : TypeInstPtr::NOTNULL);
4326
4327    // Conservatively insert a memory barrier on all memory slices.
4328    // Do not let writes into the original float below the clone.
4329    insert_mem_bar(Op_MemBarCPUOrder);
4330
4331    // paths into result_reg:
4332    enum {
4333      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4334      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4335      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4336      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4337      PATH_LIMIT
4338    };
4339    RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4340    result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4341                                                        TypeInstPtr::NOTNULL);
4342    PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4343    PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4344                                                        TypePtr::BOTTOM);
4345    record_for_igvn(result_reg);
4346
4347    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4348    int raw_adr_idx = Compile::AliasIdxRaw;
4349
4350    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4351    if (array_ctl != NULL) {
4352      // It's an array.
4353      PreserveJVMState pjvms(this);
4354      set_control(array_ctl);
4355      Node* obj_length = load_array_length(obj);
4356      Node* obj_size  = NULL;
4357      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
4358
4359      if (!use_ReduceInitialCardMarks()) {
4360        // If it is an oop array, it requires very special treatment,
4361        // because card marking is required on each card of the array.
4362        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4363        if (is_obja != NULL) {
4364          PreserveJVMState pjvms2(this);
4365          set_control(is_obja);
4366          // Generate a direct call to the right arraycopy function(s).
4367          bool disjoint_bases = true;
4368          bool length_never_negative = true;
4369          generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4370                             obj, intcon(0), alloc_obj, intcon(0),
4371                             obj_length,
4372                             disjoint_bases, length_never_negative);
4373          result_reg->init_req(_objArray_path, control());
4374          result_val->init_req(_objArray_path, alloc_obj);
4375          result_i_o ->set_req(_objArray_path, i_o());
4376          result_mem ->set_req(_objArray_path, reset_memory());
4377        }
4378      }
4379      // Otherwise, there are no card marks to worry about.
4380      // (We can dispense with card marks if we know the allocation
4381      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4382      //  causes the non-eden paths to take compensating steps to
4383      //  simulate a fresh allocation, so that no further
4384      //  card marks are required in compiled code to initialize
4385      //  the object.)
4386
4387      if (!stopped()) {
4388        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4389
4390        // Present the results of the copy.
4391        result_reg->init_req(_array_path, control());
4392        result_val->init_req(_array_path, alloc_obj);
4393        result_i_o ->set_req(_array_path, i_o());
4394        result_mem ->set_req(_array_path, reset_memory());
4395      }
4396    }
4397
4398    // We only go to the instance fast case code if we pass a number of guards.
4399    // The paths which do not pass are accumulated in the slow_region.
4400    RegionNode* slow_region = new (C, 1) RegionNode(1);
4401    record_for_igvn(slow_region);
4402    if (!stopped()) {
4403      // It's an instance (we did array above).  Make the slow-path tests.
4404      // If this is a virtual call, we generate a funny guard.  We grab
4405      // the vtable entry corresponding to clone() from the target object.
4406      // If the target method which we are calling happens to be the
4407      // Object clone() method, we pass the guard.  We do not need this
4408      // guard for non-virtual calls; the caller is known to be the native
4409      // Object clone().
4410      if (is_virtual) {
4411        generate_virtual_guard(obj_klass, slow_region);
4412      }
4413
4414      // The object must be cloneable and must not have a finalizer.
4415      // Both of these conditions may be checked in a single test.
4416      // We could optimize the cloneable test further, but we don't care.
4417      generate_access_flags_guard(obj_klass,
4418                                  // Test both conditions:
4419                                  JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4420                                  // Must be cloneable but not finalizer:
4421                                  JVM_ACC_IS_CLONEABLE,
4422                                  slow_region);
4423    }
4424
4425    if (!stopped()) {
4426      // It's an instance, and it passed the slow-path tests.
4427      PreserveJVMState pjvms(this);
4428      Node* obj_size  = NULL;
4429      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4430
4431      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4432
4433      // Present the results of the slow call.
4434      result_reg->init_req(_instance_path, control());
4435      result_val->init_req(_instance_path, alloc_obj);
4436      result_i_o ->set_req(_instance_path, i_o());
4437      result_mem ->set_req(_instance_path, reset_memory());
4438    }
4439
4440    // Generate code for the slow case.  We make a call to clone().
4441    set_control(_gvn.transform(slow_region));
4442    if (!stopped()) {
4443      PreserveJVMState pjvms(this);
4444      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4445      Node* slow_result = set_results_for_java_call(slow_call);
4446      // this->control() comes from set_results_for_java_call
4447      result_reg->init_req(_slow_path, control());
4448      result_val->init_req(_slow_path, slow_result);
4449      result_i_o ->set_req(_slow_path, i_o());
4450      result_mem ->set_req(_slow_path, reset_memory());
4451    }
4452
4453    // Return the combined state.
4454    set_control(    _gvn.transform(result_reg) );
4455    set_i_o(        _gvn.transform(result_i_o) );
4456    set_all_memory( _gvn.transform(result_mem) );
4457  } //original reexecute and sp are set back here
4458
4459  push(_gvn.transform(result_val));
4460
4461  return true;
4462}
4463
4464//------------------------------basictype2arraycopy----------------------------
4465address LibraryCallKit::basictype2arraycopy(BasicType t,
4466                                            Node* src_offset,
4467                                            Node* dest_offset,
4468                                            bool disjoint_bases,
4469                                            const char* &name,
4470                                            bool dest_uninitialized) {
4471  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4472  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4473
4474  bool aligned = false;
4475  bool disjoint = disjoint_bases;
4476
4477  // if the offsets are the same, we can treat the memory regions as
4478  // disjoint, because either the memory regions are in different arrays,
4479  // or they are identical (which we can treat as disjoint.)  We can also
4480  // treat a copy with a destination index  less that the source index
4481  // as disjoint since a low->high copy will work correctly in this case.
4482  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4483      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4484    // both indices are constants
4485    int s_offs = src_offset_inttype->get_con();
4486    int d_offs = dest_offset_inttype->get_con();
4487    int element_size = type2aelembytes(t);
4488    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4489              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4490    if (s_offs >= d_offs)  disjoint = true;
4491  } else if (src_offset == dest_offset && src_offset != NULL) {
4492    // This can occur if the offsets are identical non-constants.
4493    disjoint = true;
4494  }
4495
4496  return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4497}
4498
4499
4500//------------------------------inline_arraycopy-----------------------
4501bool LibraryCallKit::inline_arraycopy() {
4502  // Restore the stack and pop off the arguments.
4503  int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4504  assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4505
4506  Node *src         = argument(0);
4507  Node *src_offset  = argument(1);
4508  Node *dest        = argument(2);
4509  Node *dest_offset = argument(3);
4510  Node *length      = argument(4);
4511
4512  // Compile time checks.  If any of these checks cannot be verified at compile time,
4513  // we do not make a fast path for this call.  Instead, we let the call remain as it
4514  // is.  The checks we choose to mandate at compile time are:
4515  //
4516  // (1) src and dest are arrays.
4517  const Type* src_type = src->Value(&_gvn);
4518  const Type* dest_type = dest->Value(&_gvn);
4519  const TypeAryPtr* top_src = src_type->isa_aryptr();
4520  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4521  if (top_src  == NULL || top_src->klass()  == NULL ||
4522      top_dest == NULL || top_dest->klass() == NULL) {
4523    // Conservatively insert a memory barrier on all memory slices.
4524    // Do not let writes into the source float below the arraycopy.
4525    insert_mem_bar(Op_MemBarCPUOrder);
4526
4527    // Call StubRoutines::generic_arraycopy stub.
4528    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4529                       src, src_offset, dest, dest_offset, length);
4530
4531    // Do not let reads from the destination float above the arraycopy.
4532    // Since we cannot type the arrays, we don't know which slices
4533    // might be affected.  We could restrict this barrier only to those
4534    // memory slices which pertain to array elements--but don't bother.
4535    if (!InsertMemBarAfterArraycopy)
4536      // (If InsertMemBarAfterArraycopy, there is already one in place.)
4537      insert_mem_bar(Op_MemBarCPUOrder);
4538    return true;
4539  }
4540
4541  // (2) src and dest arrays must have elements of the same BasicType
4542  // Figure out the size and type of the elements we will be copying.
4543  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4544  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4545  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4546  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4547
4548  if (src_elem != dest_elem || dest_elem == T_VOID) {
4549    // The component types are not the same or are not recognized.  Punt.
4550    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4551    generate_slow_arraycopy(TypePtr::BOTTOM,
4552                            src, src_offset, dest, dest_offset, length,
4553                            /*dest_uninitialized*/false);
4554    return true;
4555  }
4556
4557  //---------------------------------------------------------------------------
4558  // We will make a fast path for this call to arraycopy.
4559
4560  // We have the following tests left to perform:
4561  //
4562  // (3) src and dest must not be null.
4563  // (4) src_offset must not be negative.
4564  // (5) dest_offset must not be negative.
4565  // (6) length must not be negative.
4566  // (7) src_offset + length must not exceed length of src.
4567  // (8) dest_offset + length must not exceed length of dest.
4568  // (9) each element of an oop array must be assignable
4569
4570  RegionNode* slow_region = new (C, 1) RegionNode(1);
4571  record_for_igvn(slow_region);
4572
4573  // (3) operands must not be null
4574  // We currently perform our null checks with the do_null_check routine.
4575  // This means that the null exceptions will be reported in the caller
4576  // rather than (correctly) reported inside of the native arraycopy call.
4577  // This should be corrected, given time.  We do our null check with the
4578  // stack pointer restored.
4579  _sp += nargs;
4580  src  = do_null_check(src,  T_ARRAY);
4581  dest = do_null_check(dest, T_ARRAY);
4582  _sp -= nargs;
4583
4584  // (4) src_offset must not be negative.
4585  generate_negative_guard(src_offset, slow_region);
4586
4587  // (5) dest_offset must not be negative.
4588  generate_negative_guard(dest_offset, slow_region);
4589
4590  // (6) length must not be negative (moved to generate_arraycopy()).
4591  // generate_negative_guard(length, slow_region);
4592
4593  // (7) src_offset + length must not exceed length of src.
4594  generate_limit_guard(src_offset, length,
4595                       load_array_length(src),
4596                       slow_region);
4597
4598  // (8) dest_offset + length must not exceed length of dest.
4599  generate_limit_guard(dest_offset, length,
4600                       load_array_length(dest),
4601                       slow_region);
4602
4603  // (9) each element of an oop array must be assignable
4604  // The generate_arraycopy subroutine checks this.
4605
4606  // This is where the memory effects are placed:
4607  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4608  generate_arraycopy(adr_type, dest_elem,
4609                     src, src_offset, dest, dest_offset, length,
4610                     false, false, slow_region);
4611
4612  return true;
4613}
4614
4615//-----------------------------generate_arraycopy----------------------
4616// Generate an optimized call to arraycopy.
4617// Caller must guard against non-arrays.
4618// Caller must determine a common array basic-type for both arrays.
4619// Caller must validate offsets against array bounds.
4620// The slow_region has already collected guard failure paths
4621// (such as out of bounds length or non-conformable array types).
4622// The generated code has this shape, in general:
4623//
4624//     if (length == 0)  return   // via zero_path
4625//     slowval = -1
4626//     if (types unknown) {
4627//       slowval = call generic copy loop
4628//       if (slowval == 0)  return  // via checked_path
4629//     } else if (indexes in bounds) {
4630//       if ((is object array) && !(array type check)) {
4631//         slowval = call checked copy loop
4632//         if (slowval == 0)  return  // via checked_path
4633//       } else {
4634//         call bulk copy loop
4635//         return  // via fast_path
4636//       }
4637//     }
4638//     // adjust params for remaining work:
4639//     if (slowval != -1) {
4640//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4641//     }
4642//   slow_region:
4643//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4644//     return  // via slow_call_path
4645//
4646// This routine is used from several intrinsics:  System.arraycopy,
4647// Object.clone (the array subcase), and Arrays.copyOf[Range].
4648//
4649void
4650LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4651                                   BasicType basic_elem_type,
4652                                   Node* src,  Node* src_offset,
4653                                   Node* dest, Node* dest_offset,
4654                                   Node* copy_length,
4655                                   bool disjoint_bases,
4656                                   bool length_never_negative,
4657                                   RegionNode* slow_region) {
4658
4659  if (slow_region == NULL) {
4660    slow_region = new(C,1) RegionNode(1);
4661    record_for_igvn(slow_region);
4662  }
4663
4664  Node* original_dest      = dest;
4665  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4666  bool  dest_uninitialized = false;
4667
4668  // See if this is the initialization of a newly-allocated array.
4669  // If so, we will take responsibility here for initializing it to zero.
4670  // (Note:  Because tightly_coupled_allocation performs checks on the
4671  // out-edges of the dest, we need to avoid making derived pointers
4672  // from it until we have checked its uses.)
4673  if (ReduceBulkZeroing
4674      && !ZeroTLAB              // pointless if already zeroed
4675      && basic_elem_type != T_CONFLICT // avoid corner case
4676      && !src->eqv_uncast(dest)
4677      && ((alloc = tightly_coupled_allocation(dest, slow_region))
4678          != NULL)
4679      && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4680      && alloc->maybe_set_complete(&_gvn)) {
4681    // "You break it, you buy it."
4682    InitializeNode* init = alloc->initialization();
4683    assert(init->is_complete(), "we just did this");
4684    init->set_complete_with_arraycopy();
4685    assert(dest->is_CheckCastPP(), "sanity");
4686    assert(dest->in(0)->in(0) == init, "dest pinned");
4687    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4688    // From this point on, every exit path is responsible for
4689    // initializing any non-copied parts of the object to zero.
4690    // Also, if this flag is set we make sure that arraycopy interacts properly
4691    // with G1, eliding pre-barriers. See CR 6627983.
4692    dest_uninitialized = true;
4693  } else {
4694    // No zeroing elimination here.
4695    alloc             = NULL;
4696    //original_dest   = dest;
4697    //dest_uninitialized = false;
4698  }
4699
4700  // Results are placed here:
4701  enum { fast_path        = 1,  // normal void-returning assembly stub
4702         checked_path     = 2,  // special assembly stub with cleanup
4703         slow_call_path   = 3,  // something went wrong; call the VM
4704         zero_path        = 4,  // bypass when length of copy is zero
4705         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4706         PATH_LIMIT       = 6
4707  };
4708  RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4709  PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4710  PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4711  record_for_igvn(result_region);
4712  _gvn.set_type_bottom(result_i_o);
4713  _gvn.set_type_bottom(result_memory);
4714  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4715
4716  // The slow_control path:
4717  Node* slow_control;
4718  Node* slow_i_o = i_o();
4719  Node* slow_mem = memory(adr_type);
4720  debug_only(slow_control = (Node*) badAddress);
4721
4722  // Checked control path:
4723  Node* checked_control = top();
4724  Node* checked_mem     = NULL;
4725  Node* checked_i_o     = NULL;
4726  Node* checked_value   = NULL;
4727
4728  if (basic_elem_type == T_CONFLICT) {
4729    assert(!dest_uninitialized, "");
4730    Node* cv = generate_generic_arraycopy(adr_type,
4731                                          src, src_offset, dest, dest_offset,
4732                                          copy_length, dest_uninitialized);
4733    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4734    checked_control = control();
4735    checked_i_o     = i_o();
4736    checked_mem     = memory(adr_type);
4737    checked_value   = cv;
4738    set_control(top());         // no fast path
4739  }
4740
4741  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4742  if (not_pos != NULL) {
4743    PreserveJVMState pjvms(this);
4744    set_control(not_pos);
4745
4746    // (6) length must not be negative.
4747    if (!length_never_negative) {
4748      generate_negative_guard(copy_length, slow_region);
4749    }
4750
4751    // copy_length is 0.
4752    if (!stopped() && dest_uninitialized) {
4753      Node* dest_length = alloc->in(AllocateNode::ALength);
4754      if (copy_length->eqv_uncast(dest_length)
4755          || _gvn.find_int_con(dest_length, 1) <= 0) {
4756        // There is no zeroing to do. No need for a secondary raw memory barrier.
4757      } else {
4758        // Clear the whole thing since there are no source elements to copy.
4759        generate_clear_array(adr_type, dest, basic_elem_type,
4760                             intcon(0), NULL,
4761                             alloc->in(AllocateNode::AllocSize));
4762        // Use a secondary InitializeNode as raw memory barrier.
4763        // Currently it is needed only on this path since other
4764        // paths have stub or runtime calls as raw memory barriers.
4765        InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4766                                                       Compile::AliasIdxRaw,
4767                                                       top())->as_Initialize();
4768        init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4769      }
4770    }
4771
4772    // Present the results of the fast call.
4773    result_region->init_req(zero_path, control());
4774    result_i_o   ->init_req(zero_path, i_o());
4775    result_memory->init_req(zero_path, memory(adr_type));
4776  }
4777
4778  if (!stopped() && dest_uninitialized) {
4779    // We have to initialize the *uncopied* part of the array to zero.
4780    // The copy destination is the slice dest[off..off+len].  The other slices
4781    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4782    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4783    Node* dest_length = alloc->in(AllocateNode::ALength);
4784    Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4785                                                          copy_length) );
4786
4787    // If there is a head section that needs zeroing, do it now.
4788    if (find_int_con(dest_offset, -1) != 0) {
4789      generate_clear_array(adr_type, dest, basic_elem_type,
4790                           intcon(0), dest_offset,
4791                           NULL);
4792    }
4793
4794    // Next, perform a dynamic check on the tail length.
4795    // It is often zero, and we can win big if we prove this.
4796    // There are two wins:  Avoid generating the ClearArray
4797    // with its attendant messy index arithmetic, and upgrade
4798    // the copy to a more hardware-friendly word size of 64 bits.
4799    Node* tail_ctl = NULL;
4800    if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4801      Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4802      Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4803      tail_ctl = generate_slow_guard(bol_lt, NULL);
4804      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4805    }
4806
4807    // At this point, let's assume there is no tail.
4808    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4809      // There is no tail.  Try an upgrade to a 64-bit copy.
4810      bool didit = false;
4811      { PreserveJVMState pjvms(this);
4812        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4813                                         src, src_offset, dest, dest_offset,
4814                                         dest_size, dest_uninitialized);
4815        if (didit) {
4816          // Present the results of the block-copying fast call.
4817          result_region->init_req(bcopy_path, control());
4818          result_i_o   ->init_req(bcopy_path, i_o());
4819          result_memory->init_req(bcopy_path, memory(adr_type));
4820        }
4821      }
4822      if (didit)
4823        set_control(top());     // no regular fast path
4824    }
4825
4826    // Clear the tail, if any.
4827    if (tail_ctl != NULL) {
4828      Node* notail_ctl = stopped() ? NULL : control();
4829      set_control(tail_ctl);
4830      if (notail_ctl == NULL) {
4831        generate_clear_array(adr_type, dest, basic_elem_type,
4832                             dest_tail, NULL,
4833                             dest_size);
4834      } else {
4835        // Make a local merge.
4836        Node* done_ctl = new(C,3) RegionNode(3);
4837        Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4838        done_ctl->init_req(1, notail_ctl);
4839        done_mem->init_req(1, memory(adr_type));
4840        generate_clear_array(adr_type, dest, basic_elem_type,
4841                             dest_tail, NULL,
4842                             dest_size);
4843        done_ctl->init_req(2, control());
4844        done_mem->init_req(2, memory(adr_type));
4845        set_control( _gvn.transform(done_ctl) );
4846        set_memory(  _gvn.transform(done_mem), adr_type );
4847      }
4848    }
4849  }
4850
4851  BasicType copy_type = basic_elem_type;
4852  assert(basic_elem_type != T_ARRAY, "caller must fix this");
4853  if (!stopped() && copy_type == T_OBJECT) {
4854    // If src and dest have compatible element types, we can copy bits.
4855    // Types S[] and D[] are compatible if D is a supertype of S.
4856    //
4857    // If they are not, we will use checked_oop_disjoint_arraycopy,
4858    // which performs a fast optimistic per-oop check, and backs off
4859    // further to JVM_ArrayCopy on the first per-oop check that fails.
4860    // (Actually, we don't move raw bits only; the GC requires card marks.)
4861
4862    // Get the klassOop for both src and dest
4863    Node* src_klass  = load_object_klass(src);
4864    Node* dest_klass = load_object_klass(dest);
4865
4866    // Generate the subtype check.
4867    // This might fold up statically, or then again it might not.
4868    //
4869    // Non-static example:  Copying List<String>.elements to a new String[].
4870    // The backing store for a List<String> is always an Object[],
4871    // but its elements are always type String, if the generic types
4872    // are correct at the source level.
4873    //
4874    // Test S[] against D[], not S against D, because (probably)
4875    // the secondary supertype cache is less busy for S[] than S.
4876    // This usually only matters when D is an interface.
4877    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4878    // Plug failing path into checked_oop_disjoint_arraycopy
4879    if (not_subtype_ctrl != top()) {
4880      PreserveJVMState pjvms(this);
4881      set_control(not_subtype_ctrl);
4882      // (At this point we can assume disjoint_bases, since types differ.)
4883      int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
4884      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4885      Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4886      Node* dest_elem_klass = _gvn.transform(n1);
4887      Node* cv = generate_checkcast_arraycopy(adr_type,
4888                                              dest_elem_klass,
4889                                              src, src_offset, dest, dest_offset,
4890                                              ConvI2X(copy_length), dest_uninitialized);
4891      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4892      checked_control = control();
4893      checked_i_o     = i_o();
4894      checked_mem     = memory(adr_type);
4895      checked_value   = cv;
4896    }
4897    // At this point we know we do not need type checks on oop stores.
4898
4899    // Let's see if we need card marks:
4900    if (alloc != NULL && use_ReduceInitialCardMarks()) {
4901      // If we do not need card marks, copy using the jint or jlong stub.
4902      copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4903      assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4904             "sizes agree");
4905    }
4906  }
4907
4908  if (!stopped()) {
4909    // Generate the fast path, if possible.
4910    PreserveJVMState pjvms(this);
4911    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4912                                 src, src_offset, dest, dest_offset,
4913                                 ConvI2X(copy_length), dest_uninitialized);
4914
4915    // Present the results of the fast call.
4916    result_region->init_req(fast_path, control());
4917    result_i_o   ->init_req(fast_path, i_o());
4918    result_memory->init_req(fast_path, memory(adr_type));
4919  }
4920
4921  // Here are all the slow paths up to this point, in one bundle:
4922  slow_control = top();
4923  if (slow_region != NULL)
4924    slow_control = _gvn.transform(slow_region);
4925  debug_only(slow_region = (RegionNode*)badAddress);
4926
4927  set_control(checked_control);
4928  if (!stopped()) {
4929    // Clean up after the checked call.
4930    // The returned value is either 0 or -1^K,
4931    // where K = number of partially transferred array elements.
4932    Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4933    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4934    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4935
4936    // If it is 0, we are done, so transfer to the end.
4937    Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4938    result_region->init_req(checked_path, checks_done);
4939    result_i_o   ->init_req(checked_path, checked_i_o);
4940    result_memory->init_req(checked_path, checked_mem);
4941
4942    // If it is not zero, merge into the slow call.
4943    set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4944    RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4945    PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4946    PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4947    record_for_igvn(slow_reg2);
4948    slow_reg2  ->init_req(1, slow_control);
4949    slow_i_o2  ->init_req(1, slow_i_o);
4950    slow_mem2  ->init_req(1, slow_mem);
4951    slow_reg2  ->init_req(2, control());
4952    slow_i_o2  ->init_req(2, checked_i_o);
4953    slow_mem2  ->init_req(2, checked_mem);
4954
4955    slow_control = _gvn.transform(slow_reg2);
4956    slow_i_o     = _gvn.transform(slow_i_o2);
4957    slow_mem     = _gvn.transform(slow_mem2);
4958
4959    if (alloc != NULL) {
4960      // We'll restart from the very beginning, after zeroing the whole thing.
4961      // This can cause double writes, but that's OK since dest is brand new.
4962      // So we ignore the low 31 bits of the value returned from the stub.
4963    } else {
4964      // We must continue the copy exactly where it failed, or else
4965      // another thread might see the wrong number of writes to dest.
4966      Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4967      Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4968      slow_offset->init_req(1, intcon(0));
4969      slow_offset->init_req(2, checked_offset);
4970      slow_offset  = _gvn.transform(slow_offset);
4971
4972      // Adjust the arguments by the conditionally incoming offset.
4973      Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4974      Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4975      Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4976
4977      // Tweak the node variables to adjust the code produced below:
4978      src_offset  = src_off_plus;
4979      dest_offset = dest_off_plus;
4980      copy_length = length_minus;
4981    }
4982  }
4983
4984  set_control(slow_control);
4985  if (!stopped()) {
4986    // Generate the slow path, if needed.
4987    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4988
4989    set_memory(slow_mem, adr_type);
4990    set_i_o(slow_i_o);
4991
4992    if (dest_uninitialized) {
4993      generate_clear_array(adr_type, dest, basic_elem_type,
4994                           intcon(0), NULL,
4995                           alloc->in(AllocateNode::AllocSize));
4996    }
4997
4998    generate_slow_arraycopy(adr_type,
4999                            src, src_offset, dest, dest_offset,
5000                            copy_length, /*dest_uninitialized*/false);
5001
5002    result_region->init_req(slow_call_path, control());
5003    result_i_o   ->init_req(slow_call_path, i_o());
5004    result_memory->init_req(slow_call_path, memory(adr_type));
5005  }
5006
5007  // Remove unused edges.
5008  for (uint i = 1; i < result_region->req(); i++) {
5009    if (result_region->in(i) == NULL)
5010      result_region->init_req(i, top());
5011  }
5012
5013  // Finished; return the combined state.
5014  set_control( _gvn.transform(result_region) );
5015  set_i_o(     _gvn.transform(result_i_o)    );
5016  set_memory(  _gvn.transform(result_memory), adr_type );
5017
5018  // The memory edges above are precise in order to model effects around
5019  // array copies accurately to allow value numbering of field loads around
5020  // arraycopy.  Such field loads, both before and after, are common in Java
5021  // collections and similar classes involving header/array data structures.
5022  //
5023  // But with low number of register or when some registers are used or killed
5024  // by arraycopy calls it causes registers spilling on stack. See 6544710.
5025  // The next memory barrier is added to avoid it. If the arraycopy can be
5026  // optimized away (which it can, sometimes) then we can manually remove
5027  // the membar also.
5028  //
5029  // Do not let reads from the cloned object float above the arraycopy.
5030  if (alloc != NULL) {
5031    // Do not let stores that initialize this object be reordered with
5032    // a subsequent store that would make this object accessible by
5033    // other threads.
5034    // Record what AllocateNode this StoreStore protects so that
5035    // escape analysis can go from the MemBarStoreStoreNode to the
5036    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5037    // based on the escape status of the AllocateNode.
5038    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5039  } else if (InsertMemBarAfterArraycopy)
5040    insert_mem_bar(Op_MemBarCPUOrder);
5041}
5042
5043
5044// Helper function which determines if an arraycopy immediately follows
5045// an allocation, with no intervening tests or other escapes for the object.
5046AllocateArrayNode*
5047LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5048                                           RegionNode* slow_region) {
5049  if (stopped())             return NULL;  // no fast path
5050  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5051
5052  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5053  if (alloc == NULL)  return NULL;
5054
5055  Node* rawmem = memory(Compile::AliasIdxRaw);
5056  // Is the allocation's memory state untouched?
5057  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5058    // Bail out if there have been raw-memory effects since the allocation.
5059    // (Example:  There might have been a call or safepoint.)
5060    return NULL;
5061  }
5062  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5063  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5064    return NULL;
5065  }
5066
5067  // There must be no unexpected observers of this allocation.
5068  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5069    Node* obs = ptr->fast_out(i);
5070    if (obs != this->map()) {
5071      return NULL;
5072    }
5073  }
5074
5075  // This arraycopy must unconditionally follow the allocation of the ptr.
5076  Node* alloc_ctl = ptr->in(0);
5077  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5078
5079  Node* ctl = control();
5080  while (ctl != alloc_ctl) {
5081    // There may be guards which feed into the slow_region.
5082    // Any other control flow means that we might not get a chance
5083    // to finish initializing the allocated object.
5084    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5085      IfNode* iff = ctl->in(0)->as_If();
5086      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5087      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5088      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5089        ctl = iff->in(0);       // This test feeds the known slow_region.
5090        continue;
5091      }
5092      // One more try:  Various low-level checks bottom out in
5093      // uncommon traps.  If the debug-info of the trap omits
5094      // any reference to the allocation, as we've already
5095      // observed, then there can be no objection to the trap.
5096      bool found_trap = false;
5097      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5098        Node* obs = not_ctl->fast_out(j);
5099        if (obs->in(0) == not_ctl && obs->is_Call() &&
5100            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5101          found_trap = true; break;
5102        }
5103      }
5104      if (found_trap) {
5105        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5106        continue;
5107      }
5108    }
5109    return NULL;
5110  }
5111
5112  // If we get this far, we have an allocation which immediately
5113  // precedes the arraycopy, and we can take over zeroing the new object.
5114  // The arraycopy will finish the initialization, and provide
5115  // a new control state to which we will anchor the destination pointer.
5116
5117  return alloc;
5118}
5119
5120// Helper for initialization of arrays, creating a ClearArray.
5121// It writes zero bits in [start..end), within the body of an array object.
5122// The memory effects are all chained onto the 'adr_type' alias category.
5123//
5124// Since the object is otherwise uninitialized, we are free
5125// to put a little "slop" around the edges of the cleared area,
5126// as long as it does not go back into the array's header,
5127// or beyond the array end within the heap.
5128//
5129// The lower edge can be rounded down to the nearest jint and the
5130// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5131//
5132// Arguments:
5133//   adr_type           memory slice where writes are generated
5134//   dest               oop of the destination array
5135//   basic_elem_type    element type of the destination
5136//   slice_idx          array index of first element to store
5137//   slice_len          number of elements to store (or NULL)
5138//   dest_size          total size in bytes of the array object
5139//
5140// Exactly one of slice_len or dest_size must be non-NULL.
5141// If dest_size is non-NULL, zeroing extends to the end of the object.
5142// If slice_len is non-NULL, the slice_idx value must be a constant.
5143void
5144LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5145                                     Node* dest,
5146                                     BasicType basic_elem_type,
5147                                     Node* slice_idx,
5148                                     Node* slice_len,
5149                                     Node* dest_size) {
5150  // one or the other but not both of slice_len and dest_size:
5151  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5152  if (slice_len == NULL)  slice_len = top();
5153  if (dest_size == NULL)  dest_size = top();
5154
5155  // operate on this memory slice:
5156  Node* mem = memory(adr_type); // memory slice to operate on
5157
5158  // scaling and rounding of indexes:
5159  int scale = exact_log2(type2aelembytes(basic_elem_type));
5160  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5161  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5162  int bump_bit  = (-1 << scale) & BytesPerInt;
5163
5164  // determine constant starts and ends
5165  const intptr_t BIG_NEG = -128;
5166  assert(BIG_NEG + 2*abase < 0, "neg enough");
5167  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5168  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5169  if (slice_len_con == 0) {
5170    return;                     // nothing to do here
5171  }
5172  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5173  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5174  if (slice_idx_con >= 0 && slice_len_con >= 0) {
5175    assert(end_con < 0, "not two cons");
5176    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5177                       BytesPerLong);
5178  }
5179
5180  if (start_con >= 0 && end_con >= 0) {
5181    // Constant start and end.  Simple.
5182    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5183                                       start_con, end_con, &_gvn);
5184  } else if (start_con >= 0 && dest_size != top()) {
5185    // Constant start, pre-rounded end after the tail of the array.
5186    Node* end = dest_size;
5187    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5188                                       start_con, end, &_gvn);
5189  } else if (start_con >= 0 && slice_len != top()) {
5190    // Constant start, non-constant end.  End needs rounding up.
5191    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5192    intptr_t end_base  = abase + (slice_idx_con << scale);
5193    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5194    Node*    end       = ConvI2X(slice_len);
5195    if (scale != 0)
5196      end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5197    end_base += end_round;
5198    end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5199    end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5200    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5201                                       start_con, end, &_gvn);
5202  } else if (start_con < 0 && dest_size != top()) {
5203    // Non-constant start, pre-rounded end after the tail of the array.
5204    // This is almost certainly a "round-to-end" operation.
5205    Node* start = slice_idx;
5206    start = ConvI2X(start);
5207    if (scale != 0)
5208      start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5209    start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5210    if ((bump_bit | clear_low) != 0) {
5211      int to_clear = (bump_bit | clear_low);
5212      // Align up mod 8, then store a jint zero unconditionally
5213      // just before the mod-8 boundary.
5214      if (((abase + bump_bit) & ~to_clear) - bump_bit
5215          < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5216        bump_bit = 0;
5217        assert((abase & to_clear) == 0, "array base must be long-aligned");
5218      } else {
5219        // Bump 'start' up to (or past) the next jint boundary:
5220        start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5221        assert((abase & clear_low) == 0, "array base must be int-aligned");
5222      }
5223      // Round bumped 'start' down to jlong boundary in body of array.
5224      start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5225      if (bump_bit != 0) {
5226        // Store a zero to the immediately preceding jint:
5227        Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5228        Node* p1 = basic_plus_adr(dest, x1);
5229        mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5230        mem = _gvn.transform(mem);
5231      }
5232    }
5233    Node* end = dest_size; // pre-rounded
5234    mem = ClearArrayNode::clear_memory(control(), mem, dest,
5235                                       start, end, &_gvn);
5236  } else {
5237    // Non-constant start, unrounded non-constant end.
5238    // (Nobody zeroes a random midsection of an array using this routine.)
5239    ShouldNotReachHere();       // fix caller
5240  }
5241
5242  // Done.
5243  set_memory(mem, adr_type);
5244}
5245
5246
5247bool
5248LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5249                                         BasicType basic_elem_type,
5250                                         AllocateNode* alloc,
5251                                         Node* src,  Node* src_offset,
5252                                         Node* dest, Node* dest_offset,
5253                                         Node* dest_size, bool dest_uninitialized) {
5254  // See if there is an advantage from block transfer.
5255  int scale = exact_log2(type2aelembytes(basic_elem_type));
5256  if (scale >= LogBytesPerLong)
5257    return false;               // it is already a block transfer
5258
5259  // Look at the alignment of the starting offsets.
5260  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5261
5262  intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5263  intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5264  if (src_off_con < 0 || dest_off_con < 0)
5265    // At present, we can only understand constants.
5266    return false;
5267
5268  intptr_t src_off  = abase + (src_off_con  << scale);
5269  intptr_t dest_off = abase + (dest_off_con << scale);
5270
5271  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5272    // Non-aligned; too bad.
5273    // One more chance:  Pick off an initial 32-bit word.
5274    // This is a common case, since abase can be odd mod 8.
5275    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5276        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5277      Node* sptr = basic_plus_adr(src,  src_off);
5278      Node* dptr = basic_plus_adr(dest, dest_off);
5279      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5280      store_to_memory(control(), dptr, sval, T_INT, adr_type);
5281      src_off += BytesPerInt;
5282      dest_off += BytesPerInt;
5283    } else {
5284      return false;
5285    }
5286  }
5287  assert(src_off % BytesPerLong == 0, "");
5288  assert(dest_off % BytesPerLong == 0, "");
5289
5290  // Do this copy by giant steps.
5291  Node* sptr  = basic_plus_adr(src,  src_off);
5292  Node* dptr  = basic_plus_adr(dest, dest_off);
5293  Node* countx = dest_size;
5294  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5295  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5296
5297  bool disjoint_bases = true;   // since alloc != NULL
5298  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5299                               sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5300
5301  return true;
5302}
5303
5304
5305// Helper function; generates code for the slow case.
5306// We make a call to a runtime method which emulates the native method,
5307// but without the native wrapper overhead.
5308void
5309LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5310                                        Node* src,  Node* src_offset,
5311                                        Node* dest, Node* dest_offset,
5312                                        Node* copy_length, bool dest_uninitialized) {
5313  assert(!dest_uninitialized, "Invariant");
5314  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5315                                 OptoRuntime::slow_arraycopy_Type(),
5316                                 OptoRuntime::slow_arraycopy_Java(),
5317                                 "slow_arraycopy", adr_type,
5318                                 src, src_offset, dest, dest_offset,
5319                                 copy_length);
5320
5321  // Handle exceptions thrown by this fellow:
5322  make_slow_call_ex(call, env()->Throwable_klass(), false);
5323}
5324
5325// Helper function; generates code for cases requiring runtime checks.
5326Node*
5327LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5328                                             Node* dest_elem_klass,
5329                                             Node* src,  Node* src_offset,
5330                                             Node* dest, Node* dest_offset,
5331                                             Node* copy_length, bool dest_uninitialized) {
5332  if (stopped())  return NULL;
5333
5334  address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5335  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5336    return NULL;
5337  }
5338
5339  // Pick out the parameters required to perform a store-check
5340  // for the target array.  This is an optimistic check.  It will
5341  // look in each non-null element's class, at the desired klass's
5342  // super_check_offset, for the desired klass.
5343  int sco_offset = in_bytes(Klass::super_check_offset_offset());
5344  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5345  Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5346  Node* check_offset = ConvI2X(_gvn.transform(n3));
5347  Node* check_value  = dest_elem_klass;
5348
5349  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5350  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5351
5352  // (We know the arrays are never conjoint, because their types differ.)
5353  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5354                                 OptoRuntime::checkcast_arraycopy_Type(),
5355                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
5356                                 // five arguments, of which two are
5357                                 // intptr_t (jlong in LP64)
5358                                 src_start, dest_start,
5359                                 copy_length XTOP,
5360                                 check_offset XTOP,
5361                                 check_value);
5362
5363  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5364}
5365
5366
5367// Helper function; generates code for cases requiring runtime checks.
5368Node*
5369LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5370                                           Node* src,  Node* src_offset,
5371                                           Node* dest, Node* dest_offset,
5372                                           Node* copy_length, bool dest_uninitialized) {
5373  assert(!dest_uninitialized, "Invariant");
5374  if (stopped())  return NULL;
5375  address copyfunc_addr = StubRoutines::generic_arraycopy();
5376  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5377    return NULL;
5378  }
5379
5380  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5381                    OptoRuntime::generic_arraycopy_Type(),
5382                    copyfunc_addr, "generic_arraycopy", adr_type,
5383                    src, src_offset, dest, dest_offset, copy_length);
5384
5385  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5386}
5387
5388// Helper function; generates the fast out-of-line call to an arraycopy stub.
5389void
5390LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5391                                             BasicType basic_elem_type,
5392                                             bool disjoint_bases,
5393                                             Node* src,  Node* src_offset,
5394                                             Node* dest, Node* dest_offset,
5395                                             Node* copy_length, bool dest_uninitialized) {
5396  if (stopped())  return;               // nothing to do
5397
5398  Node* src_start  = src;
5399  Node* dest_start = dest;
5400  if (src_offset != NULL || dest_offset != NULL) {
5401    assert(src_offset != NULL && dest_offset != NULL, "");
5402    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5403    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5404  }
5405
5406  // Figure out which arraycopy runtime method to call.
5407  const char* copyfunc_name = "arraycopy";
5408  address     copyfunc_addr =
5409      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5410                          disjoint_bases, copyfunc_name, dest_uninitialized);
5411
5412  // Call it.  Note that the count_ix value is not scaled to a byte-size.
5413  make_runtime_call(RC_LEAF|RC_NO_FP,
5414                    OptoRuntime::fast_arraycopy_Type(),
5415                    copyfunc_addr, copyfunc_name, adr_type,
5416                    src_start, dest_start, copy_length XTOP);
5417}
5418
5419//----------------------------inline_reference_get----------------------------
5420
5421bool LibraryCallKit::inline_reference_get() {
5422  const int nargs = 1; // self
5423
5424  guarantee(java_lang_ref_Reference::referent_offset > 0,
5425            "should have already been set");
5426
5427  int referent_offset = java_lang_ref_Reference::referent_offset;
5428
5429  // Restore the stack and pop off the argument
5430  _sp += nargs;
5431  Node *reference_obj = pop();
5432
5433  // Null check on self without removing any arguments.
5434  _sp += nargs;
5435  reference_obj = do_null_check(reference_obj, T_OBJECT);
5436  _sp -= nargs;;
5437
5438  if (stopped()) return true;
5439
5440  Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5441
5442  ciInstanceKlass* klass = env()->Object_klass();
5443  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5444
5445  Node* no_ctrl = NULL;
5446  Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5447
5448  // Use the pre-barrier to record the value in the referent field
5449  pre_barrier(false /* do_load */,
5450              control(),
5451              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5452              result /* pre_val */,
5453              T_OBJECT);
5454
5455  push(result);
5456  return true;
5457}
5458
5459