library_call.cpp revision 11693:b82f3570b774
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "asm/macroAssembler.hpp"
27#include "classfile/systemDictionary.hpp"
28#include "classfile/vmSymbols.hpp"
29#include "compiler/compileBroker.hpp"
30#include "compiler/compileLog.hpp"
31#include "memory/resourceArea.hpp"
32#include "oops/objArrayKlass.hpp"
33#include "opto/addnode.hpp"
34#include "opto/arraycopynode.hpp"
35#include "opto/c2compiler.hpp"
36#include "opto/callGenerator.hpp"
37#include "opto/castnode.hpp"
38#include "opto/cfgnode.hpp"
39#include "opto/convertnode.hpp"
40#include "opto/countbitsnode.hpp"
41#include "opto/intrinsicnode.hpp"
42#include "opto/idealKit.hpp"
43#include "opto/mathexactnode.hpp"
44#include "opto/movenode.hpp"
45#include "opto/mulnode.hpp"
46#include "opto/narrowptrnode.hpp"
47#include "opto/opaquenode.hpp"
48#include "opto/parse.hpp"
49#include "opto/runtime.hpp"
50#include "opto/subnode.hpp"
51#include "prims/nativeLookup.hpp"
52#include "prims/unsafe.hpp"
53#include "runtime/sharedRuntime.hpp"
54#ifdef TRACE_HAVE_INTRINSICS
55#include "trace/traceMacros.hpp"
56#endif
57
58class LibraryIntrinsic : public InlineCallGenerator {
59  // Extend the set of intrinsics known to the runtime:
60 public:
61 private:
62  bool             _is_virtual;
63  bool             _does_virtual_dispatch;
64  int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
65  int8_t           _last_predicate; // Last generated predicate
66  vmIntrinsics::ID _intrinsic_id;
67
68 public:
69  LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
70    : InlineCallGenerator(m),
71      _is_virtual(is_virtual),
72      _does_virtual_dispatch(does_virtual_dispatch),
73      _predicates_count((int8_t)predicates_count),
74      _last_predicate((int8_t)-1),
75      _intrinsic_id(id)
76  {
77  }
78  virtual bool is_intrinsic() const { return true; }
79  virtual bool is_virtual()   const { return _is_virtual; }
80  virtual bool is_predicated() const { return _predicates_count > 0; }
81  virtual int  predicates_count() const { return _predicates_count; }
82  virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
83  virtual JVMState* generate(JVMState* jvms);
84  virtual Node* generate_predicate(JVMState* jvms, int predicate);
85  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
86};
87
88
89// Local helper class for LibraryIntrinsic:
90class LibraryCallKit : public GraphKit {
91 private:
92  LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
93  Node*             _result;        // the result node, if any
94  int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
95
96  const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
97
98 public:
99  LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
100    : GraphKit(jvms),
101      _intrinsic(intrinsic),
102      _result(NULL)
103  {
104    // Check if this is a root compile.  In that case we don't have a caller.
105    if (!jvms->has_method()) {
106      _reexecute_sp = sp();
107    } else {
108      // Find out how many arguments the interpreter needs when deoptimizing
109      // and save the stack pointer value so it can used by uncommon_trap.
110      // We find the argument count by looking at the declared signature.
111      bool ignored_will_link;
112      ciSignature* declared_signature = NULL;
113      ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
114      const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
115      _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
116    }
117  }
118
119  virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
120
121  ciMethod*         caller()    const    { return jvms()->method(); }
122  int               bci()       const    { return jvms()->bci(); }
123  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
124  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
125  ciMethod*         callee()    const    { return _intrinsic->method(); }
126
127  bool  try_to_inline(int predicate);
128  Node* try_to_predicate(int predicate);
129
130  void push_result() {
131    // Push the result onto the stack.
132    if (!stopped() && result() != NULL) {
133      BasicType bt = result()->bottom_type()->basic_type();
134      push_node(bt, result());
135    }
136  }
137
138 private:
139  void fatal_unexpected_iid(vmIntrinsics::ID iid) {
140    fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
141  }
142
143  void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
144  void  set_result(RegionNode* region, PhiNode* value);
145  Node*     result() { return _result; }
146
147  virtual int reexecute_sp() { return _reexecute_sp; }
148
149  // Helper functions to inline natives
150  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
151  Node* generate_slow_guard(Node* test, RegionNode* region);
152  Node* generate_fair_guard(Node* test, RegionNode* region);
153  Node* generate_negative_guard(Node* index, RegionNode* region,
154                                // resulting CastII of index:
155                                Node* *pos_index = NULL);
156  Node* generate_limit_guard(Node* offset, Node* subseq_length,
157                             Node* array_length,
158                             RegionNode* region);
159  void  generate_string_range_check(Node* array, Node* offset,
160                                    Node* length, bool char_count);
161  Node* generate_current_thread(Node* &tls_output);
162  Node* load_mirror_from_klass(Node* klass);
163  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
164                                      RegionNode* region, int null_path,
165                                      int offset);
166  Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
167                               RegionNode* region, int null_path) {
168    int offset = java_lang_Class::klass_offset_in_bytes();
169    return load_klass_from_mirror_common(mirror, never_see_null,
170                                         region, null_path,
171                                         offset);
172  }
173  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
174                                     RegionNode* region, int null_path) {
175    int offset = java_lang_Class::array_klass_offset_in_bytes();
176    return load_klass_from_mirror_common(mirror, never_see_null,
177                                         region, null_path,
178                                         offset);
179  }
180  Node* generate_access_flags_guard(Node* kls,
181                                    int modifier_mask, int modifier_bits,
182                                    RegionNode* region);
183  Node* generate_interface_guard(Node* kls, RegionNode* region);
184  Node* generate_array_guard(Node* kls, RegionNode* region) {
185    return generate_array_guard_common(kls, region, false, false);
186  }
187  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
188    return generate_array_guard_common(kls, region, false, true);
189  }
190  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
191    return generate_array_guard_common(kls, region, true, false);
192  }
193  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
194    return generate_array_guard_common(kls, region, true, true);
195  }
196  Node* generate_array_guard_common(Node* kls, RegionNode* region,
197                                    bool obj_array, bool not_array);
198  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
199  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
200                                     bool is_virtual = false, bool is_static = false);
201  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
202    return generate_method_call(method_id, false, true);
203  }
204  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
205    return generate_method_call(method_id, true, false);
206  }
207  Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
208  Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
209
210  Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
211  bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
212  bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
213  bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
214  Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
215                          RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
216  bool inline_string_indexOfChar();
217  bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
218  bool inline_string_toBytesU();
219  bool inline_string_getCharsU();
220  bool inline_string_copy(bool compress);
221  bool inline_string_char_access(bool is_store);
222  Node* round_double_node(Node* n);
223  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
224  bool inline_math_native(vmIntrinsics::ID id);
225  bool inline_math(vmIntrinsics::ID id);
226  template <typename OverflowOp>
227  bool inline_math_overflow(Node* arg1, Node* arg2);
228  void inline_math_mathExact(Node* math, Node* test);
229  bool inline_math_addExactI(bool is_increment);
230  bool inline_math_addExactL(bool is_increment);
231  bool inline_math_multiplyExactI();
232  bool inline_math_multiplyExactL();
233  bool inline_math_negateExactI();
234  bool inline_math_negateExactL();
235  bool inline_math_subtractExactI(bool is_decrement);
236  bool inline_math_subtractExactL(bool is_decrement);
237  bool inline_min_max(vmIntrinsics::ID id);
238  bool inline_notify(vmIntrinsics::ID id);
239  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
240  // This returns Type::AnyPtr, RawPtr, or OopPtr.
241  int classify_unsafe_addr(Node* &base, Node* &offset);
242  Node* make_unsafe_address(Node* base, Node* offset);
243  // Helper for inline_unsafe_access.
244  // Generates the guards that check whether the result of
245  // Unsafe.getObject should be recorded in an SATB log buffer.
246  void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
247
248  typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
249  bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
250  static bool klass_needs_init_guard(Node* kls);
251  bool inline_unsafe_allocate();
252  bool inline_unsafe_newArray(bool uninitialized);
253  bool inline_unsafe_copyMemory();
254  bool inline_native_currentThread();
255
256  bool inline_native_time_funcs(address method, const char* funcName);
257  bool inline_native_isInterrupted();
258  bool inline_native_Class_query(vmIntrinsics::ID id);
259  bool inline_native_subtype_check();
260  bool inline_native_getLength();
261  bool inline_array_copyOf(bool is_copyOfRange);
262  bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
263  bool inline_preconditions_checkIndex();
264  void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
265  bool inline_native_clone(bool is_virtual);
266  bool inline_native_Reflection_getCallerClass();
267  // Helper function for inlining native object hash method
268  bool inline_native_hashcode(bool is_virtual, bool is_static);
269  bool inline_native_getClass();
270
271  // Helper functions for inlining arraycopy
272  bool inline_arraycopy();
273  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
274                                                RegionNode* slow_region);
275  JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
276  void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
277
278  typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
279  MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
280  MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
281  bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
282  bool inline_unsafe_fence(vmIntrinsics::ID id);
283  bool inline_onspinwait();
284  bool inline_fp_conversions(vmIntrinsics::ID id);
285  bool inline_number_methods(vmIntrinsics::ID id);
286  bool inline_reference_get();
287  bool inline_Class_cast();
288  bool inline_aescrypt_Block(vmIntrinsics::ID id);
289  bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
290  bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
291  Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
292  Node* inline_counterMode_AESCrypt_predicate();
293  Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
294  Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
295  bool inline_ghash_processBlocks();
296  bool inline_sha_implCompress(vmIntrinsics::ID id);
297  bool inline_digestBase_implCompressMB(int predicate);
298  bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
299                                 bool long_state, address stubAddr, const char *stubName,
300                                 Node* src_start, Node* ofs, Node* limit);
301  Node* get_state_from_sha_object(Node *sha_object);
302  Node* get_state_from_sha5_object(Node *sha_object);
303  Node* inline_digestBase_implCompressMB_predicate(int predicate);
304  bool inline_encodeISOArray();
305  bool inline_updateCRC32();
306  bool inline_updateBytesCRC32();
307  bool inline_updateByteBufferCRC32();
308  Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
309  bool inline_updateBytesCRC32C();
310  bool inline_updateDirectByteBufferCRC32C();
311  bool inline_updateBytesAdler32();
312  bool inline_updateByteBufferAdler32();
313  bool inline_multiplyToLen();
314  bool inline_hasNegatives();
315  bool inline_squareToLen();
316  bool inline_mulAdd();
317  bool inline_montgomeryMultiply();
318  bool inline_montgomerySquare();
319  bool inline_vectorizedMismatch();
320
321  bool inline_profileBoolean();
322  bool inline_isCompileConstant();
323};
324
325//---------------------------make_vm_intrinsic----------------------------
326CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
327  vmIntrinsics::ID id = m->intrinsic_id();
328  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
329
330  if (!m->is_loaded()) {
331    // Do not attempt to inline unloaded methods.
332    return NULL;
333  }
334
335  C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
336  bool is_available = false;
337
338  {
339    // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
340    // the compiler must transition to '_thread_in_vm' state because both
341    // methods access VM-internal data.
342    VM_ENTRY_MARK;
343    methodHandle mh(THREAD, m->get_Method());
344    is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
345                   !C->directive()->is_intrinsic_disabled(mh) &&
346                   !vmIntrinsics::is_disabled_by_flags(mh);
347
348  }
349
350  if (is_available) {
351    assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
352    assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
353    return new LibraryIntrinsic(m, is_virtual,
354                                vmIntrinsics::predicates_needed(id),
355                                vmIntrinsics::does_virtual_dispatch(id),
356                                (vmIntrinsics::ID) id);
357  } else {
358    return NULL;
359  }
360}
361
362//----------------------register_library_intrinsics-----------------------
363// Initialize this file's data structures, for each Compile instance.
364void Compile::register_library_intrinsics() {
365  // Nothing to do here.
366}
367
368JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
369  LibraryCallKit kit(jvms, this);
370  Compile* C = kit.C;
371  int nodes = C->unique();
372#ifndef PRODUCT
373  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
374    char buf[1000];
375    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
376    tty->print_cr("Intrinsic %s", str);
377  }
378#endif
379  ciMethod* callee = kit.callee();
380  const int bci    = kit.bci();
381
382  // Try to inline the intrinsic.
383  if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
384      kit.try_to_inline(_last_predicate)) {
385    if (C->print_intrinsics() || C->print_inlining()) {
386      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
387    }
388    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
389    if (C->log()) {
390      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
391                     vmIntrinsics::name_at(intrinsic_id()),
392                     (is_virtual() ? " virtual='1'" : ""),
393                     C->unique() - nodes);
394    }
395    // Push the result from the inlined method onto the stack.
396    kit.push_result();
397    C->print_inlining_update(this);
398    return kit.transfer_exceptions_into_jvms();
399  }
400
401  // The intrinsic bailed out
402  if (C->print_intrinsics() || C->print_inlining()) {
403    if (jvms->has_method()) {
404      // Not a root compile.
405      const char* msg;
406      if (callee->intrinsic_candidate()) {
407        msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
408      } else {
409        msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
410                           : "failed to inline (intrinsic), method not annotated";
411      }
412      C->print_inlining(callee, jvms->depth() - 1, bci, msg);
413    } else {
414      // Root compile
415      tty->print("Did not generate intrinsic %s%s at bci:%d in",
416               vmIntrinsics::name_at(intrinsic_id()),
417               (is_virtual() ? " (virtual)" : ""), bci);
418    }
419  }
420  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
421  C->print_inlining_update(this);
422  return NULL;
423}
424
425Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
426  LibraryCallKit kit(jvms, this);
427  Compile* C = kit.C;
428  int nodes = C->unique();
429  _last_predicate = predicate;
430#ifndef PRODUCT
431  assert(is_predicated() && predicate < predicates_count(), "sanity");
432  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
433    char buf[1000];
434    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
435    tty->print_cr("Predicate for intrinsic %s", str);
436  }
437#endif
438  ciMethod* callee = kit.callee();
439  const int bci    = kit.bci();
440
441  Node* slow_ctl = kit.try_to_predicate(predicate);
442  if (!kit.failing()) {
443    if (C->print_intrinsics() || C->print_inlining()) {
444      C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
445    }
446    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
447    if (C->log()) {
448      C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
449                     vmIntrinsics::name_at(intrinsic_id()),
450                     (is_virtual() ? " virtual='1'" : ""),
451                     C->unique() - nodes);
452    }
453    return slow_ctl; // Could be NULL if the check folds.
454  }
455
456  // The intrinsic bailed out
457  if (C->print_intrinsics() || C->print_inlining()) {
458    if (jvms->has_method()) {
459      // Not a root compile.
460      const char* msg = "failed to generate predicate for intrinsic";
461      C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
462    } else {
463      // Root compile
464      C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
465                                        vmIntrinsics::name_at(intrinsic_id()),
466                                        (is_virtual() ? " (virtual)" : ""), bci);
467    }
468  }
469  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
470  return NULL;
471}
472
473bool LibraryCallKit::try_to_inline(int predicate) {
474  // Handle symbolic names for otherwise undistinguished boolean switches:
475  const bool is_store       = true;
476  const bool is_compress    = true;
477  const bool is_static      = true;
478  const bool is_volatile    = true;
479
480  if (!jvms()->has_method()) {
481    // Root JVMState has a null method.
482    assert(map()->memory()->Opcode() == Op_Parm, "");
483    // Insert the memory aliasing node
484    set_all_memory(reset_memory());
485  }
486  assert(merged_memory(), "");
487
488
489  switch (intrinsic_id()) {
490  case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
491  case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
492  case vmIntrinsics::_getClass:                 return inline_native_getClass();
493
494  case vmIntrinsics::_dsin:
495  case vmIntrinsics::_dcos:
496  case vmIntrinsics::_dtan:
497  case vmIntrinsics::_dabs:
498  case vmIntrinsics::_datan2:
499  case vmIntrinsics::_dsqrt:
500  case vmIntrinsics::_dexp:
501  case vmIntrinsics::_dlog:
502  case vmIntrinsics::_dlog10:
503  case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
504
505  case vmIntrinsics::_min:
506  case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
507
508  case vmIntrinsics::_notify:
509  case vmIntrinsics::_notifyAll:
510    if (InlineNotify) {
511      return inline_notify(intrinsic_id());
512    }
513    return false;
514
515  case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
516  case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
517  case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
518  case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
519  case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
520  case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
521  case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
522  case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
523  case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
524  case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
525  case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
526  case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
527
528  case vmIntrinsics::_arraycopy:                return inline_arraycopy();
529
530  case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
531  case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
532  case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
533  case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
534
535  case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
536  case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
537  case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
538  case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
539  case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
540  case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
541  case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
542
543  case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
544  case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
545
546  case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
547  case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
548  case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
549  case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
550
551  case vmIntrinsics::_compressStringC:
552  case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
553  case vmIntrinsics::_inflateStringC:
554  case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
555
556  case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
557  case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
558  case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
559  case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
560  case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
561  case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
562  case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
563  case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
564  case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
565
566  case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
567  case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
568  case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
569  case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
570  case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
571  case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
572  case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
573  case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
574  case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
575
576  case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
577  case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
578  case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
579  case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
580  case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
581  case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
582  case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
583  case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
584  case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
585
586  case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
587  case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
588  case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
589  case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
590  case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
591  case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
592  case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
593  case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
594  case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
595
596  case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
597  case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
598  case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
599  case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
600
601  case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
602  case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
603  case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
604  case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
605
606  case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
607  case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
608  case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
609  case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
610  case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
611  case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
612  case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
613  case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
614  case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
615
616  case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
617  case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
618  case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
619  case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
620  case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
621  case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
622  case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
623  case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
624  case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
625
626  case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
627  case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
628  case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
629  case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
630  case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
631  case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
632  case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
633  case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
634  case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
635
636  case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
637  case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
638  case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
639  case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
640  case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
641  case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
642  case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
643  case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
644  case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
645
646  case vmIntrinsics::_compareAndSwapObject:             return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
647  case vmIntrinsics::_compareAndSwapByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
648  case vmIntrinsics::_compareAndSwapShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
649  case vmIntrinsics::_compareAndSwapInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
650  case vmIntrinsics::_compareAndSwapLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
651
652  case vmIntrinsics::_weakCompareAndSwapObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
653  case vmIntrinsics::_weakCompareAndSwapObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
654  case vmIntrinsics::_weakCompareAndSwapObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
655  case vmIntrinsics::_weakCompareAndSwapObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
656  case vmIntrinsics::_weakCompareAndSwapByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
657  case vmIntrinsics::_weakCompareAndSwapByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
658  case vmIntrinsics::_weakCompareAndSwapByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
659  case vmIntrinsics::_weakCompareAndSwapByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
660  case vmIntrinsics::_weakCompareAndSwapShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
661  case vmIntrinsics::_weakCompareAndSwapShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
662  case vmIntrinsics::_weakCompareAndSwapShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
663  case vmIntrinsics::_weakCompareAndSwapShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
664  case vmIntrinsics::_weakCompareAndSwapInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
665  case vmIntrinsics::_weakCompareAndSwapIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
666  case vmIntrinsics::_weakCompareAndSwapIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
667  case vmIntrinsics::_weakCompareAndSwapIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
668  case vmIntrinsics::_weakCompareAndSwapLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
669  case vmIntrinsics::_weakCompareAndSwapLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
670  case vmIntrinsics::_weakCompareAndSwapLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
671  case vmIntrinsics::_weakCompareAndSwapLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
672
673  case vmIntrinsics::_compareAndExchangeObjectVolatile: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
674  case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
675  case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
676  case vmIntrinsics::_compareAndExchangeByteVolatile:   return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
677  case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
678  case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
679  case vmIntrinsics::_compareAndExchangeShortVolatile:  return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
680  case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
681  case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
682  case vmIntrinsics::_compareAndExchangeIntVolatile:    return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
683  case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
684  case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
685  case vmIntrinsics::_compareAndExchangeLongVolatile:   return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
686  case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
687  case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
688
689  case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
690  case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
691  case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
692  case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
693
694  case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
695  case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
696  case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
697  case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
698  case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
699
700  case vmIntrinsics::_loadFence:
701  case vmIntrinsics::_storeFence:
702  case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
703
704  case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
705
706  case vmIntrinsics::_currentThread:            return inline_native_currentThread();
707  case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
708
709#ifdef TRACE_HAVE_INTRINSICS
710  case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
711#endif
712  case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
713  case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
714  case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
715  case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
716  case vmIntrinsics::_getLength:                return inline_native_getLength();
717  case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
718  case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
719  case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
720  case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
721  case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
722  case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
723
724  case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
725  case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
726
727  case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
728
729  case vmIntrinsics::_isInstance:
730  case vmIntrinsics::_getModifiers:
731  case vmIntrinsics::_isInterface:
732  case vmIntrinsics::_isArray:
733  case vmIntrinsics::_isPrimitive:
734  case vmIntrinsics::_getSuperclass:
735  case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
736
737  case vmIntrinsics::_floatToRawIntBits:
738  case vmIntrinsics::_floatToIntBits:
739  case vmIntrinsics::_intBitsToFloat:
740  case vmIntrinsics::_doubleToRawLongBits:
741  case vmIntrinsics::_doubleToLongBits:
742  case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
743
744  case vmIntrinsics::_numberOfLeadingZeros_i:
745  case vmIntrinsics::_numberOfLeadingZeros_l:
746  case vmIntrinsics::_numberOfTrailingZeros_i:
747  case vmIntrinsics::_numberOfTrailingZeros_l:
748  case vmIntrinsics::_bitCount_i:
749  case vmIntrinsics::_bitCount_l:
750  case vmIntrinsics::_reverseBytes_i:
751  case vmIntrinsics::_reverseBytes_l:
752  case vmIntrinsics::_reverseBytes_s:
753  case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
754
755  case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
756
757  case vmIntrinsics::_Reference_get:            return inline_reference_get();
758
759  case vmIntrinsics::_Class_cast:               return inline_Class_cast();
760
761  case vmIntrinsics::_aescrypt_encryptBlock:
762  case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
763
764  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
765  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
766    return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
767
768  case vmIntrinsics::_counterMode_AESCrypt:
769    return inline_counterMode_AESCrypt(intrinsic_id());
770
771  case vmIntrinsics::_sha_implCompress:
772  case vmIntrinsics::_sha2_implCompress:
773  case vmIntrinsics::_sha5_implCompress:
774    return inline_sha_implCompress(intrinsic_id());
775
776  case vmIntrinsics::_digestBase_implCompressMB:
777    return inline_digestBase_implCompressMB(predicate);
778
779  case vmIntrinsics::_multiplyToLen:
780    return inline_multiplyToLen();
781
782  case vmIntrinsics::_squareToLen:
783    return inline_squareToLen();
784
785  case vmIntrinsics::_mulAdd:
786    return inline_mulAdd();
787
788  case vmIntrinsics::_montgomeryMultiply:
789    return inline_montgomeryMultiply();
790  case vmIntrinsics::_montgomerySquare:
791    return inline_montgomerySquare();
792
793  case vmIntrinsics::_vectorizedMismatch:
794    return inline_vectorizedMismatch();
795
796  case vmIntrinsics::_ghash_processBlocks:
797    return inline_ghash_processBlocks();
798
799  case vmIntrinsics::_encodeISOArray:
800  case vmIntrinsics::_encodeByteISOArray:
801    return inline_encodeISOArray();
802
803  case vmIntrinsics::_updateCRC32:
804    return inline_updateCRC32();
805  case vmIntrinsics::_updateBytesCRC32:
806    return inline_updateBytesCRC32();
807  case vmIntrinsics::_updateByteBufferCRC32:
808    return inline_updateByteBufferCRC32();
809
810  case vmIntrinsics::_updateBytesCRC32C:
811    return inline_updateBytesCRC32C();
812  case vmIntrinsics::_updateDirectByteBufferCRC32C:
813    return inline_updateDirectByteBufferCRC32C();
814
815  case vmIntrinsics::_updateBytesAdler32:
816    return inline_updateBytesAdler32();
817  case vmIntrinsics::_updateByteBufferAdler32:
818    return inline_updateByteBufferAdler32();
819
820  case vmIntrinsics::_profileBoolean:
821    return inline_profileBoolean();
822  case vmIntrinsics::_isCompileConstant:
823    return inline_isCompileConstant();
824
825  case vmIntrinsics::_hasNegatives:
826    return inline_hasNegatives();
827
828  default:
829    // If you get here, it may be that someone has added a new intrinsic
830    // to the list in vmSymbols.hpp without implementing it here.
831#ifndef PRODUCT
832    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
833      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
834                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
835    }
836#endif
837    return false;
838  }
839}
840
841Node* LibraryCallKit::try_to_predicate(int predicate) {
842  if (!jvms()->has_method()) {
843    // Root JVMState has a null method.
844    assert(map()->memory()->Opcode() == Op_Parm, "");
845    // Insert the memory aliasing node
846    set_all_memory(reset_memory());
847  }
848  assert(merged_memory(), "");
849
850  switch (intrinsic_id()) {
851  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
852    return inline_cipherBlockChaining_AESCrypt_predicate(false);
853  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
854    return inline_cipherBlockChaining_AESCrypt_predicate(true);
855  case vmIntrinsics::_counterMode_AESCrypt:
856    return inline_counterMode_AESCrypt_predicate();
857  case vmIntrinsics::_digestBase_implCompressMB:
858    return inline_digestBase_implCompressMB_predicate(predicate);
859
860  default:
861    // If you get here, it may be that someone has added a new intrinsic
862    // to the list in vmSymbols.hpp without implementing it here.
863#ifndef PRODUCT
864    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
865      tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
866                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
867    }
868#endif
869    Node* slow_ctl = control();
870    set_control(top()); // No fast path instrinsic
871    return slow_ctl;
872  }
873}
874
875//------------------------------set_result-------------------------------
876// Helper function for finishing intrinsics.
877void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
878  record_for_igvn(region);
879  set_control(_gvn.transform(region));
880  set_result( _gvn.transform(value));
881  assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
882}
883
884//------------------------------generate_guard---------------------------
885// Helper function for generating guarded fast-slow graph structures.
886// The given 'test', if true, guards a slow path.  If the test fails
887// then a fast path can be taken.  (We generally hope it fails.)
888// In all cases, GraphKit::control() is updated to the fast path.
889// The returned value represents the control for the slow path.
890// The return value is never 'top'; it is either a valid control
891// or NULL if it is obvious that the slow path can never be taken.
892// Also, if region and the slow control are not NULL, the slow edge
893// is appended to the region.
894Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
895  if (stopped()) {
896    // Already short circuited.
897    return NULL;
898  }
899
900  // Build an if node and its projections.
901  // If test is true we take the slow path, which we assume is uncommon.
902  if (_gvn.type(test) == TypeInt::ZERO) {
903    // The slow branch is never taken.  No need to build this guard.
904    return NULL;
905  }
906
907  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
908
909  Node* if_slow = _gvn.transform(new IfTrueNode(iff));
910  if (if_slow == top()) {
911    // The slow branch is never taken.  No need to build this guard.
912    return NULL;
913  }
914
915  if (region != NULL)
916    region->add_req(if_slow);
917
918  Node* if_fast = _gvn.transform(new IfFalseNode(iff));
919  set_control(if_fast);
920
921  return if_slow;
922}
923
924inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
925  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
926}
927inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
928  return generate_guard(test, region, PROB_FAIR);
929}
930
931inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
932                                                     Node* *pos_index) {
933  if (stopped())
934    return NULL;                // already stopped
935  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
936    return NULL;                // index is already adequately typed
937  Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
938  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
939  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
940  if (is_neg != NULL && pos_index != NULL) {
941    // Emulate effect of Parse::adjust_map_after_if.
942    Node* ccast = new CastIINode(index, TypeInt::POS);
943    ccast->set_req(0, control());
944    (*pos_index) = _gvn.transform(ccast);
945  }
946  return is_neg;
947}
948
949// Make sure that 'position' is a valid limit index, in [0..length].
950// There are two equivalent plans for checking this:
951//   A. (offset + copyLength)  unsigned<=  arrayLength
952//   B. offset  <=  (arrayLength - copyLength)
953// We require that all of the values above, except for the sum and
954// difference, are already known to be non-negative.
955// Plan A is robust in the face of overflow, if offset and copyLength
956// are both hugely positive.
957//
958// Plan B is less direct and intuitive, but it does not overflow at
959// all, since the difference of two non-negatives is always
960// representable.  Whenever Java methods must perform the equivalent
961// check they generally use Plan B instead of Plan A.
962// For the moment we use Plan A.
963inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
964                                                  Node* subseq_length,
965                                                  Node* array_length,
966                                                  RegionNode* region) {
967  if (stopped())
968    return NULL;                // already stopped
969  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
970  if (zero_offset && subseq_length->eqv_uncast(array_length))
971    return NULL;                // common case of whole-array copy
972  Node* last = subseq_length;
973  if (!zero_offset)             // last += offset
974    last = _gvn.transform(new AddINode(last, offset));
975  Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
976  Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
977  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
978  return is_over;
979}
980
981// Emit range checks for the given String.value byte array
982void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
983  if (stopped()) {
984    return; // already stopped
985  }
986  RegionNode* bailout = new RegionNode(1);
987  record_for_igvn(bailout);
988  if (char_count) {
989    // Convert char count to byte count
990    count = _gvn.transform(new LShiftINode(count, intcon(1)));
991  }
992
993  // Offset and count must not be negative
994  generate_negative_guard(offset, bailout);
995  generate_negative_guard(count, bailout);
996  // Offset + count must not exceed length of array
997  generate_limit_guard(offset, count, load_array_length(array), bailout);
998
999  if (bailout->req() > 1) {
1000    PreserveJVMState pjvms(this);
1001    set_control(_gvn.transform(bailout));
1002    uncommon_trap(Deoptimization::Reason_intrinsic,
1003                  Deoptimization::Action_maybe_recompile);
1004  }
1005}
1006
1007//--------------------------generate_current_thread--------------------
1008Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1009  ciKlass*    thread_klass = env()->Thread_klass();
1010  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1011  Node* thread = _gvn.transform(new ThreadLocalNode());
1012  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1013  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1014  tls_output = thread;
1015  return threadObj;
1016}
1017
1018
1019//------------------------------make_string_method_node------------------------
1020// Helper method for String intrinsic functions. This version is called with
1021// str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1022// characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1023// containing the lengths of str1 and str2.
1024Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1025  Node* result = NULL;
1026  switch (opcode) {
1027  case Op_StrIndexOf:
1028    result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1029                                str1_start, cnt1, str2_start, cnt2, ae);
1030    break;
1031  case Op_StrComp:
1032    result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1033                             str1_start, cnt1, str2_start, cnt2, ae);
1034    break;
1035  case Op_StrEquals:
1036    // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1037    // Use the constant length if there is one because optimized match rule may exist.
1038    result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1039                               str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1040    break;
1041  default:
1042    ShouldNotReachHere();
1043    return NULL;
1044  }
1045
1046  // All these intrinsics have checks.
1047  C->set_has_split_ifs(true); // Has chance for split-if optimization
1048
1049  return _gvn.transform(result);
1050}
1051
1052//------------------------------inline_string_compareTo------------------------
1053bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1054  Node* arg1 = argument(0);
1055  Node* arg2 = argument(1);
1056
1057  // Get start addr and length of first argument
1058  Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1059  Node* arg1_cnt    = load_array_length(arg1);
1060
1061  // Get start addr and length of second argument
1062  Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1063  Node* arg2_cnt    = load_array_length(arg2);
1064
1065  Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1066  set_result(result);
1067  return true;
1068}
1069
1070//------------------------------inline_string_equals------------------------
1071bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1072  Node* arg1 = argument(0);
1073  Node* arg2 = argument(1);
1074
1075  // paths (plus control) merge
1076  RegionNode* region = new RegionNode(3);
1077  Node* phi = new PhiNode(region, TypeInt::BOOL);
1078
1079  if (!stopped()) {
1080    // Get start addr and length of first argument
1081    Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1082    Node* arg1_cnt    = load_array_length(arg1);
1083
1084    // Get start addr and length of second argument
1085    Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1086    Node* arg2_cnt    = load_array_length(arg2);
1087
1088    // Check for arg1_cnt != arg2_cnt
1089    Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1090    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1091    Node* if_ne = generate_slow_guard(bol, NULL);
1092    if (if_ne != NULL) {
1093      phi->init_req(2, intcon(0));
1094      region->init_req(2, if_ne);
1095    }
1096
1097    // Check for count == 0 is done by assembler code for StrEquals.
1098
1099    if (!stopped()) {
1100      Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1101      phi->init_req(1, equals);
1102      region->init_req(1, control());
1103    }
1104  }
1105
1106  // post merge
1107  set_control(_gvn.transform(region));
1108  record_for_igvn(region);
1109
1110  set_result(_gvn.transform(phi));
1111  return true;
1112}
1113
1114//------------------------------inline_array_equals----------------------------
1115bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1116  assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1117  Node* arg1 = argument(0);
1118  Node* arg2 = argument(1);
1119
1120  const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1121  set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1122  return true;
1123}
1124
1125//------------------------------inline_hasNegatives------------------------------
1126bool LibraryCallKit::inline_hasNegatives() {
1127  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1128    return false;
1129  }
1130
1131  assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1132  // no receiver since it is static method
1133  Node* ba         = argument(0);
1134  Node* offset     = argument(1);
1135  Node* len        = argument(2);
1136
1137  // Range checks
1138  generate_string_range_check(ba, offset, len, false);
1139  if (stopped()) {
1140    return true;
1141  }
1142  Node* ba_start = array_element_address(ba, offset, T_BYTE);
1143  Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1144  set_result(_gvn.transform(result));
1145  return true;
1146}
1147
1148bool LibraryCallKit::inline_preconditions_checkIndex() {
1149  Node* index = argument(0);
1150  Node* length = argument(1);
1151  if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1152    return false;
1153  }
1154
1155  Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1156  Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1157
1158  {
1159    BuildCutout unless(this, len_pos_bol, PROB_MAX);
1160    uncommon_trap(Deoptimization::Reason_intrinsic,
1161                  Deoptimization::Action_make_not_entrant);
1162  }
1163
1164  if (stopped()) {
1165    return false;
1166  }
1167
1168  Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1169  BoolTest::mask btest = BoolTest::lt;
1170  Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1171  RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1172  _gvn.set_type(rc, rc->Value(&_gvn));
1173  if (!rc_bool->is_Con()) {
1174    record_for_igvn(rc);
1175  }
1176  set_control(_gvn.transform(new IfTrueNode(rc)));
1177  {
1178    PreserveJVMState pjvms(this);
1179    set_control(_gvn.transform(new IfFalseNode(rc)));
1180    uncommon_trap(Deoptimization::Reason_range_check,
1181                  Deoptimization::Action_make_not_entrant);
1182  }
1183
1184  if (stopped()) {
1185    return false;
1186  }
1187
1188  Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1189  result->set_req(0, control());
1190  result = _gvn.transform(result);
1191  set_result(result);
1192  replace_in_map(index, result);
1193  return true;
1194}
1195
1196//------------------------------inline_string_indexOf------------------------
1197bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1198  if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1199    return false;
1200  }
1201  Node* src = argument(0);
1202  Node* tgt = argument(1);
1203
1204  // Make the merge point
1205  RegionNode* result_rgn = new RegionNode(4);
1206  Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1207
1208  // Get start addr and length of source string
1209  Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1210  Node* src_count = load_array_length(src);
1211
1212  // Get start addr and length of substring
1213  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1214  Node* tgt_count = load_array_length(tgt);
1215
1216  if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1217    // Divide src size by 2 if String is UTF16 encoded
1218    src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1219  }
1220  if (ae == StrIntrinsicNode::UU) {
1221    // Divide substring size by 2 if String is UTF16 encoded
1222    tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1223  }
1224
1225  Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1226  if (result != NULL) {
1227    result_phi->init_req(3, result);
1228    result_rgn->init_req(3, control());
1229  }
1230  set_control(_gvn.transform(result_rgn));
1231  record_for_igvn(result_rgn);
1232  set_result(_gvn.transform(result_phi));
1233
1234  return true;
1235}
1236
1237//-----------------------------inline_string_indexOf-----------------------
1238bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1239  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1240    return false;
1241  }
1242  if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1243    return false;
1244  }
1245  assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1246  Node* src         = argument(0); // byte[]
1247  Node* src_count   = argument(1); // char count
1248  Node* tgt         = argument(2); // byte[]
1249  Node* tgt_count   = argument(3); // char count
1250  Node* from_index  = argument(4); // char index
1251
1252  // Multiply byte array index by 2 if String is UTF16 encoded
1253  Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1254  src_count = _gvn.transform(new SubINode(src_count, from_index));
1255  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1256  Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1257
1258  // Range checks
1259  generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1260  generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1261  if (stopped()) {
1262    return true;
1263  }
1264
1265  RegionNode* region = new RegionNode(5);
1266  Node* phi = new PhiNode(region, TypeInt::INT);
1267
1268  Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1269  if (result != NULL) {
1270    // The result is index relative to from_index if substring was found, -1 otherwise.
1271    // Generate code which will fold into cmove.
1272    Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1273    Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1274
1275    Node* if_lt = generate_slow_guard(bol, NULL);
1276    if (if_lt != NULL) {
1277      // result == -1
1278      phi->init_req(3, result);
1279      region->init_req(3, if_lt);
1280    }
1281    if (!stopped()) {
1282      result = _gvn.transform(new AddINode(result, from_index));
1283      phi->init_req(4, result);
1284      region->init_req(4, control());
1285    }
1286  }
1287
1288  set_control(_gvn.transform(region));
1289  record_for_igvn(region);
1290  set_result(_gvn.transform(phi));
1291
1292  return true;
1293}
1294
1295// Create StrIndexOfNode with fast path checks
1296Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1297                                        RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1298  // Check for substr count > string count
1299  Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1300  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1301  Node* if_gt = generate_slow_guard(bol, NULL);
1302  if (if_gt != NULL) {
1303    phi->init_req(1, intcon(-1));
1304    region->init_req(1, if_gt);
1305  }
1306  if (!stopped()) {
1307    // Check for substr count == 0
1308    cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1309    bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1310    Node* if_zero = generate_slow_guard(bol, NULL);
1311    if (if_zero != NULL) {
1312      phi->init_req(2, intcon(0));
1313      region->init_req(2, if_zero);
1314    }
1315  }
1316  if (!stopped()) {
1317    return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1318  }
1319  return NULL;
1320}
1321
1322//-----------------------------inline_string_indexOfChar-----------------------
1323bool LibraryCallKit::inline_string_indexOfChar() {
1324  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1325    return false;
1326  }
1327  if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1328    return false;
1329  }
1330  assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1331  Node* src         = argument(0); // byte[]
1332  Node* tgt         = argument(1); // tgt is int ch
1333  Node* from_index  = argument(2);
1334  Node* max         = argument(3);
1335
1336  Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1337  Node* src_start = array_element_address(src, src_offset, T_BYTE);
1338  Node* src_count = _gvn.transform(new SubINode(max, from_index));
1339
1340  // Range checks
1341  generate_string_range_check(src, src_offset, src_count, true);
1342  if (stopped()) {
1343    return true;
1344  }
1345
1346  RegionNode* region = new RegionNode(3);
1347  Node* phi = new PhiNode(region, TypeInt::INT);
1348
1349  Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1350  C->set_has_split_ifs(true); // Has chance for split-if optimization
1351  _gvn.transform(result);
1352
1353  Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1354  Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1355
1356  Node* if_lt = generate_slow_guard(bol, NULL);
1357  if (if_lt != NULL) {
1358    // result == -1
1359    phi->init_req(2, result);
1360    region->init_req(2, if_lt);
1361  }
1362  if (!stopped()) {
1363    result = _gvn.transform(new AddINode(result, from_index));
1364    phi->init_req(1, result);
1365    region->init_req(1, control());
1366  }
1367  set_control(_gvn.transform(region));
1368  record_for_igvn(region);
1369  set_result(_gvn.transform(phi));
1370
1371  return true;
1372}
1373//---------------------------inline_string_copy---------------------
1374// compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1375//   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1376//   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1377// compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1378//   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1379//   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1380bool LibraryCallKit::inline_string_copy(bool compress) {
1381  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1382    return false;
1383  }
1384  int nargs = 5;  // 2 oops, 3 ints
1385  assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1386
1387  Node* src         = argument(0);
1388  Node* src_offset  = argument(1);
1389  Node* dst         = argument(2);
1390  Node* dst_offset  = argument(3);
1391  Node* length      = argument(4);
1392
1393  // Check for allocation before we add nodes that would confuse
1394  // tightly_coupled_allocation()
1395  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1396
1397  // Figure out the size and type of the elements we will be copying.
1398  const Type* src_type = src->Value(&_gvn);
1399  const Type* dst_type = dst->Value(&_gvn);
1400  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1401  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1402  assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1403         (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1404         "Unsupported array types for inline_string_copy");
1405
1406  // Convert char[] offsets to byte[] offsets
1407  bool convert_src = (compress && src_elem == T_BYTE);
1408  bool convert_dst = (!compress && dst_elem == T_BYTE);
1409  if (convert_src) {
1410    src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1411  } else if (convert_dst) {
1412    dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1413  }
1414
1415  // Range checks
1416  generate_string_range_check(src, src_offset, length, convert_src);
1417  generate_string_range_check(dst, dst_offset, length, convert_dst);
1418  if (stopped()) {
1419    return true;
1420  }
1421
1422  Node* src_start = array_element_address(src, src_offset, src_elem);
1423  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1424  // 'src_start' points to src array + scaled offset
1425  // 'dst_start' points to dst array + scaled offset
1426  Node* count = NULL;
1427  if (compress) {
1428    count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1429  } else {
1430    inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1431  }
1432
1433  if (alloc != NULL) {
1434    if (alloc->maybe_set_complete(&_gvn)) {
1435      // "You break it, you buy it."
1436      InitializeNode* init = alloc->initialization();
1437      assert(init->is_complete(), "we just did this");
1438      init->set_complete_with_arraycopy();
1439      assert(dst->is_CheckCastPP(), "sanity");
1440      assert(dst->in(0)->in(0) == init, "dest pinned");
1441    }
1442    // Do not let stores that initialize this object be reordered with
1443    // a subsequent store that would make this object accessible by
1444    // other threads.
1445    // Record what AllocateNode this StoreStore protects so that
1446    // escape analysis can go from the MemBarStoreStoreNode to the
1447    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1448    // based on the escape status of the AllocateNode.
1449    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1450  }
1451  if (compress) {
1452    set_result(_gvn.transform(count));
1453  }
1454  return true;
1455}
1456
1457#ifdef _LP64
1458#define XTOP ,top() /*additional argument*/
1459#else  //_LP64
1460#define XTOP        /*no additional argument*/
1461#endif //_LP64
1462
1463//------------------------inline_string_toBytesU--------------------------
1464// public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1465bool LibraryCallKit::inline_string_toBytesU() {
1466  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1467    return false;
1468  }
1469  // Get the arguments.
1470  Node* value     = argument(0);
1471  Node* offset    = argument(1);
1472  Node* length    = argument(2);
1473
1474  Node* newcopy = NULL;
1475
1476  // Set the original stack and the reexecute bit for the interpreter to reexecute
1477  // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1478  { PreserveReexecuteState preexecs(this);
1479    jvms()->set_should_reexecute(true);
1480
1481    // Check if a null path was taken unconditionally.
1482    value = null_check(value);
1483
1484    RegionNode* bailout = new RegionNode(1);
1485    record_for_igvn(bailout);
1486
1487    // Range checks
1488    generate_negative_guard(offset, bailout);
1489    generate_negative_guard(length, bailout);
1490    generate_limit_guard(offset, length, load_array_length(value), bailout);
1491    // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1492    generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1493
1494    if (bailout->req() > 1) {
1495      PreserveJVMState pjvms(this);
1496      set_control(_gvn.transform(bailout));
1497      uncommon_trap(Deoptimization::Reason_intrinsic,
1498                    Deoptimization::Action_maybe_recompile);
1499    }
1500    if (stopped()) {
1501      return true;
1502    }
1503
1504    Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1505    Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1506    newcopy = new_array(klass_node, size, 0);  // no arguments to push
1507    AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1508
1509    // Calculate starting addresses.
1510    Node* src_start = array_element_address(value, offset, T_CHAR);
1511    Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1512
1513    // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1514    const TypeInt* toffset = gvn().type(offset)->is_int();
1515    bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1516
1517    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1518    const char* copyfunc_name = "arraycopy";
1519    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1520    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1521                      OptoRuntime::fast_arraycopy_Type(),
1522                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1523                      src_start, dst_start, ConvI2X(length) XTOP);
1524    // Do not let reads from the cloned object float above the arraycopy.
1525    if (alloc != NULL) {
1526      if (alloc->maybe_set_complete(&_gvn)) {
1527        // "You break it, you buy it."
1528        InitializeNode* init = alloc->initialization();
1529        assert(init->is_complete(), "we just did this");
1530        init->set_complete_with_arraycopy();
1531        assert(newcopy->is_CheckCastPP(), "sanity");
1532        assert(newcopy->in(0)->in(0) == init, "dest pinned");
1533      }
1534      // Do not let stores that initialize this object be reordered with
1535      // a subsequent store that would make this object accessible by
1536      // other threads.
1537      // Record what AllocateNode this StoreStore protects so that
1538      // escape analysis can go from the MemBarStoreStoreNode to the
1539      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1540      // based on the escape status of the AllocateNode.
1541      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1542    } else {
1543      insert_mem_bar(Op_MemBarCPUOrder);
1544    }
1545  } // original reexecute is set back here
1546
1547  C->set_has_split_ifs(true); // Has chance for split-if optimization
1548  if (!stopped()) {
1549    set_result(newcopy);
1550  }
1551  return true;
1552}
1553
1554//------------------------inline_string_getCharsU--------------------------
1555// public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1556bool LibraryCallKit::inline_string_getCharsU() {
1557  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1558    return false;
1559  }
1560
1561  // Get the arguments.
1562  Node* src       = argument(0);
1563  Node* src_begin = argument(1);
1564  Node* src_end   = argument(2); // exclusive offset (i < src_end)
1565  Node* dst       = argument(3);
1566  Node* dst_begin = argument(4);
1567
1568  // Check for allocation before we add nodes that would confuse
1569  // tightly_coupled_allocation()
1570  AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1571
1572  // Check if a null path was taken unconditionally.
1573  src = null_check(src);
1574  dst = null_check(dst);
1575  if (stopped()) {
1576    return true;
1577  }
1578
1579  // Get length and convert char[] offset to byte[] offset
1580  Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1581  src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1582
1583  // Range checks
1584  generate_string_range_check(src, src_begin, length, true);
1585  generate_string_range_check(dst, dst_begin, length, false);
1586  if (stopped()) {
1587    return true;
1588  }
1589
1590  if (!stopped()) {
1591    // Calculate starting addresses.
1592    Node* src_start = array_element_address(src, src_begin, T_BYTE);
1593    Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1594
1595    // Check if array addresses are aligned to HeapWordSize
1596    const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1597    const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1598    bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1599                   tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1600
1601    // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1602    const char* copyfunc_name = "arraycopy";
1603    address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1604    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1605                      OptoRuntime::fast_arraycopy_Type(),
1606                      copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1607                      src_start, dst_start, ConvI2X(length) XTOP);
1608    // Do not let reads from the cloned object float above the arraycopy.
1609    if (alloc != NULL) {
1610      if (alloc->maybe_set_complete(&_gvn)) {
1611        // "You break it, you buy it."
1612        InitializeNode* init = alloc->initialization();
1613        assert(init->is_complete(), "we just did this");
1614        init->set_complete_with_arraycopy();
1615        assert(dst->is_CheckCastPP(), "sanity");
1616        assert(dst->in(0)->in(0) == init, "dest pinned");
1617      }
1618      // Do not let stores that initialize this object be reordered with
1619      // a subsequent store that would make this object accessible by
1620      // other threads.
1621      // Record what AllocateNode this StoreStore protects so that
1622      // escape analysis can go from the MemBarStoreStoreNode to the
1623      // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1624      // based on the escape status of the AllocateNode.
1625      insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1626    } else {
1627      insert_mem_bar(Op_MemBarCPUOrder);
1628    }
1629  }
1630
1631  C->set_has_split_ifs(true); // Has chance for split-if optimization
1632  return true;
1633}
1634
1635//----------------------inline_string_char_access----------------------------
1636// Store/Load char to/from byte[] array.
1637// static void StringUTF16.putChar(byte[] val, int index, int c)
1638// static char StringUTF16.getChar(byte[] val, int index)
1639bool LibraryCallKit::inline_string_char_access(bool is_store) {
1640  Node* value  = argument(0);
1641  Node* index  = argument(1);
1642  Node* ch = is_store ? argument(2) : NULL;
1643
1644  // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1645  // correctly requires matched array shapes.
1646  assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1647          "sanity: byte[] and char[] bases agree");
1648  assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1649          "sanity: byte[] and char[] scales agree");
1650
1651  // Bail when getChar over constants is requested: constant folding would
1652  // reject folding mismatched char access over byte[]. A normal inlining for getChar
1653  // Java method would constant fold nicely instead.
1654  if (!is_store && value->is_Con() && index->is_Con()) {
1655    return false;
1656  }
1657
1658  Node* adr = array_element_address(value, index, T_CHAR);
1659  if (is_store) {
1660    (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1661                           false, false, true /* mismatched */);
1662  } else {
1663    ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1664                   LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1665    set_result(ch);
1666  }
1667  return true;
1668}
1669
1670//--------------------------round_double_node--------------------------------
1671// Round a double node if necessary.
1672Node* LibraryCallKit::round_double_node(Node* n) {
1673  if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1674    n = _gvn.transform(new RoundDoubleNode(0, n));
1675  return n;
1676}
1677
1678//------------------------------inline_math-----------------------------------
1679// public static double Math.abs(double)
1680// public static double Math.sqrt(double)
1681// public static double Math.log(double)
1682// public static double Math.log10(double)
1683bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1684  Node* arg = round_double_node(argument(0));
1685  Node* n = NULL;
1686  switch (id) {
1687  case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1688  case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1689  default:  fatal_unexpected_iid(id);  break;
1690  }
1691  set_result(_gvn.transform(n));
1692  return true;
1693}
1694
1695//------------------------------runtime_math-----------------------------
1696bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1697  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1698         "must be (DD)D or (D)D type");
1699
1700  // Inputs
1701  Node* a = round_double_node(argument(0));
1702  Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1703
1704  const TypePtr* no_memory_effects = NULL;
1705  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1706                                 no_memory_effects,
1707                                 a, top(), b, b ? top() : NULL);
1708  Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1709#ifdef ASSERT
1710  Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1711  assert(value_top == top(), "second value must be top");
1712#endif
1713
1714  set_result(value);
1715  return true;
1716}
1717
1718//------------------------------inline_math_native-----------------------------
1719bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1720#define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1721  switch (id) {
1722    // These intrinsics are not properly supported on all hardware
1723  case vmIntrinsics::_dsin:
1724    return StubRoutines::dsin() != NULL ?
1725      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1726      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1727  case vmIntrinsics::_dcos:
1728    return StubRoutines::dcos() != NULL ?
1729      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1730      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1731  case vmIntrinsics::_dtan:
1732    return StubRoutines::dtan() != NULL ?
1733      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1734      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1735  case vmIntrinsics::_dlog:
1736    return StubRoutines::dlog() != NULL ?
1737      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1738      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1739  case vmIntrinsics::_dlog10:
1740    return StubRoutines::dlog10() != NULL ?
1741      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1742      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1743
1744    // These intrinsics are supported on all hardware
1745  case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1746  case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1747
1748  case vmIntrinsics::_dexp:
1749    return StubRoutines::dexp() != NULL ?
1750      runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1751      runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1752  case vmIntrinsics::_dpow:
1753    return StubRoutines::dpow() != NULL ?
1754      runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1755      runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1756#undef FN_PTR
1757
1758   // These intrinsics are not yet correctly implemented
1759  case vmIntrinsics::_datan2:
1760    return false;
1761
1762  default:
1763    fatal_unexpected_iid(id);
1764    return false;
1765  }
1766}
1767
1768static bool is_simple_name(Node* n) {
1769  return (n->req() == 1         // constant
1770          || (n->is_Type() && n->as_Type()->type()->singleton())
1771          || n->is_Proj()       // parameter or return value
1772          || n->is_Phi()        // local of some sort
1773          );
1774}
1775
1776//----------------------------inline_notify-----------------------------------*
1777bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1778  const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1779  address func;
1780  if (id == vmIntrinsics::_notify) {
1781    func = OptoRuntime::monitor_notify_Java();
1782  } else {
1783    func = OptoRuntime::monitor_notifyAll_Java();
1784  }
1785  Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1786  make_slow_call_ex(call, env()->Throwable_klass(), false);
1787  return true;
1788}
1789
1790
1791//----------------------------inline_min_max-----------------------------------
1792bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1793  set_result(generate_min_max(id, argument(0), argument(1)));
1794  return true;
1795}
1796
1797void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1798  Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1799  IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1800  Node* fast_path = _gvn.transform( new IfFalseNode(check));
1801  Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1802
1803  {
1804    PreserveJVMState pjvms(this);
1805    PreserveReexecuteState preexecs(this);
1806    jvms()->set_should_reexecute(true);
1807
1808    set_control(slow_path);
1809    set_i_o(i_o());
1810
1811    uncommon_trap(Deoptimization::Reason_intrinsic,
1812                  Deoptimization::Action_none);
1813  }
1814
1815  set_control(fast_path);
1816  set_result(math);
1817}
1818
1819template <typename OverflowOp>
1820bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1821  typedef typename OverflowOp::MathOp MathOp;
1822
1823  MathOp* mathOp = new MathOp(arg1, arg2);
1824  Node* operation = _gvn.transform( mathOp );
1825  Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1826  inline_math_mathExact(operation, ofcheck);
1827  return true;
1828}
1829
1830bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1831  return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1832}
1833
1834bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1835  return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1836}
1837
1838bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1839  return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1840}
1841
1842bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1843  return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1844}
1845
1846bool LibraryCallKit::inline_math_negateExactI() {
1847  return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1848}
1849
1850bool LibraryCallKit::inline_math_negateExactL() {
1851  return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1852}
1853
1854bool LibraryCallKit::inline_math_multiplyExactI() {
1855  return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1856}
1857
1858bool LibraryCallKit::inline_math_multiplyExactL() {
1859  return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1860}
1861
1862Node*
1863LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1864  // These are the candidate return value:
1865  Node* xvalue = x0;
1866  Node* yvalue = y0;
1867
1868  if (xvalue == yvalue) {
1869    return xvalue;
1870  }
1871
1872  bool want_max = (id == vmIntrinsics::_max);
1873
1874  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1875  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1876  if (txvalue == NULL || tyvalue == NULL)  return top();
1877  // This is not really necessary, but it is consistent with a
1878  // hypothetical MaxINode::Value method:
1879  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1880
1881  // %%% This folding logic should (ideally) be in a different place.
1882  // Some should be inside IfNode, and there to be a more reliable
1883  // transformation of ?: style patterns into cmoves.  We also want
1884  // more powerful optimizations around cmove and min/max.
1885
1886  // Try to find a dominating comparison of these guys.
1887  // It can simplify the index computation for Arrays.copyOf
1888  // and similar uses of System.arraycopy.
1889  // First, compute the normalized version of CmpI(x, y).
1890  int   cmp_op = Op_CmpI;
1891  Node* xkey = xvalue;
1892  Node* ykey = yvalue;
1893  Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1894  if (ideal_cmpxy->is_Cmp()) {
1895    // E.g., if we have CmpI(length - offset, count),
1896    // it might idealize to CmpI(length, count + offset)
1897    cmp_op = ideal_cmpxy->Opcode();
1898    xkey = ideal_cmpxy->in(1);
1899    ykey = ideal_cmpxy->in(2);
1900  }
1901
1902  // Start by locating any relevant comparisons.
1903  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1904  Node* cmpxy = NULL;
1905  Node* cmpyx = NULL;
1906  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1907    Node* cmp = start_from->fast_out(k);
1908    if (cmp->outcnt() > 0 &&            // must have prior uses
1909        cmp->in(0) == NULL &&           // must be context-independent
1910        cmp->Opcode() == cmp_op) {      // right kind of compare
1911      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1912      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1913    }
1914  }
1915
1916  const int NCMPS = 2;
1917  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1918  int cmpn;
1919  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1920    if (cmps[cmpn] != NULL)  break;     // find a result
1921  }
1922  if (cmpn < NCMPS) {
1923    // Look for a dominating test that tells us the min and max.
1924    int depth = 0;                // Limit search depth for speed
1925    Node* dom = control();
1926    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1927      if (++depth >= 100)  break;
1928      Node* ifproj = dom;
1929      if (!ifproj->is_Proj())  continue;
1930      Node* iff = ifproj->in(0);
1931      if (!iff->is_If())  continue;
1932      Node* bol = iff->in(1);
1933      if (!bol->is_Bool())  continue;
1934      Node* cmp = bol->in(1);
1935      if (cmp == NULL)  continue;
1936      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1937        if (cmps[cmpn] == cmp)  break;
1938      if (cmpn == NCMPS)  continue;
1939      BoolTest::mask btest = bol->as_Bool()->_test._test;
1940      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1941      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1942      // At this point, we know that 'x btest y' is true.
1943      switch (btest) {
1944      case BoolTest::eq:
1945        // They are proven equal, so we can collapse the min/max.
1946        // Either value is the answer.  Choose the simpler.
1947        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1948          return yvalue;
1949        return xvalue;
1950      case BoolTest::lt:          // x < y
1951      case BoolTest::le:          // x <= y
1952        return (want_max ? yvalue : xvalue);
1953      case BoolTest::gt:          // x > y
1954      case BoolTest::ge:          // x >= y
1955        return (want_max ? xvalue : yvalue);
1956      }
1957    }
1958  }
1959
1960  // We failed to find a dominating test.
1961  // Let's pick a test that might GVN with prior tests.
1962  Node*          best_bol   = NULL;
1963  BoolTest::mask best_btest = BoolTest::illegal;
1964  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1965    Node* cmp = cmps[cmpn];
1966    if (cmp == NULL)  continue;
1967    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1968      Node* bol = cmp->fast_out(j);
1969      if (!bol->is_Bool())  continue;
1970      BoolTest::mask btest = bol->as_Bool()->_test._test;
1971      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1972      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1973      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1974        best_bol   = bol->as_Bool();
1975        best_btest = btest;
1976      }
1977    }
1978  }
1979
1980  Node* answer_if_true  = NULL;
1981  Node* answer_if_false = NULL;
1982  switch (best_btest) {
1983  default:
1984    if (cmpxy == NULL)
1985      cmpxy = ideal_cmpxy;
1986    best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
1987    // and fall through:
1988  case BoolTest::lt:          // x < y
1989  case BoolTest::le:          // x <= y
1990    answer_if_true  = (want_max ? yvalue : xvalue);
1991    answer_if_false = (want_max ? xvalue : yvalue);
1992    break;
1993  case BoolTest::gt:          // x > y
1994  case BoolTest::ge:          // x >= y
1995    answer_if_true  = (want_max ? xvalue : yvalue);
1996    answer_if_false = (want_max ? yvalue : xvalue);
1997    break;
1998  }
1999
2000  jint hi, lo;
2001  if (want_max) {
2002    // We can sharpen the minimum.
2003    hi = MAX2(txvalue->_hi, tyvalue->_hi);
2004    lo = MAX2(txvalue->_lo, tyvalue->_lo);
2005  } else {
2006    // We can sharpen the maximum.
2007    hi = MIN2(txvalue->_hi, tyvalue->_hi);
2008    lo = MIN2(txvalue->_lo, tyvalue->_lo);
2009  }
2010
2011  // Use a flow-free graph structure, to avoid creating excess control edges
2012  // which could hinder other optimizations.
2013  // Since Math.min/max is often used with arraycopy, we want
2014  // tightly_coupled_allocation to be able to see beyond min/max expressions.
2015  Node* cmov = CMoveNode::make(NULL, best_bol,
2016                               answer_if_false, answer_if_true,
2017                               TypeInt::make(lo, hi, widen));
2018
2019  return _gvn.transform(cmov);
2020
2021  /*
2022  // This is not as desirable as it may seem, since Min and Max
2023  // nodes do not have a full set of optimizations.
2024  // And they would interfere, anyway, with 'if' optimizations
2025  // and with CMoveI canonical forms.
2026  switch (id) {
2027  case vmIntrinsics::_min:
2028    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2029  case vmIntrinsics::_max:
2030    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2031  default:
2032    ShouldNotReachHere();
2033  }
2034  */
2035}
2036
2037inline int
2038LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2039  const TypePtr* base_type = TypePtr::NULL_PTR;
2040  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2041  if (base_type == NULL) {
2042    // Unknown type.
2043    return Type::AnyPtr;
2044  } else if (base_type == TypePtr::NULL_PTR) {
2045    // Since this is a NULL+long form, we have to switch to a rawptr.
2046    base   = _gvn.transform(new CastX2PNode(offset));
2047    offset = MakeConX(0);
2048    return Type::RawPtr;
2049  } else if (base_type->base() == Type::RawPtr) {
2050    return Type::RawPtr;
2051  } else if (base_type->isa_oopptr()) {
2052    // Base is never null => always a heap address.
2053    if (base_type->ptr() == TypePtr::NotNull) {
2054      return Type::OopPtr;
2055    }
2056    // Offset is small => always a heap address.
2057    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2058    if (offset_type != NULL &&
2059        base_type->offset() == 0 &&     // (should always be?)
2060        offset_type->_lo >= 0 &&
2061        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2062      return Type::OopPtr;
2063    }
2064    // Otherwise, it might either be oop+off or NULL+addr.
2065    return Type::AnyPtr;
2066  } else {
2067    // No information:
2068    return Type::AnyPtr;
2069  }
2070}
2071
2072inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2073  int kind = classify_unsafe_addr(base, offset);
2074  if (kind == Type::RawPtr) {
2075    return basic_plus_adr(top(), base, offset);
2076  } else {
2077    return basic_plus_adr(base, offset);
2078  }
2079}
2080
2081//--------------------------inline_number_methods-----------------------------
2082// inline int     Integer.numberOfLeadingZeros(int)
2083// inline int        Long.numberOfLeadingZeros(long)
2084//
2085// inline int     Integer.numberOfTrailingZeros(int)
2086// inline int        Long.numberOfTrailingZeros(long)
2087//
2088// inline int     Integer.bitCount(int)
2089// inline int        Long.bitCount(long)
2090//
2091// inline char  Character.reverseBytes(char)
2092// inline short     Short.reverseBytes(short)
2093// inline int     Integer.reverseBytes(int)
2094// inline long       Long.reverseBytes(long)
2095bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2096  Node* arg = argument(0);
2097  Node* n = NULL;
2098  switch (id) {
2099  case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2100  case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2101  case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2102  case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2103  case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2104  case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2105  case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2106  case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2107  case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2108  case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2109  default:  fatal_unexpected_iid(id);  break;
2110  }
2111  set_result(_gvn.transform(n));
2112  return true;
2113}
2114
2115//----------------------------inline_unsafe_access----------------------------
2116
2117// Helper that guards and inserts a pre-barrier.
2118void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2119                                        Node* pre_val, bool need_mem_bar) {
2120  // We could be accessing the referent field of a reference object. If so, when G1
2121  // is enabled, we need to log the value in the referent field in an SATB buffer.
2122  // This routine performs some compile time filters and generates suitable
2123  // runtime filters that guard the pre-barrier code.
2124  // Also add memory barrier for non volatile load from the referent field
2125  // to prevent commoning of loads across safepoint.
2126  if (!UseG1GC && !need_mem_bar)
2127    return;
2128
2129  // Some compile time checks.
2130
2131  // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2132  const TypeX* otype = offset->find_intptr_t_type();
2133  if (otype != NULL && otype->is_con() &&
2134      otype->get_con() != java_lang_ref_Reference::referent_offset) {
2135    // Constant offset but not the reference_offset so just return
2136    return;
2137  }
2138
2139  // We only need to generate the runtime guards for instances.
2140  const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2141  if (btype != NULL) {
2142    if (btype->isa_aryptr()) {
2143      // Array type so nothing to do
2144      return;
2145    }
2146
2147    const TypeInstPtr* itype = btype->isa_instptr();
2148    if (itype != NULL) {
2149      // Can the klass of base_oop be statically determined to be
2150      // _not_ a sub-class of Reference and _not_ Object?
2151      ciKlass* klass = itype->klass();
2152      if ( klass->is_loaded() &&
2153          !klass->is_subtype_of(env()->Reference_klass()) &&
2154          !env()->Object_klass()->is_subtype_of(klass)) {
2155        return;
2156      }
2157    }
2158  }
2159
2160  // The compile time filters did not reject base_oop/offset so
2161  // we need to generate the following runtime filters
2162  //
2163  // if (offset == java_lang_ref_Reference::_reference_offset) {
2164  //   if (instance_of(base, java.lang.ref.Reference)) {
2165  //     pre_barrier(_, pre_val, ...);
2166  //   }
2167  // }
2168
2169  float likely   = PROB_LIKELY(  0.999);
2170  float unlikely = PROB_UNLIKELY(0.999);
2171
2172  IdealKit ideal(this);
2173#define __ ideal.
2174
2175  Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2176
2177  __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2178      // Update graphKit memory and control from IdealKit.
2179      sync_kit(ideal);
2180
2181      Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2182      Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2183
2184      // Update IdealKit memory and control from graphKit.
2185      __ sync_kit(this);
2186
2187      Node* one = __ ConI(1);
2188      // is_instof == 0 if base_oop == NULL
2189      __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2190
2191        // Update graphKit from IdeakKit.
2192        sync_kit(ideal);
2193
2194        // Use the pre-barrier to record the value in the referent field
2195        pre_barrier(false /* do_load */,
2196                    __ ctrl(),
2197                    NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2198                    pre_val /* pre_val */,
2199                    T_OBJECT);
2200        if (need_mem_bar) {
2201          // Add memory barrier to prevent commoning reads from this field
2202          // across safepoint since GC can change its value.
2203          insert_mem_bar(Op_MemBarCPUOrder);
2204        }
2205        // Update IdealKit from graphKit.
2206        __ sync_kit(this);
2207
2208      } __ end_if(); // _ref_type != ref_none
2209  } __ end_if(); // offset == referent_offset
2210
2211  // Final sync IdealKit and GraphKit.
2212  final_sync(ideal);
2213#undef __
2214}
2215
2216
2217const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2218  // Attempt to infer a sharper value type from the offset and base type.
2219  ciKlass* sharpened_klass = NULL;
2220
2221  // See if it is an instance field, with an object type.
2222  if (alias_type->field() != NULL) {
2223    if (alias_type->field()->type()->is_klass()) {
2224      sharpened_klass = alias_type->field()->type()->as_klass();
2225    }
2226  }
2227
2228  // See if it is a narrow oop array.
2229  if (adr_type->isa_aryptr()) {
2230    if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2231      const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2232      if (elem_type != NULL) {
2233        sharpened_klass = elem_type->klass();
2234      }
2235    }
2236  }
2237
2238  // The sharpened class might be unloaded if there is no class loader
2239  // contraint in place.
2240  if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2241    const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2242
2243#ifndef PRODUCT
2244    if (C->print_intrinsics() || C->print_inlining()) {
2245      tty->print("  from base type: ");  adr_type->dump();
2246      tty->print("  sharpened value: ");  tjp->dump();
2247    }
2248#endif
2249    // Sharpen the value type.
2250    return tjp;
2251  }
2252  return NULL;
2253}
2254
2255bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2256  if (callee()->is_static())  return false;  // caller must have the capability!
2257  guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2258  guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2259  assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2260
2261#ifndef PRODUCT
2262  {
2263    ResourceMark rm;
2264    // Check the signatures.
2265    ciSignature* sig = callee()->signature();
2266#ifdef ASSERT
2267    if (!is_store) {
2268      // Object getObject(Object base, int/long offset), etc.
2269      BasicType rtype = sig->return_type()->basic_type();
2270      assert(rtype == type, "getter must return the expected value");
2271      assert(sig->count() == 2, "oop getter has 2 arguments");
2272      assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2273      assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2274    } else {
2275      // void putObject(Object base, int/long offset, Object x), etc.
2276      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2277      assert(sig->count() == 3, "oop putter has 3 arguments");
2278      assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2279      assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2280      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2281      assert(vtype == type, "putter must accept the expected value");
2282    }
2283#endif // ASSERT
2284 }
2285#endif //PRODUCT
2286
2287  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2288
2289  Node* receiver = argument(0);  // type: oop
2290
2291  // Build address expression.
2292  Node* adr;
2293  Node* heap_base_oop = top();
2294  Node* offset = top();
2295  Node* val;
2296
2297  // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2298  Node* base = argument(1);  // type: oop
2299  // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2300  offset = argument(2);  // type: long
2301  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2302  // to be plain byte offsets, which are also the same as those accepted
2303  // by oopDesc::field_base.
2304  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2305         "fieldOffset must be byte-scaled");
2306  // 32-bit machines ignore the high half!
2307  offset = ConvL2X(offset);
2308  adr = make_unsafe_address(base, offset);
2309  if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2310    heap_base_oop = base;
2311  }
2312  val = is_store ? argument(4) : NULL;
2313
2314  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2315
2316  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2317  // there was not enough information to nail it down.
2318  Compile::AliasType* alias_type = C->alias_type(adr_type);
2319  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2320
2321  assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2322         alias_type->basic_type() != T_ILLEGAL, "field, array element or unknown");
2323  bool mismatched = false;
2324  BasicType bt = alias_type->basic_type();
2325  if (bt != T_ILLEGAL) {
2326    if (bt == T_BYTE && adr_type->isa_aryptr()) {
2327      // Alias type doesn't differentiate between byte[] and boolean[]).
2328      // Use address type to get the element type.
2329      bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2330    }
2331    if (bt == T_ARRAY || bt == T_NARROWOOP) {
2332      // accessing an array field with getObject is not a mismatch
2333      bt = T_OBJECT;
2334    }
2335    if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2336      // Don't intrinsify mismatched object accesses
2337      return false;
2338    }
2339    mismatched = (bt != type);
2340  }
2341
2342  // First guess at the value type.
2343  const Type *value_type = Type::get_const_basic_type(type);
2344
2345  // We will need memory barriers unless we can determine a unique
2346  // alias category for this reference.  (Note:  If for some reason
2347  // the barriers get omitted and the unsafe reference begins to "pollute"
2348  // the alias analysis of the rest of the graph, either Compile::can_alias
2349  // or Compile::must_alias will throw a diagnostic assert.)
2350  bool need_mem_bar;
2351  switch (kind) {
2352      case Relaxed:
2353          need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2354          break;
2355      case Opaque:
2356          // Opaque uses CPUOrder membars for protection against code movement.
2357      case Acquire:
2358      case Release:
2359      case Volatile:
2360          need_mem_bar = true;
2361          break;
2362      default:
2363          ShouldNotReachHere();
2364  }
2365
2366  // Some accesses require access atomicity for all types, notably longs and doubles.
2367  // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2368  bool requires_atomic_access = false;
2369  switch (kind) {
2370      case Relaxed:
2371          requires_atomic_access = AlwaysAtomicAccesses;
2372          break;
2373      case Opaque:
2374          // Opaque accesses are atomic.
2375      case Acquire:
2376      case Release:
2377      case Volatile:
2378          requires_atomic_access = true;
2379          break;
2380      default:
2381          ShouldNotReachHere();
2382  }
2383
2384  // Figure out the memory ordering.
2385  // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2386  MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2387
2388  // If we are reading the value of the referent field of a Reference
2389  // object (either by using Unsafe directly or through reflection)
2390  // then, if G1 is enabled, we need to record the referent in an
2391  // SATB log buffer using the pre-barrier mechanism.
2392  // Also we need to add memory barrier to prevent commoning reads
2393  // from this field across safepoint since GC can change its value.
2394  bool need_read_barrier = !is_store &&
2395                           offset != top() && heap_base_oop != top();
2396
2397  if (!is_store && type == T_OBJECT) {
2398    const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2399    if (tjp != NULL) {
2400      value_type = tjp;
2401    }
2402  }
2403
2404  receiver = null_check(receiver);
2405  if (stopped()) {
2406    return true;
2407  }
2408  // Heap pointers get a null-check from the interpreter,
2409  // as a courtesy.  However, this is not guaranteed by Unsafe,
2410  // and it is not possible to fully distinguish unintended nulls
2411  // from intended ones in this API.
2412
2413  // We need to emit leading and trailing CPU membars (see below) in
2414  // addition to memory membars for special access modes. This is a little
2415  // too strong, but avoids the need to insert per-alias-type
2416  // volatile membars (for stores; compare Parse::do_put_xxx), which
2417  // we cannot do effectively here because we probably only have a
2418  // rough approximation of type.
2419
2420  switch(kind) {
2421    case Relaxed:
2422    case Opaque:
2423    case Acquire:
2424      break;
2425    case Release:
2426    case Volatile:
2427      if (is_store) {
2428        insert_mem_bar(Op_MemBarRelease);
2429      } else {
2430        if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2431          insert_mem_bar(Op_MemBarVolatile);
2432        }
2433      }
2434      break;
2435    default:
2436      ShouldNotReachHere();
2437  }
2438
2439  // Memory barrier to prevent normal and 'unsafe' accesses from
2440  // bypassing each other.  Happens after null checks, so the
2441  // exception paths do not take memory state from the memory barrier,
2442  // so there's no problems making a strong assert about mixing users
2443  // of safe & unsafe memory.
2444  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2445
2446  if (!is_store) {
2447    Node* p = NULL;
2448    // Try to constant fold a load from a constant field
2449    ciField* field = alias_type->field();
2450    if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2451      // final or stable field
2452      p = make_constant_from_field(field, heap_base_oop);
2453    }
2454    if (p == NULL) {
2455      // To be valid, unsafe loads may depend on other conditions than
2456      // the one that guards them: pin the Load node
2457      p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, requires_atomic_access, unaligned, mismatched);
2458      // load value
2459      switch (type) {
2460      case T_BOOLEAN:
2461      case T_CHAR:
2462      case T_BYTE:
2463      case T_SHORT:
2464      case T_INT:
2465      case T_LONG:
2466      case T_FLOAT:
2467      case T_DOUBLE:
2468        break;
2469      case T_OBJECT:
2470        if (need_read_barrier) {
2471          // We do not require a mem bar inside pre_barrier if need_mem_bar
2472          // is set: the barriers would be emitted by us.
2473          insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2474        }
2475        break;
2476      case T_ADDRESS:
2477        // Cast to an int type.
2478        p = _gvn.transform(new CastP2XNode(NULL, p));
2479        p = ConvX2UL(p);
2480        break;
2481      default:
2482        fatal("unexpected type %d: %s", type, type2name(type));
2483        break;
2484      }
2485    }
2486    // The load node has the control of the preceding MemBarCPUOrder.  All
2487    // following nodes will have the control of the MemBarCPUOrder inserted at
2488    // the end of this method.  So, pushing the load onto the stack at a later
2489    // point is fine.
2490    set_result(p);
2491  } else {
2492    // place effect of store into memory
2493    switch (type) {
2494    case T_DOUBLE:
2495      val = dstore_rounding(val);
2496      break;
2497    case T_ADDRESS:
2498      // Repackage the long as a pointer.
2499      val = ConvL2X(val);
2500      val = _gvn.transform(new CastX2PNode(val));
2501      break;
2502    }
2503
2504    if (type != T_OBJECT) {
2505      (void) store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2506    } else {
2507      // Possibly an oop being stored to Java heap or native memory
2508      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2509        // oop to Java heap.
2510        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2511      } else {
2512        // We can't tell at compile time if we are storing in the Java heap or outside
2513        // of it. So we need to emit code to conditionally do the proper type of
2514        // store.
2515
2516        IdealKit ideal(this);
2517#define __ ideal.
2518        // QQQ who knows what probability is here??
2519        __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2520          // Sync IdealKit and graphKit.
2521          sync_kit(ideal);
2522          Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2523          // Update IdealKit memory.
2524          __ sync_kit(this);
2525        } __ else_(); {
2526          __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, requires_atomic_access, mismatched);
2527        } __ end_if();
2528        // Final sync IdealKit and GraphKit.
2529        final_sync(ideal);
2530#undef __
2531      }
2532    }
2533  }
2534
2535  switch(kind) {
2536    case Relaxed:
2537    case Opaque:
2538    case Release:
2539      break;
2540    case Acquire:
2541    case Volatile:
2542      if (!is_store) {
2543        insert_mem_bar(Op_MemBarAcquire);
2544      } else {
2545        if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2546          insert_mem_bar(Op_MemBarVolatile);
2547        }
2548      }
2549      break;
2550    default:
2551      ShouldNotReachHere();
2552  }
2553
2554  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2555
2556  return true;
2557}
2558
2559//----------------------------inline_unsafe_load_store----------------------------
2560// This method serves a couple of different customers (depending on LoadStoreKind):
2561//
2562// LS_cmp_swap:
2563//
2564//   boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2565//   boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2566//   boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2567//
2568// LS_cmp_swap_weak:
2569//
2570//   boolean weakCompareAndSwapObject(       Object o, long offset, Object expected, Object x);
2571//   boolean weakCompareAndSwapObjectAcquire(Object o, long offset, Object expected, Object x);
2572//   boolean weakCompareAndSwapObjectRelease(Object o, long offset, Object expected, Object x);
2573//
2574//   boolean weakCompareAndSwapInt(          Object o, long offset, int    expected, int    x);
2575//   boolean weakCompareAndSwapIntAcquire(   Object o, long offset, int    expected, int    x);
2576//   boolean weakCompareAndSwapIntRelease(   Object o, long offset, int    expected, int    x);
2577//
2578//   boolean weakCompareAndSwapLong(         Object o, long offset, long   expected, long   x);
2579//   boolean weakCompareAndSwapLongAcquire(  Object o, long offset, long   expected, long   x);
2580//   boolean weakCompareAndSwapLongRelease(  Object o, long offset, long   expected, long   x);
2581//
2582// LS_cmp_exchange:
2583//
2584//   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2585//   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2586//   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2587//
2588//   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2589//   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2590//   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2591//
2592//   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2593//   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2594//   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2595//
2596// LS_get_add:
2597//
2598//   int  getAndAddInt( Object o, long offset, int  delta)
2599//   long getAndAddLong(Object o, long offset, long delta)
2600//
2601// LS_get_set:
2602//
2603//   int    getAndSet(Object o, long offset, int    newValue)
2604//   long   getAndSet(Object o, long offset, long   newValue)
2605//   Object getAndSet(Object o, long offset, Object newValue)
2606//
2607bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2608  // This basic scheme here is the same as inline_unsafe_access, but
2609  // differs in enough details that combining them would make the code
2610  // overly confusing.  (This is a true fact! I originally combined
2611  // them, but even I was confused by it!) As much code/comments as
2612  // possible are retained from inline_unsafe_access though to make
2613  // the correspondences clearer. - dl
2614
2615  if (callee()->is_static())  return false;  // caller must have the capability!
2616
2617#ifndef PRODUCT
2618  BasicType rtype;
2619  {
2620    ResourceMark rm;
2621    // Check the signatures.
2622    ciSignature* sig = callee()->signature();
2623    rtype = sig->return_type()->basic_type();
2624    switch(kind) {
2625      case LS_get_add:
2626      case LS_get_set: {
2627      // Check the signatures.
2628#ifdef ASSERT
2629      assert(rtype == type, "get and set must return the expected type");
2630      assert(sig->count() == 3, "get and set has 3 arguments");
2631      assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2632      assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2633      assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2634      assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2635#endif // ASSERT
2636        break;
2637      }
2638      case LS_cmp_swap:
2639      case LS_cmp_swap_weak: {
2640      // Check the signatures.
2641#ifdef ASSERT
2642      assert(rtype == T_BOOLEAN, "CAS must return boolean");
2643      assert(sig->count() == 4, "CAS has 4 arguments");
2644      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2645      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2646#endif // ASSERT
2647        break;
2648      }
2649      case LS_cmp_exchange: {
2650      // Check the signatures.
2651#ifdef ASSERT
2652      assert(rtype == type, "CAS must return the expected type");
2653      assert(sig->count() == 4, "CAS has 4 arguments");
2654      assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2655      assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2656#endif // ASSERT
2657        break;
2658      }
2659      default:
2660        ShouldNotReachHere();
2661    }
2662  }
2663#endif //PRODUCT
2664
2665  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2666
2667  // Get arguments:
2668  Node* receiver = NULL;
2669  Node* base     = NULL;
2670  Node* offset   = NULL;
2671  Node* oldval   = NULL;
2672  Node* newval   = NULL;
2673  switch(kind) {
2674    case LS_cmp_swap:
2675    case LS_cmp_swap_weak:
2676    case LS_cmp_exchange: {
2677      const bool two_slot_type = type2size[type] == 2;
2678      receiver = argument(0);  // type: oop
2679      base     = argument(1);  // type: oop
2680      offset   = argument(2);  // type: long
2681      oldval   = argument(4);  // type: oop, int, or long
2682      newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2683      break;
2684    }
2685    case LS_get_add:
2686    case LS_get_set: {
2687      receiver = argument(0);  // type: oop
2688      base     = argument(1);  // type: oop
2689      offset   = argument(2);  // type: long
2690      oldval   = NULL;
2691      newval   = argument(4);  // type: oop, int, or long
2692      break;
2693    }
2694    default:
2695      ShouldNotReachHere();
2696  }
2697
2698  // Null check receiver.
2699  receiver = null_check(receiver);
2700  if (stopped()) {
2701    return true;
2702  }
2703
2704  // Build field offset expression.
2705  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2706  // to be plain byte offsets, which are also the same as those accepted
2707  // by oopDesc::field_base.
2708  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2709  // 32-bit machines ignore the high half of long offsets
2710  offset = ConvL2X(offset);
2711  Node* adr = make_unsafe_address(base, offset);
2712  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2713
2714  Compile::AliasType* alias_type = C->alias_type(adr_type);
2715  assert(alias_type->adr_type() == TypeRawPtr::BOTTOM || alias_type->adr_type() == TypeOopPtr::BOTTOM ||
2716         alias_type->basic_type() != T_ILLEGAL, "field, array element or unknown");
2717  BasicType bt = alias_type->basic_type();
2718  if (bt != T_ILLEGAL &&
2719      ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2720    // Don't intrinsify mismatched object accesses.
2721    return false;
2722  }
2723
2724  // For CAS, unlike inline_unsafe_access, there seems no point in
2725  // trying to refine types. Just use the coarse types here.
2726  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2727  const Type *value_type = Type::get_const_basic_type(type);
2728
2729  switch (kind) {
2730    case LS_get_set:
2731    case LS_cmp_exchange: {
2732      if (type == T_OBJECT) {
2733        const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2734        if (tjp != NULL) {
2735          value_type = tjp;
2736        }
2737      }
2738      break;
2739    }
2740    case LS_cmp_swap:
2741    case LS_cmp_swap_weak:
2742    case LS_get_add:
2743      break;
2744    default:
2745      ShouldNotReachHere();
2746  }
2747
2748  int alias_idx = C->get_alias_index(adr_type);
2749
2750  // Memory-model-wise, a LoadStore acts like a little synchronized
2751  // block, so needs barriers on each side.  These don't translate
2752  // into actual barriers on most machines, but we still need rest of
2753  // compiler to respect ordering.
2754
2755  switch (access_kind) {
2756    case Relaxed:
2757    case Acquire:
2758      break;
2759    case Release:
2760      insert_mem_bar(Op_MemBarRelease);
2761      break;
2762    case Volatile:
2763      if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2764        insert_mem_bar(Op_MemBarVolatile);
2765      } else {
2766        insert_mem_bar(Op_MemBarRelease);
2767      }
2768      break;
2769    default:
2770      ShouldNotReachHere();
2771  }
2772  insert_mem_bar(Op_MemBarCPUOrder);
2773
2774  // Figure out the memory ordering.
2775  MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2776
2777  // 4984716: MemBars must be inserted before this
2778  //          memory node in order to avoid a false
2779  //          dependency which will confuse the scheduler.
2780  Node *mem = memory(alias_idx);
2781
2782  // For now, we handle only those cases that actually exist: ints,
2783  // longs, and Object. Adding others should be straightforward.
2784  Node* load_store = NULL;
2785  switch(type) {
2786  case T_BYTE:
2787    switch(kind) {
2788      case LS_get_add:
2789        load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2790        break;
2791      case LS_get_set:
2792        load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2793        break;
2794      case LS_cmp_swap_weak:
2795        load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2796        break;
2797      case LS_cmp_swap:
2798        load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2799        break;
2800      case LS_cmp_exchange:
2801        load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2802        break;
2803      default:
2804        ShouldNotReachHere();
2805    }
2806    break;
2807  case T_SHORT:
2808    switch(kind) {
2809      case LS_get_add:
2810        load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2811        break;
2812      case LS_get_set:
2813        load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2814        break;
2815      case LS_cmp_swap_weak:
2816        load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2817        break;
2818      case LS_cmp_swap:
2819        load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2820        break;
2821      case LS_cmp_exchange:
2822        load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2823        break;
2824      default:
2825        ShouldNotReachHere();
2826    }
2827    break;
2828  case T_INT:
2829    switch(kind) {
2830      case LS_get_add:
2831        load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2832        break;
2833      case LS_get_set:
2834        load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2835        break;
2836      case LS_cmp_swap_weak:
2837        load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2838        break;
2839      case LS_cmp_swap:
2840        load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2841        break;
2842      case LS_cmp_exchange:
2843        load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2844        break;
2845      default:
2846        ShouldNotReachHere();
2847    }
2848    break;
2849  case T_LONG:
2850    switch(kind) {
2851      case LS_get_add:
2852        load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2853        break;
2854      case LS_get_set:
2855        load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2856        break;
2857      case LS_cmp_swap_weak:
2858        load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2859        break;
2860      case LS_cmp_swap:
2861        load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2862        break;
2863      case LS_cmp_exchange:
2864        load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2865        break;
2866      default:
2867        ShouldNotReachHere();
2868    }
2869    break;
2870  case T_OBJECT:
2871    // Transformation of a value which could be NULL pointer (CastPP #NULL)
2872    // could be delayed during Parse (for example, in adjust_map_after_if()).
2873    // Execute transformation here to avoid barrier generation in such case.
2874    if (_gvn.type(newval) == TypePtr::NULL_PTR)
2875      newval = _gvn.makecon(TypePtr::NULL_PTR);
2876
2877    // Reference stores need a store barrier.
2878    switch(kind) {
2879      case LS_get_set: {
2880        // If pre-barrier must execute before the oop store, old value will require do_load here.
2881        if (!can_move_pre_barrier()) {
2882          pre_barrier(true /* do_load*/,
2883                      control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2884                      NULL /* pre_val*/,
2885                      T_OBJECT);
2886        } // Else move pre_barrier to use load_store value, see below.
2887        break;
2888      }
2889      case LS_cmp_swap_weak:
2890      case LS_cmp_swap:
2891      case LS_cmp_exchange: {
2892        // Same as for newval above:
2893        if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2894          oldval = _gvn.makecon(TypePtr::NULL_PTR);
2895        }
2896        // The only known value which might get overwritten is oldval.
2897        pre_barrier(false /* do_load */,
2898                    control(), NULL, NULL, max_juint, NULL, NULL,
2899                    oldval /* pre_val */,
2900                    T_OBJECT);
2901        break;
2902      }
2903      default:
2904        ShouldNotReachHere();
2905    }
2906
2907#ifdef _LP64
2908    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2909      Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2910
2911      switch(kind) {
2912        case LS_get_set:
2913          load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
2914          break;
2915        case LS_cmp_swap_weak: {
2916          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2917          load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2918          break;
2919        }
2920        case LS_cmp_swap: {
2921          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2922          load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
2923          break;
2924        }
2925        case LS_cmp_exchange: {
2926          Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2927          load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
2928          break;
2929        }
2930        default:
2931          ShouldNotReachHere();
2932      }
2933    } else
2934#endif
2935    switch (kind) {
2936      case LS_get_set:
2937        load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2938        break;
2939      case LS_cmp_swap_weak:
2940        load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2941        break;
2942      case LS_cmp_swap:
2943        load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
2944        break;
2945      case LS_cmp_exchange:
2946        load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
2947        break;
2948      default:
2949        ShouldNotReachHere();
2950    }
2951
2952    // Emit the post barrier only when the actual store happened. This makes sense
2953    // to check only for LS_cmp_* that can fail to set the value.
2954    // LS_cmp_exchange does not produce any branches by default, so there is no
2955    // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
2956    // CompareAndExchange and move branches here, it would make sense to conditionalize
2957    // post_barriers for LS_cmp_exchange as well.
2958    //
2959    // CAS success path is marked more likely since we anticipate this is a performance
2960    // critical path, while CAS failure path can use the penalty for going through unlikely
2961    // path as backoff. Which is still better than doing a store barrier there.
2962    switch (kind) {
2963      case LS_get_set:
2964      case LS_cmp_exchange: {
2965        post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2966        break;
2967      }
2968      case LS_cmp_swap_weak:
2969      case LS_cmp_swap: {
2970        IdealKit ideal(this);
2971        ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2972          sync_kit(ideal);
2973          post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2974          ideal.sync_kit(this);
2975        } ideal.end_if();
2976        final_sync(ideal);
2977        break;
2978      }
2979      default:
2980        ShouldNotReachHere();
2981    }
2982    break;
2983  default:
2984    fatal("unexpected type %d: %s", type, type2name(type));
2985    break;
2986  }
2987
2988  // SCMemProjNodes represent the memory state of a LoadStore. Their
2989  // main role is to prevent LoadStore nodes from being optimized away
2990  // when their results aren't used.
2991  Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2992  set_memory(proj, alias_idx);
2993
2994  if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
2995#ifdef _LP64
2996    if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2997      load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2998    }
2999#endif
3000    if (can_move_pre_barrier()) {
3001      // Don't need to load pre_val. The old value is returned by load_store.
3002      // The pre_barrier can execute after the xchg as long as no safepoint
3003      // gets inserted between them.
3004      pre_barrier(false /* do_load */,
3005                  control(), NULL, NULL, max_juint, NULL, NULL,
3006                  load_store /* pre_val */,
3007                  T_OBJECT);
3008    }
3009  }
3010
3011  // Add the trailing membar surrounding the access
3012  insert_mem_bar(Op_MemBarCPUOrder);
3013
3014  switch (access_kind) {
3015    case Relaxed:
3016    case Release:
3017      break; // do nothing
3018    case Acquire:
3019    case Volatile:
3020      insert_mem_bar(Op_MemBarAcquire);
3021      // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3022      break;
3023    default:
3024      ShouldNotReachHere();
3025  }
3026
3027  assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3028  set_result(load_store);
3029  return true;
3030}
3031
3032MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3033  MemNode::MemOrd mo = MemNode::unset;
3034  switch(kind) {
3035    case Opaque:
3036    case Relaxed:  mo = MemNode::unordered; break;
3037    case Acquire:  mo = MemNode::acquire;   break;
3038    case Release:  mo = MemNode::release;   break;
3039    case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3040    default:
3041      ShouldNotReachHere();
3042  }
3043  guarantee(mo != MemNode::unset, "Should select memory ordering");
3044  return mo;
3045}
3046
3047MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3048  MemNode::MemOrd mo = MemNode::unset;
3049  switch(kind) {
3050    case Opaque:
3051    case Relaxed:  mo = MemNode::unordered; break;
3052    case Acquire:  mo = MemNode::acquire;   break;
3053    case Release:  mo = MemNode::release;   break;
3054    case Volatile: mo = MemNode::seqcst;    break;
3055    default:
3056      ShouldNotReachHere();
3057  }
3058  guarantee(mo != MemNode::unset, "Should select memory ordering");
3059  return mo;
3060}
3061
3062bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3063  // Regardless of form, don't allow previous ld/st to move down,
3064  // then issue acquire, release, or volatile mem_bar.
3065  insert_mem_bar(Op_MemBarCPUOrder);
3066  switch(id) {
3067    case vmIntrinsics::_loadFence:
3068      insert_mem_bar(Op_LoadFence);
3069      return true;
3070    case vmIntrinsics::_storeFence:
3071      insert_mem_bar(Op_StoreFence);
3072      return true;
3073    case vmIntrinsics::_fullFence:
3074      insert_mem_bar(Op_MemBarVolatile);
3075      return true;
3076    default:
3077      fatal_unexpected_iid(id);
3078      return false;
3079  }
3080}
3081
3082bool LibraryCallKit::inline_onspinwait() {
3083  insert_mem_bar(Op_OnSpinWait);
3084  return true;
3085}
3086
3087bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3088  if (!kls->is_Con()) {
3089    return true;
3090  }
3091  const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3092  if (klsptr == NULL) {
3093    return true;
3094  }
3095  ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3096  // don't need a guard for a klass that is already initialized
3097  return !ik->is_initialized();
3098}
3099
3100//----------------------------inline_unsafe_allocate---------------------------
3101// public native Object Unsafe.allocateInstance(Class<?> cls);
3102bool LibraryCallKit::inline_unsafe_allocate() {
3103  if (callee()->is_static())  return false;  // caller must have the capability!
3104
3105  null_check_receiver();  // null-check, then ignore
3106  Node* cls = null_check(argument(1));
3107  if (stopped())  return true;
3108
3109  Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3110  kls = null_check(kls);
3111  if (stopped())  return true;  // argument was like int.class
3112
3113  Node* test = NULL;
3114  if (LibraryCallKit::klass_needs_init_guard(kls)) {
3115    // Note:  The argument might still be an illegal value like
3116    // Serializable.class or Object[].class.   The runtime will handle it.
3117    // But we must make an explicit check for initialization.
3118    Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3119    // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3120    // can generate code to load it as unsigned byte.
3121    Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3122    Node* bits = intcon(InstanceKlass::fully_initialized);
3123    test = _gvn.transform(new SubINode(inst, bits));
3124    // The 'test' is non-zero if we need to take a slow path.
3125  }
3126
3127  Node* obj = new_instance(kls, test);
3128  set_result(obj);
3129  return true;
3130}
3131
3132//------------------------inline_native_time_funcs--------------
3133// inline code for System.currentTimeMillis() and System.nanoTime()
3134// these have the same type and signature
3135bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3136  const TypeFunc* tf = OptoRuntime::void_long_Type();
3137  const TypePtr* no_memory_effects = NULL;
3138  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3139  Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3140#ifdef ASSERT
3141  Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3142  assert(value_top == top(), "second value must be top");
3143#endif
3144  set_result(value);
3145  return true;
3146}
3147
3148//------------------------inline_native_currentThread------------------
3149bool LibraryCallKit::inline_native_currentThread() {
3150  Node* junk = NULL;
3151  set_result(generate_current_thread(junk));
3152  return true;
3153}
3154
3155//------------------------inline_native_isInterrupted------------------
3156// private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3157bool LibraryCallKit::inline_native_isInterrupted() {
3158  // Add a fast path to t.isInterrupted(clear_int):
3159  //   (t == Thread.current() &&
3160  //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3161  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3162  // So, in the common case that the interrupt bit is false,
3163  // we avoid making a call into the VM.  Even if the interrupt bit
3164  // is true, if the clear_int argument is false, we avoid the VM call.
3165  // However, if the receiver is not currentThread, we must call the VM,
3166  // because there must be some locking done around the operation.
3167
3168  // We only go to the fast case code if we pass two guards.
3169  // Paths which do not pass are accumulated in the slow_region.
3170
3171  enum {
3172    no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3173    no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3174    slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3175    PATH_LIMIT
3176  };
3177
3178  // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3179  // out of the function.
3180  insert_mem_bar(Op_MemBarCPUOrder);
3181
3182  RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3183  PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3184
3185  RegionNode* slow_region = new RegionNode(1);
3186  record_for_igvn(slow_region);
3187
3188  // (a) Receiving thread must be the current thread.
3189  Node* rec_thr = argument(0);
3190  Node* tls_ptr = NULL;
3191  Node* cur_thr = generate_current_thread(tls_ptr);
3192  Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3193  Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3194
3195  generate_slow_guard(bol_thr, slow_region);
3196
3197  // (b) Interrupt bit on TLS must be false.
3198  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3199  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3200  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3201
3202  // Set the control input on the field _interrupted read to prevent it floating up.
3203  Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3204  Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3205  Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3206
3207  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3208
3209  // First fast path:  if (!TLS._interrupted) return false;
3210  Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3211  result_rgn->init_req(no_int_result_path, false_bit);
3212  result_val->init_req(no_int_result_path, intcon(0));
3213
3214  // drop through to next case
3215  set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3216
3217#ifndef TARGET_OS_FAMILY_windows
3218  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3219  Node* clr_arg = argument(1);
3220  Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3221  Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3222  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3223
3224  // Second fast path:  ... else if (!clear_int) return true;
3225  Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3226  result_rgn->init_req(no_clear_result_path, false_arg);
3227  result_val->init_req(no_clear_result_path, intcon(1));
3228
3229  // drop through to next case
3230  set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3231#else
3232  // To return true on Windows you must read the _interrupted field
3233  // and check the event state i.e. take the slow path.
3234#endif // TARGET_OS_FAMILY_windows
3235
3236  // (d) Otherwise, go to the slow path.
3237  slow_region->add_req(control());
3238  set_control( _gvn.transform(slow_region));
3239
3240  if (stopped()) {
3241    // There is no slow path.
3242    result_rgn->init_req(slow_result_path, top());
3243    result_val->init_req(slow_result_path, top());
3244  } else {
3245    // non-virtual because it is a private non-static
3246    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3247
3248    Node* slow_val = set_results_for_java_call(slow_call);
3249    // this->control() comes from set_results_for_java_call
3250
3251    Node* fast_io  = slow_call->in(TypeFunc::I_O);
3252    Node* fast_mem = slow_call->in(TypeFunc::Memory);
3253
3254    // These two phis are pre-filled with copies of of the fast IO and Memory
3255    PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3256    PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3257
3258    result_rgn->init_req(slow_result_path, control());
3259    result_io ->init_req(slow_result_path, i_o());
3260    result_mem->init_req(slow_result_path, reset_memory());
3261    result_val->init_req(slow_result_path, slow_val);
3262
3263    set_all_memory(_gvn.transform(result_mem));
3264    set_i_o(       _gvn.transform(result_io));
3265  }
3266
3267  C->set_has_split_ifs(true); // Has chance for split-if optimization
3268  set_result(result_rgn, result_val);
3269  return true;
3270}
3271
3272//---------------------------load_mirror_from_klass----------------------------
3273// Given a klass oop, load its java mirror (a java.lang.Class oop).
3274Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3275  Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3276  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3277}
3278
3279//-----------------------load_klass_from_mirror_common-------------------------
3280// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3281// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3282// and branch to the given path on the region.
3283// If never_see_null, take an uncommon trap on null, so we can optimistically
3284// compile for the non-null case.
3285// If the region is NULL, force never_see_null = true.
3286Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3287                                                    bool never_see_null,
3288                                                    RegionNode* region,
3289                                                    int null_path,
3290                                                    int offset) {
3291  if (region == NULL)  never_see_null = true;
3292  Node* p = basic_plus_adr(mirror, offset);
3293  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3294  Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3295  Node* null_ctl = top();
3296  kls = null_check_oop(kls, &null_ctl, never_see_null);
3297  if (region != NULL) {
3298    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3299    region->init_req(null_path, null_ctl);
3300  } else {
3301    assert(null_ctl == top(), "no loose ends");
3302  }
3303  return kls;
3304}
3305
3306//--------------------(inline_native_Class_query helpers)---------------------
3307// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3308// Fall through if (mods & mask) == bits, take the guard otherwise.
3309Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3310  // Branch around if the given klass has the given modifier bit set.
3311  // Like generate_guard, adds a new path onto the region.
3312  Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3313  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3314  Node* mask = intcon(modifier_mask);
3315  Node* bits = intcon(modifier_bits);
3316  Node* mbit = _gvn.transform(new AndINode(mods, mask));
3317  Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3318  Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3319  return generate_fair_guard(bol, region);
3320}
3321Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3322  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3323}
3324
3325//-------------------------inline_native_Class_query-------------------
3326bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3327  const Type* return_type = TypeInt::BOOL;
3328  Node* prim_return_value = top();  // what happens if it's a primitive class?
3329  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3330  bool expect_prim = false;     // most of these guys expect to work on refs
3331
3332  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3333
3334  Node* mirror = argument(0);
3335  Node* obj    = top();
3336
3337  switch (id) {
3338  case vmIntrinsics::_isInstance:
3339    // nothing is an instance of a primitive type
3340    prim_return_value = intcon(0);
3341    obj = argument(1);
3342    break;
3343  case vmIntrinsics::_getModifiers:
3344    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3345    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3346    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3347    break;
3348  case vmIntrinsics::_isInterface:
3349    prim_return_value = intcon(0);
3350    break;
3351  case vmIntrinsics::_isArray:
3352    prim_return_value = intcon(0);
3353    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3354    break;
3355  case vmIntrinsics::_isPrimitive:
3356    prim_return_value = intcon(1);
3357    expect_prim = true;  // obviously
3358    break;
3359  case vmIntrinsics::_getSuperclass:
3360    prim_return_value = null();
3361    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3362    break;
3363  case vmIntrinsics::_getClassAccessFlags:
3364    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3365    return_type = TypeInt::INT;  // not bool!  6297094
3366    break;
3367  default:
3368    fatal_unexpected_iid(id);
3369    break;
3370  }
3371
3372  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3373  if (mirror_con == NULL)  return false;  // cannot happen?
3374
3375#ifndef PRODUCT
3376  if (C->print_intrinsics() || C->print_inlining()) {
3377    ciType* k = mirror_con->java_mirror_type();
3378    if (k) {
3379      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3380      k->print_name();
3381      tty->cr();
3382    }
3383  }
3384#endif
3385
3386  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3387  RegionNode* region = new RegionNode(PATH_LIMIT);
3388  record_for_igvn(region);
3389  PhiNode* phi = new PhiNode(region, return_type);
3390
3391  // The mirror will never be null of Reflection.getClassAccessFlags, however
3392  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3393  // if it is. See bug 4774291.
3394
3395  // For Reflection.getClassAccessFlags(), the null check occurs in
3396  // the wrong place; see inline_unsafe_access(), above, for a similar
3397  // situation.
3398  mirror = null_check(mirror);
3399  // If mirror or obj is dead, only null-path is taken.
3400  if (stopped())  return true;
3401
3402  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3403
3404  // Now load the mirror's klass metaobject, and null-check it.
3405  // Side-effects region with the control path if the klass is null.
3406  Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3407  // If kls is null, we have a primitive mirror.
3408  phi->init_req(_prim_path, prim_return_value);
3409  if (stopped()) { set_result(region, phi); return true; }
3410  bool safe_for_replace = (region->in(_prim_path) == top());
3411
3412  Node* p;  // handy temp
3413  Node* null_ctl;
3414
3415  // Now that we have the non-null klass, we can perform the real query.
3416  // For constant classes, the query will constant-fold in LoadNode::Value.
3417  Node* query_value = top();
3418  switch (id) {
3419  case vmIntrinsics::_isInstance:
3420    // nothing is an instance of a primitive type
3421    query_value = gen_instanceof(obj, kls, safe_for_replace);
3422    break;
3423
3424  case vmIntrinsics::_getModifiers:
3425    p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3426    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3427    break;
3428
3429  case vmIntrinsics::_isInterface:
3430    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3431    if (generate_interface_guard(kls, region) != NULL)
3432      // A guard was added.  If the guard is taken, it was an interface.
3433      phi->add_req(intcon(1));
3434    // If we fall through, it's a plain class.
3435    query_value = intcon(0);
3436    break;
3437
3438  case vmIntrinsics::_isArray:
3439    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3440    if (generate_array_guard(kls, region) != NULL)
3441      // A guard was added.  If the guard is taken, it was an array.
3442      phi->add_req(intcon(1));
3443    // If we fall through, it's a plain class.
3444    query_value = intcon(0);
3445    break;
3446
3447  case vmIntrinsics::_isPrimitive:
3448    query_value = intcon(0); // "normal" path produces false
3449    break;
3450
3451  case vmIntrinsics::_getSuperclass:
3452    // The rules here are somewhat unfortunate, but we can still do better
3453    // with random logic than with a JNI call.
3454    // Interfaces store null or Object as _super, but must report null.
3455    // Arrays store an intermediate super as _super, but must report Object.
3456    // Other types can report the actual _super.
3457    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3458    if (generate_interface_guard(kls, region) != NULL)
3459      // A guard was added.  If the guard is taken, it was an interface.
3460      phi->add_req(null());
3461    if (generate_array_guard(kls, region) != NULL)
3462      // A guard was added.  If the guard is taken, it was an array.
3463      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3464    // If we fall through, it's a plain class.  Get its _super.
3465    p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3466    kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3467    null_ctl = top();
3468    kls = null_check_oop(kls, &null_ctl);
3469    if (null_ctl != top()) {
3470      // If the guard is taken, Object.superClass is null (both klass and mirror).
3471      region->add_req(null_ctl);
3472      phi   ->add_req(null());
3473    }
3474    if (!stopped()) {
3475      query_value = load_mirror_from_klass(kls);
3476    }
3477    break;
3478
3479  case vmIntrinsics::_getClassAccessFlags:
3480    p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3481    query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3482    break;
3483
3484  default:
3485    fatal_unexpected_iid(id);
3486    break;
3487  }
3488
3489  // Fall-through is the normal case of a query to a real class.
3490  phi->init_req(1, query_value);
3491  region->init_req(1, control());
3492
3493  C->set_has_split_ifs(true); // Has chance for split-if optimization
3494  set_result(region, phi);
3495  return true;
3496}
3497
3498//-------------------------inline_Class_cast-------------------
3499bool LibraryCallKit::inline_Class_cast() {
3500  Node* mirror = argument(0); // Class
3501  Node* obj    = argument(1);
3502  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3503  if (mirror_con == NULL) {
3504    return false;  // dead path (mirror->is_top()).
3505  }
3506  if (obj == NULL || obj->is_top()) {
3507    return false;  // dead path
3508  }
3509  const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3510
3511  // First, see if Class.cast() can be folded statically.
3512  // java_mirror_type() returns non-null for compile-time Class constants.
3513  ciType* tm = mirror_con->java_mirror_type();
3514  if (tm != NULL && tm->is_klass() &&
3515      tp != NULL && tp->klass() != NULL) {
3516    if (!tp->klass()->is_loaded()) {
3517      // Don't use intrinsic when class is not loaded.
3518      return false;
3519    } else {
3520      int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3521      if (static_res == Compile::SSC_always_true) {
3522        // isInstance() is true - fold the code.
3523        set_result(obj);
3524        return true;
3525      } else if (static_res == Compile::SSC_always_false) {
3526        // Don't use intrinsic, have to throw ClassCastException.
3527        // If the reference is null, the non-intrinsic bytecode will
3528        // be optimized appropriately.
3529        return false;
3530      }
3531    }
3532  }
3533
3534  // Bailout intrinsic and do normal inlining if exception path is frequent.
3535  if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3536    return false;
3537  }
3538
3539  // Generate dynamic checks.
3540  // Class.cast() is java implementation of _checkcast bytecode.
3541  // Do checkcast (Parse::do_checkcast()) optimizations here.
3542
3543  mirror = null_check(mirror);
3544  // If mirror is dead, only null-path is taken.
3545  if (stopped()) {
3546    return true;
3547  }
3548
3549  // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3550  enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3551  RegionNode* region = new RegionNode(PATH_LIMIT);
3552  record_for_igvn(region);
3553
3554  // Now load the mirror's klass metaobject, and null-check it.
3555  // If kls is null, we have a primitive mirror and
3556  // nothing is an instance of a primitive type.
3557  Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3558
3559  Node* res = top();
3560  if (!stopped()) {
3561    Node* bad_type_ctrl = top();
3562    // Do checkcast optimizations.
3563    res = gen_checkcast(obj, kls, &bad_type_ctrl);
3564    region->init_req(_bad_type_path, bad_type_ctrl);
3565  }
3566  if (region->in(_prim_path) != top() ||
3567      region->in(_bad_type_path) != top()) {
3568    // Let Interpreter throw ClassCastException.
3569    PreserveJVMState pjvms(this);
3570    set_control(_gvn.transform(region));
3571    uncommon_trap(Deoptimization::Reason_intrinsic,
3572                  Deoptimization::Action_maybe_recompile);
3573  }
3574  if (!stopped()) {
3575    set_result(res);
3576  }
3577  return true;
3578}
3579
3580
3581//--------------------------inline_native_subtype_check------------------------
3582// This intrinsic takes the JNI calls out of the heart of
3583// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3584bool LibraryCallKit::inline_native_subtype_check() {
3585  // Pull both arguments off the stack.
3586  Node* args[2];                // two java.lang.Class mirrors: superc, subc
3587  args[0] = argument(0);
3588  args[1] = argument(1);
3589  Node* klasses[2];             // corresponding Klasses: superk, subk
3590  klasses[0] = klasses[1] = top();
3591
3592  enum {
3593    // A full decision tree on {superc is prim, subc is prim}:
3594    _prim_0_path = 1,           // {P,N} => false
3595                                // {P,P} & superc!=subc => false
3596    _prim_same_path,            // {P,P} & superc==subc => true
3597    _prim_1_path,               // {N,P} => false
3598    _ref_subtype_path,          // {N,N} & subtype check wins => true
3599    _both_ref_path,             // {N,N} & subtype check loses => false
3600    PATH_LIMIT
3601  };
3602
3603  RegionNode* region = new RegionNode(PATH_LIMIT);
3604  Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3605  record_for_igvn(region);
3606
3607  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3608  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3609  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3610
3611  // First null-check both mirrors and load each mirror's klass metaobject.
3612  int which_arg;
3613  for (which_arg = 0; which_arg <= 1; which_arg++) {
3614    Node* arg = args[which_arg];
3615    arg = null_check(arg);
3616    if (stopped())  break;
3617    args[which_arg] = arg;
3618
3619    Node* p = basic_plus_adr(arg, class_klass_offset);
3620    Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3621    klasses[which_arg] = _gvn.transform(kls);
3622  }
3623
3624  // Having loaded both klasses, test each for null.
3625  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3626  for (which_arg = 0; which_arg <= 1; which_arg++) {
3627    Node* kls = klasses[which_arg];
3628    Node* null_ctl = top();
3629    kls = null_check_oop(kls, &null_ctl, never_see_null);
3630    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3631    region->init_req(prim_path, null_ctl);
3632    if (stopped())  break;
3633    klasses[which_arg] = kls;
3634  }
3635
3636  if (!stopped()) {
3637    // now we have two reference types, in klasses[0..1]
3638    Node* subk   = klasses[1];  // the argument to isAssignableFrom
3639    Node* superk = klasses[0];  // the receiver
3640    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3641    // now we have a successful reference subtype check
3642    region->set_req(_ref_subtype_path, control());
3643  }
3644
3645  // If both operands are primitive (both klasses null), then
3646  // we must return true when they are identical primitives.
3647  // It is convenient to test this after the first null klass check.
3648  set_control(region->in(_prim_0_path)); // go back to first null check
3649  if (!stopped()) {
3650    // Since superc is primitive, make a guard for the superc==subc case.
3651    Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3652    Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3653    generate_guard(bol_eq, region, PROB_FAIR);
3654    if (region->req() == PATH_LIMIT+1) {
3655      // A guard was added.  If the added guard is taken, superc==subc.
3656      region->swap_edges(PATH_LIMIT, _prim_same_path);
3657      region->del_req(PATH_LIMIT);
3658    }
3659    region->set_req(_prim_0_path, control()); // Not equal after all.
3660  }
3661
3662  // these are the only paths that produce 'true':
3663  phi->set_req(_prim_same_path,   intcon(1));
3664  phi->set_req(_ref_subtype_path, intcon(1));
3665
3666  // pull together the cases:
3667  assert(region->req() == PATH_LIMIT, "sane region");
3668  for (uint i = 1; i < region->req(); i++) {
3669    Node* ctl = region->in(i);
3670    if (ctl == NULL || ctl == top()) {
3671      region->set_req(i, top());
3672      phi   ->set_req(i, top());
3673    } else if (phi->in(i) == NULL) {
3674      phi->set_req(i, intcon(0)); // all other paths produce 'false'
3675    }
3676  }
3677
3678  set_control(_gvn.transform(region));
3679  set_result(_gvn.transform(phi));
3680  return true;
3681}
3682
3683//---------------------generate_array_guard_common------------------------
3684Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3685                                                  bool obj_array, bool not_array) {
3686
3687  if (stopped()) {
3688    return NULL;
3689  }
3690
3691  // If obj_array/non_array==false/false:
3692  // Branch around if the given klass is in fact an array (either obj or prim).
3693  // If obj_array/non_array==false/true:
3694  // Branch around if the given klass is not an array klass of any kind.
3695  // If obj_array/non_array==true/true:
3696  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3697  // If obj_array/non_array==true/false:
3698  // Branch around if the kls is an oop array (Object[] or subtype)
3699  //
3700  // Like generate_guard, adds a new path onto the region.
3701  jint  layout_con = 0;
3702  Node* layout_val = get_layout_helper(kls, layout_con);
3703  if (layout_val == NULL) {
3704    bool query = (obj_array
3705                  ? Klass::layout_helper_is_objArray(layout_con)
3706                  : Klass::layout_helper_is_array(layout_con));
3707    if (query == not_array) {
3708      return NULL;                       // never a branch
3709    } else {                             // always a branch
3710      Node* always_branch = control();
3711      if (region != NULL)
3712        region->add_req(always_branch);
3713      set_control(top());
3714      return always_branch;
3715    }
3716  }
3717  // Now test the correct condition.
3718  jint  nval = (obj_array
3719                ? (jint)(Klass::_lh_array_tag_type_value
3720                   <<    Klass::_lh_array_tag_shift)
3721                : Klass::_lh_neutral_value);
3722  Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3723  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3724  // invert the test if we are looking for a non-array
3725  if (not_array)  btest = BoolTest(btest).negate();
3726  Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3727  return generate_fair_guard(bol, region);
3728}
3729
3730
3731//-----------------------inline_native_newArray--------------------------
3732// private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3733// private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3734bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3735  Node* mirror;
3736  Node* count_val;
3737  if (uninitialized) {
3738    mirror    = argument(1);
3739    count_val = argument(2);
3740  } else {
3741    mirror    = argument(0);
3742    count_val = argument(1);
3743  }
3744
3745  mirror = null_check(mirror);
3746  // If mirror or obj is dead, only null-path is taken.
3747  if (stopped())  return true;
3748
3749  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3750  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3751  PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3752  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3753  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3754
3755  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3756  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3757                                                  result_reg, _slow_path);
3758  Node* normal_ctl   = control();
3759  Node* no_array_ctl = result_reg->in(_slow_path);
3760
3761  // Generate code for the slow case.  We make a call to newArray().
3762  set_control(no_array_ctl);
3763  if (!stopped()) {
3764    // Either the input type is void.class, or else the
3765    // array klass has not yet been cached.  Either the
3766    // ensuing call will throw an exception, or else it
3767    // will cache the array klass for next time.
3768    PreserveJVMState pjvms(this);
3769    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3770    Node* slow_result = set_results_for_java_call(slow_call);
3771    // this->control() comes from set_results_for_java_call
3772    result_reg->set_req(_slow_path, control());
3773    result_val->set_req(_slow_path, slow_result);
3774    result_io ->set_req(_slow_path, i_o());
3775    result_mem->set_req(_slow_path, reset_memory());
3776  }
3777
3778  set_control(normal_ctl);
3779  if (!stopped()) {
3780    // Normal case:  The array type has been cached in the java.lang.Class.
3781    // The following call works fine even if the array type is polymorphic.
3782    // It could be a dynamic mix of int[], boolean[], Object[], etc.
3783    Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3784    result_reg->init_req(_normal_path, control());
3785    result_val->init_req(_normal_path, obj);
3786    result_io ->init_req(_normal_path, i_o());
3787    result_mem->init_req(_normal_path, reset_memory());
3788
3789    if (uninitialized) {
3790      // Mark the allocation so that zeroing is skipped
3791      AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3792      alloc->maybe_set_complete(&_gvn);
3793    }
3794  }
3795
3796  // Return the combined state.
3797  set_i_o(        _gvn.transform(result_io)  );
3798  set_all_memory( _gvn.transform(result_mem));
3799
3800  C->set_has_split_ifs(true); // Has chance for split-if optimization
3801  set_result(result_reg, result_val);
3802  return true;
3803}
3804
3805//----------------------inline_native_getLength--------------------------
3806// public static native int java.lang.reflect.Array.getLength(Object array);
3807bool LibraryCallKit::inline_native_getLength() {
3808  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3809
3810  Node* array = null_check(argument(0));
3811  // If array is dead, only null-path is taken.
3812  if (stopped())  return true;
3813
3814  // Deoptimize if it is a non-array.
3815  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3816
3817  if (non_array != NULL) {
3818    PreserveJVMState pjvms(this);
3819    set_control(non_array);
3820    uncommon_trap(Deoptimization::Reason_intrinsic,
3821                  Deoptimization::Action_maybe_recompile);
3822  }
3823
3824  // If control is dead, only non-array-path is taken.
3825  if (stopped())  return true;
3826
3827  // The works fine even if the array type is polymorphic.
3828  // It could be a dynamic mix of int[], boolean[], Object[], etc.
3829  Node* result = load_array_length(array);
3830
3831  C->set_has_split_ifs(true);  // Has chance for split-if optimization
3832  set_result(result);
3833  return true;
3834}
3835
3836//------------------------inline_array_copyOf----------------------------
3837// public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3838// public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3839bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3840  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3841
3842  // Get the arguments.
3843  Node* original          = argument(0);
3844  Node* start             = is_copyOfRange? argument(1): intcon(0);
3845  Node* end               = is_copyOfRange? argument(2): argument(1);
3846  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3847
3848  Node* newcopy = NULL;
3849
3850  // Set the original stack and the reexecute bit for the interpreter to reexecute
3851  // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3852  { PreserveReexecuteState preexecs(this);
3853    jvms()->set_should_reexecute(true);
3854
3855    array_type_mirror = null_check(array_type_mirror);
3856    original          = null_check(original);
3857
3858    // Check if a null path was taken unconditionally.
3859    if (stopped())  return true;
3860
3861    Node* orig_length = load_array_length(original);
3862
3863    Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3864    klass_node = null_check(klass_node);
3865
3866    RegionNode* bailout = new RegionNode(1);
3867    record_for_igvn(bailout);
3868
3869    // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3870    // Bail out if that is so.
3871    Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3872    if (not_objArray != NULL) {
3873      // Improve the klass node's type from the new optimistic assumption:
3874      ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3875      const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3876      Node* cast = new CastPPNode(klass_node, akls);
3877      cast->init_req(0, control());
3878      klass_node = _gvn.transform(cast);
3879    }
3880
3881    // Bail out if either start or end is negative.
3882    generate_negative_guard(start, bailout, &start);
3883    generate_negative_guard(end,   bailout, &end);
3884
3885    Node* length = end;
3886    if (_gvn.type(start) != TypeInt::ZERO) {
3887      length = _gvn.transform(new SubINode(end, start));
3888    }
3889
3890    // Bail out if length is negative.
3891    // Without this the new_array would throw
3892    // NegativeArraySizeException but IllegalArgumentException is what
3893    // should be thrown
3894    generate_negative_guard(length, bailout, &length);
3895
3896    if (bailout->req() > 1) {
3897      PreserveJVMState pjvms(this);
3898      set_control(_gvn.transform(bailout));
3899      uncommon_trap(Deoptimization::Reason_intrinsic,
3900                    Deoptimization::Action_maybe_recompile);
3901    }
3902
3903    if (!stopped()) {
3904      // How many elements will we copy from the original?
3905      // The answer is MinI(orig_length - start, length).
3906      Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3907      Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3908
3909      // Generate a direct call to the right arraycopy function(s).
3910      // We know the copy is disjoint but we might not know if the
3911      // oop stores need checking.
3912      // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3913      // This will fail a store-check if x contains any non-nulls.
3914
3915      // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3916      // loads/stores but it is legal only if we're sure the
3917      // Arrays.copyOf would succeed. So we need all input arguments
3918      // to the copyOf to be validated, including that the copy to the
3919      // new array won't trigger an ArrayStoreException. That subtype
3920      // check can be optimized if we know something on the type of
3921      // the input array from type speculation.
3922      if (_gvn.type(klass_node)->singleton()) {
3923        ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3924        ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3925
3926        int test = C->static_subtype_check(superk, subk);
3927        if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3928          const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3929          if (t_original->speculative_type() != NULL) {
3930            original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3931          }
3932        }
3933      }
3934
3935      bool validated = false;
3936      // Reason_class_check rather than Reason_intrinsic because we
3937      // want to intrinsify even if this traps.
3938      if (!too_many_traps(Deoptimization::Reason_class_check)) {
3939        Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3940                                                   klass_node);
3941
3942        if (not_subtype_ctrl != top()) {
3943          PreserveJVMState pjvms(this);
3944          set_control(not_subtype_ctrl);
3945          uncommon_trap(Deoptimization::Reason_class_check,
3946                        Deoptimization::Action_make_not_entrant);
3947          assert(stopped(), "Should be stopped");
3948        }
3949        validated = true;
3950      }
3951
3952      if (!stopped()) {
3953        newcopy = new_array(klass_node, length, 0);  // no arguments to push
3954
3955        ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3956                                                load_object_klass(original), klass_node);
3957        if (!is_copyOfRange) {
3958          ac->set_copyof(validated);
3959        } else {
3960          ac->set_copyofrange(validated);
3961        }
3962        Node* n = _gvn.transform(ac);
3963        if (n == ac) {
3964          ac->connect_outputs(this);
3965        } else {
3966          assert(validated, "shouldn't transform if all arguments not validated");
3967          set_all_memory(n);
3968        }
3969      }
3970    }
3971  } // original reexecute is set back here
3972
3973  C->set_has_split_ifs(true); // Has chance for split-if optimization
3974  if (!stopped()) {
3975    set_result(newcopy);
3976  }
3977  return true;
3978}
3979
3980
3981//----------------------generate_virtual_guard---------------------------
3982// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3983Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3984                                             RegionNode* slow_region) {
3985  ciMethod* method = callee();
3986  int vtable_index = method->vtable_index();
3987  assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3988         "bad index %d", vtable_index);
3989  // Get the Method* out of the appropriate vtable entry.
3990  int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3991                     vtable_index*vtableEntry::size_in_bytes() +
3992                     vtableEntry::method_offset_in_bytes();
3993  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3994  Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3995
3996  // Compare the target method with the expected method (e.g., Object.hashCode).
3997  const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3998
3999  Node* native_call = makecon(native_call_addr);
4000  Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4001  Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4002
4003  return generate_slow_guard(test_native, slow_region);
4004}
4005
4006//-----------------------generate_method_call----------------------------
4007// Use generate_method_call to make a slow-call to the real
4008// method if the fast path fails.  An alternative would be to
4009// use a stub like OptoRuntime::slow_arraycopy_Java.
4010// This only works for expanding the current library call,
4011// not another intrinsic.  (E.g., don't use this for making an
4012// arraycopy call inside of the copyOf intrinsic.)
4013CallJavaNode*
4014LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4015  // When compiling the intrinsic method itself, do not use this technique.
4016  guarantee(callee() != C->method(), "cannot make slow-call to self");
4017
4018  ciMethod* method = callee();
4019  // ensure the JVMS we have will be correct for this call
4020  guarantee(method_id == method->intrinsic_id(), "must match");
4021
4022  const TypeFunc* tf = TypeFunc::make(method);
4023  CallJavaNode* slow_call;
4024  if (is_static) {
4025    assert(!is_virtual, "");
4026    slow_call = new CallStaticJavaNode(C, tf,
4027                           SharedRuntime::get_resolve_static_call_stub(),
4028                           method, bci());
4029  } else if (is_virtual) {
4030    null_check_receiver();
4031    int vtable_index = Method::invalid_vtable_index;
4032    if (UseInlineCaches) {
4033      // Suppress the vtable call
4034    } else {
4035      // hashCode and clone are not a miranda methods,
4036      // so the vtable index is fixed.
4037      // No need to use the linkResolver to get it.
4038       vtable_index = method->vtable_index();
4039       assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4040              "bad index %d", vtable_index);
4041    }
4042    slow_call = new CallDynamicJavaNode(tf,
4043                          SharedRuntime::get_resolve_virtual_call_stub(),
4044                          method, vtable_index, bci());
4045  } else {  // neither virtual nor static:  opt_virtual
4046    null_check_receiver();
4047    slow_call = new CallStaticJavaNode(C, tf,
4048                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
4049                                method, bci());
4050    slow_call->set_optimized_virtual(true);
4051  }
4052  set_arguments_for_java_call(slow_call);
4053  set_edges_for_java_call(slow_call);
4054  return slow_call;
4055}
4056
4057
4058/**
4059 * Build special case code for calls to hashCode on an object. This call may
4060 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4061 * slightly different code.
4062 */
4063bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4064  assert(is_static == callee()->is_static(), "correct intrinsic selection");
4065  assert(!(is_virtual && is_static), "either virtual, special, or static");
4066
4067  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4068
4069  RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4070  PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4071  PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4072  PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4073  Node* obj = NULL;
4074  if (!is_static) {
4075    // Check for hashing null object
4076    obj = null_check_receiver();
4077    if (stopped())  return true;        // unconditionally null
4078    result_reg->init_req(_null_path, top());
4079    result_val->init_req(_null_path, top());
4080  } else {
4081    // Do a null check, and return zero if null.
4082    // System.identityHashCode(null) == 0
4083    obj = argument(0);
4084    Node* null_ctl = top();
4085    obj = null_check_oop(obj, &null_ctl);
4086    result_reg->init_req(_null_path, null_ctl);
4087    result_val->init_req(_null_path, _gvn.intcon(0));
4088  }
4089
4090  // Unconditionally null?  Then return right away.
4091  if (stopped()) {
4092    set_control( result_reg->in(_null_path));
4093    if (!stopped())
4094      set_result(result_val->in(_null_path));
4095    return true;
4096  }
4097
4098  // We only go to the fast case code if we pass a number of guards.  The
4099  // paths which do not pass are accumulated in the slow_region.
4100  RegionNode* slow_region = new RegionNode(1);
4101  record_for_igvn(slow_region);
4102
4103  // If this is a virtual call, we generate a funny guard.  We pull out
4104  // the vtable entry corresponding to hashCode() from the target object.
4105  // If the target method which we are calling happens to be the native
4106  // Object hashCode() method, we pass the guard.  We do not need this
4107  // guard for non-virtual calls -- the caller is known to be the native
4108  // Object hashCode().
4109  if (is_virtual) {
4110    // After null check, get the object's klass.
4111    Node* obj_klass = load_object_klass(obj);
4112    generate_virtual_guard(obj_klass, slow_region);
4113  }
4114
4115  // Get the header out of the object, use LoadMarkNode when available
4116  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4117  // The control of the load must be NULL. Otherwise, the load can move before
4118  // the null check after castPP removal.
4119  Node* no_ctrl = NULL;
4120  Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4121
4122  // Test the header to see if it is unlocked.
4123  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4124  Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4125  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4126  Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4127  Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4128
4129  generate_slow_guard(test_unlocked, slow_region);
4130
4131  // Get the hash value and check to see that it has been properly assigned.
4132  // We depend on hash_mask being at most 32 bits and avoid the use of
4133  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4134  // vm: see markOop.hpp.
4135  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4136  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4137  Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4138  // This hack lets the hash bits live anywhere in the mark object now, as long
4139  // as the shift drops the relevant bits into the low 32 bits.  Note that
4140  // Java spec says that HashCode is an int so there's no point in capturing
4141  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4142  hshifted_header      = ConvX2I(hshifted_header);
4143  Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4144
4145  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4146  Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4147  Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4148
4149  generate_slow_guard(test_assigned, slow_region);
4150
4151  Node* init_mem = reset_memory();
4152  // fill in the rest of the null path:
4153  result_io ->init_req(_null_path, i_o());
4154  result_mem->init_req(_null_path, init_mem);
4155
4156  result_val->init_req(_fast_path, hash_val);
4157  result_reg->init_req(_fast_path, control());
4158  result_io ->init_req(_fast_path, i_o());
4159  result_mem->init_req(_fast_path, init_mem);
4160
4161  // Generate code for the slow case.  We make a call to hashCode().
4162  set_control(_gvn.transform(slow_region));
4163  if (!stopped()) {
4164    // No need for PreserveJVMState, because we're using up the present state.
4165    set_all_memory(init_mem);
4166    vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4167    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4168    Node* slow_result = set_results_for_java_call(slow_call);
4169    // this->control() comes from set_results_for_java_call
4170    result_reg->init_req(_slow_path, control());
4171    result_val->init_req(_slow_path, slow_result);
4172    result_io  ->set_req(_slow_path, i_o());
4173    result_mem ->set_req(_slow_path, reset_memory());
4174  }
4175
4176  // Return the combined state.
4177  set_i_o(        _gvn.transform(result_io)  );
4178  set_all_memory( _gvn.transform(result_mem));
4179
4180  set_result(result_reg, result_val);
4181  return true;
4182}
4183
4184//---------------------------inline_native_getClass----------------------------
4185// public final native Class<?> java.lang.Object.getClass();
4186//
4187// Build special case code for calls to getClass on an object.
4188bool LibraryCallKit::inline_native_getClass() {
4189  Node* obj = null_check_receiver();
4190  if (stopped())  return true;
4191  set_result(load_mirror_from_klass(load_object_klass(obj)));
4192  return true;
4193}
4194
4195//-----------------inline_native_Reflection_getCallerClass---------------------
4196// public static native Class<?> sun.reflect.Reflection.getCallerClass();
4197//
4198// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4199//
4200// NOTE: This code must perform the same logic as JVM_GetCallerClass
4201// in that it must skip particular security frames and checks for
4202// caller sensitive methods.
4203bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4204#ifndef PRODUCT
4205  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4206    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4207  }
4208#endif
4209
4210  if (!jvms()->has_method()) {
4211#ifndef PRODUCT
4212    if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4213      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4214    }
4215#endif
4216    return false;
4217  }
4218
4219  // Walk back up the JVM state to find the caller at the required
4220  // depth.
4221  JVMState* caller_jvms = jvms();
4222
4223  // Cf. JVM_GetCallerClass
4224  // NOTE: Start the loop at depth 1 because the current JVM state does
4225  // not include the Reflection.getCallerClass() frame.
4226  for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4227    ciMethod* m = caller_jvms->method();
4228    switch (n) {
4229    case 0:
4230      fatal("current JVM state does not include the Reflection.getCallerClass frame");
4231      break;
4232    case 1:
4233      // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4234      if (!m->caller_sensitive()) {
4235#ifndef PRODUCT
4236        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4237          tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4238        }
4239#endif
4240        return false;  // bail-out; let JVM_GetCallerClass do the work
4241      }
4242      break;
4243    default:
4244      if (!m->is_ignored_by_security_stack_walk()) {
4245        // We have reached the desired frame; return the holder class.
4246        // Acquire method holder as java.lang.Class and push as constant.
4247        ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4248        ciInstance* caller_mirror = caller_klass->java_mirror();
4249        set_result(makecon(TypeInstPtr::make(caller_mirror)));
4250
4251#ifndef PRODUCT
4252        if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4253          tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4254          tty->print_cr("  JVM state at this point:");
4255          for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4256            ciMethod* m = jvms()->of_depth(i)->method();
4257            tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4258          }
4259        }
4260#endif
4261        return true;
4262      }
4263      break;
4264    }
4265  }
4266
4267#ifndef PRODUCT
4268  if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4269    tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4270    tty->print_cr("  JVM state at this point:");
4271    for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4272      ciMethod* m = jvms()->of_depth(i)->method();
4273      tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4274    }
4275  }
4276#endif
4277
4278  return false;  // bail-out; let JVM_GetCallerClass do the work
4279}
4280
4281bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4282  Node* arg = argument(0);
4283  Node* result = NULL;
4284
4285  switch (id) {
4286  case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4287  case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4288  case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4289  case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4290
4291  case vmIntrinsics::_doubleToLongBits: {
4292    // two paths (plus control) merge in a wood
4293    RegionNode *r = new RegionNode(3);
4294    Node *phi = new PhiNode(r, TypeLong::LONG);
4295
4296    Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4297    // Build the boolean node
4298    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4299
4300    // Branch either way.
4301    // NaN case is less traveled, which makes all the difference.
4302    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4303    Node *opt_isnan = _gvn.transform(ifisnan);
4304    assert( opt_isnan->is_If(), "Expect an IfNode");
4305    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4306    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4307
4308    set_control(iftrue);
4309
4310    static const jlong nan_bits = CONST64(0x7ff8000000000000);
4311    Node *slow_result = longcon(nan_bits); // return NaN
4312    phi->init_req(1, _gvn.transform( slow_result ));
4313    r->init_req(1, iftrue);
4314
4315    // Else fall through
4316    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4317    set_control(iffalse);
4318
4319    phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4320    r->init_req(2, iffalse);
4321
4322    // Post merge
4323    set_control(_gvn.transform(r));
4324    record_for_igvn(r);
4325
4326    C->set_has_split_ifs(true); // Has chance for split-if optimization
4327    result = phi;
4328    assert(result->bottom_type()->isa_long(), "must be");
4329    break;
4330  }
4331
4332  case vmIntrinsics::_floatToIntBits: {
4333    // two paths (plus control) merge in a wood
4334    RegionNode *r = new RegionNode(3);
4335    Node *phi = new PhiNode(r, TypeInt::INT);
4336
4337    Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4338    // Build the boolean node
4339    Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4340
4341    // Branch either way.
4342    // NaN case is less traveled, which makes all the difference.
4343    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4344    Node *opt_isnan = _gvn.transform(ifisnan);
4345    assert( opt_isnan->is_If(), "Expect an IfNode");
4346    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4347    Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4348
4349    set_control(iftrue);
4350
4351    static const jint nan_bits = 0x7fc00000;
4352    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4353    phi->init_req(1, _gvn.transform( slow_result ));
4354    r->init_req(1, iftrue);
4355
4356    // Else fall through
4357    Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4358    set_control(iffalse);
4359
4360    phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4361    r->init_req(2, iffalse);
4362
4363    // Post merge
4364    set_control(_gvn.transform(r));
4365    record_for_igvn(r);
4366
4367    C->set_has_split_ifs(true); // Has chance for split-if optimization
4368    result = phi;
4369    assert(result->bottom_type()->isa_int(), "must be");
4370    break;
4371  }
4372
4373  default:
4374    fatal_unexpected_iid(id);
4375    break;
4376  }
4377  set_result(_gvn.transform(result));
4378  return true;
4379}
4380
4381//----------------------inline_unsafe_copyMemory-------------------------
4382// public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4383bool LibraryCallKit::inline_unsafe_copyMemory() {
4384  if (callee()->is_static())  return false;  // caller must have the capability!
4385  null_check_receiver();  // null-check receiver
4386  if (stopped())  return true;
4387
4388  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4389
4390  Node* src_ptr =         argument(1);   // type: oop
4391  Node* src_off = ConvL2X(argument(2));  // type: long
4392  Node* dst_ptr =         argument(4);   // type: oop
4393  Node* dst_off = ConvL2X(argument(5));  // type: long
4394  Node* size    = ConvL2X(argument(7));  // type: long
4395
4396  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4397         "fieldOffset must be byte-scaled");
4398
4399  Node* src = make_unsafe_address(src_ptr, src_off);
4400  Node* dst = make_unsafe_address(dst_ptr, dst_off);
4401
4402  // Conservatively insert a memory barrier on all memory slices.
4403  // Do not let writes of the copy source or destination float below the copy.
4404  insert_mem_bar(Op_MemBarCPUOrder);
4405
4406  // Call it.  Note that the length argument is not scaled.
4407  make_runtime_call(RC_LEAF|RC_NO_FP,
4408                    OptoRuntime::fast_arraycopy_Type(),
4409                    StubRoutines::unsafe_arraycopy(),
4410                    "unsafe_arraycopy",
4411                    TypeRawPtr::BOTTOM,
4412                    src, dst, size XTOP);
4413
4414  // Do not let reads of the copy destination float above the copy.
4415  insert_mem_bar(Op_MemBarCPUOrder);
4416
4417  return true;
4418}
4419
4420//------------------------clone_coping-----------------------------------
4421// Helper function for inline_native_clone.
4422void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4423  assert(obj_size != NULL, "");
4424  Node* raw_obj = alloc_obj->in(1);
4425  assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4426
4427  AllocateNode* alloc = NULL;
4428  if (ReduceBulkZeroing) {
4429    // We will be completely responsible for initializing this object -
4430    // mark Initialize node as complete.
4431    alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4432    // The object was just allocated - there should be no any stores!
4433    guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4434    // Mark as complete_with_arraycopy so that on AllocateNode
4435    // expansion, we know this AllocateNode is initialized by an array
4436    // copy and a StoreStore barrier exists after the array copy.
4437    alloc->initialization()->set_complete_with_arraycopy();
4438  }
4439
4440  // Copy the fastest available way.
4441  // TODO: generate fields copies for small objects instead.
4442  Node* src  = obj;
4443  Node* dest = alloc_obj;
4444  Node* size = _gvn.transform(obj_size);
4445
4446  // Exclude the header but include array length to copy by 8 bytes words.
4447  // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4448  int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4449                            instanceOopDesc::base_offset_in_bytes();
4450  // base_off:
4451  // 8  - 32-bit VM
4452  // 12 - 64-bit VM, compressed klass
4453  // 16 - 64-bit VM, normal klass
4454  if (base_off % BytesPerLong != 0) {
4455    assert(UseCompressedClassPointers, "");
4456    if (is_array) {
4457      // Exclude length to copy by 8 bytes words.
4458      base_off += sizeof(int);
4459    } else {
4460      // Include klass to copy by 8 bytes words.
4461      base_off = instanceOopDesc::klass_offset_in_bytes();
4462    }
4463    assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4464  }
4465  src  = basic_plus_adr(src,  base_off);
4466  dest = basic_plus_adr(dest, base_off);
4467
4468  // Compute the length also, if needed:
4469  Node* countx = size;
4470  countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4471  countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4472
4473  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4474
4475  ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4476  ac->set_clonebasic();
4477  Node* n = _gvn.transform(ac);
4478  if (n == ac) {
4479    set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4480  } else {
4481    set_all_memory(n);
4482  }
4483
4484  // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4485  if (card_mark) {
4486    assert(!is_array, "");
4487    // Put in store barrier for any and all oops we are sticking
4488    // into this object.  (We could avoid this if we could prove
4489    // that the object type contains no oop fields at all.)
4490    Node* no_particular_value = NULL;
4491    Node* no_particular_field = NULL;
4492    int raw_adr_idx = Compile::AliasIdxRaw;
4493    post_barrier(control(),
4494                 memory(raw_adr_type),
4495                 alloc_obj,
4496                 no_particular_field,
4497                 raw_adr_idx,
4498                 no_particular_value,
4499                 T_OBJECT,
4500                 false);
4501  }
4502
4503  // Do not let reads from the cloned object float above the arraycopy.
4504  if (alloc != NULL) {
4505    // Do not let stores that initialize this object be reordered with
4506    // a subsequent store that would make this object accessible by
4507    // other threads.
4508    // Record what AllocateNode this StoreStore protects so that
4509    // escape analysis can go from the MemBarStoreStoreNode to the
4510    // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4511    // based on the escape status of the AllocateNode.
4512    insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4513  } else {
4514    insert_mem_bar(Op_MemBarCPUOrder);
4515  }
4516}
4517
4518//------------------------inline_native_clone----------------------------
4519// protected native Object java.lang.Object.clone();
4520//
4521// Here are the simple edge cases:
4522//  null receiver => normal trap
4523//  virtual and clone was overridden => slow path to out-of-line clone
4524//  not cloneable or finalizer => slow path to out-of-line Object.clone
4525//
4526// The general case has two steps, allocation and copying.
4527// Allocation has two cases, and uses GraphKit::new_instance or new_array.
4528//
4529// Copying also has two cases, oop arrays and everything else.
4530// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4531// Everything else uses the tight inline loop supplied by CopyArrayNode.
4532//
4533// These steps fold up nicely if and when the cloned object's klass
4534// can be sharply typed as an object array, a type array, or an instance.
4535//
4536bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4537  PhiNode* result_val;
4538
4539  // Set the reexecute bit for the interpreter to reexecute
4540  // the bytecode that invokes Object.clone if deoptimization happens.
4541  { PreserveReexecuteState preexecs(this);
4542    jvms()->set_should_reexecute(true);
4543
4544    Node* obj = null_check_receiver();
4545    if (stopped())  return true;
4546
4547    const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4548
4549    // If we are going to clone an instance, we need its exact type to
4550    // know the number and types of fields to convert the clone to
4551    // loads/stores. Maybe a speculative type can help us.
4552    if (!obj_type->klass_is_exact() &&
4553        obj_type->speculative_type() != NULL &&
4554        obj_type->speculative_type()->is_instance_klass()) {
4555      ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4556      if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4557          !spec_ik->has_injected_fields()) {
4558        ciKlass* k = obj_type->klass();
4559        if (!k->is_instance_klass() ||
4560            k->as_instance_klass()->is_interface() ||
4561            k->as_instance_klass()->has_subklass()) {
4562          obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4563        }
4564      }
4565    }
4566
4567    Node* obj_klass = load_object_klass(obj);
4568    const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4569    const TypeOopPtr*   toop   = ((tklass != NULL)
4570                                ? tklass->as_instance_type()
4571                                : TypeInstPtr::NOTNULL);
4572
4573    // Conservatively insert a memory barrier on all memory slices.
4574    // Do not let writes into the original float below the clone.
4575    insert_mem_bar(Op_MemBarCPUOrder);
4576
4577    // paths into result_reg:
4578    enum {
4579      _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4580      _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4581      _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4582      _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4583      PATH_LIMIT
4584    };
4585    RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4586    result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4587    PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4588    PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4589    record_for_igvn(result_reg);
4590
4591    const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4592    int raw_adr_idx = Compile::AliasIdxRaw;
4593
4594    Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4595    if (array_ctl != NULL) {
4596      // It's an array.
4597      PreserveJVMState pjvms(this);
4598      set_control(array_ctl);
4599      Node* obj_length = load_array_length(obj);
4600      Node* obj_size  = NULL;
4601      Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4602
4603      if (!use_ReduceInitialCardMarks()) {
4604        // If it is an oop array, it requires very special treatment,
4605        // because card marking is required on each card of the array.
4606        Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4607        if (is_obja != NULL) {
4608          PreserveJVMState pjvms2(this);
4609          set_control(is_obja);
4610          // Generate a direct call to the right arraycopy function(s).
4611          Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4612          ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4613          ac->set_cloneoop();
4614          Node* n = _gvn.transform(ac);
4615          assert(n == ac, "cannot disappear");
4616          ac->connect_outputs(this);
4617
4618          result_reg->init_req(_objArray_path, control());
4619          result_val->init_req(_objArray_path, alloc_obj);
4620          result_i_o ->set_req(_objArray_path, i_o());
4621          result_mem ->set_req(_objArray_path, reset_memory());
4622        }
4623      }
4624      // Otherwise, there are no card marks to worry about.
4625      // (We can dispense with card marks if we know the allocation
4626      //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4627      //  causes the non-eden paths to take compensating steps to
4628      //  simulate a fresh allocation, so that no further
4629      //  card marks are required in compiled code to initialize
4630      //  the object.)
4631
4632      if (!stopped()) {
4633        copy_to_clone(obj, alloc_obj, obj_size, true, false);
4634
4635        // Present the results of the copy.
4636        result_reg->init_req(_array_path, control());
4637        result_val->init_req(_array_path, alloc_obj);
4638        result_i_o ->set_req(_array_path, i_o());
4639        result_mem ->set_req(_array_path, reset_memory());
4640      }
4641    }
4642
4643    // We only go to the instance fast case code if we pass a number of guards.
4644    // The paths which do not pass are accumulated in the slow_region.
4645    RegionNode* slow_region = new RegionNode(1);
4646    record_for_igvn(slow_region);
4647    if (!stopped()) {
4648      // It's an instance (we did array above).  Make the slow-path tests.
4649      // If this is a virtual call, we generate a funny guard.  We grab
4650      // the vtable entry corresponding to clone() from the target object.
4651      // If the target method which we are calling happens to be the
4652      // Object clone() method, we pass the guard.  We do not need this
4653      // guard for non-virtual calls; the caller is known to be the native
4654      // Object clone().
4655      if (is_virtual) {
4656        generate_virtual_guard(obj_klass, slow_region);
4657      }
4658
4659      // The object must be easily cloneable and must not have a finalizer.
4660      // Both of these conditions may be checked in a single test.
4661      // We could optimize the test further, but we don't care.
4662      generate_access_flags_guard(obj_klass,
4663                                  // Test both conditions:
4664                                  JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4665                                  // Must be cloneable but not finalizer:
4666                                  JVM_ACC_IS_CLONEABLE_FAST,
4667                                  slow_region);
4668    }
4669
4670    if (!stopped()) {
4671      // It's an instance, and it passed the slow-path tests.
4672      PreserveJVMState pjvms(this);
4673      Node* obj_size  = NULL;
4674      // Need to deoptimize on exception from allocation since Object.clone intrinsic
4675      // is reexecuted if deoptimization occurs and there could be problems when merging
4676      // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4677      Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4678
4679      copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4680
4681      // Present the results of the slow call.
4682      result_reg->init_req(_instance_path, control());
4683      result_val->init_req(_instance_path, alloc_obj);
4684      result_i_o ->set_req(_instance_path, i_o());
4685      result_mem ->set_req(_instance_path, reset_memory());
4686    }
4687
4688    // Generate code for the slow case.  We make a call to clone().
4689    set_control(_gvn.transform(slow_region));
4690    if (!stopped()) {
4691      PreserveJVMState pjvms(this);
4692      CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4693      Node* slow_result = set_results_for_java_call(slow_call);
4694      // this->control() comes from set_results_for_java_call
4695      result_reg->init_req(_slow_path, control());
4696      result_val->init_req(_slow_path, slow_result);
4697      result_i_o ->set_req(_slow_path, i_o());
4698      result_mem ->set_req(_slow_path, reset_memory());
4699    }
4700
4701    // Return the combined state.
4702    set_control(    _gvn.transform(result_reg));
4703    set_i_o(        _gvn.transform(result_i_o));
4704    set_all_memory( _gvn.transform(result_mem));
4705  } // original reexecute is set back here
4706
4707  set_result(_gvn.transform(result_val));
4708  return true;
4709}
4710
4711// If we have a tighly coupled allocation, the arraycopy may take care
4712// of the array initialization. If one of the guards we insert between
4713// the allocation and the arraycopy causes a deoptimization, an
4714// unitialized array will escape the compiled method. To prevent that
4715// we set the JVM state for uncommon traps between the allocation and
4716// the arraycopy to the state before the allocation so, in case of
4717// deoptimization, we'll reexecute the allocation and the
4718// initialization.
4719JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4720  if (alloc != NULL) {
4721    ciMethod* trap_method = alloc->jvms()->method();
4722    int trap_bci = alloc->jvms()->bci();
4723
4724    if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4725          !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4726      // Make sure there's no store between the allocation and the
4727      // arraycopy otherwise visible side effects could be rexecuted
4728      // in case of deoptimization and cause incorrect execution.
4729      bool no_interfering_store = true;
4730      Node* mem = alloc->in(TypeFunc::Memory);
4731      if (mem->is_MergeMem()) {
4732        for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4733          Node* n = mms.memory();
4734          if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4735            assert(n->is_Store(), "what else?");
4736            no_interfering_store = false;
4737            break;
4738          }
4739        }
4740      } else {
4741        for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4742          Node* n = mms.memory();
4743          if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4744            assert(n->is_Store(), "what else?");
4745            no_interfering_store = false;
4746            break;
4747          }
4748        }
4749      }
4750
4751      if (no_interfering_store) {
4752        JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4753        uint size = alloc->req();
4754        SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4755        old_jvms->set_map(sfpt);
4756        for (uint i = 0; i < size; i++) {
4757          sfpt->init_req(i, alloc->in(i));
4758        }
4759        // re-push array length for deoptimization
4760        sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4761        old_jvms->set_sp(old_jvms->sp()+1);
4762        old_jvms->set_monoff(old_jvms->monoff()+1);
4763        old_jvms->set_scloff(old_jvms->scloff()+1);
4764        old_jvms->set_endoff(old_jvms->endoff()+1);
4765        old_jvms->set_should_reexecute(true);
4766
4767        sfpt->set_i_o(map()->i_o());
4768        sfpt->set_memory(map()->memory());
4769        sfpt->set_control(map()->control());
4770
4771        JVMState* saved_jvms = jvms();
4772        saved_reexecute_sp = _reexecute_sp;
4773
4774        set_jvms(sfpt->jvms());
4775        _reexecute_sp = jvms()->sp();
4776
4777        return saved_jvms;
4778      }
4779    }
4780  }
4781  return NULL;
4782}
4783
4784// In case of a deoptimization, we restart execution at the
4785// allocation, allocating a new array. We would leave an uninitialized
4786// array in the heap that GCs wouldn't expect. Move the allocation
4787// after the traps so we don't allocate the array if we
4788// deoptimize. This is possible because tightly_coupled_allocation()
4789// guarantees there's no observer of the allocated array at this point
4790// and the control flow is simple enough.
4791void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4792  if (saved_jvms != NULL && !stopped()) {
4793    assert(alloc != NULL, "only with a tightly coupled allocation");
4794    // restore JVM state to the state at the arraycopy
4795    saved_jvms->map()->set_control(map()->control());
4796    assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4797    assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4798    // If we've improved the types of some nodes (null check) while
4799    // emitting the guards, propagate them to the current state
4800    map()->replaced_nodes().apply(saved_jvms->map());
4801    set_jvms(saved_jvms);
4802    _reexecute_sp = saved_reexecute_sp;
4803
4804    // Remove the allocation from above the guards
4805    CallProjections callprojs;
4806    alloc->extract_projections(&callprojs, true);
4807    InitializeNode* init = alloc->initialization();
4808    Node* alloc_mem = alloc->in(TypeFunc::Memory);
4809    C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4810    C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4811    C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4812
4813    // move the allocation here (after the guards)
4814    _gvn.hash_delete(alloc);
4815    alloc->set_req(TypeFunc::Control, control());
4816    alloc->set_req(TypeFunc::I_O, i_o());
4817    Node *mem = reset_memory();
4818    set_all_memory(mem);
4819    alloc->set_req(TypeFunc::Memory, mem);
4820    set_control(init->proj_out(TypeFunc::Control));
4821    set_i_o(callprojs.fallthrough_ioproj);
4822
4823    // Update memory as done in GraphKit::set_output_for_allocation()
4824    const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4825    const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4826    if (ary_type->isa_aryptr() && length_type != NULL) {
4827      ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4828    }
4829    const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4830    int            elemidx  = C->get_alias_index(telemref);
4831    set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4832    set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4833
4834    Node* allocx = _gvn.transform(alloc);
4835    assert(allocx == alloc, "where has the allocation gone?");
4836    assert(dest->is_CheckCastPP(), "not an allocation result?");
4837
4838    _gvn.hash_delete(dest);
4839    dest->set_req(0, control());
4840    Node* destx = _gvn.transform(dest);
4841    assert(destx == dest, "where has the allocation result gone?");
4842  }
4843}
4844
4845
4846//------------------------------inline_arraycopy-----------------------
4847// public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4848//                                                      Object dest, int destPos,
4849//                                                      int length);
4850bool LibraryCallKit::inline_arraycopy() {
4851  // Get the arguments.
4852  Node* src         = argument(0);  // type: oop
4853  Node* src_offset  = argument(1);  // type: int
4854  Node* dest        = argument(2);  // type: oop
4855  Node* dest_offset = argument(3);  // type: int
4856  Node* length      = argument(4);  // type: int
4857
4858
4859  // Check for allocation before we add nodes that would confuse
4860  // tightly_coupled_allocation()
4861  AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4862
4863  int saved_reexecute_sp = -1;
4864  JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4865  // See arraycopy_restore_alloc_state() comment
4866  // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4867  // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4868  // if saved_jvms == NULL and alloc != NULL, we can���t emit any guards
4869  bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4870
4871  // The following tests must be performed
4872  // (1) src and dest are arrays.
4873  // (2) src and dest arrays must have elements of the same BasicType
4874  // (3) src and dest must not be null.
4875  // (4) src_offset must not be negative.
4876  // (5) dest_offset must not be negative.
4877  // (6) length must not be negative.
4878  // (7) src_offset + length must not exceed length of src.
4879  // (8) dest_offset + length must not exceed length of dest.
4880  // (9) each element of an oop array must be assignable
4881
4882  // (3) src and dest must not be null.
4883  // always do this here because we need the JVM state for uncommon traps
4884  Node* null_ctl = top();
4885  src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4886  assert(null_ctl->is_top(), "no null control here");
4887  dest = null_check(dest, T_ARRAY);
4888
4889  if (!can_emit_guards) {
4890    // if saved_jvms == NULL and alloc != NULL, we don't emit any
4891    // guards but the arraycopy node could still take advantage of a
4892    // tightly allocated allocation. tightly_coupled_allocation() is
4893    // called again to make sure it takes the null check above into
4894    // account: the null check is mandatory and if it caused an
4895    // uncommon trap to be emitted then the allocation can't be
4896    // considered tightly coupled in this context.
4897    alloc = tightly_coupled_allocation(dest, NULL);
4898  }
4899
4900  bool validated = false;
4901
4902  const Type* src_type  = _gvn.type(src);
4903  const Type* dest_type = _gvn.type(dest);
4904  const TypeAryPtr* top_src  = src_type->isa_aryptr();
4905  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4906
4907  // Do we have the type of src?
4908  bool has_src = (top_src != NULL && top_src->klass() != NULL);
4909  // Do we have the type of dest?
4910  bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4911  // Is the type for src from speculation?
4912  bool src_spec = false;
4913  // Is the type for dest from speculation?
4914  bool dest_spec = false;
4915
4916  if ((!has_src || !has_dest) && can_emit_guards) {
4917    // We don't have sufficient type information, let's see if
4918    // speculative types can help. We need to have types for both src
4919    // and dest so that it pays off.
4920
4921    // Do we already have or could we have type information for src
4922    bool could_have_src = has_src;
4923    // Do we already have or could we have type information for dest
4924    bool could_have_dest = has_dest;
4925
4926    ciKlass* src_k = NULL;
4927    if (!has_src) {
4928      src_k = src_type->speculative_type_not_null();
4929      if (src_k != NULL && src_k->is_array_klass()) {
4930        could_have_src = true;
4931      }
4932    }
4933
4934    ciKlass* dest_k = NULL;
4935    if (!has_dest) {
4936      dest_k = dest_type->speculative_type_not_null();
4937      if (dest_k != NULL && dest_k->is_array_klass()) {
4938        could_have_dest = true;
4939      }
4940    }
4941
4942    if (could_have_src && could_have_dest) {
4943      // This is going to pay off so emit the required guards
4944      if (!has_src) {
4945        src = maybe_cast_profiled_obj(src, src_k, true);
4946        src_type  = _gvn.type(src);
4947        top_src  = src_type->isa_aryptr();
4948        has_src = (top_src != NULL && top_src->klass() != NULL);
4949        src_spec = true;
4950      }
4951      if (!has_dest) {
4952        dest = maybe_cast_profiled_obj(dest, dest_k, true);
4953        dest_type  = _gvn.type(dest);
4954        top_dest  = dest_type->isa_aryptr();
4955        has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4956        dest_spec = true;
4957      }
4958    }
4959  }
4960
4961  if (has_src && has_dest && can_emit_guards) {
4962    BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4963    BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4964    if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4965    if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4966
4967    if (src_elem == dest_elem && src_elem == T_OBJECT) {
4968      // If both arrays are object arrays then having the exact types
4969      // for both will remove the need for a subtype check at runtime
4970      // before the call and may make it possible to pick a faster copy
4971      // routine (without a subtype check on every element)
4972      // Do we have the exact type of src?
4973      bool could_have_src = src_spec;
4974      // Do we have the exact type of dest?
4975      bool could_have_dest = dest_spec;
4976      ciKlass* src_k = top_src->klass();
4977      ciKlass* dest_k = top_dest->klass();
4978      if (!src_spec) {
4979        src_k = src_type->speculative_type_not_null();
4980        if (src_k != NULL && src_k->is_array_klass()) {
4981          could_have_src = true;
4982        }
4983      }
4984      if (!dest_spec) {
4985        dest_k = dest_type->speculative_type_not_null();
4986        if (dest_k != NULL && dest_k->is_array_klass()) {
4987          could_have_dest = true;
4988        }
4989      }
4990      if (could_have_src && could_have_dest) {
4991        // If we can have both exact types, emit the missing guards
4992        if (could_have_src && !src_spec) {
4993          src = maybe_cast_profiled_obj(src, src_k, true);
4994        }
4995        if (could_have_dest && !dest_spec) {
4996          dest = maybe_cast_profiled_obj(dest, dest_k, true);
4997        }
4998      }
4999    }
5000  }
5001
5002  ciMethod* trap_method = method();
5003  int trap_bci = bci();
5004  if (saved_jvms != NULL) {
5005    trap_method = alloc->jvms()->method();
5006    trap_bci = alloc->jvms()->bci();
5007  }
5008
5009  if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5010      can_emit_guards &&
5011      !src->is_top() && !dest->is_top()) {
5012    // validate arguments: enables transformation the ArrayCopyNode
5013    validated = true;
5014
5015    RegionNode* slow_region = new RegionNode(1);
5016    record_for_igvn(slow_region);
5017
5018    // (1) src and dest are arrays.
5019    generate_non_array_guard(load_object_klass(src), slow_region);
5020    generate_non_array_guard(load_object_klass(dest), slow_region);
5021
5022    // (2) src and dest arrays must have elements of the same BasicType
5023    // done at macro expansion or at Ideal transformation time
5024
5025    // (4) src_offset must not be negative.
5026    generate_negative_guard(src_offset, slow_region);
5027
5028    // (5) dest_offset must not be negative.
5029    generate_negative_guard(dest_offset, slow_region);
5030
5031    // (7) src_offset + length must not exceed length of src.
5032    generate_limit_guard(src_offset, length,
5033                         load_array_length(src),
5034                         slow_region);
5035
5036    // (8) dest_offset + length must not exceed length of dest.
5037    generate_limit_guard(dest_offset, length,
5038                         load_array_length(dest),
5039                         slow_region);
5040
5041    // (9) each element of an oop array must be assignable
5042    Node* src_klass  = load_object_klass(src);
5043    Node* dest_klass = load_object_klass(dest);
5044    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5045
5046    if (not_subtype_ctrl != top()) {
5047      PreserveJVMState pjvms(this);
5048      set_control(not_subtype_ctrl);
5049      uncommon_trap(Deoptimization::Reason_intrinsic,
5050                    Deoptimization::Action_make_not_entrant);
5051      assert(stopped(), "Should be stopped");
5052    }
5053    {
5054      PreserveJVMState pjvms(this);
5055      set_control(_gvn.transform(slow_region));
5056      uncommon_trap(Deoptimization::Reason_intrinsic,
5057                    Deoptimization::Action_make_not_entrant);
5058      assert(stopped(), "Should be stopped");
5059    }
5060  }
5061
5062  arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
5063
5064  if (stopped()) {
5065    return true;
5066  }
5067
5068  ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
5069                                          // Create LoadRange and LoadKlass nodes for use during macro expansion here
5070                                          // so the compiler has a chance to eliminate them: during macro expansion,
5071                                          // we have to set their control (CastPP nodes are eliminated).
5072                                          load_object_klass(src), load_object_klass(dest),
5073                                          load_array_length(src), load_array_length(dest));
5074
5075  ac->set_arraycopy(validated);
5076
5077  Node* n = _gvn.transform(ac);
5078  if (n == ac) {
5079    ac->connect_outputs(this);
5080  } else {
5081    assert(validated, "shouldn't transform if all arguments not validated");
5082    set_all_memory(n);
5083  }
5084
5085  return true;
5086}
5087
5088
5089// Helper function which determines if an arraycopy immediately follows
5090// an allocation, with no intervening tests or other escapes for the object.
5091AllocateArrayNode*
5092LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5093                                           RegionNode* slow_region) {
5094  if (stopped())             return NULL;  // no fast path
5095  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5096
5097  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5098  if (alloc == NULL)  return NULL;
5099
5100  Node* rawmem = memory(Compile::AliasIdxRaw);
5101  // Is the allocation's memory state untouched?
5102  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5103    // Bail out if there have been raw-memory effects since the allocation.
5104    // (Example:  There might have been a call or safepoint.)
5105    return NULL;
5106  }
5107  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5108  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5109    return NULL;
5110  }
5111
5112  // There must be no unexpected observers of this allocation.
5113  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5114    Node* obs = ptr->fast_out(i);
5115    if (obs != this->map()) {
5116      return NULL;
5117    }
5118  }
5119
5120  // This arraycopy must unconditionally follow the allocation of the ptr.
5121  Node* alloc_ctl = ptr->in(0);
5122  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5123
5124  Node* ctl = control();
5125  while (ctl != alloc_ctl) {
5126    // There may be guards which feed into the slow_region.
5127    // Any other control flow means that we might not get a chance
5128    // to finish initializing the allocated object.
5129    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5130      IfNode* iff = ctl->in(0)->as_If();
5131      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5132      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5133      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5134        ctl = iff->in(0);       // This test feeds the known slow_region.
5135        continue;
5136      }
5137      // One more try:  Various low-level checks bottom out in
5138      // uncommon traps.  If the debug-info of the trap omits
5139      // any reference to the allocation, as we've already
5140      // observed, then there can be no objection to the trap.
5141      bool found_trap = false;
5142      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5143        Node* obs = not_ctl->fast_out(j);
5144        if (obs->in(0) == not_ctl && obs->is_Call() &&
5145            (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5146          found_trap = true; break;
5147        }
5148      }
5149      if (found_trap) {
5150        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5151        continue;
5152      }
5153    }
5154    return NULL;
5155  }
5156
5157  // If we get this far, we have an allocation which immediately
5158  // precedes the arraycopy, and we can take over zeroing the new object.
5159  // The arraycopy will finish the initialization, and provide
5160  // a new control state to which we will anchor the destination pointer.
5161
5162  return alloc;
5163}
5164
5165//-------------inline_encodeISOArray-----------------------------------
5166// encode char[] to byte[] in ISO_8859_1
5167bool LibraryCallKit::inline_encodeISOArray() {
5168  assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5169  // no receiver since it is static method
5170  Node *src         = argument(0);
5171  Node *src_offset  = argument(1);
5172  Node *dst         = argument(2);
5173  Node *dst_offset  = argument(3);
5174  Node *length      = argument(4);
5175
5176  const Type* src_type = src->Value(&_gvn);
5177  const Type* dst_type = dst->Value(&_gvn);
5178  const TypeAryPtr* top_src = src_type->isa_aryptr();
5179  const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5180  if (top_src  == NULL || top_src->klass()  == NULL ||
5181      top_dest == NULL || top_dest->klass() == NULL) {
5182    // failed array check
5183    return false;
5184  }
5185
5186  // Figure out the size and type of the elements we will be copying.
5187  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5188  BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5189  if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5190    return false;
5191  }
5192
5193  Node* src_start = array_element_address(src, src_offset, T_CHAR);
5194  Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5195  // 'src_start' points to src array + scaled offset
5196  // 'dst_start' points to dst array + scaled offset
5197
5198  const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5199  Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5200  enc = _gvn.transform(enc);
5201  Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5202  set_memory(res_mem, mtype);
5203  set_result(enc);
5204  return true;
5205}
5206
5207//-------------inline_multiplyToLen-----------------------------------
5208bool LibraryCallKit::inline_multiplyToLen() {
5209  assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5210
5211  address stubAddr = StubRoutines::multiplyToLen();
5212  if (stubAddr == NULL) {
5213    return false; // Intrinsic's stub is not implemented on this platform
5214  }
5215  const char* stubName = "multiplyToLen";
5216
5217  assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5218
5219  // no receiver because it is a static method
5220  Node* x    = argument(0);
5221  Node* xlen = argument(1);
5222  Node* y    = argument(2);
5223  Node* ylen = argument(3);
5224  Node* z    = argument(4);
5225
5226  const Type* x_type = x->Value(&_gvn);
5227  const Type* y_type = y->Value(&_gvn);
5228  const TypeAryPtr* top_x = x_type->isa_aryptr();
5229  const TypeAryPtr* top_y = y_type->isa_aryptr();
5230  if (top_x  == NULL || top_x->klass()  == NULL ||
5231      top_y == NULL || top_y->klass() == NULL) {
5232    // failed array check
5233    return false;
5234  }
5235
5236  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5237  BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5238  if (x_elem != T_INT || y_elem != T_INT) {
5239    return false;
5240  }
5241
5242  // Set the original stack and the reexecute bit for the interpreter to reexecute
5243  // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5244  // on the return from z array allocation in runtime.
5245  { PreserveReexecuteState preexecs(this);
5246    jvms()->set_should_reexecute(true);
5247
5248    Node* x_start = array_element_address(x, intcon(0), x_elem);
5249    Node* y_start = array_element_address(y, intcon(0), y_elem);
5250    // 'x_start' points to x array + scaled xlen
5251    // 'y_start' points to y array + scaled ylen
5252
5253    // Allocate the result array
5254    Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5255    ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5256    Node* klass_node = makecon(TypeKlassPtr::make(klass));
5257
5258    IdealKit ideal(this);
5259
5260#define __ ideal.
5261     Node* one = __ ConI(1);
5262     Node* zero = __ ConI(0);
5263     IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5264     __ set(need_alloc, zero);
5265     __ set(z_alloc, z);
5266     __ if_then(z, BoolTest::eq, null()); {
5267       __ increment (need_alloc, one);
5268     } __ else_(); {
5269       // Update graphKit memory and control from IdealKit.
5270       sync_kit(ideal);
5271       Node* zlen_arg = load_array_length(z);
5272       // Update IdealKit memory and control from graphKit.
5273       __ sync_kit(this);
5274       __ if_then(zlen_arg, BoolTest::lt, zlen); {
5275         __ increment (need_alloc, one);
5276       } __ end_if();
5277     } __ end_if();
5278
5279     __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5280       // Update graphKit memory and control from IdealKit.
5281       sync_kit(ideal);
5282       Node * narr = new_array(klass_node, zlen, 1);
5283       // Update IdealKit memory and control from graphKit.
5284       __ sync_kit(this);
5285       __ set(z_alloc, narr);
5286     } __ end_if();
5287
5288     sync_kit(ideal);
5289     z = __ value(z_alloc);
5290     // Can't use TypeAryPtr::INTS which uses Bottom offset.
5291     _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5292     // Final sync IdealKit and GraphKit.
5293     final_sync(ideal);
5294#undef __
5295
5296    Node* z_start = array_element_address(z, intcon(0), T_INT);
5297
5298    Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5299                                   OptoRuntime::multiplyToLen_Type(),
5300                                   stubAddr, stubName, TypePtr::BOTTOM,
5301                                   x_start, xlen, y_start, ylen, z_start, zlen);
5302  } // original reexecute is set back here
5303
5304  C->set_has_split_ifs(true); // Has chance for split-if optimization
5305  set_result(z);
5306  return true;
5307}
5308
5309//-------------inline_squareToLen------------------------------------
5310bool LibraryCallKit::inline_squareToLen() {
5311  assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5312
5313  address stubAddr = StubRoutines::squareToLen();
5314  if (stubAddr == NULL) {
5315    return false; // Intrinsic's stub is not implemented on this platform
5316  }
5317  const char* stubName = "squareToLen";
5318
5319  assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5320
5321  Node* x    = argument(0);
5322  Node* len  = argument(1);
5323  Node* z    = argument(2);
5324  Node* zlen = argument(3);
5325
5326  const Type* x_type = x->Value(&_gvn);
5327  const Type* z_type = z->Value(&_gvn);
5328  const TypeAryPtr* top_x = x_type->isa_aryptr();
5329  const TypeAryPtr* top_z = z_type->isa_aryptr();
5330  if (top_x  == NULL || top_x->klass()  == NULL ||
5331      top_z  == NULL || top_z->klass()  == NULL) {
5332    // failed array check
5333    return false;
5334  }
5335
5336  BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5337  BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5338  if (x_elem != T_INT || z_elem != T_INT) {
5339    return false;
5340  }
5341
5342
5343  Node* x_start = array_element_address(x, intcon(0), x_elem);
5344  Node* z_start = array_element_address(z, intcon(0), z_elem);
5345
5346  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5347                                  OptoRuntime::squareToLen_Type(),
5348                                  stubAddr, stubName, TypePtr::BOTTOM,
5349                                  x_start, len, z_start, zlen);
5350
5351  set_result(z);
5352  return true;
5353}
5354
5355//-------------inline_mulAdd------------------------------------------
5356bool LibraryCallKit::inline_mulAdd() {
5357  assert(UseMulAddIntrinsic, "not implemented on this platform");
5358
5359  address stubAddr = StubRoutines::mulAdd();
5360  if (stubAddr == NULL) {
5361    return false; // Intrinsic's stub is not implemented on this platform
5362  }
5363  const char* stubName = "mulAdd";
5364
5365  assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5366
5367  Node* out      = argument(0);
5368  Node* in       = argument(1);
5369  Node* offset   = argument(2);
5370  Node* len      = argument(3);
5371  Node* k        = argument(4);
5372
5373  const Type* out_type = out->Value(&_gvn);
5374  const Type* in_type = in->Value(&_gvn);
5375  const TypeAryPtr* top_out = out_type->isa_aryptr();
5376  const TypeAryPtr* top_in = in_type->isa_aryptr();
5377  if (top_out  == NULL || top_out->klass()  == NULL ||
5378      top_in == NULL || top_in->klass() == NULL) {
5379    // failed array check
5380    return false;
5381  }
5382
5383  BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5384  BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5385  if (out_elem != T_INT || in_elem != T_INT) {
5386    return false;
5387  }
5388
5389  Node* outlen = load_array_length(out);
5390  Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5391  Node* out_start = array_element_address(out, intcon(0), out_elem);
5392  Node* in_start = array_element_address(in, intcon(0), in_elem);
5393
5394  Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5395                                  OptoRuntime::mulAdd_Type(),
5396                                  stubAddr, stubName, TypePtr::BOTTOM,
5397                                  out_start,in_start, new_offset, len, k);
5398  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5399  set_result(result);
5400  return true;
5401}
5402
5403//-------------inline_montgomeryMultiply-----------------------------------
5404bool LibraryCallKit::inline_montgomeryMultiply() {
5405  address stubAddr = StubRoutines::montgomeryMultiply();
5406  if (stubAddr == NULL) {
5407    return false; // Intrinsic's stub is not implemented on this platform
5408  }
5409
5410  assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5411  const char* stubName = "montgomery_square";
5412
5413  assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5414
5415  Node* a    = argument(0);
5416  Node* b    = argument(1);
5417  Node* n    = argument(2);
5418  Node* len  = argument(3);
5419  Node* inv  = argument(4);
5420  Node* m    = argument(6);
5421
5422  const Type* a_type = a->Value(&_gvn);
5423  const TypeAryPtr* top_a = a_type->isa_aryptr();
5424  const Type* b_type = b->Value(&_gvn);
5425  const TypeAryPtr* top_b = b_type->isa_aryptr();
5426  const Type* n_type = a->Value(&_gvn);
5427  const TypeAryPtr* top_n = n_type->isa_aryptr();
5428  const Type* m_type = a->Value(&_gvn);
5429  const TypeAryPtr* top_m = m_type->isa_aryptr();
5430  if (top_a  == NULL || top_a->klass()  == NULL ||
5431      top_b == NULL || top_b->klass()  == NULL ||
5432      top_n == NULL || top_n->klass()  == NULL ||
5433      top_m == NULL || top_m->klass()  == NULL) {
5434    // failed array check
5435    return false;
5436  }
5437
5438  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5439  BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5440  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5441  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5442  if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5443    return false;
5444  }
5445
5446  // Make the call
5447  {
5448    Node* a_start = array_element_address(a, intcon(0), a_elem);
5449    Node* b_start = array_element_address(b, intcon(0), b_elem);
5450    Node* n_start = array_element_address(n, intcon(0), n_elem);
5451    Node* m_start = array_element_address(m, intcon(0), m_elem);
5452
5453    Node* call = make_runtime_call(RC_LEAF,
5454                                   OptoRuntime::montgomeryMultiply_Type(),
5455                                   stubAddr, stubName, TypePtr::BOTTOM,
5456                                   a_start, b_start, n_start, len, inv, top(),
5457                                   m_start);
5458    set_result(m);
5459  }
5460
5461  return true;
5462}
5463
5464bool LibraryCallKit::inline_montgomerySquare() {
5465  address stubAddr = StubRoutines::montgomerySquare();
5466  if (stubAddr == NULL) {
5467    return false; // Intrinsic's stub is not implemented on this platform
5468  }
5469
5470  assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5471  const char* stubName = "montgomery_square";
5472
5473  assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5474
5475  Node* a    = argument(0);
5476  Node* n    = argument(1);
5477  Node* len  = argument(2);
5478  Node* inv  = argument(3);
5479  Node* m    = argument(5);
5480
5481  const Type* a_type = a->Value(&_gvn);
5482  const TypeAryPtr* top_a = a_type->isa_aryptr();
5483  const Type* n_type = a->Value(&_gvn);
5484  const TypeAryPtr* top_n = n_type->isa_aryptr();
5485  const Type* m_type = a->Value(&_gvn);
5486  const TypeAryPtr* top_m = m_type->isa_aryptr();
5487  if (top_a  == NULL || top_a->klass()  == NULL ||
5488      top_n == NULL || top_n->klass()  == NULL ||
5489      top_m == NULL || top_m->klass()  == NULL) {
5490    // failed array check
5491    return false;
5492  }
5493
5494  BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5495  BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5496  BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5497  if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5498    return false;
5499  }
5500
5501  // Make the call
5502  {
5503    Node* a_start = array_element_address(a, intcon(0), a_elem);
5504    Node* n_start = array_element_address(n, intcon(0), n_elem);
5505    Node* m_start = array_element_address(m, intcon(0), m_elem);
5506
5507    Node* call = make_runtime_call(RC_LEAF,
5508                                   OptoRuntime::montgomerySquare_Type(),
5509                                   stubAddr, stubName, TypePtr::BOTTOM,
5510                                   a_start, n_start, len, inv, top(),
5511                                   m_start);
5512    set_result(m);
5513  }
5514
5515  return true;
5516}
5517
5518//-------------inline_vectorizedMismatch------------------------------
5519bool LibraryCallKit::inline_vectorizedMismatch() {
5520  assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5521
5522  address stubAddr = StubRoutines::vectorizedMismatch();
5523  if (stubAddr == NULL) {
5524    return false; // Intrinsic's stub is not implemented on this platform
5525  }
5526  const char* stubName = "vectorizedMismatch";
5527  int size_l = callee()->signature()->size();
5528  assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5529
5530  Node* obja = argument(0);
5531  Node* aoffset = argument(1);
5532  Node* objb = argument(3);
5533  Node* boffset = argument(4);
5534  Node* length = argument(6);
5535  Node* scale = argument(7);
5536
5537  const Type* a_type = obja->Value(&_gvn);
5538  const Type* b_type = objb->Value(&_gvn);
5539  const TypeAryPtr* top_a = a_type->isa_aryptr();
5540  const TypeAryPtr* top_b = b_type->isa_aryptr();
5541  if (top_a == NULL || top_a->klass() == NULL ||
5542    top_b == NULL || top_b->klass() == NULL) {
5543    // failed array check
5544    return false;
5545  }
5546
5547  Node* call;
5548  jvms()->set_should_reexecute(true);
5549
5550  Node* obja_adr = make_unsafe_address(obja, aoffset);
5551  Node* objb_adr = make_unsafe_address(objb, boffset);
5552
5553  call = make_runtime_call(RC_LEAF,
5554    OptoRuntime::vectorizedMismatch_Type(),
5555    stubAddr, stubName, TypePtr::BOTTOM,
5556    obja_adr, objb_adr, length, scale);
5557
5558  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5559  set_result(result);
5560  return true;
5561}
5562
5563/**
5564 * Calculate CRC32 for byte.
5565 * int java.util.zip.CRC32.update(int crc, int b)
5566 */
5567bool LibraryCallKit::inline_updateCRC32() {
5568  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5569  assert(callee()->signature()->size() == 2, "update has 2 parameters");
5570  // no receiver since it is static method
5571  Node* crc  = argument(0); // type: int
5572  Node* b    = argument(1); // type: int
5573
5574  /*
5575   *    int c = ~ crc;
5576   *    b = timesXtoThe32[(b ^ c) & 0xFF];
5577   *    b = b ^ (c >>> 8);
5578   *    crc = ~b;
5579   */
5580
5581  Node* M1 = intcon(-1);
5582  crc = _gvn.transform(new XorINode(crc, M1));
5583  Node* result = _gvn.transform(new XorINode(crc, b));
5584  result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5585
5586  Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5587  Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5588  Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5589  result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5590
5591  crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5592  result = _gvn.transform(new XorINode(crc, result));
5593  result = _gvn.transform(new XorINode(result, M1));
5594  set_result(result);
5595  return true;
5596}
5597
5598/**
5599 * Calculate CRC32 for byte[] array.
5600 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5601 */
5602bool LibraryCallKit::inline_updateBytesCRC32() {
5603  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5604  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5605  // no receiver since it is static method
5606  Node* crc     = argument(0); // type: int
5607  Node* src     = argument(1); // type: oop
5608  Node* offset  = argument(2); // type: int
5609  Node* length  = argument(3); // type: int
5610
5611  const Type* src_type = src->Value(&_gvn);
5612  const TypeAryPtr* top_src = src_type->isa_aryptr();
5613  if (top_src  == NULL || top_src->klass()  == NULL) {
5614    // failed array check
5615    return false;
5616  }
5617
5618  // Figure out the size and type of the elements we will be copying.
5619  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5620  if (src_elem != T_BYTE) {
5621    return false;
5622  }
5623
5624  // 'src_start' points to src array + scaled offset
5625  Node* src_start = array_element_address(src, offset, src_elem);
5626
5627  // We assume that range check is done by caller.
5628  // TODO: generate range check (offset+length < src.length) in debug VM.
5629
5630  // Call the stub.
5631  address stubAddr = StubRoutines::updateBytesCRC32();
5632  const char *stubName = "updateBytesCRC32";
5633
5634  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5635                                 stubAddr, stubName, TypePtr::BOTTOM,
5636                                 crc, src_start, length);
5637  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5638  set_result(result);
5639  return true;
5640}
5641
5642/**
5643 * Calculate CRC32 for ByteBuffer.
5644 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5645 */
5646bool LibraryCallKit::inline_updateByteBufferCRC32() {
5647  assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5648  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5649  // no receiver since it is static method
5650  Node* crc     = argument(0); // type: int
5651  Node* src     = argument(1); // type: long
5652  Node* offset  = argument(3); // type: int
5653  Node* length  = argument(4); // type: int
5654
5655  src = ConvL2X(src);  // adjust Java long to machine word
5656  Node* base = _gvn.transform(new CastX2PNode(src));
5657  offset = ConvI2X(offset);
5658
5659  // 'src_start' points to src array + scaled offset
5660  Node* src_start = basic_plus_adr(top(), base, offset);
5661
5662  // Call the stub.
5663  address stubAddr = StubRoutines::updateBytesCRC32();
5664  const char *stubName = "updateBytesCRC32";
5665
5666  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5667                                 stubAddr, stubName, TypePtr::BOTTOM,
5668                                 crc, src_start, length);
5669  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5670  set_result(result);
5671  return true;
5672}
5673
5674//------------------------------get_table_from_crc32c_class-----------------------
5675Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5676  Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5677  assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5678
5679  return table;
5680}
5681
5682//------------------------------inline_updateBytesCRC32C-----------------------
5683//
5684// Calculate CRC32C for byte[] array.
5685// int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5686//
5687bool LibraryCallKit::inline_updateBytesCRC32C() {
5688  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5689  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5690  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5691  // no receiver since it is a static method
5692  Node* crc     = argument(0); // type: int
5693  Node* src     = argument(1); // type: oop
5694  Node* offset  = argument(2); // type: int
5695  Node* end     = argument(3); // type: int
5696
5697  Node* length = _gvn.transform(new SubINode(end, offset));
5698
5699  const Type* src_type = src->Value(&_gvn);
5700  const TypeAryPtr* top_src = src_type->isa_aryptr();
5701  if (top_src  == NULL || top_src->klass()  == NULL) {
5702    // failed array check
5703    return false;
5704  }
5705
5706  // Figure out the size and type of the elements we will be copying.
5707  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5708  if (src_elem != T_BYTE) {
5709    return false;
5710  }
5711
5712  // 'src_start' points to src array + scaled offset
5713  Node* src_start = array_element_address(src, offset, src_elem);
5714
5715  // static final int[] byteTable in class CRC32C
5716  Node* table = get_table_from_crc32c_class(callee()->holder());
5717  Node* table_start = array_element_address(table, intcon(0), T_INT);
5718
5719  // We assume that range check is done by caller.
5720  // TODO: generate range check (offset+length < src.length) in debug VM.
5721
5722  // Call the stub.
5723  address stubAddr = StubRoutines::updateBytesCRC32C();
5724  const char *stubName = "updateBytesCRC32C";
5725
5726  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5727                                 stubAddr, stubName, TypePtr::BOTTOM,
5728                                 crc, src_start, length, table_start);
5729  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5730  set_result(result);
5731  return true;
5732}
5733
5734//------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5735//
5736// Calculate CRC32C for DirectByteBuffer.
5737// int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5738//
5739bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5740  assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5741  assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5742  assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5743  // no receiver since it is a static method
5744  Node* crc     = argument(0); // type: int
5745  Node* src     = argument(1); // type: long
5746  Node* offset  = argument(3); // type: int
5747  Node* end     = argument(4); // type: int
5748
5749  Node* length = _gvn.transform(new SubINode(end, offset));
5750
5751  src = ConvL2X(src);  // adjust Java long to machine word
5752  Node* base = _gvn.transform(new CastX2PNode(src));
5753  offset = ConvI2X(offset);
5754
5755  // 'src_start' points to src array + scaled offset
5756  Node* src_start = basic_plus_adr(top(), base, offset);
5757
5758  // static final int[] byteTable in class CRC32C
5759  Node* table = get_table_from_crc32c_class(callee()->holder());
5760  Node* table_start = array_element_address(table, intcon(0), T_INT);
5761
5762  // Call the stub.
5763  address stubAddr = StubRoutines::updateBytesCRC32C();
5764  const char *stubName = "updateBytesCRC32C";
5765
5766  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5767                                 stubAddr, stubName, TypePtr::BOTTOM,
5768                                 crc, src_start, length, table_start);
5769  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5770  set_result(result);
5771  return true;
5772}
5773
5774//------------------------------inline_updateBytesAdler32----------------------
5775//
5776// Calculate Adler32 checksum for byte[] array.
5777// int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5778//
5779bool LibraryCallKit::inline_updateBytesAdler32() {
5780  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5781  assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5782  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5783  // no receiver since it is static method
5784  Node* crc     = argument(0); // type: int
5785  Node* src     = argument(1); // type: oop
5786  Node* offset  = argument(2); // type: int
5787  Node* length  = argument(3); // type: int
5788
5789  const Type* src_type = src->Value(&_gvn);
5790  const TypeAryPtr* top_src = src_type->isa_aryptr();
5791  if (top_src  == NULL || top_src->klass()  == NULL) {
5792    // failed array check
5793    return false;
5794  }
5795
5796  // Figure out the size and type of the elements we will be copying.
5797  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5798  if (src_elem != T_BYTE) {
5799    return false;
5800  }
5801
5802  // 'src_start' points to src array + scaled offset
5803  Node* src_start = array_element_address(src, offset, src_elem);
5804
5805  // We assume that range check is done by caller.
5806  // TODO: generate range check (offset+length < src.length) in debug VM.
5807
5808  // Call the stub.
5809  address stubAddr = StubRoutines::updateBytesAdler32();
5810  const char *stubName = "updateBytesAdler32";
5811
5812  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5813                                 stubAddr, stubName, TypePtr::BOTTOM,
5814                                 crc, src_start, length);
5815  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5816  set_result(result);
5817  return true;
5818}
5819
5820//------------------------------inline_updateByteBufferAdler32---------------
5821//
5822// Calculate Adler32 checksum for DirectByteBuffer.
5823// int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5824//
5825bool LibraryCallKit::inline_updateByteBufferAdler32() {
5826  assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5827  assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5828  assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5829  // no receiver since it is static method
5830  Node* crc     = argument(0); // type: int
5831  Node* src     = argument(1); // type: long
5832  Node* offset  = argument(3); // type: int
5833  Node* length  = argument(4); // type: int
5834
5835  src = ConvL2X(src);  // adjust Java long to machine word
5836  Node* base = _gvn.transform(new CastX2PNode(src));
5837  offset = ConvI2X(offset);
5838
5839  // 'src_start' points to src array + scaled offset
5840  Node* src_start = basic_plus_adr(top(), base, offset);
5841
5842  // Call the stub.
5843  address stubAddr = StubRoutines::updateBytesAdler32();
5844  const char *stubName = "updateBytesAdler32";
5845
5846  Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5847                                 stubAddr, stubName, TypePtr::BOTTOM,
5848                                 crc, src_start, length);
5849
5850  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5851  set_result(result);
5852  return true;
5853}
5854
5855//----------------------------inline_reference_get----------------------------
5856// public T java.lang.ref.Reference.get();
5857bool LibraryCallKit::inline_reference_get() {
5858  const int referent_offset = java_lang_ref_Reference::referent_offset;
5859  guarantee(referent_offset > 0, "should have already been set");
5860
5861  // Get the argument:
5862  Node* reference_obj = null_check_receiver();
5863  if (stopped()) return true;
5864
5865  Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5866
5867  ciInstanceKlass* klass = env()->Object_klass();
5868  const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5869
5870  Node* no_ctrl = NULL;
5871  Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5872
5873  // Use the pre-barrier to record the value in the referent field
5874  pre_barrier(false /* do_load */,
5875              control(),
5876              NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5877              result /* pre_val */,
5878              T_OBJECT);
5879
5880  // Add memory barrier to prevent commoning reads from this field
5881  // across safepoint since GC can change its value.
5882  insert_mem_bar(Op_MemBarCPUOrder);
5883
5884  set_result(result);
5885  return true;
5886}
5887
5888
5889Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5890                                              bool is_exact=true, bool is_static=false,
5891                                              ciInstanceKlass * fromKls=NULL) {
5892  if (fromKls == NULL) {
5893    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5894    assert(tinst != NULL, "obj is null");
5895    assert(tinst->klass()->is_loaded(), "obj is not loaded");
5896    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5897    fromKls = tinst->klass()->as_instance_klass();
5898  } else {
5899    assert(is_static, "only for static field access");
5900  }
5901  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5902                                              ciSymbol::make(fieldTypeString),
5903                                              is_static);
5904
5905  assert (field != NULL, "undefined field");
5906  if (field == NULL) return (Node *) NULL;
5907
5908  if (is_static) {
5909    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5910    fromObj = makecon(tip);
5911  }
5912
5913  // Next code  copied from Parse::do_get_xxx():
5914
5915  // Compute address and memory type.
5916  int offset  = field->offset_in_bytes();
5917  bool is_vol = field->is_volatile();
5918  ciType* field_klass = field->type();
5919  assert(field_klass->is_loaded(), "should be loaded");
5920  const TypePtr* adr_type = C->alias_type(field)->adr_type();
5921  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5922  BasicType bt = field->layout_type();
5923
5924  // Build the resultant type of the load
5925  const Type *type;
5926  if (bt == T_OBJECT) {
5927    type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5928  } else {
5929    type = Type::get_const_basic_type(bt);
5930  }
5931
5932  if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5933    insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5934  }
5935  // Build the load.
5936  MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5937  Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5938  // If reference is volatile, prevent following memory ops from
5939  // floating up past the volatile read.  Also prevents commoning
5940  // another volatile read.
5941  if (is_vol) {
5942    // Memory barrier includes bogus read of value to force load BEFORE membar
5943    insert_mem_bar(Op_MemBarAcquire, loadedField);
5944  }
5945  return loadedField;
5946}
5947
5948Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5949                                                 bool is_exact = true, bool is_static = false,
5950                                                 ciInstanceKlass * fromKls = NULL) {
5951  if (fromKls == NULL) {
5952    const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5953    assert(tinst != NULL, "obj is null");
5954    assert(tinst->klass()->is_loaded(), "obj is not loaded");
5955    assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5956    fromKls = tinst->klass()->as_instance_klass();
5957  }
5958  else {
5959    assert(is_static, "only for static field access");
5960  }
5961  ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5962    ciSymbol::make(fieldTypeString),
5963    is_static);
5964
5965  assert(field != NULL, "undefined field");
5966  assert(!field->is_volatile(), "not defined for volatile fields");
5967
5968  if (is_static) {
5969    const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5970    fromObj = makecon(tip);
5971  }
5972
5973  // Next code  copied from Parse::do_get_xxx():
5974
5975  // Compute address and memory type.
5976  int offset = field->offset_in_bytes();
5977  Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5978
5979  return adr;
5980}
5981
5982//------------------------------inline_aescrypt_Block-----------------------
5983bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5984  address stubAddr = NULL;
5985  const char *stubName;
5986  assert(UseAES, "need AES instruction support");
5987
5988  switch(id) {
5989  case vmIntrinsics::_aescrypt_encryptBlock:
5990    stubAddr = StubRoutines::aescrypt_encryptBlock();
5991    stubName = "aescrypt_encryptBlock";
5992    break;
5993  case vmIntrinsics::_aescrypt_decryptBlock:
5994    stubAddr = StubRoutines::aescrypt_decryptBlock();
5995    stubName = "aescrypt_decryptBlock";
5996    break;
5997  }
5998  if (stubAddr == NULL) return false;
5999
6000  Node* aescrypt_object = argument(0);
6001  Node* src             = argument(1);
6002  Node* src_offset      = argument(2);
6003  Node* dest            = argument(3);
6004  Node* dest_offset     = argument(4);
6005
6006  // (1) src and dest are arrays.
6007  const Type* src_type = src->Value(&_gvn);
6008  const Type* dest_type = dest->Value(&_gvn);
6009  const TypeAryPtr* top_src = src_type->isa_aryptr();
6010  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6011  assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6012
6013  // for the quick and dirty code we will skip all the checks.
6014  // we are just trying to get the call to be generated.
6015  Node* src_start  = src;
6016  Node* dest_start = dest;
6017  if (src_offset != NULL || dest_offset != NULL) {
6018    assert(src_offset != NULL && dest_offset != NULL, "");
6019    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6020    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6021  }
6022
6023  // now need to get the start of its expanded key array
6024  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6025  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6026  if (k_start == NULL) return false;
6027
6028  if (Matcher::pass_original_key_for_aes()) {
6029    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6030    // compatibility issues between Java key expansion and SPARC crypto instructions
6031    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6032    if (original_k_start == NULL) return false;
6033
6034    // Call the stub.
6035    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6036                      stubAddr, stubName, TypePtr::BOTTOM,
6037                      src_start, dest_start, k_start, original_k_start);
6038  } else {
6039    // Call the stub.
6040    make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6041                      stubAddr, stubName, TypePtr::BOTTOM,
6042                      src_start, dest_start, k_start);
6043  }
6044
6045  return true;
6046}
6047
6048//------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6049bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6050  address stubAddr = NULL;
6051  const char *stubName = NULL;
6052
6053  assert(UseAES, "need AES instruction support");
6054
6055  switch(id) {
6056  case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6057    stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6058    stubName = "cipherBlockChaining_encryptAESCrypt";
6059    break;
6060  case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6061    stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6062    stubName = "cipherBlockChaining_decryptAESCrypt";
6063    break;
6064  }
6065  if (stubAddr == NULL) return false;
6066
6067  Node* cipherBlockChaining_object = argument(0);
6068  Node* src                        = argument(1);
6069  Node* src_offset                 = argument(2);
6070  Node* len                        = argument(3);
6071  Node* dest                       = argument(4);
6072  Node* dest_offset                = argument(5);
6073
6074  // (1) src and dest are arrays.
6075  const Type* src_type = src->Value(&_gvn);
6076  const Type* dest_type = dest->Value(&_gvn);
6077  const TypeAryPtr* top_src = src_type->isa_aryptr();
6078  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6079  assert (top_src  != NULL && top_src->klass()  != NULL
6080          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6081
6082  // checks are the responsibility of the caller
6083  Node* src_start  = src;
6084  Node* dest_start = dest;
6085  if (src_offset != NULL || dest_offset != NULL) {
6086    assert(src_offset != NULL && dest_offset != NULL, "");
6087    src_start  = array_element_address(src,  src_offset,  T_BYTE);
6088    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6089  }
6090
6091  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6092  // (because of the predicated logic executed earlier).
6093  // so we cast it here safely.
6094  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6095
6096  Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6097  if (embeddedCipherObj == NULL) return false;
6098
6099  // cast it to what we know it will be at runtime
6100  const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6101  assert(tinst != NULL, "CBC obj is null");
6102  assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6103  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6104  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6105
6106  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6107  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6108  const TypeOopPtr* xtype = aklass->as_instance_type();
6109  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6110  aescrypt_object = _gvn.transform(aescrypt_object);
6111
6112  // we need to get the start of the aescrypt_object's expanded key array
6113  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6114  if (k_start == NULL) return false;
6115
6116  // similarly, get the start address of the r vector
6117  Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6118  if (objRvec == NULL) return false;
6119  Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6120
6121  Node* cbcCrypt;
6122  if (Matcher::pass_original_key_for_aes()) {
6123    // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6124    // compatibility issues between Java key expansion and SPARC crypto instructions
6125    Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6126    if (original_k_start == NULL) return false;
6127
6128    // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6129    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6130                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6131                                 stubAddr, stubName, TypePtr::BOTTOM,
6132                                 src_start, dest_start, k_start, r_start, len, original_k_start);
6133  } else {
6134    // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6135    cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6136                                 OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6137                                 stubAddr, stubName, TypePtr::BOTTOM,
6138                                 src_start, dest_start, k_start, r_start, len);
6139  }
6140
6141  // return cipher length (int)
6142  Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6143  set_result(retvalue);
6144  return true;
6145}
6146
6147//------------------------------inline_counterMode_AESCrypt-----------------------
6148bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6149  assert(UseAES, "need AES instruction support");
6150  if (!UseAESCTRIntrinsics) return false;
6151
6152  address stubAddr = NULL;
6153  const char *stubName = NULL;
6154  if (id == vmIntrinsics::_counterMode_AESCrypt) {
6155    stubAddr = StubRoutines::counterMode_AESCrypt();
6156    stubName = "counterMode_AESCrypt";
6157  }
6158  if (stubAddr == NULL) return false;
6159
6160  Node* counterMode_object = argument(0);
6161  Node* src = argument(1);
6162  Node* src_offset = argument(2);
6163  Node* len = argument(3);
6164  Node* dest = argument(4);
6165  Node* dest_offset = argument(5);
6166
6167  // (1) src and dest are arrays.
6168  const Type* src_type = src->Value(&_gvn);
6169  const Type* dest_type = dest->Value(&_gvn);
6170  const TypeAryPtr* top_src = src_type->isa_aryptr();
6171  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6172  assert(top_src != NULL && top_src->klass() != NULL &&
6173         top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6174
6175  // checks are the responsibility of the caller
6176  Node* src_start = src;
6177  Node* dest_start = dest;
6178  if (src_offset != NULL || dest_offset != NULL) {
6179    assert(src_offset != NULL && dest_offset != NULL, "");
6180    src_start = array_element_address(src, src_offset, T_BYTE);
6181    dest_start = array_element_address(dest, dest_offset, T_BYTE);
6182  }
6183
6184  // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6185  // (because of the predicated logic executed earlier).
6186  // so we cast it here safely.
6187  // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6188  Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6189  if (embeddedCipherObj == NULL) return false;
6190  // cast it to what we know it will be at runtime
6191  const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6192  assert(tinst != NULL, "CTR obj is null");
6193  assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6194  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6195  assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6196  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6197  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6198  const TypeOopPtr* xtype = aklass->as_instance_type();
6199  Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6200  aescrypt_object = _gvn.transform(aescrypt_object);
6201  // we need to get the start of the aescrypt_object's expanded key array
6202  Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6203  if (k_start == NULL) return false;
6204  // similarly, get the start address of the r vector
6205  Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6206  if (obj_counter == NULL) return false;
6207  Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6208
6209  Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6210  if (saved_encCounter == NULL) return false;
6211  Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6212  Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6213
6214  Node* ctrCrypt;
6215  if (Matcher::pass_original_key_for_aes()) {
6216    // no SPARC version for AES/CTR intrinsics now.
6217    return false;
6218  }
6219  // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6220  ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6221                               OptoRuntime::counterMode_aescrypt_Type(),
6222                               stubAddr, stubName, TypePtr::BOTTOM,
6223                               src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6224
6225  // return cipher length (int)
6226  Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6227  set_result(retvalue);
6228  return true;
6229}
6230
6231//------------------------------get_key_start_from_aescrypt_object-----------------------
6232Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6233#ifdef PPC64
6234  // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6235  // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6236  // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6237  // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6238  Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6239  assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6240  if (objSessionK == NULL) {
6241    return (Node *) NULL;
6242  }
6243  Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6244#else
6245  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6246#endif // PPC64
6247  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6248  if (objAESCryptKey == NULL) return (Node *) NULL;
6249
6250  // now have the array, need to get the start address of the K array
6251  Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6252  return k_start;
6253}
6254
6255//------------------------------get_original_key_start_from_aescrypt_object-----------------------
6256Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6257  Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6258  assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6259  if (objAESCryptKey == NULL) return (Node *) NULL;
6260
6261  // now have the array, need to get the start address of the lastKey array
6262  Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6263  return original_k_start;
6264}
6265
6266//----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6267// Return node representing slow path of predicate check.
6268// the pseudo code we want to emulate with this predicate is:
6269// for encryption:
6270//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6271// for decryption:
6272//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6273//    note cipher==plain is more conservative than the original java code but that's OK
6274//
6275Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6276  // The receiver was checked for NULL already.
6277  Node* objCBC = argument(0);
6278
6279  // Load embeddedCipher field of CipherBlockChaining object.
6280  Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6281
6282  // get AESCrypt klass for instanceOf check
6283  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6284  // will have same classloader as CipherBlockChaining object
6285  const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6286  assert(tinst != NULL, "CBCobj is null");
6287  assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6288
6289  // we want to do an instanceof comparison against the AESCrypt class
6290  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6291  if (!klass_AESCrypt->is_loaded()) {
6292    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6293    Node* ctrl = control();
6294    set_control(top()); // no regular fast path
6295    return ctrl;
6296  }
6297  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6298
6299  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6300  Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6301  Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6302
6303  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6304
6305  // for encryption, we are done
6306  if (!decrypting)
6307    return instof_false;  // even if it is NULL
6308
6309  // for decryption, we need to add a further check to avoid
6310  // taking the intrinsic path when cipher and plain are the same
6311  // see the original java code for why.
6312  RegionNode* region = new RegionNode(3);
6313  region->init_req(1, instof_false);
6314  Node* src = argument(1);
6315  Node* dest = argument(4);
6316  Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6317  Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6318  Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6319  region->init_req(2, src_dest_conjoint);
6320
6321  record_for_igvn(region);
6322  return _gvn.transform(region);
6323}
6324
6325//----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6326// Return node representing slow path of predicate check.
6327// the pseudo code we want to emulate with this predicate is:
6328// for encryption:
6329//    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6330// for decryption:
6331//    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6332//    note cipher==plain is more conservative than the original java code but that's OK
6333//
6334
6335Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6336  // The receiver was checked for NULL already.
6337  Node* objCTR = argument(0);
6338
6339  // Load embeddedCipher field of CipherBlockChaining object.
6340  Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6341
6342  // get AESCrypt klass for instanceOf check
6343  // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6344  // will have same classloader as CipherBlockChaining object
6345  const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6346  assert(tinst != NULL, "CTRobj is null");
6347  assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6348
6349  // we want to do an instanceof comparison against the AESCrypt class
6350  ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6351  if (!klass_AESCrypt->is_loaded()) {
6352    // if AESCrypt is not even loaded, we never take the intrinsic fast path
6353    Node* ctrl = control();
6354    set_control(top()); // no regular fast path
6355    return ctrl;
6356  }
6357
6358  ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6359  Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6360  Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6361  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6362  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6363
6364  return instof_false; // even if it is NULL
6365}
6366
6367//------------------------------inline_ghash_processBlocks
6368bool LibraryCallKit::inline_ghash_processBlocks() {
6369  address stubAddr;
6370  const char *stubName;
6371  assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6372
6373  stubAddr = StubRoutines::ghash_processBlocks();
6374  stubName = "ghash_processBlocks";
6375
6376  Node* data           = argument(0);
6377  Node* offset         = argument(1);
6378  Node* len            = argument(2);
6379  Node* state          = argument(3);
6380  Node* subkeyH        = argument(4);
6381
6382  Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6383  assert(state_start, "state is NULL");
6384  Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6385  assert(subkeyH_start, "subkeyH is NULL");
6386  Node* data_start  = array_element_address(data, offset, T_BYTE);
6387  assert(data_start, "data is NULL");
6388
6389  Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6390                                  OptoRuntime::ghash_processBlocks_Type(),
6391                                  stubAddr, stubName, TypePtr::BOTTOM,
6392                                  state_start, subkeyH_start, data_start, len);
6393  return true;
6394}
6395
6396//------------------------------inline_sha_implCompress-----------------------
6397//
6398// Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6399// void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6400//
6401// Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6402// void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6403//
6404// Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6405// void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6406//
6407bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6408  assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6409
6410  Node* sha_obj = argument(0);
6411  Node* src     = argument(1); // type oop
6412  Node* ofs     = argument(2); // type int
6413
6414  const Type* src_type = src->Value(&_gvn);
6415  const TypeAryPtr* top_src = src_type->isa_aryptr();
6416  if (top_src  == NULL || top_src->klass()  == NULL) {
6417    // failed array check
6418    return false;
6419  }
6420  // Figure out the size and type of the elements we will be copying.
6421  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6422  if (src_elem != T_BYTE) {
6423    return false;
6424  }
6425  // 'src_start' points to src array + offset
6426  Node* src_start = array_element_address(src, ofs, src_elem);
6427  Node* state = NULL;
6428  address stubAddr;
6429  const char *stubName;
6430
6431  switch(id) {
6432  case vmIntrinsics::_sha_implCompress:
6433    assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6434    state = get_state_from_sha_object(sha_obj);
6435    stubAddr = StubRoutines::sha1_implCompress();
6436    stubName = "sha1_implCompress";
6437    break;
6438  case vmIntrinsics::_sha2_implCompress:
6439    assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6440    state = get_state_from_sha_object(sha_obj);
6441    stubAddr = StubRoutines::sha256_implCompress();
6442    stubName = "sha256_implCompress";
6443    break;
6444  case vmIntrinsics::_sha5_implCompress:
6445    assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6446    state = get_state_from_sha5_object(sha_obj);
6447    stubAddr = StubRoutines::sha512_implCompress();
6448    stubName = "sha512_implCompress";
6449    break;
6450  default:
6451    fatal_unexpected_iid(id);
6452    return false;
6453  }
6454  if (state == NULL) return false;
6455
6456  // Call the stub.
6457  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6458                                 stubAddr, stubName, TypePtr::BOTTOM,
6459                                 src_start, state);
6460
6461  return true;
6462}
6463
6464//------------------------------inline_digestBase_implCompressMB-----------------------
6465//
6466// Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6467// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6468//
6469bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6470  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6471         "need SHA1/SHA256/SHA512 instruction support");
6472  assert((uint)predicate < 3, "sanity");
6473  assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6474
6475  Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6476  Node* src            = argument(1); // byte[] array
6477  Node* ofs            = argument(2); // type int
6478  Node* limit          = argument(3); // type int
6479
6480  const Type* src_type = src->Value(&_gvn);
6481  const TypeAryPtr* top_src = src_type->isa_aryptr();
6482  if (top_src  == NULL || top_src->klass()  == NULL) {
6483    // failed array check
6484    return false;
6485  }
6486  // Figure out the size and type of the elements we will be copying.
6487  BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6488  if (src_elem != T_BYTE) {
6489    return false;
6490  }
6491  // 'src_start' points to src array + offset
6492  Node* src_start = array_element_address(src, ofs, src_elem);
6493
6494  const char* klass_SHA_name = NULL;
6495  const char* stub_name = NULL;
6496  address     stub_addr = NULL;
6497  bool        long_state = false;
6498
6499  switch (predicate) {
6500  case 0:
6501    if (UseSHA1Intrinsics) {
6502      klass_SHA_name = "sun/security/provider/SHA";
6503      stub_name = "sha1_implCompressMB";
6504      stub_addr = StubRoutines::sha1_implCompressMB();
6505    }
6506    break;
6507  case 1:
6508    if (UseSHA256Intrinsics) {
6509      klass_SHA_name = "sun/security/provider/SHA2";
6510      stub_name = "sha256_implCompressMB";
6511      stub_addr = StubRoutines::sha256_implCompressMB();
6512    }
6513    break;
6514  case 2:
6515    if (UseSHA512Intrinsics) {
6516      klass_SHA_name = "sun/security/provider/SHA5";
6517      stub_name = "sha512_implCompressMB";
6518      stub_addr = StubRoutines::sha512_implCompressMB();
6519      long_state = true;
6520    }
6521    break;
6522  default:
6523    fatal("unknown SHA intrinsic predicate: %d", predicate);
6524  }
6525  if (klass_SHA_name != NULL) {
6526    // get DigestBase klass to lookup for SHA klass
6527    const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6528    assert(tinst != NULL, "digestBase_obj is not instance???");
6529    assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6530
6531    ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6532    assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6533    ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6534    return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6535  }
6536  return false;
6537}
6538//------------------------------inline_sha_implCompressMB-----------------------
6539bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6540                                               bool long_state, address stubAddr, const char *stubName,
6541                                               Node* src_start, Node* ofs, Node* limit) {
6542  const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6543  const TypeOopPtr* xtype = aklass->as_instance_type();
6544  Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6545  sha_obj = _gvn.transform(sha_obj);
6546
6547  Node* state;
6548  if (long_state) {
6549    state = get_state_from_sha5_object(sha_obj);
6550  } else {
6551    state = get_state_from_sha_object(sha_obj);
6552  }
6553  if (state == NULL) return false;
6554
6555  // Call the stub.
6556  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6557                                 OptoRuntime::digestBase_implCompressMB_Type(),
6558                                 stubAddr, stubName, TypePtr::BOTTOM,
6559                                 src_start, state, ofs, limit);
6560  // return ofs (int)
6561  Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6562  set_result(result);
6563
6564  return true;
6565}
6566
6567//------------------------------get_state_from_sha_object-----------------------
6568Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6569  Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6570  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6571  if (sha_state == NULL) return (Node *) NULL;
6572
6573  // now have the array, need to get the start address of the state array
6574  Node* state = array_element_address(sha_state, intcon(0), T_INT);
6575  return state;
6576}
6577
6578//------------------------------get_state_from_sha5_object-----------------------
6579Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6580  Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6581  assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6582  if (sha_state == NULL) return (Node *) NULL;
6583
6584  // now have the array, need to get the start address of the state array
6585  Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6586  return state;
6587}
6588
6589//----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6590// Return node representing slow path of predicate check.
6591// the pseudo code we want to emulate with this predicate is:
6592//    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6593//
6594Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6595  assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6596         "need SHA1/SHA256/SHA512 instruction support");
6597  assert((uint)predicate < 3, "sanity");
6598
6599  // The receiver was checked for NULL already.
6600  Node* digestBaseObj = argument(0);
6601
6602  // get DigestBase klass for instanceOf check
6603  const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6604  assert(tinst != NULL, "digestBaseObj is null");
6605  assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6606
6607  const char* klass_SHA_name = NULL;
6608  switch (predicate) {
6609  case 0:
6610    if (UseSHA1Intrinsics) {
6611      // we want to do an instanceof comparison against the SHA class
6612      klass_SHA_name = "sun/security/provider/SHA";
6613    }
6614    break;
6615  case 1:
6616    if (UseSHA256Intrinsics) {
6617      // we want to do an instanceof comparison against the SHA2 class
6618      klass_SHA_name = "sun/security/provider/SHA2";
6619    }
6620    break;
6621  case 2:
6622    if (UseSHA512Intrinsics) {
6623      // we want to do an instanceof comparison against the SHA5 class
6624      klass_SHA_name = "sun/security/provider/SHA5";
6625    }
6626    break;
6627  default:
6628    fatal("unknown SHA intrinsic predicate: %d", predicate);
6629  }
6630
6631  ciKlass* klass_SHA = NULL;
6632  if (klass_SHA_name != NULL) {
6633    klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6634  }
6635  if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6636    // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6637    Node* ctrl = control();
6638    set_control(top()); // no intrinsic path
6639    return ctrl;
6640  }
6641  ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6642
6643  Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6644  Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6645  Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6646  Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6647
6648  return instof_false;  // even if it is NULL
6649}
6650
6651bool LibraryCallKit::inline_profileBoolean() {
6652  Node* counts = argument(1);
6653  const TypeAryPtr* ary = NULL;
6654  ciArray* aobj = NULL;
6655  if (counts->is_Con()
6656      && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6657      && (aobj = ary->const_oop()->as_array()) != NULL
6658      && (aobj->length() == 2)) {
6659    // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6660    jint false_cnt = aobj->element_value(0).as_int();
6661    jint  true_cnt = aobj->element_value(1).as_int();
6662
6663    if (C->log() != NULL) {
6664      C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6665                     false_cnt, true_cnt);
6666    }
6667
6668    if (false_cnt + true_cnt == 0) {
6669      // According to profile, never executed.
6670      uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6671                          Deoptimization::Action_reinterpret);
6672      return true;
6673    }
6674
6675    // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6676    // is a number of each value occurrences.
6677    Node* result = argument(0);
6678    if (false_cnt == 0 || true_cnt == 0) {
6679      // According to profile, one value has been never seen.
6680      int expected_val = (false_cnt == 0) ? 1 : 0;
6681
6682      Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6683      Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6684
6685      IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6686      Node* fast_path = _gvn.transform(new IfTrueNode(check));
6687      Node* slow_path = _gvn.transform(new IfFalseNode(check));
6688
6689      { // Slow path: uncommon trap for never seen value and then reexecute
6690        // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6691        // the value has been seen at least once.
6692        PreserveJVMState pjvms(this);
6693        PreserveReexecuteState preexecs(this);
6694        jvms()->set_should_reexecute(true);
6695
6696        set_control(slow_path);
6697        set_i_o(i_o());
6698
6699        uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6700                            Deoptimization::Action_reinterpret);
6701      }
6702      // The guard for never seen value enables sharpening of the result and
6703      // returning a constant. It allows to eliminate branches on the same value
6704      // later on.
6705      set_control(fast_path);
6706      result = intcon(expected_val);
6707    }
6708    // Stop profiling.
6709    // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6710    // By replacing method body with profile data (represented as ProfileBooleanNode
6711    // on IR level) we effectively disable profiling.
6712    // It enables full speed execution once optimized code is generated.
6713    Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6714    C->record_for_igvn(profile);
6715    set_result(profile);
6716    return true;
6717  } else {
6718    // Continue profiling.
6719    // Profile data isn't available at the moment. So, execute method's bytecode version.
6720    // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6721    // is compiled and counters aren't available since corresponding MethodHandle
6722    // isn't a compile-time constant.
6723    return false;
6724  }
6725}
6726
6727bool LibraryCallKit::inline_isCompileConstant() {
6728  Node* n = argument(0);
6729  set_result(n->is_Con() ? intcon(1) : intcon(0));
6730  return true;
6731}
6732