library_call.cpp revision 0:a61af66fc99e
1/*
2 * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25#include "incls/_precompiled.incl"
26#include "incls/_library_call.cpp.incl"
27
28class LibraryIntrinsic : public InlineCallGenerator {
29  // Extend the set of intrinsics known to the runtime:
30 public:
31 private:
32  bool             _is_virtual;
33  vmIntrinsics::ID _intrinsic_id;
34
35 public:
36  LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
37    : InlineCallGenerator(m),
38      _is_virtual(is_virtual),
39      _intrinsic_id(id)
40  {
41  }
42  virtual bool is_intrinsic() const { return true; }
43  virtual bool is_virtual()   const { return _is_virtual; }
44  virtual JVMState* generate(JVMState* jvms);
45  vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
46};
47
48
49// Local helper class for LibraryIntrinsic:
50class LibraryCallKit : public GraphKit {
51 private:
52  LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
53
54 public:
55  LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
56    : GraphKit(caller),
57      _intrinsic(intrinsic)
58  {
59  }
60
61  ciMethod*         caller()    const    { return jvms()->method(); }
62  int               bci()       const    { return jvms()->bci(); }
63  LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
64  vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
65  ciMethod*         callee()    const    { return _intrinsic->method(); }
66  ciSignature*      signature() const    { return callee()->signature(); }
67  int               arg_size()  const    { return callee()->arg_size(); }
68
69  bool try_to_inline();
70
71  // Helper functions to inline natives
72  void push_result(RegionNode* region, PhiNode* value);
73  Node* generate_guard(Node* test, RegionNode* region, float true_prob);
74  Node* generate_slow_guard(Node* test, RegionNode* region);
75  Node* generate_fair_guard(Node* test, RegionNode* region);
76  Node* generate_negative_guard(Node* index, RegionNode* region,
77                                // resulting CastII of index:
78                                Node* *pos_index = NULL);
79  Node* generate_nonpositive_guard(Node* index, bool never_negative,
80                                   // resulting CastII of index:
81                                   Node* *pos_index = NULL);
82  Node* generate_limit_guard(Node* offset, Node* subseq_length,
83                             Node* array_length,
84                             RegionNode* region);
85  Node* generate_current_thread(Node* &tls_output);
86  address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
87                              bool disjoint_bases, const char* &name);
88  Node* load_mirror_from_klass(Node* klass);
89  Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
90                                      int nargs,
91                                      RegionNode* region, int null_path,
92                                      int offset);
93  Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
94                               RegionNode* region, int null_path) {
95    int offset = java_lang_Class::klass_offset_in_bytes();
96    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
97                                         region, null_path,
98                                         offset);
99  }
100  Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
101                                     int nargs,
102                                     RegionNode* region, int null_path) {
103    int offset = java_lang_Class::array_klass_offset_in_bytes();
104    return load_klass_from_mirror_common(mirror, never_see_null, nargs,
105                                         region, null_path,
106                                         offset);
107  }
108  Node* generate_access_flags_guard(Node* kls,
109                                    int modifier_mask, int modifier_bits,
110                                    RegionNode* region);
111  Node* generate_interface_guard(Node* kls, RegionNode* region);
112  Node* generate_array_guard(Node* kls, RegionNode* region) {
113    return generate_array_guard_common(kls, region, false, false);
114  }
115  Node* generate_non_array_guard(Node* kls, RegionNode* region) {
116    return generate_array_guard_common(kls, region, false, true);
117  }
118  Node* generate_objArray_guard(Node* kls, RegionNode* region) {
119    return generate_array_guard_common(kls, region, true, false);
120  }
121  Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
122    return generate_array_guard_common(kls, region, true, true);
123  }
124  Node* generate_array_guard_common(Node* kls, RegionNode* region,
125                                    bool obj_array, bool not_array);
126  Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
127  CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
128                                     bool is_virtual = false, bool is_static = false);
129  CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
130    return generate_method_call(method_id, false, true);
131  }
132  CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
133    return generate_method_call(method_id, true, false);
134  }
135
136  bool inline_string_compareTo();
137  bool inline_string_indexOf();
138  Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
139  Node* pop_math_arg();
140  bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
141  bool inline_math_native(vmIntrinsics::ID id);
142  bool inline_trig(vmIntrinsics::ID id);
143  bool inline_trans(vmIntrinsics::ID id);
144  bool inline_abs(vmIntrinsics::ID id);
145  bool inline_sqrt(vmIntrinsics::ID id);
146  bool inline_pow(vmIntrinsics::ID id);
147  bool inline_exp(vmIntrinsics::ID id);
148  bool inline_min_max(vmIntrinsics::ID id);
149  Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
150  // This returns Type::AnyPtr, RawPtr, or OopPtr.
151  int classify_unsafe_addr(Node* &base, Node* &offset);
152  Node* make_unsafe_address(Node* base, Node* offset);
153  bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
154  bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
155  bool inline_unsafe_allocate();
156  bool inline_unsafe_copyMemory();
157  bool inline_native_currentThread();
158  bool inline_native_time_funcs(bool isNano);
159  bool inline_native_isInterrupted();
160  bool inline_native_Class_query(vmIntrinsics::ID id);
161  bool inline_native_subtype_check();
162
163  bool inline_native_newArray();
164  bool inline_native_getLength();
165  bool inline_array_copyOf(bool is_copyOfRange);
166  bool inline_native_clone(bool is_virtual);
167  bool inline_native_Reflection_getCallerClass();
168  bool inline_native_AtomicLong_get();
169  bool inline_native_AtomicLong_attemptUpdate();
170  bool is_method_invoke_or_aux_frame(JVMState* jvms);
171  // Helper function for inlining native object hash method
172  bool inline_native_hashcode(bool is_virtual, bool is_static);
173  bool inline_native_getClass();
174
175  // Helper functions for inlining arraycopy
176  bool inline_arraycopy();
177  void generate_arraycopy(const TypePtr* adr_type,
178                          BasicType basic_elem_type,
179                          Node* src,  Node* src_offset,
180                          Node* dest, Node* dest_offset,
181                          Node* copy_length,
182                          int nargs,  // arguments on stack for debug info
183                          bool disjoint_bases = false,
184                          bool length_never_negative = false,
185                          RegionNode* slow_region = NULL);
186  AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
187                                                RegionNode* slow_region);
188  void generate_clear_array(const TypePtr* adr_type,
189                            Node* dest,
190                            BasicType basic_elem_type,
191                            Node* slice_off,
192                            Node* slice_len,
193                            Node* slice_end);
194  bool generate_block_arraycopy(const TypePtr* adr_type,
195                                BasicType basic_elem_type,
196                                AllocateNode* alloc,
197                                Node* src,  Node* src_offset,
198                                Node* dest, Node* dest_offset,
199                                Node* dest_size);
200  void generate_slow_arraycopy(const TypePtr* adr_type,
201                               Node* src,  Node* src_offset,
202                               Node* dest, Node* dest_offset,
203                               Node* copy_length,
204                               int nargs);
205  Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
206                                     Node* dest_elem_klass,
207                                     Node* src,  Node* src_offset,
208                                     Node* dest, Node* dest_offset,
209                                     Node* copy_length, int nargs);
210  Node* generate_generic_arraycopy(const TypePtr* adr_type,
211                                   Node* src,  Node* src_offset,
212                                   Node* dest, Node* dest_offset,
213                                   Node* copy_length, int nargs);
214  void generate_unchecked_arraycopy(const TypePtr* adr_type,
215                                    BasicType basic_elem_type,
216                                    bool disjoint_bases,
217                                    Node* src,  Node* src_offset,
218                                    Node* dest, Node* dest_offset,
219                                    Node* copy_length);
220  bool inline_unsafe_CAS(BasicType type);
221  bool inline_unsafe_ordered_store(BasicType type);
222  bool inline_fp_conversions(vmIntrinsics::ID id);
223  bool inline_reverseBytes(vmIntrinsics::ID id);
224};
225
226
227//---------------------------make_vm_intrinsic----------------------------
228CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
229  vmIntrinsics::ID id = m->intrinsic_id();
230  assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
231
232  if (DisableIntrinsic[0] != '\0'
233      && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
234    // disabled by a user request on the command line:
235    // example: -XX:DisableIntrinsic=_hashCode,_getClass
236    return NULL;
237  }
238
239  if (!m->is_loaded()) {
240    // do not attempt to inline unloaded methods
241    return NULL;
242  }
243
244  // Only a few intrinsics implement a virtual dispatch.
245  // They are expensive calls which are also frequently overridden.
246  if (is_virtual) {
247    switch (id) {
248    case vmIntrinsics::_hashCode:
249    case vmIntrinsics::_clone:
250      // OK, Object.hashCode and Object.clone intrinsics come in both flavors
251      break;
252    default:
253      return NULL;
254    }
255  }
256
257  // -XX:-InlineNatives disables nearly all intrinsics:
258  if (!InlineNatives) {
259    switch (id) {
260    case vmIntrinsics::_indexOf:
261    case vmIntrinsics::_compareTo:
262      break;  // InlineNatives does not control String.compareTo
263    default:
264      return NULL;
265    }
266  }
267
268  switch (id) {
269  case vmIntrinsics::_compareTo:
270    if (!SpecialStringCompareTo)  return NULL;
271    break;
272  case vmIntrinsics::_indexOf:
273    if (!SpecialStringIndexOf)  return NULL;
274    break;
275  case vmIntrinsics::_arraycopy:
276    if (!InlineArrayCopy)  return NULL;
277    break;
278  case vmIntrinsics::_copyMemory:
279    if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
280    if (!InlineArrayCopy)  return NULL;
281    break;
282  case vmIntrinsics::_hashCode:
283    if (!InlineObjectHash)  return NULL;
284    break;
285  case vmIntrinsics::_clone:
286  case vmIntrinsics::_copyOf:
287  case vmIntrinsics::_copyOfRange:
288    if (!InlineObjectCopy)  return NULL;
289    // These also use the arraycopy intrinsic mechanism:
290    if (!InlineArrayCopy)  return NULL;
291    break;
292  case vmIntrinsics::_checkIndex:
293    // We do not intrinsify this.  The optimizer does fine with it.
294    return NULL;
295
296  case vmIntrinsics::_get_AtomicLong:
297  case vmIntrinsics::_attemptUpdate:
298    if (!InlineAtomicLong)  return NULL;
299    break;
300
301  case vmIntrinsics::_Object_init:
302  case vmIntrinsics::_invoke:
303    // We do not intrinsify these; they are marked for other purposes.
304    return NULL;
305
306  case vmIntrinsics::_getCallerClass:
307    if (!UseNewReflection)  return NULL;
308    if (!InlineReflectionGetCallerClass)  return NULL;
309    if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
310    break;
311
312 default:
313    break;
314  }
315
316  // -XX:-InlineClassNatives disables natives from the Class class.
317  // The flag applies to all reflective calls, notably Array.newArray
318  // (visible to Java programmers as Array.newInstance).
319  if (m->holder()->name() == ciSymbol::java_lang_Class() ||
320      m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
321    if (!InlineClassNatives)  return NULL;
322  }
323
324  // -XX:-InlineThreadNatives disables natives from the Thread class.
325  if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
326    if (!InlineThreadNatives)  return NULL;
327  }
328
329  // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
330  if (m->holder()->name() == ciSymbol::java_lang_Math() ||
331      m->holder()->name() == ciSymbol::java_lang_Float() ||
332      m->holder()->name() == ciSymbol::java_lang_Double()) {
333    if (!InlineMathNatives)  return NULL;
334  }
335
336  // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
337  if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
338    if (!InlineUnsafeOps)  return NULL;
339  }
340
341  return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
342}
343
344//----------------------register_library_intrinsics-----------------------
345// Initialize this file's data structures, for each Compile instance.
346void Compile::register_library_intrinsics() {
347  // Nothing to do here.
348}
349
350JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
351  LibraryCallKit kit(jvms, this);
352  Compile* C = kit.C;
353  int nodes = C->unique();
354#ifndef PRODUCT
355  if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
356    char buf[1000];
357    const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
358    tty->print_cr("Intrinsic %s", str);
359  }
360#endif
361  if (kit.try_to_inline()) {
362    if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
363      tty->print("Inlining intrinsic %s%s at bci:%d in",
364                 vmIntrinsics::name_at(intrinsic_id()),
365                 (is_virtual() ? " (virtual)" : ""), kit.bci());
366      kit.caller()->print_short_name(tty);
367      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
368    }
369    C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
370    if (C->log()) {
371      C->log()->elem("intrinsic id='%s'%s nodes='%d'",
372                     vmIntrinsics::name_at(intrinsic_id()),
373                     (is_virtual() ? " virtual='1'" : ""),
374                     C->unique() - nodes);
375    }
376    return kit.transfer_exceptions_into_jvms();
377  }
378
379  if (PrintIntrinsics) {
380    switch (intrinsic_id()) {
381    case vmIntrinsics::_invoke:
382    case vmIntrinsics::_Object_init:
383      // We do not expect to inline these, so do not produce any noise about them.
384      break;
385    default:
386      tty->print("Did not inline intrinsic %s%s at bci:%d in",
387                 vmIntrinsics::name_at(intrinsic_id()),
388                 (is_virtual() ? " (virtual)" : ""), kit.bci());
389      kit.caller()->print_short_name(tty);
390      tty->print_cr(" (%d bytes)", kit.caller()->code_size());
391    }
392  }
393  C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
394  return NULL;
395}
396
397bool LibraryCallKit::try_to_inline() {
398  // Handle symbolic names for otherwise undistinguished boolean switches:
399  const bool is_store       = true;
400  const bool is_native_ptr  = true;
401  const bool is_static      = true;
402
403  switch (intrinsic_id()) {
404  case vmIntrinsics::_hashCode:
405    return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
406  case vmIntrinsics::_identityHashCode:
407    return inline_native_hashcode(/*!virtual*/ false, is_static);
408  case vmIntrinsics::_getClass:
409    return inline_native_getClass();
410
411  case vmIntrinsics::_dsin:
412  case vmIntrinsics::_dcos:
413  case vmIntrinsics::_dtan:
414  case vmIntrinsics::_dabs:
415  case vmIntrinsics::_datan2:
416  case vmIntrinsics::_dsqrt:
417  case vmIntrinsics::_dexp:
418  case vmIntrinsics::_dlog:
419  case vmIntrinsics::_dlog10:
420  case vmIntrinsics::_dpow:
421    return inline_math_native(intrinsic_id());
422
423  case vmIntrinsics::_min:
424  case vmIntrinsics::_max:
425    return inline_min_max(intrinsic_id());
426
427  case vmIntrinsics::_arraycopy:
428    return inline_arraycopy();
429
430  case vmIntrinsics::_compareTo:
431    return inline_string_compareTo();
432  case vmIntrinsics::_indexOf:
433    return inline_string_indexOf();
434
435  case vmIntrinsics::_getObject:
436    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
437  case vmIntrinsics::_getBoolean:
438    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
439  case vmIntrinsics::_getByte:
440    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
441  case vmIntrinsics::_getShort:
442    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
443  case vmIntrinsics::_getChar:
444    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
445  case vmIntrinsics::_getInt:
446    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
447  case vmIntrinsics::_getLong:
448    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
449  case vmIntrinsics::_getFloat:
450    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
451  case vmIntrinsics::_getDouble:
452    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
453
454  case vmIntrinsics::_putObject:
455    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
456  case vmIntrinsics::_putBoolean:
457    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
458  case vmIntrinsics::_putByte:
459    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
460  case vmIntrinsics::_putShort:
461    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
462  case vmIntrinsics::_putChar:
463    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
464  case vmIntrinsics::_putInt:
465    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
466  case vmIntrinsics::_putLong:
467    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
468  case vmIntrinsics::_putFloat:
469    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
470  case vmIntrinsics::_putDouble:
471    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
472
473  case vmIntrinsics::_getByte_raw:
474    return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
475  case vmIntrinsics::_getShort_raw:
476    return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
477  case vmIntrinsics::_getChar_raw:
478    return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
479  case vmIntrinsics::_getInt_raw:
480    return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
481  case vmIntrinsics::_getLong_raw:
482    return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
483  case vmIntrinsics::_getFloat_raw:
484    return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
485  case vmIntrinsics::_getDouble_raw:
486    return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
487  case vmIntrinsics::_getAddress_raw:
488    return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
489
490  case vmIntrinsics::_putByte_raw:
491    return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
492  case vmIntrinsics::_putShort_raw:
493    return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
494  case vmIntrinsics::_putChar_raw:
495    return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
496  case vmIntrinsics::_putInt_raw:
497    return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
498  case vmIntrinsics::_putLong_raw:
499    return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
500  case vmIntrinsics::_putFloat_raw:
501    return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
502  case vmIntrinsics::_putDouble_raw:
503    return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
504  case vmIntrinsics::_putAddress_raw:
505    return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
506
507  case vmIntrinsics::_getObjectVolatile:
508    return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
509  case vmIntrinsics::_getBooleanVolatile:
510    return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
511  case vmIntrinsics::_getByteVolatile:
512    return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
513  case vmIntrinsics::_getShortVolatile:
514    return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
515  case vmIntrinsics::_getCharVolatile:
516    return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
517  case vmIntrinsics::_getIntVolatile:
518    return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
519  case vmIntrinsics::_getLongVolatile:
520    return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
521  case vmIntrinsics::_getFloatVolatile:
522    return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
523  case vmIntrinsics::_getDoubleVolatile:
524    return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
525
526  case vmIntrinsics::_putObjectVolatile:
527    return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
528  case vmIntrinsics::_putBooleanVolatile:
529    return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
530  case vmIntrinsics::_putByteVolatile:
531    return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
532  case vmIntrinsics::_putShortVolatile:
533    return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
534  case vmIntrinsics::_putCharVolatile:
535    return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
536  case vmIntrinsics::_putIntVolatile:
537    return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
538  case vmIntrinsics::_putLongVolatile:
539    return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
540  case vmIntrinsics::_putFloatVolatile:
541    return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
542  case vmIntrinsics::_putDoubleVolatile:
543    return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
544
545  case vmIntrinsics::_prefetchRead:
546    return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
547  case vmIntrinsics::_prefetchWrite:
548    return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
549  case vmIntrinsics::_prefetchReadStatic:
550    return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
551  case vmIntrinsics::_prefetchWriteStatic:
552    return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
553
554  case vmIntrinsics::_compareAndSwapObject:
555    return inline_unsafe_CAS(T_OBJECT);
556  case vmIntrinsics::_compareAndSwapInt:
557    return inline_unsafe_CAS(T_INT);
558  case vmIntrinsics::_compareAndSwapLong:
559    return inline_unsafe_CAS(T_LONG);
560
561  case vmIntrinsics::_putOrderedObject:
562    return inline_unsafe_ordered_store(T_OBJECT);
563  case vmIntrinsics::_putOrderedInt:
564    return inline_unsafe_ordered_store(T_INT);
565  case vmIntrinsics::_putOrderedLong:
566    return inline_unsafe_ordered_store(T_LONG);
567
568  case vmIntrinsics::_currentThread:
569    return inline_native_currentThread();
570  case vmIntrinsics::_isInterrupted:
571    return inline_native_isInterrupted();
572
573  case vmIntrinsics::_currentTimeMillis:
574    return inline_native_time_funcs(false);
575  case vmIntrinsics::_nanoTime:
576    return inline_native_time_funcs(true);
577  case vmIntrinsics::_allocateInstance:
578    return inline_unsafe_allocate();
579  case vmIntrinsics::_copyMemory:
580    return inline_unsafe_copyMemory();
581  case vmIntrinsics::_newArray:
582    return inline_native_newArray();
583  case vmIntrinsics::_getLength:
584    return inline_native_getLength();
585  case vmIntrinsics::_copyOf:
586    return inline_array_copyOf(false);
587  case vmIntrinsics::_copyOfRange:
588    return inline_array_copyOf(true);
589  case vmIntrinsics::_clone:
590    return inline_native_clone(intrinsic()->is_virtual());
591
592  case vmIntrinsics::_isAssignableFrom:
593    return inline_native_subtype_check();
594
595  case vmIntrinsics::_isInstance:
596  case vmIntrinsics::_getModifiers:
597  case vmIntrinsics::_isInterface:
598  case vmIntrinsics::_isArray:
599  case vmIntrinsics::_isPrimitive:
600  case vmIntrinsics::_getSuperclass:
601  case vmIntrinsics::_getComponentType:
602  case vmIntrinsics::_getClassAccessFlags:
603    return inline_native_Class_query(intrinsic_id());
604
605  case vmIntrinsics::_floatToRawIntBits:
606  case vmIntrinsics::_floatToIntBits:
607  case vmIntrinsics::_intBitsToFloat:
608  case vmIntrinsics::_doubleToRawLongBits:
609  case vmIntrinsics::_doubleToLongBits:
610  case vmIntrinsics::_longBitsToDouble:
611    return inline_fp_conversions(intrinsic_id());
612
613  case vmIntrinsics::_reverseBytes_i:
614  case vmIntrinsics::_reverseBytes_l:
615    return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
616
617  case vmIntrinsics::_get_AtomicLong:
618    return inline_native_AtomicLong_get();
619  case vmIntrinsics::_attemptUpdate:
620    return inline_native_AtomicLong_attemptUpdate();
621
622  case vmIntrinsics::_getCallerClass:
623    return inline_native_Reflection_getCallerClass();
624
625  default:
626    // If you get here, it may be that someone has added a new intrinsic
627    // to the list in vmSymbols.hpp without implementing it here.
628#ifndef PRODUCT
629    if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
630      tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
631                    vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
632    }
633#endif
634    return false;
635  }
636}
637
638//------------------------------push_result------------------------------
639// Helper function for finishing intrinsics.
640void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
641  record_for_igvn(region);
642  set_control(_gvn.transform(region));
643  BasicType value_type = value->type()->basic_type();
644  push_node(value_type, _gvn.transform(value));
645}
646
647//------------------------------generate_guard---------------------------
648// Helper function for generating guarded fast-slow graph structures.
649// The given 'test', if true, guards a slow path.  If the test fails
650// then a fast path can be taken.  (We generally hope it fails.)
651// In all cases, GraphKit::control() is updated to the fast path.
652// The returned value represents the control for the slow path.
653// The return value is never 'top'; it is either a valid control
654// or NULL if it is obvious that the slow path can never be taken.
655// Also, if region and the slow control are not NULL, the slow edge
656// is appended to the region.
657Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
658  if (stopped()) {
659    // Already short circuited.
660    return NULL;
661  }
662
663  // Build an if node and its projections.
664  // If test is true we take the slow path, which we assume is uncommon.
665  if (_gvn.type(test) == TypeInt::ZERO) {
666    // The slow branch is never taken.  No need to build this guard.
667    return NULL;
668  }
669
670  IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
671
672  Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
673  if (if_slow == top()) {
674    // The slow branch is never taken.  No need to build this guard.
675    return NULL;
676  }
677
678  if (region != NULL)
679    region->add_req(if_slow);
680
681  Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
682  set_control(if_fast);
683
684  return if_slow;
685}
686
687inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
688  return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
689}
690inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
691  return generate_guard(test, region, PROB_FAIR);
692}
693
694inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
695                                                     Node* *pos_index) {
696  if (stopped())
697    return NULL;                // already stopped
698  if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
699    return NULL;                // index is already adequately typed
700  Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
701  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
702  Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
703  if (is_neg != NULL && pos_index != NULL) {
704    // Emulate effect of Parse::adjust_map_after_if.
705    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
706    ccast->set_req(0, control());
707    (*pos_index) = _gvn.transform(ccast);
708  }
709  return is_neg;
710}
711
712inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
713                                                        Node* *pos_index) {
714  if (stopped())
715    return NULL;                // already stopped
716  if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
717    return NULL;                // index is already adequately typed
718  Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
719  BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
720  Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
721  Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
722  if (is_notp != NULL && pos_index != NULL) {
723    // Emulate effect of Parse::adjust_map_after_if.
724    Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
725    ccast->set_req(0, control());
726    (*pos_index) = _gvn.transform(ccast);
727  }
728  return is_notp;
729}
730
731// Make sure that 'position' is a valid limit index, in [0..length].
732// There are two equivalent plans for checking this:
733//   A. (offset + copyLength)  unsigned<=  arrayLength
734//   B. offset  <=  (arrayLength - copyLength)
735// We require that all of the values above, except for the sum and
736// difference, are already known to be non-negative.
737// Plan A is robust in the face of overflow, if offset and copyLength
738// are both hugely positive.
739//
740// Plan B is less direct and intuitive, but it does not overflow at
741// all, since the difference of two non-negatives is always
742// representable.  Whenever Java methods must perform the equivalent
743// check they generally use Plan B instead of Plan A.
744// For the moment we use Plan A.
745inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
746                                                  Node* subseq_length,
747                                                  Node* array_length,
748                                                  RegionNode* region) {
749  if (stopped())
750    return NULL;                // already stopped
751  bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
752  if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
753    return NULL;                // common case of whole-array copy
754  Node* last = subseq_length;
755  if (!zero_offset)             // last += offset
756    last = _gvn.transform( new (C, 3) AddINode(last, offset));
757  Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
758  Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
759  Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
760  return is_over;
761}
762
763
764//--------------------------generate_current_thread--------------------
765Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
766  ciKlass*    thread_klass = env()->Thread_klass();
767  const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
768  Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
769  Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
770  Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
771  tls_output = thread;
772  return threadObj;
773}
774
775
776//------------------------------inline_string_compareTo------------------------
777bool LibraryCallKit::inline_string_compareTo() {
778
779  const int value_offset = java_lang_String::value_offset_in_bytes();
780  const int count_offset = java_lang_String::count_offset_in_bytes();
781  const int offset_offset = java_lang_String::offset_offset_in_bytes();
782
783  _sp += 2;
784  Node *argument = pop();  // pop non-receiver first:  it was pushed second
785  Node *receiver = pop();
786
787  // Null check on self without removing any arguments.  The argument
788  // null check technically happens in the wrong place, which can lead to
789  // invalid stack traces when string compare is inlined into a method
790  // which handles NullPointerExceptions.
791  _sp += 2;
792  receiver = do_null_check(receiver, T_OBJECT);
793  argument = do_null_check(argument, T_OBJECT);
794  _sp -= 2;
795  if (stopped()) {
796    return true;
797  }
798
799  ciInstanceKlass* klass = env()->String_klass();
800  const TypeInstPtr* string_type =
801    TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
802
803  Node* compare =
804    _gvn.transform(new (C, 7) StrCompNode(
805                        control(),
806                        memory(TypeAryPtr::CHARS),
807                        memory(string_type->add_offset(value_offset)),
808                        memory(string_type->add_offset(count_offset)),
809                        memory(string_type->add_offset(offset_offset)),
810                        receiver,
811                        argument));
812  push(compare);
813  return true;
814}
815
816// Java version of String.indexOf(constant string)
817// class StringDecl {
818//   StringDecl(char[] ca) {
819//     offset = 0;
820//     count = ca.length;
821//     value = ca;
822//   }
823//   int offset;
824//   int count;
825//   char[] value;
826// }
827//
828// static int string_indexOf_J(StringDecl string_object, char[] target_object,
829//                             int targetOffset, int cache_i, int md2) {
830//   int cache = cache_i;
831//   int sourceOffset = string_object.offset;
832//   int sourceCount = string_object.count;
833//   int targetCount = target_object.length;
834//
835//   int targetCountLess1 = targetCount - 1;
836//   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
837//
838//   char[] source = string_object.value;
839//   char[] target = target_object;
840//   int lastChar = target[targetCountLess1];
841//
842//  outer_loop:
843//   for (int i = sourceOffset; i < sourceEnd; ) {
844//     int src = source[i + targetCountLess1];
845//     if (src == lastChar) {
846//       // With random strings and a 4-character alphabet,
847//       // reverse matching at this point sets up 0.8% fewer
848//       // frames, but (paradoxically) makes 0.3% more probes.
849//       // Since those probes are nearer the lastChar probe,
850//       // there is may be a net D$ win with reverse matching.
851//       // But, reversing loop inhibits unroll of inner loop
852//       // for unknown reason.  So, does running outer loop from
853//       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
854//       for (int j = 0; j < targetCountLess1; j++) {
855//         if (target[targetOffset + j] != source[i+j]) {
856//           if ((cache & (1 << source[i+j])) == 0) {
857//             if (md2 < j+1) {
858//               i += j+1;
859//               continue outer_loop;
860//             }
861//           }
862//           i += md2;
863//           continue outer_loop;
864//         }
865//       }
866//       return i - sourceOffset;
867//     }
868//     if ((cache & (1 << src)) == 0) {
869//       i += targetCountLess1;
870//     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
871//     i++;
872//   }
873//   return -1;
874// }
875
876//------------------------------string_indexOf------------------------
877Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
878                                     jint cache_i, jint md2_i) {
879
880  Node* no_ctrl  = NULL;
881  float likely   = PROB_LIKELY(0.9);
882  float unlikely = PROB_UNLIKELY(0.9);
883
884  const int value_offset  = java_lang_String::value_offset_in_bytes();
885  const int count_offset  = java_lang_String::count_offset_in_bytes();
886  const int offset_offset = java_lang_String::offset_offset_in_bytes();
887
888  ciInstanceKlass* klass = env()->String_klass();
889  const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
890  const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
891
892  Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
893  Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
894  Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
895  Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
896  Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
897  Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
898
899  Node* target = _gvn.transform(ConPNode::make(C, target_array));
900  jint target_length = target_array->length();
901  const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
902  const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
903
904  IdealKit kit(gvn(), control(), merged_memory());
905#define __ kit.
906  Node* zero             = __ ConI(0);
907  Node* one              = __ ConI(1);
908  Node* cache            = __ ConI(cache_i);
909  Node* md2              = __ ConI(md2_i);
910  Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
911  Node* targetCount      = __ ConI(target_length);
912  Node* targetCountLess1 = __ ConI(target_length - 1);
913  Node* targetOffset     = __ ConI(targetOffset_i);
914  Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
915
916  IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
917  Node* outer_loop = __ make_label(2 /* goto */);
918  Node* return_    = __ make_label(1);
919
920  __ set(rtn,__ ConI(-1));
921  __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
922       Node* i2  = __ AddI(__ value(i), targetCountLess1);
923       // pin to prohibit loading of "next iteration" value which may SEGV (rare)
924       Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
925       __ if_then(src, BoolTest::eq, lastChar, unlikely); {
926         __ loop(j, zero, BoolTest::lt, targetCountLess1); {
927              Node* tpj = __ AddI(targetOffset, __ value(j));
928              Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
929              Node* ipj  = __ AddI(__ value(i), __ value(j));
930              Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
931              __ if_then(targ, BoolTest::ne, src2); {
932                __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
933                  __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
934                    __ increment(i, __ AddI(__ value(j), one));
935                    __ goto_(outer_loop);
936                  } __ end_if(); __ dead(j);
937                }__ end_if(); __ dead(j);
938                __ increment(i, md2);
939                __ goto_(outer_loop);
940              }__ end_if();
941              __ increment(j, one);
942         }__ end_loop(); __ dead(j);
943         __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
944         __ goto_(return_);
945       }__ end_if();
946       __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
947         __ increment(i, targetCountLess1);
948       }__ end_if();
949       __ increment(i, one);
950       __ bind(outer_loop);
951  }__ end_loop(); __ dead(i);
952  __ bind(return_);
953  __ drain_delay_transform();
954
955  set_control(__ ctrl());
956  Node* result = __ value(rtn);
957#undef __
958  C->set_has_loops(true);
959  return result;
960}
961
962
963//------------------------------inline_string_indexOf------------------------
964bool LibraryCallKit::inline_string_indexOf() {
965
966  _sp += 2;
967  Node *argument = pop();  // pop non-receiver first:  it was pushed second
968  Node *receiver = pop();
969
970  // don't intrinsify is argument isn't a constant string.
971  if (!argument->is_Con()) {
972    return false;
973  }
974  const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
975  if (str_type == NULL) {
976    return false;
977  }
978  ciInstanceKlass* klass = env()->String_klass();
979  ciObject* str_const = str_type->const_oop();
980  if (str_const == NULL || str_const->klass() != klass) {
981    return false;
982  }
983  ciInstance* str = str_const->as_instance();
984  assert(str != NULL, "must be instance");
985
986  const int value_offset  = java_lang_String::value_offset_in_bytes();
987  const int count_offset  = java_lang_String::count_offset_in_bytes();
988  const int offset_offset = java_lang_String::offset_offset_in_bytes();
989
990  ciObject* v = str->field_value_by_offset(value_offset).as_object();
991  int       o = str->field_value_by_offset(offset_offset).as_int();
992  int       c = str->field_value_by_offset(count_offset).as_int();
993  ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
994
995  // constant strings have no offset and count == length which
996  // simplifies the resulting code somewhat so lets optimize for that.
997  if (o != 0 || c != pat->length()) {
998    return false;
999  }
1000
1001  // Null check on self without removing any arguments.  The argument
1002  // null check technically happens in the wrong place, which can lead to
1003  // invalid stack traces when string compare is inlined into a method
1004  // which handles NullPointerExceptions.
1005  _sp += 2;
1006  receiver = do_null_check(receiver, T_OBJECT);
1007  // No null check on the argument is needed since it's a constant String oop.
1008  _sp -= 2;
1009  if (stopped()) {
1010    return true;
1011  }
1012
1013  // The null string as a pattern always returns 0 (match at beginning of string)
1014  if (c == 0) {
1015    push(intcon(0));
1016    return true;
1017  }
1018
1019  jchar lastChar = pat->char_at(o + (c - 1));
1020  int cache = 0;
1021  int i;
1022  for (i = 0; i < c - 1; i++) {
1023    assert(i < pat->length(), "out of range");
1024    cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1025  }
1026
1027  int md2 = c;
1028  for (i = 0; i < c - 1; i++) {
1029    assert(i < pat->length(), "out of range");
1030    if (pat->char_at(o + i) == lastChar) {
1031      md2 = (c - 1) - i;
1032    }
1033  }
1034
1035  Node* result = string_indexOf(receiver, pat, o, cache, md2);
1036  push(result);
1037  return true;
1038}
1039
1040//--------------------------pop_math_arg--------------------------------
1041// Pop a double argument to a math function from the stack
1042// rounding it if necessary.
1043Node * LibraryCallKit::pop_math_arg() {
1044  Node *arg = pop_pair();
1045  if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1046    arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1047  return arg;
1048}
1049
1050//------------------------------inline_trig----------------------------------
1051// Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1052// argument reduction which will turn into a fast/slow diamond.
1053bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1054  _sp += arg_size();            // restore stack pointer
1055  Node* arg = pop_math_arg();
1056  Node* trig = NULL;
1057
1058  switch (id) {
1059  case vmIntrinsics::_dsin:
1060    trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1061    break;
1062  case vmIntrinsics::_dcos:
1063    trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1064    break;
1065  case vmIntrinsics::_dtan:
1066    trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1067    break;
1068  default:
1069    assert(false, "bad intrinsic was passed in");
1070    return false;
1071  }
1072
1073  // Rounding required?  Check for argument reduction!
1074  if( Matcher::strict_fp_requires_explicit_rounding ) {
1075
1076    static const double     pi_4 =  0.7853981633974483;
1077    static const double neg_pi_4 = -0.7853981633974483;
1078    // pi/2 in 80-bit extended precision
1079    // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1080    // -pi/2 in 80-bit extended precision
1081    // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1082    // Cutoff value for using this argument reduction technique
1083    //static const double    pi_2_minus_epsilon =  1.564660403643354;
1084    //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1085
1086    // Pseudocode for sin:
1087    // if (x <= Math.PI / 4.0) {
1088    //   if (x >= -Math.PI / 4.0) return  fsin(x);
1089    //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1090    // } else {
1091    //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1092    // }
1093    // return StrictMath.sin(x);
1094
1095    // Pseudocode for cos:
1096    // if (x <= Math.PI / 4.0) {
1097    //   if (x >= -Math.PI / 4.0) return  fcos(x);
1098    //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1099    // } else {
1100    //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1101    // }
1102    // return StrictMath.cos(x);
1103
1104    // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1105    // requires a special machine instruction to load it.  Instead we'll try
1106    // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1107    // probably do the math inside the SIN encoding.
1108
1109    // Make the merge point
1110    RegionNode *r = new (C, 3) RegionNode(3);
1111    Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1112
1113    // Flatten arg so we need only 1 test
1114    Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1115    // Node for PI/4 constant
1116    Node *pi4 = makecon(TypeD::make(pi_4));
1117    // Check PI/4 : abs(arg)
1118    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1119    // Check: If PI/4 < abs(arg) then go slow
1120    Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1121    // Branch either way
1122    IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1123    set_control(opt_iff(r,iff));
1124
1125    // Set fast path result
1126    phi->init_req(2,trig);
1127
1128    // Slow path - non-blocking leaf call
1129    Node* call = NULL;
1130    switch (id) {
1131    case vmIntrinsics::_dsin:
1132      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1133                               CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1134                               "Sin", NULL, arg, top());
1135      break;
1136    case vmIntrinsics::_dcos:
1137      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1138                               CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1139                               "Cos", NULL, arg, top());
1140      break;
1141    case vmIntrinsics::_dtan:
1142      call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1143                               CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1144                               "Tan", NULL, arg, top());
1145      break;
1146    }
1147    assert(control()->in(0) == call, "");
1148    Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1149    r->init_req(1,control());
1150    phi->init_req(1,slow_result);
1151
1152    // Post-merge
1153    set_control(_gvn.transform(r));
1154    record_for_igvn(r);
1155    trig = _gvn.transform(phi);
1156
1157    C->set_has_split_ifs(true); // Has chance for split-if optimization
1158  }
1159  // Push result back on JVM stack
1160  push_pair(trig);
1161  return true;
1162}
1163
1164//------------------------------inline_sqrt-------------------------------------
1165// Inline square root instruction, if possible.
1166bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1167  assert(id == vmIntrinsics::_dsqrt, "Not square root");
1168  _sp += arg_size();        // restore stack pointer
1169  push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1170  return true;
1171}
1172
1173//------------------------------inline_abs-------------------------------------
1174// Inline absolute value instruction, if possible.
1175bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1176  assert(id == vmIntrinsics::_dabs, "Not absolute value");
1177  _sp += arg_size();        // restore stack pointer
1178  push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1179  return true;
1180}
1181
1182//------------------------------inline_exp-------------------------------------
1183// Inline exp instructions, if possible.  The Intel hardware only misses
1184// really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1185bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1186  assert(id == vmIntrinsics::_dexp, "Not exp");
1187
1188  // If this inlining ever returned NaN in the past, we do not intrinsify it
1189  // every again.  NaN results requires StrictMath.exp handling.
1190  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1191
1192  // Do not intrinsify on older platforms which lack cmove.
1193  if (ConditionalMoveLimit == 0)  return false;
1194
1195  _sp += arg_size();        // restore stack pointer
1196  Node *x = pop_math_arg();
1197  Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1198
1199  //-------------------
1200  //result=(result.isNaN())? StrictMath::exp():result;
1201  // Check: If isNaN() by checking result!=result? then go to Strict Math
1202  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1203  // Build the boolean node
1204  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1205
1206  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1207    // End the current control-flow path
1208    push_pair(x);
1209    // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1210    // to handle.  Recompile without intrinsifying Math.exp
1211    uncommon_trap(Deoptimization::Reason_intrinsic,
1212                  Deoptimization::Action_make_not_entrant);
1213  }
1214
1215  C->set_has_split_ifs(true); // Has chance for split-if optimization
1216
1217  push_pair(result);
1218
1219  return true;
1220}
1221
1222//------------------------------inline_pow-------------------------------------
1223// Inline power instructions, if possible.
1224bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1225  assert(id == vmIntrinsics::_dpow, "Not pow");
1226
1227  // If this inlining ever returned NaN in the past, we do not intrinsify it
1228  // every again.  NaN results requires StrictMath.pow handling.
1229  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1230
1231  // Do not intrinsify on older platforms which lack cmove.
1232  if (ConditionalMoveLimit == 0)  return false;
1233
1234  // Pseudocode for pow
1235  // if (x <= 0.0) {
1236  //   if ((double)((int)y)==y) { // if y is int
1237  //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1238  //   } else {
1239  //     result = NaN;
1240  //   }
1241  // } else {
1242  //   result = DPow(x,y);
1243  // }
1244  // if (result != result)?  {
1245  //   ucommon_trap();
1246  // }
1247  // return result;
1248
1249  _sp += arg_size();        // restore stack pointer
1250  Node* y = pop_math_arg();
1251  Node* x = pop_math_arg();
1252
1253  Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1254
1255  // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1256  // inside of something) then skip the fancy tests and just check for
1257  // NaN result.
1258  Node *result = NULL;
1259  if( jvms()->depth() >= 1 ) {
1260    result = fast_result;
1261  } else {
1262
1263    // Set the merge point for If node with condition of (x <= 0.0)
1264    // There are four possible paths to region node and phi node
1265    RegionNode *r = new (C, 4) RegionNode(4);
1266    Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1267
1268    // Build the first if node: if (x <= 0.0)
1269    // Node for 0 constant
1270    Node *zeronode = makecon(TypeD::ZERO);
1271    // Check x:0
1272    Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1273    // Check: If (x<=0) then go complex path
1274    Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1275    // Branch either way
1276    IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1277    Node *opt_test = _gvn.transform(if1);
1278    //assert( opt_test->is_If(), "Expect an IfNode");
1279    IfNode *opt_if1 = (IfNode*)opt_test;
1280    // Fast path taken; set region slot 3
1281    Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1282    r->init_req(3,fast_taken); // Capture fast-control
1283
1284    // Fast path not-taken, i.e. slow path
1285    Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1286
1287    // Set fast path result
1288    Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1289    phi->init_req(3, fast_result);
1290
1291    // Complex path
1292    // Build the second if node (if y is int)
1293    // Node for (int)y
1294    Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1295    // Node for (double)((int) y)
1296    Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1297    // Check (double)((int) y) : y
1298    Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1299    // Check if (y isn't int) then go to slow path
1300
1301    Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1302    // Branch eith way
1303    IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1304    Node *slow_path = opt_iff(r,if2); // Set region path 2
1305
1306    // Calculate DPow(abs(x), y)*(1 & (int)y)
1307    // Node for constant 1
1308    Node *conone = intcon(1);
1309    // 1& (int)y
1310    Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1311    // zero node
1312    Node *conzero = intcon(0);
1313    // Check (1&(int)y)==0?
1314    Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1315    // Check if (1&(int)y)!=0?, if so the result is negative
1316    Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1317    // abs(x)
1318    Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1319    // abs(x)^y
1320    Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1321    // -abs(x)^y
1322    Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1323    // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1324    Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1325    // Set complex path fast result
1326    phi->init_req(2, signresult);
1327
1328    static const jlong nan_bits = CONST64(0x7ff8000000000000);
1329    Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1330    r->init_req(1,slow_path);
1331    phi->init_req(1,slow_result);
1332
1333    // Post merge
1334    set_control(_gvn.transform(r));
1335    record_for_igvn(r);
1336    result=_gvn.transform(phi);
1337  }
1338
1339  //-------------------
1340  //result=(result.isNaN())? uncommon_trap():result;
1341  // Check: If isNaN() by checking result!=result? then go to Strict Math
1342  Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1343  // Build the boolean node
1344  Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1345
1346  { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1347    // End the current control-flow path
1348    push_pair(x);
1349    push_pair(y);
1350    // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1351    // to handle.  Recompile without intrinsifying Math.pow.
1352    uncommon_trap(Deoptimization::Reason_intrinsic,
1353                  Deoptimization::Action_make_not_entrant);
1354  }
1355
1356  C->set_has_split_ifs(true); // Has chance for split-if optimization
1357
1358  push_pair(result);
1359
1360  return true;
1361}
1362
1363//------------------------------inline_trans-------------------------------------
1364// Inline transcendental instructions, if possible.  The Intel hardware gets
1365// these right, no funny corner cases missed.
1366bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1367  _sp += arg_size();        // restore stack pointer
1368  Node* arg = pop_math_arg();
1369  Node* trans = NULL;
1370
1371  switch (id) {
1372  case vmIntrinsics::_dlog:
1373    trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1374    break;
1375  case vmIntrinsics::_dlog10:
1376    trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1377    break;
1378  default:
1379    assert(false, "bad intrinsic was passed in");
1380    return false;
1381  }
1382
1383  // Push result back on JVM stack
1384  push_pair(trans);
1385  return true;
1386}
1387
1388//------------------------------runtime_math-----------------------------
1389bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1390  Node* a = NULL;
1391  Node* b = NULL;
1392
1393  assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1394         "must be (DD)D or (D)D type");
1395
1396  // Inputs
1397  _sp += arg_size();        // restore stack pointer
1398  if (call_type == OptoRuntime::Math_DD_D_Type()) {
1399    b = pop_math_arg();
1400  }
1401  a = pop_math_arg();
1402
1403  const TypePtr* no_memory_effects = NULL;
1404  Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1405                                 no_memory_effects,
1406                                 a, top(), b, b ? top() : NULL);
1407  Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1408#ifdef ASSERT
1409  Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1410  assert(value_top == top(), "second value must be top");
1411#endif
1412
1413  push_pair(value);
1414  return true;
1415}
1416
1417//------------------------------inline_math_native-----------------------------
1418bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1419  switch (id) {
1420    // These intrinsics are not properly supported on all hardware
1421  case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1422    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1423  case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1424    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1425  case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1426    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1427
1428  case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1429    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1430  case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1431    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1432
1433    // These intrinsics are supported on all hardware
1434  case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1435  case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1436
1437    // These intrinsics don't work on X86.  The ad implementation doesn't
1438    // handle NaN's properly.  Instead of returning infinity, the ad
1439    // implementation returns a NaN on overflow. See bug: 6304089
1440    // Once the ad implementations are fixed, change the code below
1441    // to match the intrinsics above
1442
1443  case vmIntrinsics::_dexp:  return
1444    runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1445  case vmIntrinsics::_dpow:  return
1446    runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1447
1448   // These intrinsics are not yet correctly implemented
1449  case vmIntrinsics::_datan2:
1450    return false;
1451
1452  default:
1453    ShouldNotReachHere();
1454    return false;
1455  }
1456}
1457
1458static bool is_simple_name(Node* n) {
1459  return (n->req() == 1         // constant
1460          || (n->is_Type() && n->as_Type()->type()->singleton())
1461          || n->is_Proj()       // parameter or return value
1462          || n->is_Phi()        // local of some sort
1463          );
1464}
1465
1466//----------------------------inline_min_max-----------------------------------
1467bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1468  push(generate_min_max(id, argument(0), argument(1)));
1469
1470  return true;
1471}
1472
1473Node*
1474LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1475  // These are the candidate return value:
1476  Node* xvalue = x0;
1477  Node* yvalue = y0;
1478
1479  if (xvalue == yvalue) {
1480    return xvalue;
1481  }
1482
1483  bool want_max = (id == vmIntrinsics::_max);
1484
1485  const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1486  const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1487  if (txvalue == NULL || tyvalue == NULL)  return top();
1488  // This is not really necessary, but it is consistent with a
1489  // hypothetical MaxINode::Value method:
1490  int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1491
1492  // %%% This folding logic should (ideally) be in a different place.
1493  // Some should be inside IfNode, and there to be a more reliable
1494  // transformation of ?: style patterns into cmoves.  We also want
1495  // more powerful optimizations around cmove and min/max.
1496
1497  // Try to find a dominating comparison of these guys.
1498  // It can simplify the index computation for Arrays.copyOf
1499  // and similar uses of System.arraycopy.
1500  // First, compute the normalized version of CmpI(x, y).
1501  int   cmp_op = Op_CmpI;
1502  Node* xkey = xvalue;
1503  Node* ykey = yvalue;
1504  Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1505  if (ideal_cmpxy->is_Cmp()) {
1506    // E.g., if we have CmpI(length - offset, count),
1507    // it might idealize to CmpI(length, count + offset)
1508    cmp_op = ideal_cmpxy->Opcode();
1509    xkey = ideal_cmpxy->in(1);
1510    ykey = ideal_cmpxy->in(2);
1511  }
1512
1513  // Start by locating any relevant comparisons.
1514  Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1515  Node* cmpxy = NULL;
1516  Node* cmpyx = NULL;
1517  for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1518    Node* cmp = start_from->fast_out(k);
1519    if (cmp->outcnt() > 0 &&            // must have prior uses
1520        cmp->in(0) == NULL &&           // must be context-independent
1521        cmp->Opcode() == cmp_op) {      // right kind of compare
1522      if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1523      if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1524    }
1525  }
1526
1527  const int NCMPS = 2;
1528  Node* cmps[NCMPS] = { cmpxy, cmpyx };
1529  int cmpn;
1530  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1531    if (cmps[cmpn] != NULL)  break;     // find a result
1532  }
1533  if (cmpn < NCMPS) {
1534    // Look for a dominating test that tells us the min and max.
1535    int depth = 0;                // Limit search depth for speed
1536    Node* dom = control();
1537    for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1538      if (++depth >= 100)  break;
1539      Node* ifproj = dom;
1540      if (!ifproj->is_Proj())  continue;
1541      Node* iff = ifproj->in(0);
1542      if (!iff->is_If())  continue;
1543      Node* bol = iff->in(1);
1544      if (!bol->is_Bool())  continue;
1545      Node* cmp = bol->in(1);
1546      if (cmp == NULL)  continue;
1547      for (cmpn = 0; cmpn < NCMPS; cmpn++)
1548        if (cmps[cmpn] == cmp)  break;
1549      if (cmpn == NCMPS)  continue;
1550      BoolTest::mask btest = bol->as_Bool()->_test._test;
1551      if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1552      if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1553      // At this point, we know that 'x btest y' is true.
1554      switch (btest) {
1555      case BoolTest::eq:
1556        // They are proven equal, so we can collapse the min/max.
1557        // Either value is the answer.  Choose the simpler.
1558        if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1559          return yvalue;
1560        return xvalue;
1561      case BoolTest::lt:          // x < y
1562      case BoolTest::le:          // x <= y
1563        return (want_max ? yvalue : xvalue);
1564      case BoolTest::gt:          // x > y
1565      case BoolTest::ge:          // x >= y
1566        return (want_max ? xvalue : yvalue);
1567      }
1568    }
1569  }
1570
1571  // We failed to find a dominating test.
1572  // Let's pick a test that might GVN with prior tests.
1573  Node*          best_bol   = NULL;
1574  BoolTest::mask best_btest = BoolTest::illegal;
1575  for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1576    Node* cmp = cmps[cmpn];
1577    if (cmp == NULL)  continue;
1578    for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1579      Node* bol = cmp->fast_out(j);
1580      if (!bol->is_Bool())  continue;
1581      BoolTest::mask btest = bol->as_Bool()->_test._test;
1582      if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1583      if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1584      if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1585        best_bol   = bol->as_Bool();
1586        best_btest = btest;
1587      }
1588    }
1589  }
1590
1591  Node* answer_if_true  = NULL;
1592  Node* answer_if_false = NULL;
1593  switch (best_btest) {
1594  default:
1595    if (cmpxy == NULL)
1596      cmpxy = ideal_cmpxy;
1597    best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1598    // and fall through:
1599  case BoolTest::lt:          // x < y
1600  case BoolTest::le:          // x <= y
1601    answer_if_true  = (want_max ? yvalue : xvalue);
1602    answer_if_false = (want_max ? xvalue : yvalue);
1603    break;
1604  case BoolTest::gt:          // x > y
1605  case BoolTest::ge:          // x >= y
1606    answer_if_true  = (want_max ? xvalue : yvalue);
1607    answer_if_false = (want_max ? yvalue : xvalue);
1608    break;
1609  }
1610
1611  jint hi, lo;
1612  if (want_max) {
1613    // We can sharpen the minimum.
1614    hi = MAX2(txvalue->_hi, tyvalue->_hi);
1615    lo = MAX2(txvalue->_lo, tyvalue->_lo);
1616  } else {
1617    // We can sharpen the maximum.
1618    hi = MIN2(txvalue->_hi, tyvalue->_hi);
1619    lo = MIN2(txvalue->_lo, tyvalue->_lo);
1620  }
1621
1622  // Use a flow-free graph structure, to avoid creating excess control edges
1623  // which could hinder other optimizations.
1624  // Since Math.min/max is often used with arraycopy, we want
1625  // tightly_coupled_allocation to be able to see beyond min/max expressions.
1626  Node* cmov = CMoveNode::make(C, NULL, best_bol,
1627                               answer_if_false, answer_if_true,
1628                               TypeInt::make(lo, hi, widen));
1629
1630  return _gvn.transform(cmov);
1631
1632  /*
1633  // This is not as desirable as it may seem, since Min and Max
1634  // nodes do not have a full set of optimizations.
1635  // And they would interfere, anyway, with 'if' optimizations
1636  // and with CMoveI canonical forms.
1637  switch (id) {
1638  case vmIntrinsics::_min:
1639    result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1640  case vmIntrinsics::_max:
1641    result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1642  default:
1643    ShouldNotReachHere();
1644  }
1645  */
1646}
1647
1648inline int
1649LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1650  const TypePtr* base_type = TypePtr::NULL_PTR;
1651  if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1652  if (base_type == NULL) {
1653    // Unknown type.
1654    return Type::AnyPtr;
1655  } else if (base_type == TypePtr::NULL_PTR) {
1656    // Since this is a NULL+long form, we have to switch to a rawptr.
1657    base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1658    offset = MakeConX(0);
1659    return Type::RawPtr;
1660  } else if (base_type->base() == Type::RawPtr) {
1661    return Type::RawPtr;
1662  } else if (base_type->isa_oopptr()) {
1663    // Base is never null => always a heap address.
1664    if (base_type->ptr() == TypePtr::NotNull) {
1665      return Type::OopPtr;
1666    }
1667    // Offset is small => always a heap address.
1668    const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1669    if (offset_type != NULL &&
1670        base_type->offset() == 0 &&     // (should always be?)
1671        offset_type->_lo >= 0 &&
1672        !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1673      return Type::OopPtr;
1674    }
1675    // Otherwise, it might either be oop+off or NULL+addr.
1676    return Type::AnyPtr;
1677  } else {
1678    // No information:
1679    return Type::AnyPtr;
1680  }
1681}
1682
1683inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1684  int kind = classify_unsafe_addr(base, offset);
1685  if (kind == Type::RawPtr) {
1686    return basic_plus_adr(top(), base, offset);
1687  } else {
1688    return basic_plus_adr(base, offset);
1689  }
1690}
1691
1692//----------------------------inline_reverseBytes_int/long-------------------
1693// inline Int.reverseBytes(int)
1694// inline Long.reverseByes(long)
1695bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
1696  assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
1697  if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
1698  if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
1699  _sp += arg_size();        // restore stack pointer
1700  switch (id) {
1701  case vmIntrinsics::_reverseBytes_i:
1702    push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
1703    break;
1704  case vmIntrinsics::_reverseBytes_l:
1705    push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
1706    break;
1707  default:
1708    ;
1709  }
1710  return true;
1711}
1712
1713//----------------------------inline_unsafe_access----------------------------
1714
1715const static BasicType T_ADDRESS_HOLDER = T_LONG;
1716
1717// Interpret Unsafe.fieldOffset cookies correctly:
1718extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
1719
1720bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
1721  if (callee()->is_static())  return false;  // caller must have the capability!
1722
1723#ifndef PRODUCT
1724  {
1725    ResourceMark rm;
1726    // Check the signatures.
1727    ciSignature* sig = signature();
1728#ifdef ASSERT
1729    if (!is_store) {
1730      // Object getObject(Object base, int/long offset), etc.
1731      BasicType rtype = sig->return_type()->basic_type();
1732      if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
1733          rtype = T_ADDRESS;  // it is really a C void*
1734      assert(rtype == type, "getter must return the expected value");
1735      if (!is_native_ptr) {
1736        assert(sig->count() == 2, "oop getter has 2 arguments");
1737        assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
1738        assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
1739      } else {
1740        assert(sig->count() == 1, "native getter has 1 argument");
1741        assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
1742      }
1743    } else {
1744      // void putObject(Object base, int/long offset, Object x), etc.
1745      assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
1746      if (!is_native_ptr) {
1747        assert(sig->count() == 3, "oop putter has 3 arguments");
1748        assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
1749        assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
1750      } else {
1751        assert(sig->count() == 2, "native putter has 2 arguments");
1752        assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
1753      }
1754      BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
1755      if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
1756        vtype = T_ADDRESS;  // it is really a C void*
1757      assert(vtype == type, "putter must accept the expected value");
1758    }
1759#endif // ASSERT
1760 }
1761#endif //PRODUCT
1762
1763  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
1764
1765  int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
1766
1767  // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
1768  int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
1769
1770  debug_only(int saved_sp = _sp);
1771  _sp += nargs;
1772
1773  Node* val;
1774  debug_only(val = (Node*)(uintptr_t)-1);
1775
1776
1777  if (is_store) {
1778    // Get the value being stored.  (Pop it first; it was pushed last.)
1779    switch (type) {
1780    case T_DOUBLE:
1781    case T_LONG:
1782    case T_ADDRESS:
1783      val = pop_pair();
1784      break;
1785    default:
1786      val = pop();
1787    }
1788  }
1789
1790  // Build address expression.  See the code in inline_unsafe_prefetch.
1791  Node *adr;
1792  Node *heap_base_oop = top();
1793  if (!is_native_ptr) {
1794    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
1795    Node* offset = pop_pair();
1796    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
1797    Node* base   = pop();
1798    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
1799    // to be plain byte offsets, which are also the same as those accepted
1800    // by oopDesc::field_base.
1801    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
1802           "fieldOffset must be byte-scaled");
1803    // 32-bit machines ignore the high half!
1804    offset = ConvL2X(offset);
1805    adr = make_unsafe_address(base, offset);
1806    heap_base_oop = base;
1807  } else {
1808    Node* ptr = pop_pair();
1809    // Adjust Java long to machine word:
1810    ptr = ConvL2X(ptr);
1811    adr = make_unsafe_address(NULL, ptr);
1812  }
1813
1814  // Pop receiver last:  it was pushed first.
1815  Node *receiver = pop();
1816
1817  assert(saved_sp == _sp, "must have correct argument count");
1818
1819  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
1820
1821  // First guess at the value type.
1822  const Type *value_type = Type::get_const_basic_type(type);
1823
1824  // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
1825  // there was not enough information to nail it down.
1826  Compile::AliasType* alias_type = C->alias_type(adr_type);
1827  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
1828
1829  // We will need memory barriers unless we can determine a unique
1830  // alias category for this reference.  (Note:  If for some reason
1831  // the barriers get omitted and the unsafe reference begins to "pollute"
1832  // the alias analysis of the rest of the graph, either Compile::can_alias
1833  // or Compile::must_alias will throw a diagnostic assert.)
1834  bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
1835
1836  if (!is_store && type == T_OBJECT) {
1837    // Attempt to infer a sharper value type from the offset and base type.
1838    ciKlass* sharpened_klass = NULL;
1839
1840    // See if it is an instance field, with an object type.
1841    if (alias_type->field() != NULL) {
1842      assert(!is_native_ptr, "native pointer op cannot use a java address");
1843      if (alias_type->field()->type()->is_klass()) {
1844        sharpened_klass = alias_type->field()->type()->as_klass();
1845      }
1846    }
1847
1848    // See if it is a narrow oop array.
1849    if (adr_type->isa_aryptr()) {
1850      if (adr_type->offset() >= objArrayOopDesc::header_size() * wordSize) {
1851        const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
1852        if (elem_type != NULL) {
1853          sharpened_klass = elem_type->klass();
1854        }
1855      }
1856    }
1857
1858    if (sharpened_klass != NULL) {
1859      const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
1860
1861      // Sharpen the value type.
1862      value_type = tjp;
1863
1864#ifndef PRODUCT
1865      if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
1866        tty->print("  from base type:  ");   adr_type->dump();
1867        tty->print("  sharpened value: "); value_type->dump();
1868      }
1869#endif
1870    }
1871  }
1872
1873  // Null check on self without removing any arguments.  The argument
1874  // null check technically happens in the wrong place, which can lead to
1875  // invalid stack traces when the primitive is inlined into a method
1876  // which handles NullPointerExceptions.
1877  _sp += nargs;
1878  do_null_check(receiver, T_OBJECT);
1879  _sp -= nargs;
1880  if (stopped()) {
1881    return true;
1882  }
1883  // Heap pointers get a null-check from the interpreter,
1884  // as a courtesy.  However, this is not guaranteed by Unsafe,
1885  // and it is not possible to fully distinguish unintended nulls
1886  // from intended ones in this API.
1887
1888  if (is_volatile) {
1889    // We need to emit leading and trailing CPU membars (see below) in
1890    // addition to memory membars when is_volatile. This is a little
1891    // too strong, but avoids the need to insert per-alias-type
1892    // volatile membars (for stores; compare Parse::do_put_xxx), which
1893    // we cannot do effctively here because we probably only have a
1894    // rough approximation of type.
1895    need_mem_bar = true;
1896    // For Stores, place a memory ordering barrier now.
1897    if (is_store)
1898      insert_mem_bar(Op_MemBarRelease);
1899  }
1900
1901  // Memory barrier to prevent normal and 'unsafe' accesses from
1902  // bypassing each other.  Happens after null checks, so the
1903  // exception paths do not take memory state from the memory barrier,
1904  // so there's no problems making a strong assert about mixing users
1905  // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
1906  // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
1907  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
1908
1909  if (!is_store) {
1910    Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
1911    // load value and push onto stack
1912    switch (type) {
1913    case T_BOOLEAN:
1914    case T_CHAR:
1915    case T_BYTE:
1916    case T_SHORT:
1917    case T_INT:
1918    case T_FLOAT:
1919    case T_OBJECT:
1920      push( p );
1921      break;
1922    case T_ADDRESS:
1923      // Cast to an int type.
1924      p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
1925      p = ConvX2L(p);
1926      push_pair(p);
1927      break;
1928    case T_DOUBLE:
1929    case T_LONG:
1930      push_pair( p );
1931      break;
1932    default: ShouldNotReachHere();
1933    }
1934  } else {
1935    // place effect of store into memory
1936    switch (type) {
1937    case T_DOUBLE:
1938      val = dstore_rounding(val);
1939      break;
1940    case T_ADDRESS:
1941      // Repackage the long as a pointer.
1942      val = ConvL2X(val);
1943      val = _gvn.transform( new (C, 2) CastX2PNode(val) );
1944      break;
1945    }
1946
1947    if (type != T_OBJECT ) {
1948      (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
1949    } else {
1950      // Possibly an oop being stored to Java heap or native memory
1951      if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
1952        // oop to Java heap.
1953        (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
1954      } else {
1955
1956        // We can't tell at compile time if we are storing in the Java heap or outside
1957        // of it. So we need to emit code to conditionally do the proper type of
1958        // store.
1959
1960        IdealKit kit(gvn(), control(),  merged_memory());
1961        kit.declares_done();
1962        // QQQ who knows what probability is here??
1963        kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
1964          (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
1965        } kit.else_(); {
1966          (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
1967        } kit.end_if();
1968      }
1969    }
1970  }
1971
1972  if (is_volatile) {
1973    if (!is_store)
1974      insert_mem_bar(Op_MemBarAcquire);
1975    else
1976      insert_mem_bar(Op_MemBarVolatile);
1977  }
1978
1979  if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
1980
1981  return true;
1982}
1983
1984//----------------------------inline_unsafe_prefetch----------------------------
1985
1986bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
1987#ifndef PRODUCT
1988  {
1989    ResourceMark rm;
1990    // Check the signatures.
1991    ciSignature* sig = signature();
1992#ifdef ASSERT
1993    // Object getObject(Object base, int/long offset), etc.
1994    BasicType rtype = sig->return_type()->basic_type();
1995    if (!is_native_ptr) {
1996      assert(sig->count() == 2, "oop prefetch has 2 arguments");
1997      assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
1998      assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
1999    } else {
2000      assert(sig->count() == 1, "native prefetch has 1 argument");
2001      assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2002    }
2003#endif // ASSERT
2004  }
2005#endif // !PRODUCT
2006
2007  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2008
2009  // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2010  int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2011
2012  debug_only(int saved_sp = _sp);
2013  _sp += nargs;
2014
2015  // Build address expression.  See the code in inline_unsafe_access.
2016  Node *adr;
2017  if (!is_native_ptr) {
2018    // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2019    Node* offset = pop_pair();
2020    // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2021    Node* base   = pop();
2022    // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2023    // to be plain byte offsets, which are also the same as those accepted
2024    // by oopDesc::field_base.
2025    assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2026           "fieldOffset must be byte-scaled");
2027    // 32-bit machines ignore the high half!
2028    offset = ConvL2X(offset);
2029    adr = make_unsafe_address(base, offset);
2030  } else {
2031    Node* ptr = pop_pair();
2032    // Adjust Java long to machine word:
2033    ptr = ConvL2X(ptr);
2034    adr = make_unsafe_address(NULL, ptr);
2035  }
2036
2037  if (is_static) {
2038    assert(saved_sp == _sp, "must have correct argument count");
2039  } else {
2040    // Pop receiver last:  it was pushed first.
2041    Node *receiver = pop();
2042    assert(saved_sp == _sp, "must have correct argument count");
2043
2044    // Null check on self without removing any arguments.  The argument
2045    // null check technically happens in the wrong place, which can lead to
2046    // invalid stack traces when the primitive is inlined into a method
2047    // which handles NullPointerExceptions.
2048    _sp += nargs;
2049    do_null_check(receiver, T_OBJECT);
2050    _sp -= nargs;
2051    if (stopped()) {
2052      return true;
2053    }
2054  }
2055
2056  // Generate the read or write prefetch
2057  Node *prefetch;
2058  if (is_store) {
2059    prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2060  } else {
2061    prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2062  }
2063  prefetch->init_req(0, control());
2064  set_i_o(_gvn.transform(prefetch));
2065
2066  return true;
2067}
2068
2069//----------------------------inline_unsafe_CAS----------------------------
2070
2071bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2072  // This basic scheme here is the same as inline_unsafe_access, but
2073  // differs in enough details that combining them would make the code
2074  // overly confusing.  (This is a true fact! I originally combined
2075  // them, but even I was confused by it!) As much code/comments as
2076  // possible are retained from inline_unsafe_access though to make
2077  // the correspondances clearer. - dl
2078
2079  if (callee()->is_static())  return false;  // caller must have the capability!
2080
2081#ifndef PRODUCT
2082  {
2083    ResourceMark rm;
2084    // Check the signatures.
2085    ciSignature* sig = signature();
2086#ifdef ASSERT
2087    BasicType rtype = sig->return_type()->basic_type();
2088    assert(rtype == T_BOOLEAN, "CAS must return boolean");
2089    assert(sig->count() == 4, "CAS has 4 arguments");
2090    assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2091    assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2092#endif // ASSERT
2093  }
2094#endif //PRODUCT
2095
2096  // number of stack slots per value argument (1 or 2)
2097  int type_words = type2size[type];
2098
2099  // Cannot inline wide CAS on machines that don't support it natively
2100  if (type2aelembytes[type] > BytesPerInt && !VM_Version::supports_cx8())
2101    return false;
2102
2103  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2104
2105  // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2106  int nargs = 1 + 1 + 2  + type_words + type_words;
2107
2108  // pop arguments: newval, oldval, offset, base, and receiver
2109  debug_only(int saved_sp = _sp);
2110  _sp += nargs;
2111  Node* newval   = (type_words == 1) ? pop() : pop_pair();
2112  Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2113  Node *offset   = pop_pair();
2114  Node *base     = pop();
2115  Node *receiver = pop();
2116  assert(saved_sp == _sp, "must have correct argument count");
2117
2118  //  Null check receiver.
2119  _sp += nargs;
2120  do_null_check(receiver, T_OBJECT);
2121  _sp -= nargs;
2122  if (stopped()) {
2123    return true;
2124  }
2125
2126  // Build field offset expression.
2127  // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2128  // to be plain byte offsets, which are also the same as those accepted
2129  // by oopDesc::field_base.
2130  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2131  // 32-bit machines ignore the high half of long offsets
2132  offset = ConvL2X(offset);
2133  Node* adr = make_unsafe_address(base, offset);
2134  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2135
2136  // (Unlike inline_unsafe_access, there seems no point in trying
2137  // to refine types. Just use the coarse types here.
2138  const Type *value_type = Type::get_const_basic_type(type);
2139  Compile::AliasType* alias_type = C->alias_type(adr_type);
2140  assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2141  int alias_idx = C->get_alias_index(adr_type);
2142
2143  // Memory-model-wise, a CAS acts like a little synchronized block,
2144  // so needs barriers on each side.  These don't't translate into
2145  // actual barriers on most machines, but we still need rest of
2146  // compiler to respect ordering.
2147
2148  insert_mem_bar(Op_MemBarRelease);
2149  insert_mem_bar(Op_MemBarCPUOrder);
2150
2151  // 4984716: MemBars must be inserted before this
2152  //          memory node in order to avoid a false
2153  //          dependency which will confuse the scheduler.
2154  Node *mem = memory(alias_idx);
2155
2156  // For now, we handle only those cases that actually exist: ints,
2157  // longs, and Object. Adding others should be straightforward.
2158  Node* cas;
2159  switch(type) {
2160  case T_INT:
2161    cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2162    break;
2163  case T_LONG:
2164    cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2165    break;
2166  case T_OBJECT:
2167    // reference stores need a store barrier.
2168    // (They don't if CAS fails, but it isn't worth checking.)
2169    pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
2170    cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2171    post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2172    break;
2173  default:
2174    ShouldNotReachHere();
2175    break;
2176  }
2177
2178  // SCMemProjNodes represent the memory state of CAS. Their main
2179  // role is to prevent CAS nodes from being optimized away when their
2180  // results aren't used.
2181  Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2182  set_memory(proj, alias_idx);
2183
2184  // Add the trailing membar surrounding the access
2185  insert_mem_bar(Op_MemBarCPUOrder);
2186  insert_mem_bar(Op_MemBarAcquire);
2187
2188  push(cas);
2189  return true;
2190}
2191
2192bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2193  // This is another variant of inline_unsafe_access, differing in
2194  // that it always issues store-store ("release") barrier and ensures
2195  // store-atomicity (which only matters for "long").
2196
2197  if (callee()->is_static())  return false;  // caller must have the capability!
2198
2199#ifndef PRODUCT
2200  {
2201    ResourceMark rm;
2202    // Check the signatures.
2203    ciSignature* sig = signature();
2204#ifdef ASSERT
2205    BasicType rtype = sig->return_type()->basic_type();
2206    assert(rtype == T_VOID, "must return void");
2207    assert(sig->count() == 3, "has 3 arguments");
2208    assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2209    assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2210#endif // ASSERT
2211  }
2212#endif //PRODUCT
2213
2214  // number of stack slots per value argument (1 or 2)
2215  int type_words = type2size[type];
2216
2217  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2218
2219  // Argument words:  "this" plus oop plus offset plus value;
2220  int nargs = 1 + 1 + 2 + type_words;
2221
2222  // pop arguments: val, offset, base, and receiver
2223  debug_only(int saved_sp = _sp);
2224  _sp += nargs;
2225  Node* val      = (type_words == 1) ? pop() : pop_pair();
2226  Node *offset   = pop_pair();
2227  Node *base     = pop();
2228  Node *receiver = pop();
2229  assert(saved_sp == _sp, "must have correct argument count");
2230
2231  //  Null check receiver.
2232  _sp += nargs;
2233  do_null_check(receiver, T_OBJECT);
2234  _sp -= nargs;
2235  if (stopped()) {
2236    return true;
2237  }
2238
2239  // Build field offset expression.
2240  assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2241  // 32-bit machines ignore the high half of long offsets
2242  offset = ConvL2X(offset);
2243  Node* adr = make_unsafe_address(base, offset);
2244  const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2245  const Type *value_type = Type::get_const_basic_type(type);
2246  Compile::AliasType* alias_type = C->alias_type(adr_type);
2247
2248  insert_mem_bar(Op_MemBarRelease);
2249  insert_mem_bar(Op_MemBarCPUOrder);
2250  // Ensure that the store is atomic for longs:
2251  bool require_atomic_access = true;
2252  Node* store;
2253  if (type == T_OBJECT) // reference stores need a store barrier.
2254    store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
2255  else {
2256    store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2257  }
2258  insert_mem_bar(Op_MemBarCPUOrder);
2259  return true;
2260}
2261
2262bool LibraryCallKit::inline_unsafe_allocate() {
2263  if (callee()->is_static())  return false;  // caller must have the capability!
2264  int nargs = 1 + 1;
2265  assert(signature()->size() == nargs-1, "alloc has 1 argument");
2266  null_check_receiver(callee());  // check then ignore argument(0)
2267  _sp += nargs;  // set original stack for use by uncommon_trap
2268  Node* cls = do_null_check(argument(1), T_OBJECT);
2269  _sp -= nargs;
2270  if (stopped())  return true;
2271
2272  Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2273  _sp += nargs;  // set original stack for use by uncommon_trap
2274  kls = do_null_check(kls, T_OBJECT);
2275  _sp -= nargs;
2276  if (stopped())  return true;  // argument was like int.class
2277
2278  // Note:  The argument might still be an illegal value like
2279  // Serializable.class or Object[].class.   The runtime will handle it.
2280  // But we must make an explicit check for initialization.
2281  Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2282  Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2283  Node* bits = intcon(instanceKlass::fully_initialized);
2284  Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2285  // The 'test' is non-zero if we need to take a slow path.
2286
2287  Node* obj = new_instance(kls, test);
2288  push(obj);
2289
2290  return true;
2291}
2292
2293//------------------------inline_native_time_funcs--------------
2294// inline code for System.currentTimeMillis() and System.nanoTime()
2295// these have the same type and signature
2296bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2297  address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2298                              CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2299  const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2300  const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2301  const TypePtr* no_memory_effects = NULL;
2302  Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2303  Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2304#ifdef ASSERT
2305  Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2306  assert(value_top == top(), "second value must be top");
2307#endif
2308  push_pair(value);
2309  return true;
2310}
2311
2312//------------------------inline_native_currentThread------------------
2313bool LibraryCallKit::inline_native_currentThread() {
2314  Node* junk = NULL;
2315  push(generate_current_thread(junk));
2316  return true;
2317}
2318
2319//------------------------inline_native_isInterrupted------------------
2320bool LibraryCallKit::inline_native_isInterrupted() {
2321  const int nargs = 1+1;  // receiver + boolean
2322  assert(nargs == arg_size(), "sanity");
2323  // Add a fast path to t.isInterrupted(clear_int):
2324  //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2325  //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2326  // So, in the common case that the interrupt bit is false,
2327  // we avoid making a call into the VM.  Even if the interrupt bit
2328  // is true, if the clear_int argument is false, we avoid the VM call.
2329  // However, if the receiver is not currentThread, we must call the VM,
2330  // because there must be some locking done around the operation.
2331
2332  // We only go to the fast case code if we pass two guards.
2333  // Paths which do not pass are accumulated in the slow_region.
2334  RegionNode* slow_region = new (C, 1) RegionNode(1);
2335  record_for_igvn(slow_region);
2336  RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2337  PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2338  enum { no_int_result_path   = 1,
2339         no_clear_result_path = 2,
2340         slow_result_path     = 3
2341  };
2342
2343  // (a) Receiving thread must be the current thread.
2344  Node* rec_thr = argument(0);
2345  Node* tls_ptr = NULL;
2346  Node* cur_thr = generate_current_thread(tls_ptr);
2347  Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2348  Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2349
2350  bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2351  if (!known_current_thread)
2352    generate_slow_guard(bol_thr, slow_region);
2353
2354  // (b) Interrupt bit on TLS must be false.
2355  Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2356  Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2357  p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2358  Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
2359  Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2360  Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2361
2362  IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2363
2364  // First fast path:  if (!TLS._interrupted) return false;
2365  Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2366  result_rgn->init_req(no_int_result_path, false_bit);
2367  result_val->init_req(no_int_result_path, intcon(0));
2368
2369  // drop through to next case
2370  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2371
2372  // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2373  Node* clr_arg = argument(1);
2374  Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2375  Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2376  IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2377
2378  // Second fast path:  ... else if (!clear_int) return true;
2379  Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2380  result_rgn->init_req(no_clear_result_path, false_arg);
2381  result_val->init_req(no_clear_result_path, intcon(1));
2382
2383  // drop through to next case
2384  set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2385
2386  // (d) Otherwise, go to the slow path.
2387  slow_region->add_req(control());
2388  set_control( _gvn.transform(slow_region) );
2389
2390  if (stopped()) {
2391    // There is no slow path.
2392    result_rgn->init_req(slow_result_path, top());
2393    result_val->init_req(slow_result_path, top());
2394  } else {
2395    // non-virtual because it is a private non-static
2396    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2397
2398    Node* slow_val = set_results_for_java_call(slow_call);
2399    // this->control() comes from set_results_for_java_call
2400
2401    // If we know that the result of the slow call will be true, tell the optimizer!
2402    if (known_current_thread)  slow_val = intcon(1);
2403
2404    Node* fast_io  = slow_call->in(TypeFunc::I_O);
2405    Node* fast_mem = slow_call->in(TypeFunc::Memory);
2406    // These two phis are pre-filled with copies of of the fast IO and Memory
2407    Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2408    Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2409
2410    result_rgn->init_req(slow_result_path, control());
2411    io_phi    ->init_req(slow_result_path, i_o());
2412    mem_phi   ->init_req(slow_result_path, reset_memory());
2413    result_val->init_req(slow_result_path, slow_val);
2414
2415    set_all_memory( _gvn.transform(mem_phi) );
2416    set_i_o(        _gvn.transform(io_phi) );
2417  }
2418
2419  push_result(result_rgn, result_val);
2420  C->set_has_split_ifs(true); // Has chance for split-if optimization
2421
2422  return true;
2423}
2424
2425//---------------------------load_mirror_from_klass----------------------------
2426// Given a klass oop, load its java mirror (a java.lang.Class oop).
2427Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2428  Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2429  return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2430}
2431
2432//-----------------------load_klass_from_mirror_common-------------------------
2433// Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2434// Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2435// and branch to the given path on the region.
2436// If never_see_null, take an uncommon trap on null, so we can optimistically
2437// compile for the non-null case.
2438// If the region is NULL, force never_see_null = true.
2439Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2440                                                    bool never_see_null,
2441                                                    int nargs,
2442                                                    RegionNode* region,
2443                                                    int null_path,
2444                                                    int offset) {
2445  if (region == NULL)  never_see_null = true;
2446  Node* p = basic_plus_adr(mirror, offset);
2447  const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2448  Node* kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
2449  _sp += nargs; // any deopt will start just before call to enclosing method
2450  Node* null_ctl = top();
2451  kls = null_check_oop(kls, &null_ctl, never_see_null);
2452  if (region != NULL) {
2453    // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2454    region->init_req(null_path, null_ctl);
2455  } else {
2456    assert(null_ctl == top(), "no loose ends");
2457  }
2458  _sp -= nargs;
2459  return kls;
2460}
2461
2462//--------------------(inline_native_Class_query helpers)---------------------
2463// Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2464// Fall through if (mods & mask) == bits, take the guard otherwise.
2465Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2466  // Branch around if the given klass has the given modifier bit set.
2467  // Like generate_guard, adds a new path onto the region.
2468  Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2469  Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2470  Node* mask = intcon(modifier_mask);
2471  Node* bits = intcon(modifier_bits);
2472  Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2473  Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2474  Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2475  return generate_fair_guard(bol, region);
2476}
2477Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2478  return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2479}
2480
2481//-------------------------inline_native_Class_query-------------------
2482bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2483  int nargs = 1+0;  // just the Class mirror, in most cases
2484  const Type* return_type = TypeInt::BOOL;
2485  Node* prim_return_value = top();  // what happens if it's a primitive class?
2486  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2487  bool expect_prim = false;     // most of these guys expect to work on refs
2488
2489  enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2490
2491  switch (id) {
2492  case vmIntrinsics::_isInstance:
2493    nargs = 1+1;  // the Class mirror, plus the object getting queried about
2494    // nothing is an instance of a primitive type
2495    prim_return_value = intcon(0);
2496    break;
2497  case vmIntrinsics::_getModifiers:
2498    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2499    assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2500    return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2501    break;
2502  case vmIntrinsics::_isInterface:
2503    prim_return_value = intcon(0);
2504    break;
2505  case vmIntrinsics::_isArray:
2506    prim_return_value = intcon(0);
2507    expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2508    break;
2509  case vmIntrinsics::_isPrimitive:
2510    prim_return_value = intcon(1);
2511    expect_prim = true;  // obviously
2512    break;
2513  case vmIntrinsics::_getSuperclass:
2514    prim_return_value = null();
2515    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2516    break;
2517  case vmIntrinsics::_getComponentType:
2518    prim_return_value = null();
2519    return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2520    break;
2521  case vmIntrinsics::_getClassAccessFlags:
2522    prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2523    return_type = TypeInt::INT;  // not bool!  6297094
2524    break;
2525  default:
2526    ShouldNotReachHere();
2527  }
2528
2529  Node* mirror =                      argument(0);
2530  Node* obj    = (nargs <= 1)? top(): argument(1);
2531
2532  const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2533  if (mirror_con == NULL)  return false;  // cannot happen?
2534
2535#ifndef PRODUCT
2536  if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2537    ciType* k = mirror_con->java_mirror_type();
2538    if (k) {
2539      tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2540      k->print_name();
2541      tty->cr();
2542    }
2543  }
2544#endif
2545
2546  // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2547  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2548  record_for_igvn(region);
2549  PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2550
2551  // The mirror will never be null of Reflection.getClassAccessFlags, however
2552  // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2553  // if it is. See bug 4774291.
2554
2555  // For Reflection.getClassAccessFlags(), the null check occurs in
2556  // the wrong place; see inline_unsafe_access(), above, for a similar
2557  // situation.
2558  _sp += nargs;  // set original stack for use by uncommon_trap
2559  mirror = do_null_check(mirror, T_OBJECT);
2560  _sp -= nargs;
2561  // If mirror or obj is dead, only null-path is taken.
2562  if (stopped())  return true;
2563
2564  if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2565
2566  // Now load the mirror's klass metaobject, and null-check it.
2567  // Side-effects region with the control path if the klass is null.
2568  Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2569                                     region, _prim_path);
2570  // If kls is null, we have a primitive mirror.
2571  phi->init_req(_prim_path, prim_return_value);
2572  if (stopped()) { push_result(region, phi); return true; }
2573
2574  Node* p;  // handy temp
2575  Node* null_ctl;
2576
2577  // Now that we have the non-null klass, we can perform the real query.
2578  // For constant classes, the query will constant-fold in LoadNode::Value.
2579  Node* query_value = top();
2580  switch (id) {
2581  case vmIntrinsics::_isInstance:
2582    // nothing is an instance of a primitive type
2583    query_value = gen_instanceof(obj, kls);
2584    break;
2585
2586  case vmIntrinsics::_getModifiers:
2587    p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2588    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2589    break;
2590
2591  case vmIntrinsics::_isInterface:
2592    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2593    if (generate_interface_guard(kls, region) != NULL)
2594      // A guard was added.  If the guard is taken, it was an interface.
2595      phi->add_req(intcon(1));
2596    // If we fall through, it's a plain class.
2597    query_value = intcon(0);
2598    break;
2599
2600  case vmIntrinsics::_isArray:
2601    // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2602    if (generate_array_guard(kls, region) != NULL)
2603      // A guard was added.  If the guard is taken, it was an array.
2604      phi->add_req(intcon(1));
2605    // If we fall through, it's a plain class.
2606    query_value = intcon(0);
2607    break;
2608
2609  case vmIntrinsics::_isPrimitive:
2610    query_value = intcon(0); // "normal" path produces false
2611    break;
2612
2613  case vmIntrinsics::_getSuperclass:
2614    // The rules here are somewhat unfortunate, but we can still do better
2615    // with random logic than with a JNI call.
2616    // Interfaces store null or Object as _super, but must report null.
2617    // Arrays store an intermediate super as _super, but must report Object.
2618    // Other types can report the actual _super.
2619    // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2620    if (generate_interface_guard(kls, region) != NULL)
2621      // A guard was added.  If the guard is taken, it was an interface.
2622      phi->add_req(null());
2623    if (generate_array_guard(kls, region) != NULL)
2624      // A guard was added.  If the guard is taken, it was an array.
2625      phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2626    // If we fall through, it's a plain class.  Get its _super.
2627    p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2628    kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
2629    null_ctl = top();
2630    kls = null_check_oop(kls, &null_ctl);
2631    if (null_ctl != top()) {
2632      // If the guard is taken, Object.superClass is null (both klass and mirror).
2633      region->add_req(null_ctl);
2634      phi   ->add_req(null());
2635    }
2636    if (!stopped()) {
2637      query_value = load_mirror_from_klass(kls);
2638    }
2639    break;
2640
2641  case vmIntrinsics::_getComponentType:
2642    if (generate_array_guard(kls, region) != NULL) {
2643      // Be sure to pin the oop load to the guard edge just created:
2644      Node* is_array_ctrl = region->in(region->req()-1);
2645      Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
2646      Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
2647      phi->add_req(cmo);
2648    }
2649    query_value = null();  // non-array case is null
2650    break;
2651
2652  case vmIntrinsics::_getClassAccessFlags:
2653    p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2654    query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2655    break;
2656
2657  default:
2658    ShouldNotReachHere();
2659  }
2660
2661  // Fall-through is the normal case of a query to a real class.
2662  phi->init_req(1, query_value);
2663  region->init_req(1, control());
2664
2665  push_result(region, phi);
2666  C->set_has_split_ifs(true); // Has chance for split-if optimization
2667
2668  return true;
2669}
2670
2671//--------------------------inline_native_subtype_check------------------------
2672// This intrinsic takes the JNI calls out of the heart of
2673// UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
2674bool LibraryCallKit::inline_native_subtype_check() {
2675  int nargs = 1+1;  // the Class mirror, plus the other class getting examined
2676
2677  // Pull both arguments off the stack.
2678  Node* args[2];                // two java.lang.Class mirrors: superc, subc
2679  args[0] = argument(0);
2680  args[1] = argument(1);
2681  Node* klasses[2];             // corresponding Klasses: superk, subk
2682  klasses[0] = klasses[1] = top();
2683
2684  enum {
2685    // A full decision tree on {superc is prim, subc is prim}:
2686    _prim_0_path = 1,           // {P,N} => false
2687                                // {P,P} & superc!=subc => false
2688    _prim_same_path,            // {P,P} & superc==subc => true
2689    _prim_1_path,               // {N,P} => false
2690    _ref_subtype_path,          // {N,N} & subtype check wins => true
2691    _both_ref_path,             // {N,N} & subtype check loses => false
2692    PATH_LIMIT
2693  };
2694
2695  RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2696  Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2697  record_for_igvn(region);
2698
2699  const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
2700  const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2701  int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
2702
2703  // First null-check both mirrors and load each mirror's klass metaobject.
2704  int which_arg;
2705  for (which_arg = 0; which_arg <= 1; which_arg++) {
2706    Node* arg = args[which_arg];
2707    _sp += nargs;  // set original stack for use by uncommon_trap
2708    arg = do_null_check(arg, T_OBJECT);
2709    _sp -= nargs;
2710    if (stopped())  break;
2711    args[which_arg] = _gvn.transform(arg);
2712
2713    Node* p = basic_plus_adr(arg, class_klass_offset);
2714    Node* kls = new (C, 3) LoadKlassNode(0, immutable_memory(), p, adr_type, kls_type);
2715    klasses[which_arg] = _gvn.transform(kls);
2716  }
2717
2718  // Having loaded both klasses, test each for null.
2719  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2720  for (which_arg = 0; which_arg <= 1; which_arg++) {
2721    Node* kls = klasses[which_arg];
2722    Node* null_ctl = top();
2723    _sp += nargs;  // set original stack for use by uncommon_trap
2724    kls = null_check_oop(kls, &null_ctl, never_see_null);
2725    _sp -= nargs;
2726    int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
2727    region->init_req(prim_path, null_ctl);
2728    if (stopped())  break;
2729    klasses[which_arg] = kls;
2730  }
2731
2732  if (!stopped()) {
2733    // now we have two reference types, in klasses[0..1]
2734    Node* subk   = klasses[1];  // the argument to isAssignableFrom
2735    Node* superk = klasses[0];  // the receiver
2736    region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
2737    // now we have a successful reference subtype check
2738    region->set_req(_ref_subtype_path, control());
2739  }
2740
2741  // If both operands are primitive (both klasses null), then
2742  // we must return true when they are identical primitives.
2743  // It is convenient to test this after the first null klass check.
2744  set_control(region->in(_prim_0_path)); // go back to first null check
2745  if (!stopped()) {
2746    // Since superc is primitive, make a guard for the superc==subc case.
2747    Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
2748    Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
2749    generate_guard(bol_eq, region, PROB_FAIR);
2750    if (region->req() == PATH_LIMIT+1) {
2751      // A guard was added.  If the added guard is taken, superc==subc.
2752      region->swap_edges(PATH_LIMIT, _prim_same_path);
2753      region->del_req(PATH_LIMIT);
2754    }
2755    region->set_req(_prim_0_path, control()); // Not equal after all.
2756  }
2757
2758  // these are the only paths that produce 'true':
2759  phi->set_req(_prim_same_path,   intcon(1));
2760  phi->set_req(_ref_subtype_path, intcon(1));
2761
2762  // pull together the cases:
2763  assert(region->req() == PATH_LIMIT, "sane region");
2764  for (uint i = 1; i < region->req(); i++) {
2765    Node* ctl = region->in(i);
2766    if (ctl == NULL || ctl == top()) {
2767      region->set_req(i, top());
2768      phi   ->set_req(i, top());
2769    } else if (phi->in(i) == NULL) {
2770      phi->set_req(i, intcon(0)); // all other paths produce 'false'
2771    }
2772  }
2773
2774  set_control(_gvn.transform(region));
2775  push(_gvn.transform(phi));
2776
2777  return true;
2778}
2779
2780//---------------------generate_array_guard_common------------------------
2781Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
2782                                                  bool obj_array, bool not_array) {
2783  // If obj_array/non_array==false/false:
2784  // Branch around if the given klass is in fact an array (either obj or prim).
2785  // If obj_array/non_array==false/true:
2786  // Branch around if the given klass is not an array klass of any kind.
2787  // If obj_array/non_array==true/true:
2788  // Branch around if the kls is not an oop array (kls is int[], String, etc.)
2789  // If obj_array/non_array==true/false:
2790  // Branch around if the kls is an oop array (Object[] or subtype)
2791  //
2792  // Like generate_guard, adds a new path onto the region.
2793  jint  layout_con = 0;
2794  Node* layout_val = get_layout_helper(kls, layout_con);
2795  if (layout_val == NULL) {
2796    bool query = (obj_array
2797                  ? Klass::layout_helper_is_objArray(layout_con)
2798                  : Klass::layout_helper_is_javaArray(layout_con));
2799    if (query == not_array) {
2800      return NULL;                       // never a branch
2801    } else {                             // always a branch
2802      Node* always_branch = control();
2803      if (region != NULL)
2804        region->add_req(always_branch);
2805      set_control(top());
2806      return always_branch;
2807    }
2808  }
2809  // Now test the correct condition.
2810  jint  nval = (obj_array
2811                ? ((jint)Klass::_lh_array_tag_type_value
2812                   <<    Klass::_lh_array_tag_shift)
2813                : Klass::_lh_neutral_value);
2814  Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
2815  BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
2816  // invert the test if we are looking for a non-array
2817  if (not_array)  btest = BoolTest(btest).negate();
2818  Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
2819  return generate_fair_guard(bol, region);
2820}
2821
2822
2823//-----------------------inline_native_newArray--------------------------
2824bool LibraryCallKit::inline_native_newArray() {
2825  int nargs = 2;
2826  Node* mirror    = argument(0);
2827  Node* count_val = argument(1);
2828
2829  _sp += nargs;  // set original stack for use by uncommon_trap
2830  mirror = do_null_check(mirror, T_OBJECT);
2831  _sp -= nargs;
2832
2833  enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
2834  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2835  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
2836                                                      TypeInstPtr::NOTNULL);
2837  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
2838  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
2839                                                      TypePtr::BOTTOM);
2840
2841  bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2842  Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
2843                                                  nargs,
2844                                                  result_reg, _slow_path);
2845  Node* normal_ctl   = control();
2846  Node* no_array_ctl = result_reg->in(_slow_path);
2847
2848  // Generate code for the slow case.  We make a call to newArray().
2849  set_control(no_array_ctl);
2850  if (!stopped()) {
2851    // Either the input type is void.class, or else the
2852    // array klass has not yet been cached.  Either the
2853    // ensuing call will throw an exception, or else it
2854    // will cache the array klass for next time.
2855    PreserveJVMState pjvms(this);
2856    CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
2857    Node* slow_result = set_results_for_java_call(slow_call);
2858    // this->control() comes from set_results_for_java_call
2859    result_reg->set_req(_slow_path, control());
2860    result_val->set_req(_slow_path, slow_result);
2861    result_io ->set_req(_slow_path, i_o());
2862    result_mem->set_req(_slow_path, reset_memory());
2863  }
2864
2865  set_control(normal_ctl);
2866  if (!stopped()) {
2867    // Normal case:  The array type has been cached in the java.lang.Class.
2868    // The following call works fine even if the array type is polymorphic.
2869    // It could be a dynamic mix of int[], boolean[], Object[], etc.
2870    _sp += nargs;  // set original stack for use by uncommon_trap
2871    Node* obj = new_array(klass_node, count_val);
2872    _sp -= nargs;
2873    result_reg->init_req(_normal_path, control());
2874    result_val->init_req(_normal_path, obj);
2875    result_io ->init_req(_normal_path, i_o());
2876    result_mem->init_req(_normal_path, reset_memory());
2877  }
2878
2879  // Return the combined state.
2880  set_i_o(        _gvn.transform(result_io)  );
2881  set_all_memory( _gvn.transform(result_mem) );
2882  push_result(result_reg, result_val);
2883  C->set_has_split_ifs(true); // Has chance for split-if optimization
2884
2885  return true;
2886}
2887
2888//----------------------inline_native_getLength--------------------------
2889bool LibraryCallKit::inline_native_getLength() {
2890  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
2891
2892  int nargs = 1;
2893  Node* array = argument(0);
2894
2895  _sp += nargs;  // set original stack for use by uncommon_trap
2896  array = do_null_check(array, T_OBJECT);
2897  _sp -= nargs;
2898
2899  // If array is dead, only null-path is taken.
2900  if (stopped())  return true;
2901
2902  // Deoptimize if it is a non-array.
2903  Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
2904
2905  if (non_array != NULL) {
2906    PreserveJVMState pjvms(this);
2907    set_control(non_array);
2908    _sp += nargs;  // push the arguments back on the stack
2909    uncommon_trap(Deoptimization::Reason_intrinsic,
2910                  Deoptimization::Action_maybe_recompile);
2911  }
2912
2913  // If control is dead, only non-array-path is taken.
2914  if (stopped())  return true;
2915
2916  // The works fine even if the array type is polymorphic.
2917  // It could be a dynamic mix of int[], boolean[], Object[], etc.
2918  push( load_array_length(array) );
2919
2920  C->set_has_split_ifs(true); // Has chance for split-if optimization
2921
2922  return true;
2923}
2924
2925//------------------------inline_array_copyOf----------------------------
2926bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
2927  if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
2928
2929  // Restore the stack and pop off the arguments.
2930  int nargs = 3 + (is_copyOfRange? 1: 0);
2931  Node* original          = argument(0);
2932  Node* start             = is_copyOfRange? argument(1): intcon(0);
2933  Node* end               = is_copyOfRange? argument(2): argument(1);
2934  Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
2935
2936  _sp += nargs;  // set original stack for use by uncommon_trap
2937  array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
2938  original          = do_null_check(original, T_OBJECT);
2939  _sp -= nargs;
2940
2941  // Check if a null path was taken unconditionally.
2942  if (stopped())  return true;
2943
2944  Node* orig_length = load_array_length(original);
2945
2946  Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
2947                                            NULL, 0);
2948  _sp += nargs;  // set original stack for use by uncommon_trap
2949  klass_node = do_null_check(klass_node, T_OBJECT);
2950  _sp -= nargs;
2951
2952  RegionNode* bailout = new (C, 1) RegionNode(1);
2953  record_for_igvn(bailout);
2954
2955  // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
2956  // Bail out if that is so.
2957  Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
2958  if (not_objArray != NULL) {
2959    // Improve the klass node's type from the new optimistic assumption:
2960    ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
2961    const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2962    Node* cast = new (C, 2) CastPPNode(klass_node, akls);
2963    cast->init_req(0, control());
2964    klass_node = _gvn.transform(cast);
2965  }
2966
2967  // Bail out if either start or end is negative.
2968  generate_negative_guard(start, bailout, &start);
2969  generate_negative_guard(end,   bailout, &end);
2970
2971  Node* length = end;
2972  if (_gvn.type(start) != TypeInt::ZERO) {
2973    length = _gvn.transform( new (C, 3) SubINode(end, start) );
2974  }
2975
2976  // Bail out if length is negative.
2977  // ...Not needed, since the new_array will throw the right exception.
2978  //generate_negative_guard(length, bailout, &length);
2979
2980  if (bailout->req() > 1) {
2981    PreserveJVMState pjvms(this);
2982    set_control( _gvn.transform(bailout) );
2983    _sp += nargs;  // push the arguments back on the stack
2984    uncommon_trap(Deoptimization::Reason_intrinsic,
2985                  Deoptimization::Action_maybe_recompile);
2986  }
2987
2988  if (!stopped()) {
2989    // How many elements will we copy from the original?
2990    // The answer is MinI(orig_length - start, length).
2991    Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
2992    Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
2993
2994    _sp += nargs;  // set original stack for use by uncommon_trap
2995    Node* newcopy = new_array(klass_node, length);
2996    _sp -= nargs;
2997
2998    // Generate a direct call to the right arraycopy function(s).
2999    // We know the copy is disjoint but we might not know if the
3000    // oop stores need checking.
3001    // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3002    // This will fail a store-check if x contains any non-nulls.
3003    bool disjoint_bases = true;
3004    bool length_never_negative = true;
3005    generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3006                       original, start, newcopy, intcon(0), moved,
3007                       nargs, disjoint_bases, length_never_negative);
3008
3009    push(newcopy);
3010  }
3011
3012  C->set_has_split_ifs(true); // Has chance for split-if optimization
3013
3014  return true;
3015}
3016
3017
3018//----------------------generate_virtual_guard---------------------------
3019// Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3020Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3021                                             RegionNode* slow_region) {
3022  ciMethod* method = callee();
3023  int vtable_index = method->vtable_index();
3024  // Get the methodOop out of the appropriate vtable entry.
3025  int entry_offset  = (instanceKlass::vtable_start_offset() +
3026                     vtable_index*vtableEntry::size()) * wordSize +
3027                     vtableEntry::method_offset_in_bytes();
3028  Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3029  Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3030
3031  // Compare the target method with the expected method (e.g., Object.hashCode).
3032  const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3033
3034  Node* native_call = makecon(native_call_addr);
3035  Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3036  Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3037
3038  return generate_slow_guard(test_native, slow_region);
3039}
3040
3041//-----------------------generate_method_call----------------------------
3042// Use generate_method_call to make a slow-call to the real
3043// method if the fast path fails.  An alternative would be to
3044// use a stub like OptoRuntime::slow_arraycopy_Java.
3045// This only works for expanding the current library call,
3046// not another intrinsic.  (E.g., don't use this for making an
3047// arraycopy call inside of the copyOf intrinsic.)
3048CallJavaNode*
3049LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3050  // When compiling the intrinsic method itself, do not use this technique.
3051  guarantee(callee() != C->method(), "cannot make slow-call to self");
3052
3053  ciMethod* method = callee();
3054  // ensure the JVMS we have will be correct for this call
3055  guarantee(method_id == method->intrinsic_id(), "must match");
3056
3057  const TypeFunc* tf = TypeFunc::make(method);
3058  int tfdc = tf->domain()->cnt();
3059  CallJavaNode* slow_call;
3060  if (is_static) {
3061    assert(!is_virtual, "");
3062    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3063                                SharedRuntime::get_resolve_static_call_stub(),
3064                                method, bci());
3065  } else if (is_virtual) {
3066    null_check_receiver(method);
3067    int vtable_index = methodOopDesc::invalid_vtable_index;
3068    if (UseInlineCaches) {
3069      // Suppress the vtable call
3070    } else {
3071      // hashCode and clone are not a miranda methods,
3072      // so the vtable index is fixed.
3073      // No need to use the linkResolver to get it.
3074       vtable_index = method->vtable_index();
3075    }
3076    slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3077                                SharedRuntime::get_resolve_virtual_call_stub(),
3078                                method, vtable_index, bci());
3079  } else {  // neither virtual nor static:  opt_virtual
3080    null_check_receiver(method);
3081    slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3082                                SharedRuntime::get_resolve_opt_virtual_call_stub(),
3083                                method, bci());
3084    slow_call->set_optimized_virtual(true);
3085  }
3086  set_arguments_for_java_call(slow_call);
3087  set_edges_for_java_call(slow_call);
3088  return slow_call;
3089}
3090
3091
3092//------------------------------inline_native_hashcode--------------------
3093// Build special case code for calls to hashCode on an object.
3094bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3095  assert(is_static == callee()->is_static(), "correct intrinsic selection");
3096  assert(!(is_virtual && is_static), "either virtual, special, or static");
3097
3098  enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3099
3100  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3101  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3102                                                      TypeInt::INT);
3103  PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3104  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3105                                                      TypePtr::BOTTOM);
3106  Node* obj = NULL;
3107  if (!is_static) {
3108    // Check for hashing null object
3109    obj = null_check_receiver(callee());
3110    if (stopped())  return true;        // unconditionally null
3111    result_reg->init_req(_null_path, top());
3112    result_val->init_req(_null_path, top());
3113  } else {
3114    // Do a null check, and return zero if null.
3115    // System.identityHashCode(null) == 0
3116    obj = argument(0);
3117    Node* null_ctl = top();
3118    obj = null_check_oop(obj, &null_ctl);
3119    result_reg->init_req(_null_path, null_ctl);
3120    result_val->init_req(_null_path, _gvn.intcon(0));
3121  }
3122
3123  // Unconditionally null?  Then return right away.
3124  if (stopped()) {
3125    set_control( result_reg->in(_null_path) );
3126    if (!stopped())
3127      push(      result_val ->in(_null_path) );
3128    return true;
3129  }
3130
3131  // After null check, get the object's klass.
3132  Node* obj_klass = load_object_klass(obj);
3133
3134  // This call may be virtual (invokevirtual) or bound (invokespecial).
3135  // For each case we generate slightly different code.
3136
3137  // We only go to the fast case code if we pass a number of guards.  The
3138  // paths which do not pass are accumulated in the slow_region.
3139  RegionNode* slow_region = new (C, 1) RegionNode(1);
3140  record_for_igvn(slow_region);
3141
3142  // If this is a virtual call, we generate a funny guard.  We pull out
3143  // the vtable entry corresponding to hashCode() from the target object.
3144  // If the target method which we are calling happens to be the native
3145  // Object hashCode() method, we pass the guard.  We do not need this
3146  // guard for non-virtual calls -- the caller is known to be the native
3147  // Object hashCode().
3148  if (is_virtual) {
3149    generate_virtual_guard(obj_klass, slow_region);
3150  }
3151
3152  // Get the header out of the object, use LoadMarkNode when available
3153  Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3154  Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3155  header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3156
3157  // Test the header to see if it is unlocked.
3158  Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3159  Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3160  Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3161  Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3162  Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3163
3164  generate_slow_guard(test_unlocked, slow_region);
3165
3166  // Get the hash value and check to see that it has been properly assigned.
3167  // We depend on hash_mask being at most 32 bits and avoid the use of
3168  // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3169  // vm: see markOop.hpp.
3170  Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3171  Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3172  Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3173  // This hack lets the hash bits live anywhere in the mark object now, as long
3174  // as the shift drops the relevent bits into the low 32 bits.  Note that
3175  // Java spec says that HashCode is an int so there's no point in capturing
3176  // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3177  hshifted_header      = ConvX2I(hshifted_header);
3178  Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3179
3180  Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3181  Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3182  Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3183
3184  generate_slow_guard(test_assigned, slow_region);
3185
3186  Node* init_mem = reset_memory();
3187  // fill in the rest of the null path:
3188  result_io ->init_req(_null_path, i_o());
3189  result_mem->init_req(_null_path, init_mem);
3190
3191  result_val->init_req(_fast_path, hash_val);
3192  result_reg->init_req(_fast_path, control());
3193  result_io ->init_req(_fast_path, i_o());
3194  result_mem->init_req(_fast_path, init_mem);
3195
3196  // Generate code for the slow case.  We make a call to hashCode().
3197  set_control(_gvn.transform(slow_region));
3198  if (!stopped()) {
3199    // No need for PreserveJVMState, because we're using up the present state.
3200    set_all_memory(init_mem);
3201    vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3202    if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3203    CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3204    Node* slow_result = set_results_for_java_call(slow_call);
3205    // this->control() comes from set_results_for_java_call
3206    result_reg->init_req(_slow_path, control());
3207    result_val->init_req(_slow_path, slow_result);
3208    result_io  ->set_req(_slow_path, i_o());
3209    result_mem ->set_req(_slow_path, reset_memory());
3210  }
3211
3212  // Return the combined state.
3213  set_i_o(        _gvn.transform(result_io)  );
3214  set_all_memory( _gvn.transform(result_mem) );
3215  push_result(result_reg, result_val);
3216
3217  return true;
3218}
3219
3220//---------------------------inline_native_getClass----------------------------
3221// Build special case code for calls to hashCode on an object.
3222bool LibraryCallKit::inline_native_getClass() {
3223  Node* obj = null_check_receiver(callee());
3224  if (stopped())  return true;
3225  push( load_mirror_from_klass(load_object_klass(obj)) );
3226  return true;
3227}
3228
3229//-----------------inline_native_Reflection_getCallerClass---------------------
3230// In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3231//
3232// NOTE that this code must perform the same logic as
3233// vframeStream::security_get_caller_frame in that it must skip
3234// Method.invoke() and auxiliary frames.
3235
3236
3237
3238
3239bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3240  ciMethod*       method = callee();
3241
3242#ifndef PRODUCT
3243  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3244    tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3245  }
3246#endif
3247
3248  debug_only(int saved_sp = _sp);
3249
3250  // Argument words:  (int depth)
3251  int nargs = 1;
3252
3253  _sp += nargs;
3254  Node* caller_depth_node = pop();
3255
3256  assert(saved_sp == _sp, "must have correct argument count");
3257
3258  // The depth value must be a constant in order for the runtime call
3259  // to be eliminated.
3260  const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3261  if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3262#ifndef PRODUCT
3263    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3264      tty->print_cr("  Bailing out because caller depth was not a constant");
3265    }
3266#endif
3267    return false;
3268  }
3269  // Note that the JVM state at this point does not include the
3270  // getCallerClass() frame which we are trying to inline. The
3271  // semantics of getCallerClass(), however, are that the "first"
3272  // frame is the getCallerClass() frame, so we subtract one from the
3273  // requested depth before continuing. We don't inline requests of
3274  // getCallerClass(0).
3275  int caller_depth = caller_depth_type->get_con() - 1;
3276  if (caller_depth < 0) {
3277#ifndef PRODUCT
3278    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3279      tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3280    }
3281#endif
3282    return false;
3283  }
3284
3285  if (!jvms()->has_method()) {
3286#ifndef PRODUCT
3287    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3288      tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3289    }
3290#endif
3291    return false;
3292  }
3293  int _depth = jvms()->depth();  // cache call chain depth
3294
3295  // Walk back up the JVM state to find the caller at the required
3296  // depth. NOTE that this code must perform the same logic as
3297  // vframeStream::security_get_caller_frame in that it must skip
3298  // Method.invoke() and auxiliary frames. Note also that depth is
3299  // 1-based (1 is the bottom of the inlining).
3300  int inlining_depth = _depth;
3301  JVMState* caller_jvms = NULL;
3302
3303  if (inlining_depth > 0) {
3304    caller_jvms = jvms();
3305    assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3306    do {
3307      // The following if-tests should be performed in this order
3308      if (is_method_invoke_or_aux_frame(caller_jvms)) {
3309        // Skip a Method.invoke() or auxiliary frame
3310      } else if (caller_depth > 0) {
3311        // Skip real frame
3312        --caller_depth;
3313      } else {
3314        // We're done: reached desired caller after skipping.
3315        break;
3316      }
3317      caller_jvms = caller_jvms->caller();
3318      --inlining_depth;
3319    } while (inlining_depth > 0);
3320  }
3321
3322  if (inlining_depth == 0) {
3323#ifndef PRODUCT
3324    if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3325      tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3326      tty->print_cr("  JVM state at this point:");
3327      for (int i = _depth; i >= 1; i--) {
3328        tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3329      }
3330    }
3331#endif
3332    return false; // Reached end of inlining
3333  }
3334
3335  // Acquire method holder as java.lang.Class
3336  ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3337  ciInstance*      caller_mirror = caller_klass->java_mirror();
3338  // Push this as a constant
3339  push(makecon(TypeInstPtr::make(caller_mirror)));
3340#ifndef PRODUCT
3341  if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3342    tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3343    tty->print_cr("  JVM state at this point:");
3344    for (int i = _depth; i >= 1; i--) {
3345      tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3346    }
3347  }
3348#endif
3349  return true;
3350}
3351
3352// Helper routine for above
3353bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3354  // Is this the Method.invoke method itself?
3355  if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
3356    return true;
3357
3358  // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3359  ciKlass* k = jvms->method()->holder();
3360  if (k->is_instance_klass()) {
3361    ciInstanceKlass* ik = k->as_instance_klass();
3362    for (; ik != NULL; ik = ik->super()) {
3363      if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3364          ik == env()->find_system_klass(ik->name())) {
3365        return true;
3366      }
3367    }
3368  }
3369
3370  return false;
3371}
3372
3373static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3374                                     // inline_native_AtomicLong_attemptUpdate() but it has no way of
3375                                     // computing it since there is no lookup field by name function in the
3376                                     // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3377                                     // Using a static variable here is safe even if we have multiple compilation
3378                                     // threads because the offset is constant.  At worst the same offset will be
3379                                     // computed and  stored multiple
3380
3381bool LibraryCallKit::inline_native_AtomicLong_get() {
3382  // Restore the stack and pop off the argument
3383  _sp+=1;
3384  Node *obj = pop();
3385
3386  // get the offset of the "value" field. Since the CI interfaces
3387  // does not provide a way to look up a field by name, we scan the bytecodes
3388  // to get the field index.  We expect the first 2 instructions of the method
3389  // to be:
3390  //    0 aload_0
3391  //    1 getfield "value"
3392  ciMethod* method = callee();
3393  if (value_field_offset == -1)
3394  {
3395    ciField* value_field;
3396    ciBytecodeStream iter(method);
3397    Bytecodes::Code bc = iter.next();
3398
3399    if ((bc != Bytecodes::_aload_0) &&
3400              ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3401      return false;
3402    bc = iter.next();
3403    if (bc != Bytecodes::_getfield)
3404      return false;
3405    bool ignore;
3406    value_field = iter.get_field(ignore);
3407    value_field_offset = value_field->offset_in_bytes();
3408  }
3409
3410  // Null check without removing any arguments.
3411  _sp++;
3412  obj = do_null_check(obj, T_OBJECT);
3413  _sp--;
3414  // Check for locking null object
3415  if (stopped()) return true;
3416
3417  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3418  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3419  int alias_idx = C->get_alias_index(adr_type);
3420
3421  Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3422
3423  push_pair(result);
3424
3425  return true;
3426}
3427
3428bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3429  // Restore the stack and pop off the arguments
3430  _sp+=5;
3431  Node *newVal = pop_pair();
3432  Node *oldVal = pop_pair();
3433  Node *obj = pop();
3434
3435  // we need the offset of the "value" field which was computed when
3436  // inlining the get() method.  Give up if we don't have it.
3437  if (value_field_offset == -1)
3438    return false;
3439
3440  // Null check without removing any arguments.
3441  _sp+=5;
3442  obj = do_null_check(obj, T_OBJECT);
3443  _sp-=5;
3444  // Check for locking null object
3445  if (stopped()) return true;
3446
3447  Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3448  const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3449  int alias_idx = C->get_alias_index(adr_type);
3450
3451  Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3452  Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
3453  set_memory(store_proj, alias_idx);
3454
3455  push(result);
3456  return true;
3457}
3458
3459bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3460  // restore the arguments
3461  _sp += arg_size();
3462
3463  switch (id) {
3464  case vmIntrinsics::_floatToRawIntBits:
3465    push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3466    break;
3467
3468  case vmIntrinsics::_intBitsToFloat:
3469    push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3470    break;
3471
3472  case vmIntrinsics::_doubleToRawLongBits:
3473    push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3474    break;
3475
3476  case vmIntrinsics::_longBitsToDouble:
3477    push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3478    break;
3479
3480  case vmIntrinsics::_doubleToLongBits: {
3481    Node* value = pop_pair();
3482
3483    // two paths (plus control) merge in a wood
3484    RegionNode *r = new (C, 3) RegionNode(3);
3485    Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3486
3487    Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3488    // Build the boolean node
3489    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3490
3491    // Branch either way.
3492    // NaN case is less traveled, which makes all the difference.
3493    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3494    Node *opt_isnan = _gvn.transform(ifisnan);
3495    assert( opt_isnan->is_If(), "Expect an IfNode");
3496    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3497    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3498
3499    set_control(iftrue);
3500
3501    static const jlong nan_bits = CONST64(0x7ff8000000000000);
3502    Node *slow_result = longcon(nan_bits); // return NaN
3503    phi->init_req(1, _gvn.transform( slow_result ));
3504    r->init_req(1, iftrue);
3505
3506    // Else fall through
3507    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3508    set_control(iffalse);
3509
3510    phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3511    r->init_req(2, iffalse);
3512
3513    // Post merge
3514    set_control(_gvn.transform(r));
3515    record_for_igvn(r);
3516
3517    Node* result = _gvn.transform(phi);
3518    assert(result->bottom_type()->isa_long(), "must be");
3519    push_pair(result);
3520
3521    C->set_has_split_ifs(true); // Has chance for split-if optimization
3522
3523    break;
3524  }
3525
3526  case vmIntrinsics::_floatToIntBits: {
3527    Node* value = pop();
3528
3529    // two paths (plus control) merge in a wood
3530    RegionNode *r = new (C, 3) RegionNode(3);
3531    Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3532
3533    Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3534    // Build the boolean node
3535    Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3536
3537    // Branch either way.
3538    // NaN case is less traveled, which makes all the difference.
3539    IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3540    Node *opt_isnan = _gvn.transform(ifisnan);
3541    assert( opt_isnan->is_If(), "Expect an IfNode");
3542    IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3543    Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3544
3545    set_control(iftrue);
3546
3547    static const jint nan_bits = 0x7fc00000;
3548    Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3549    phi->init_req(1, _gvn.transform( slow_result ));
3550    r->init_req(1, iftrue);
3551
3552    // Else fall through
3553    Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3554    set_control(iffalse);
3555
3556    phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3557    r->init_req(2, iffalse);
3558
3559    // Post merge
3560    set_control(_gvn.transform(r));
3561    record_for_igvn(r);
3562
3563    Node* result = _gvn.transform(phi);
3564    assert(result->bottom_type()->isa_int(), "must be");
3565    push(result);
3566
3567    C->set_has_split_ifs(true); // Has chance for split-if optimization
3568
3569    break;
3570  }
3571
3572  default:
3573    ShouldNotReachHere();
3574  }
3575
3576  return true;
3577}
3578
3579#ifdef _LP64
3580#define XTOP ,top() /*additional argument*/
3581#else  //_LP64
3582#define XTOP        /*no additional argument*/
3583#endif //_LP64
3584
3585//----------------------inline_unsafe_copyMemory-------------------------
3586bool LibraryCallKit::inline_unsafe_copyMemory() {
3587  if (callee()->is_static())  return false;  // caller must have the capability!
3588  int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3589  assert(signature()->size() == nargs-1, "copy has 5 arguments");
3590  null_check_receiver(callee());  // check then ignore argument(0)
3591  if (stopped())  return true;
3592
3593  C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3594
3595  Node* src_ptr = argument(1);
3596  Node* src_off = ConvL2X(argument(2));
3597  assert(argument(3)->is_top(), "2nd half of long");
3598  Node* dst_ptr = argument(4);
3599  Node* dst_off = ConvL2X(argument(5));
3600  assert(argument(6)->is_top(), "2nd half of long");
3601  Node* size    = ConvL2X(argument(7));
3602  assert(argument(8)->is_top(), "2nd half of long");
3603
3604  assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3605         "fieldOffset must be byte-scaled");
3606
3607  Node* src = make_unsafe_address(src_ptr, src_off);
3608  Node* dst = make_unsafe_address(dst_ptr, dst_off);
3609
3610  // Conservatively insert a memory barrier on all memory slices.
3611  // Do not let writes of the copy source or destination float below the copy.
3612  insert_mem_bar(Op_MemBarCPUOrder);
3613
3614  // Call it.  Note that the length argument is not scaled.
3615  make_runtime_call(RC_LEAF|RC_NO_FP,
3616                    OptoRuntime::fast_arraycopy_Type(),
3617                    StubRoutines::unsafe_arraycopy(),
3618                    "unsafe_arraycopy",
3619                    TypeRawPtr::BOTTOM,
3620                    src, dst, size XTOP);
3621
3622  // Do not let reads of the copy destination float above the copy.
3623  insert_mem_bar(Op_MemBarCPUOrder);
3624
3625  return true;
3626}
3627
3628
3629//------------------------inline_native_clone----------------------------
3630// Here are the simple edge cases:
3631//  null receiver => normal trap
3632//  virtual and clone was overridden => slow path to out-of-line clone
3633//  not cloneable or finalizer => slow path to out-of-line Object.clone
3634//
3635// The general case has two steps, allocation and copying.
3636// Allocation has two cases, and uses GraphKit::new_instance or new_array.
3637//
3638// Copying also has two cases, oop arrays and everything else.
3639// Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
3640// Everything else uses the tight inline loop supplied by CopyArrayNode.
3641//
3642// These steps fold up nicely if and when the cloned object's klass
3643// can be sharply typed as an object array, a type array, or an instance.
3644//
3645bool LibraryCallKit::inline_native_clone(bool is_virtual) {
3646  int nargs = 1;
3647  Node* obj = null_check_receiver(callee());
3648  if (stopped())  return true;
3649  Node* obj_klass = load_object_klass(obj);
3650  const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
3651  const TypeOopPtr*   toop   = ((tklass != NULL)
3652                                ? tklass->as_instance_type()
3653                                : TypeInstPtr::NOTNULL);
3654
3655  // Conservatively insert a memory barrier on all memory slices.
3656  // Do not let writes into the original float below the clone.
3657  insert_mem_bar(Op_MemBarCPUOrder);
3658
3659  // paths into result_reg:
3660  enum {
3661    _slow_path = 1,     // out-of-line call to clone method (virtual or not)
3662    _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
3663    _fast_path,         // plain allocation, plus a CopyArray operation
3664    PATH_LIMIT
3665  };
3666  RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3667  PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3668                                                      TypeInstPtr::NOTNULL);
3669  PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3670  PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3671                                                      TypePtr::BOTTOM);
3672  record_for_igvn(result_reg);
3673
3674  const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
3675  int raw_adr_idx = Compile::AliasIdxRaw;
3676  const bool raw_mem_only = true;
3677
3678  // paths into alloc_reg (on the fast path, just before the CopyArray):
3679  enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
3680  RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
3681  PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
3682  PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
3683  PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
3684  PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
3685                                                      raw_adr_type);
3686  record_for_igvn(alloc_reg);
3687
3688  bool card_mark = false;  // (see below)
3689
3690  Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
3691  if (array_ctl != NULL) {
3692    // It's an array.
3693    PreserveJVMState pjvms(this);
3694    set_control(array_ctl);
3695    Node* obj_length = load_array_length(obj);
3696    Node* obj_size = NULL;
3697    _sp += nargs;  // set original stack for use by uncommon_trap
3698    Node* alloc_obj = new_array(obj_klass, obj_length,
3699                                raw_mem_only, &obj_size);
3700    _sp -= nargs;
3701    assert(obj_size != NULL, "");
3702    Node* raw_obj = alloc_obj->in(1);
3703    assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3704    if (ReduceBulkZeroing) {
3705      AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3706      if (alloc != NULL) {
3707        // We will be completely responsible for initializing this object.
3708        alloc->maybe_set_complete(&_gvn);
3709      }
3710    }
3711
3712    if (!use_ReduceInitialCardMarks()) {
3713      // If it is an oop array, it requires very special treatment,
3714      // because card marking is required on each card of the array.
3715      Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
3716      if (is_obja != NULL) {
3717        PreserveJVMState pjvms2(this);
3718        set_control(is_obja);
3719        // Generate a direct call to the right arraycopy function(s).
3720        bool disjoint_bases = true;
3721        bool length_never_negative = true;
3722        generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3723                           obj, intcon(0), alloc_obj, intcon(0),
3724                           obj_length, nargs,
3725                           disjoint_bases, length_never_negative);
3726        result_reg->init_req(_objArray_path, control());
3727        result_val->init_req(_objArray_path, alloc_obj);
3728        result_i_o ->set_req(_objArray_path, i_o());
3729        result_mem ->set_req(_objArray_path, reset_memory());
3730      }
3731    }
3732    // We can dispense with card marks if we know the allocation
3733    // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
3734    // causes the non-eden paths to simulate a fresh allocation,
3735    // insofar that no further card marks are required to initialize
3736    // the object.
3737
3738    // Otherwise, there are no card marks to worry about.
3739    alloc_val->init_req(_typeArray_alloc, raw_obj);
3740    alloc_siz->init_req(_typeArray_alloc, obj_size);
3741    alloc_reg->init_req(_typeArray_alloc, control());
3742    alloc_i_o->init_req(_typeArray_alloc, i_o());
3743    alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
3744  }
3745
3746  // We only go to the fast case code if we pass a number of guards.
3747  // The paths which do not pass are accumulated in the slow_region.
3748  RegionNode* slow_region = new (C, 1) RegionNode(1);
3749  record_for_igvn(slow_region);
3750  if (!stopped()) {
3751    // It's an instance.  Make the slow-path tests.
3752    // If this is a virtual call, we generate a funny guard.  We grab
3753    // the vtable entry corresponding to clone() from the target object.
3754    // If the target method which we are calling happens to be the
3755    // Object clone() method, we pass the guard.  We do not need this
3756    // guard for non-virtual calls; the caller is known to be the native
3757    // Object clone().
3758    if (is_virtual) {
3759      generate_virtual_guard(obj_klass, slow_region);
3760    }
3761
3762    // The object must be cloneable and must not have a finalizer.
3763    // Both of these conditions may be checked in a single test.
3764    // We could optimize the cloneable test further, but we don't care.
3765    generate_access_flags_guard(obj_klass,
3766                                // Test both conditions:
3767                                JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
3768                                // Must be cloneable but not finalizer:
3769                                JVM_ACC_IS_CLONEABLE,
3770                                slow_region);
3771  }
3772
3773  if (!stopped()) {
3774    // It's an instance, and it passed the slow-path tests.
3775    PreserveJVMState pjvms(this);
3776    Node* obj_size = NULL;
3777    Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
3778    assert(obj_size != NULL, "");
3779    Node* raw_obj = alloc_obj->in(1);
3780    assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3781    if (ReduceBulkZeroing) {
3782      AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3783      if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
3784        alloc = NULL;
3785    }
3786    if (!use_ReduceInitialCardMarks()) {
3787      // Put in store barrier for any and all oops we are sticking
3788      // into this object.  (We could avoid this if we could prove
3789      // that the object type contains no oop fields at all.)
3790      card_mark = true;
3791    }
3792    alloc_val->init_req(_instance_alloc, raw_obj);
3793    alloc_siz->init_req(_instance_alloc, obj_size);
3794    alloc_reg->init_req(_instance_alloc, control());
3795    alloc_i_o->init_req(_instance_alloc, i_o());
3796    alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
3797  }
3798
3799  // Generate code for the slow case.  We make a call to clone().
3800  set_control(_gvn.transform(slow_region));
3801  if (!stopped()) {
3802    PreserveJVMState pjvms(this);
3803    CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
3804    Node* slow_result = set_results_for_java_call(slow_call);
3805    // this->control() comes from set_results_for_java_call
3806    result_reg->init_req(_slow_path, control());
3807    result_val->init_req(_slow_path, slow_result);
3808    result_i_o ->set_req(_slow_path, i_o());
3809    result_mem ->set_req(_slow_path, reset_memory());
3810  }
3811
3812  // The object is allocated, as an array and/or an instance.  Now copy it.
3813  set_control( _gvn.transform(alloc_reg) );
3814  set_i_o(     _gvn.transform(alloc_i_o) );
3815  set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
3816  Node* raw_obj  = _gvn.transform(alloc_val);
3817
3818  if (!stopped()) {
3819    // Copy the fastest available way.
3820    // (No need for PreserveJVMState, since we're using it all up now.)
3821    Node* src  = obj;
3822    Node* dest = raw_obj;
3823    Node* end  = dest;
3824    Node* size = _gvn.transform(alloc_siz);
3825
3826    // Exclude the header.
3827    int base_off = sizeof(oopDesc);
3828    src  = basic_plus_adr(src,  base_off);
3829    dest = basic_plus_adr(dest, base_off);
3830    end  = basic_plus_adr(end,  size);
3831
3832    // Compute the length also, if needed:
3833    Node* countx = size;
3834    countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
3835    countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
3836
3837    // Select an appropriate instruction to initialize the range.
3838    // The CopyArray instruction (if supported) can be optimized
3839    // into a discrete set of scalar loads and stores.
3840    bool disjoint_bases = true;
3841    generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
3842                                 src, NULL, dest, NULL, countx);
3843
3844    // Now that the object is properly initialized, type it as an oop.
3845    // Use a secondary InitializeNode memory barrier.
3846    InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
3847                                                   raw_obj)->as_Initialize();
3848    init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
3849    Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
3850                                              TypeInstPtr::NOTNULL);
3851    new_obj = _gvn.transform(new_obj);
3852
3853    // If necessary, emit some card marks afterwards.  (Non-arrays only.)
3854    if (card_mark) {
3855      Node* no_particular_value = NULL;
3856      Node* no_particular_field = NULL;
3857      post_barrier(control(),
3858                   memory(raw_adr_type),
3859                   new_obj,
3860                   no_particular_field,
3861                   raw_adr_idx,
3862                   no_particular_value,
3863                   T_OBJECT,
3864                   false);
3865    }
3866    // Present the results of the slow call.
3867    result_reg->init_req(_fast_path, control());
3868    result_val->init_req(_fast_path, new_obj);
3869    result_i_o ->set_req(_fast_path, i_o());
3870    result_mem ->set_req(_fast_path, reset_memory());
3871  }
3872
3873  // Return the combined state.
3874  set_control(    _gvn.transform(result_reg) );
3875  set_i_o(        _gvn.transform(result_i_o) );
3876  set_all_memory( _gvn.transform(result_mem) );
3877
3878  // Cast the result to a sharper type, since we know what clone does.
3879  Node* new_obj = _gvn.transform(result_val);
3880  Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
3881  push(_gvn.transform(cast));
3882
3883  return true;
3884}
3885
3886
3887// constants for computing the copy function
3888enum {
3889  COPYFUNC_UNALIGNED = 0,
3890  COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
3891  COPYFUNC_CONJOINT = 0,
3892  COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
3893};
3894
3895// Note:  The condition "disjoint" applies also for overlapping copies
3896// where an descending copy is permitted (i.e., dest_offset <= src_offset).
3897static address
3898select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
3899  int selector =
3900    (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
3901    (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
3902
3903#define RETURN_STUB(xxx_arraycopy) { \
3904  name = #xxx_arraycopy; \
3905  return StubRoutines::xxx_arraycopy(); }
3906
3907  switch (t) {
3908  case T_BYTE:
3909  case T_BOOLEAN:
3910    switch (selector) {
3911    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
3912    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
3913    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
3914    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
3915    }
3916  case T_CHAR:
3917  case T_SHORT:
3918    switch (selector) {
3919    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
3920    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
3921    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
3922    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
3923    }
3924  case T_INT:
3925  case T_FLOAT:
3926    switch (selector) {
3927    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
3928    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
3929    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
3930    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
3931    }
3932  case T_DOUBLE:
3933  case T_LONG:
3934    switch (selector) {
3935    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
3936    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
3937    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
3938    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
3939    }
3940  case T_ARRAY:
3941  case T_OBJECT:
3942    switch (selector) {
3943    case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
3944    case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
3945    case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
3946    case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
3947    }
3948  default:
3949    ShouldNotReachHere();
3950    return NULL;
3951  }
3952
3953#undef RETURN_STUB
3954}
3955
3956//------------------------------basictype2arraycopy----------------------------
3957address LibraryCallKit::basictype2arraycopy(BasicType t,
3958                                            Node* src_offset,
3959                                            Node* dest_offset,
3960                                            bool disjoint_bases,
3961                                            const char* &name) {
3962  const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
3963  const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
3964
3965  bool aligned = false;
3966  bool disjoint = disjoint_bases;
3967
3968  // if the offsets are the same, we can treat the memory regions as
3969  // disjoint, because either the memory regions are in different arrays,
3970  // or they are identical (which we can treat as disjoint.)  We can also
3971  // treat a copy with a destination index  less that the source index
3972  // as disjoint since a low->high copy will work correctly in this case.
3973  if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
3974      dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
3975    // both indices are constants
3976    int s_offs = src_offset_inttype->get_con();
3977    int d_offs = dest_offset_inttype->get_con();
3978    int element_size = type2aelembytes[t];
3979    aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
3980              ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
3981    if (s_offs >= d_offs)  disjoint = true;
3982  } else if (src_offset == dest_offset && src_offset != NULL) {
3983    // This can occur if the offsets are identical non-constants.
3984    disjoint = true;
3985  }
3986
3987  return select_arraycopy_function(t, aligned, disjoint, name);
3988}
3989
3990
3991//------------------------------inline_arraycopy-----------------------
3992bool LibraryCallKit::inline_arraycopy() {
3993  // Restore the stack and pop off the arguments.
3994  int nargs = 5;  // 2 oops, 3 ints, no size_t or long
3995  assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
3996
3997  Node *src         = argument(0);
3998  Node *src_offset  = argument(1);
3999  Node *dest        = argument(2);
4000  Node *dest_offset = argument(3);
4001  Node *length      = argument(4);
4002
4003  // Compile time checks.  If any of these checks cannot be verified at compile time,
4004  // we do not make a fast path for this call.  Instead, we let the call remain as it
4005  // is.  The checks we choose to mandate at compile time are:
4006  //
4007  // (1) src and dest are arrays.
4008  const Type* src_type = src->Value(&_gvn);
4009  const Type* dest_type = dest->Value(&_gvn);
4010  const TypeAryPtr* top_src = src_type->isa_aryptr();
4011  const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4012  if (top_src  == NULL || top_src->klass()  == NULL ||
4013      top_dest == NULL || top_dest->klass() == NULL) {
4014    // Conservatively insert a memory barrier on all memory slices.
4015    // Do not let writes into the source float below the arraycopy.
4016    insert_mem_bar(Op_MemBarCPUOrder);
4017
4018    // Call StubRoutines::generic_arraycopy stub.
4019    generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4020                       src, src_offset, dest, dest_offset, length,
4021                       nargs);
4022
4023    // Do not let reads from the destination float above the arraycopy.
4024    // Since we cannot type the arrays, we don't know which slices
4025    // might be affected.  We could restrict this barrier only to those
4026    // memory slices which pertain to array elements--but don't bother.
4027    if (!InsertMemBarAfterArraycopy)
4028      // (If InsertMemBarAfterArraycopy, there is already one in place.)
4029      insert_mem_bar(Op_MemBarCPUOrder);
4030    return true;
4031  }
4032
4033  // (2) src and dest arrays must have elements of the same BasicType
4034  // Figure out the size and type of the elements we will be copying.
4035  BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4036  BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4037  if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4038  if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4039
4040  if (src_elem != dest_elem || dest_elem == T_VOID) {
4041    // The component types are not the same or are not recognized.  Punt.
4042    // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4043    generate_slow_arraycopy(TypePtr::BOTTOM,
4044                            src, src_offset, dest, dest_offset, length,
4045                            nargs);
4046    return true;
4047  }
4048
4049  //---------------------------------------------------------------------------
4050  // We will make a fast path for this call to arraycopy.
4051
4052  // We have the following tests left to perform:
4053  //
4054  // (3) src and dest must not be null.
4055  // (4) src_offset must not be negative.
4056  // (5) dest_offset must not be negative.
4057  // (6) length must not be negative.
4058  // (7) src_offset + length must not exceed length of src.
4059  // (8) dest_offset + length must not exceed length of dest.
4060  // (9) each element of an oop array must be assignable
4061
4062  RegionNode* slow_region = new (C, 1) RegionNode(1);
4063  record_for_igvn(slow_region);
4064
4065  // (3) operands must not be null
4066  // We currently perform our null checks with the do_null_check routine.
4067  // This means that the null exceptions will be reported in the caller
4068  // rather than (correctly) reported inside of the native arraycopy call.
4069  // This should be corrected, given time.  We do our null check with the
4070  // stack pointer restored.
4071  _sp += nargs;
4072  src  = do_null_check(src,  T_ARRAY);
4073  dest = do_null_check(dest, T_ARRAY);
4074  _sp -= nargs;
4075
4076  // (4) src_offset must not be negative.
4077  generate_negative_guard(src_offset, slow_region);
4078
4079  // (5) dest_offset must not be negative.
4080  generate_negative_guard(dest_offset, slow_region);
4081
4082  // (6) length must not be negative (moved to generate_arraycopy()).
4083  // generate_negative_guard(length, slow_region);
4084
4085  // (7) src_offset + length must not exceed length of src.
4086  generate_limit_guard(src_offset, length,
4087                       load_array_length(src),
4088                       slow_region);
4089
4090  // (8) dest_offset + length must not exceed length of dest.
4091  generate_limit_guard(dest_offset, length,
4092                       load_array_length(dest),
4093                       slow_region);
4094
4095  // (9) each element of an oop array must be assignable
4096  // The generate_arraycopy subroutine checks this.
4097
4098  // This is where the memory effects are placed:
4099  const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4100  generate_arraycopy(adr_type, dest_elem,
4101                     src, src_offset, dest, dest_offset, length,
4102                     nargs, false, false, slow_region);
4103
4104  return true;
4105}
4106
4107//-----------------------------generate_arraycopy----------------------
4108// Generate an optimized call to arraycopy.
4109// Caller must guard against non-arrays.
4110// Caller must determine a common array basic-type for both arrays.
4111// Caller must validate offsets against array bounds.
4112// The slow_region has already collected guard failure paths
4113// (such as out of bounds length or non-conformable array types).
4114// The generated code has this shape, in general:
4115//
4116//     if (length == 0)  return   // via zero_path
4117//     slowval = -1
4118//     if (types unknown) {
4119//       slowval = call generic copy loop
4120//       if (slowval == 0)  return  // via checked_path
4121//     } else if (indexes in bounds) {
4122//       if ((is object array) && !(array type check)) {
4123//         slowval = call checked copy loop
4124//         if (slowval == 0)  return  // via checked_path
4125//       } else {
4126//         call bulk copy loop
4127//         return  // via fast_path
4128//       }
4129//     }
4130//     // adjust params for remaining work:
4131//     if (slowval != -1) {
4132//       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4133//     }
4134//   slow_region:
4135//     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4136//     return  // via slow_call_path
4137//
4138// This routine is used from several intrinsics:  System.arraycopy,
4139// Object.clone (the array subcase), and Arrays.copyOf[Range].
4140//
4141void
4142LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4143                                   BasicType basic_elem_type,
4144                                   Node* src,  Node* src_offset,
4145                                   Node* dest, Node* dest_offset,
4146                                   Node* copy_length,
4147                                   int nargs,
4148                                   bool disjoint_bases,
4149                                   bool length_never_negative,
4150                                   RegionNode* slow_region) {
4151
4152  if (slow_region == NULL) {
4153    slow_region = new(C,1) RegionNode(1);
4154    record_for_igvn(slow_region);
4155  }
4156
4157  Node* original_dest      = dest;
4158  AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4159  Node* raw_dest           = NULL;  // used before zeroing, if needed
4160  bool  must_clear_dest    = false;
4161
4162  // See if this is the initialization of a newly-allocated array.
4163  // If so, we will take responsibility here for initializing it to zero.
4164  // (Note:  Because tightly_coupled_allocation performs checks on the
4165  // out-edges of the dest, we need to avoid making derived pointers
4166  // from it until we have checked its uses.)
4167  if (ReduceBulkZeroing
4168      && !ZeroTLAB              // pointless if already zeroed
4169      && basic_elem_type != T_CONFLICT // avoid corner case
4170      && !_gvn.eqv_uncast(src, dest)
4171      && ((alloc = tightly_coupled_allocation(dest, slow_region))
4172          != NULL)
4173      && alloc->maybe_set_complete(&_gvn)) {
4174    // "You break it, you buy it."
4175    InitializeNode* init = alloc->initialization();
4176    assert(init->is_complete(), "we just did this");
4177    assert(dest->Opcode() == Op_CheckCastPP, "sanity");
4178    assert(dest->in(0)->in(0) == init, "dest pinned");
4179    raw_dest = dest->in(1);  // grab the raw pointer!
4180    original_dest = dest;
4181    dest = raw_dest;
4182    adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4183    // Decouple the original InitializeNode, turning it into a simple membar.
4184    // We will build a new one at the end of this routine.
4185    init->set_req(InitializeNode::RawAddress, top());
4186    // From this point on, every exit path is responsible for
4187    // initializing any non-copied parts of the object to zero.
4188    must_clear_dest = true;
4189  } else {
4190    // No zeroing elimination here.
4191    alloc             = NULL;
4192    //original_dest   = dest;
4193    //must_clear_dest = false;
4194  }
4195
4196  // Results are placed here:
4197  enum { fast_path        = 1,  // normal void-returning assembly stub
4198         checked_path     = 2,  // special assembly stub with cleanup
4199         slow_call_path   = 3,  // something went wrong; call the VM
4200         zero_path        = 4,  // bypass when length of copy is zero
4201         bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4202         PATH_LIMIT       = 6
4203  };
4204  RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4205  PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4206  PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4207  record_for_igvn(result_region);
4208  _gvn.set_type_bottom(result_i_o);
4209  _gvn.set_type_bottom(result_memory);
4210  assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4211
4212  // The slow_control path:
4213  Node* slow_control;
4214  Node* slow_i_o = i_o();
4215  Node* slow_mem = memory(adr_type);
4216  debug_only(slow_control = (Node*) badAddress);
4217
4218  // Checked control path:
4219  Node* checked_control = top();
4220  Node* checked_mem     = NULL;
4221  Node* checked_i_o     = NULL;
4222  Node* checked_value   = NULL;
4223
4224  if (basic_elem_type == T_CONFLICT) {
4225    assert(!must_clear_dest, "");
4226    Node* cv = generate_generic_arraycopy(adr_type,
4227                                          src, src_offset, dest, dest_offset,
4228                                          copy_length, nargs);
4229    if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4230    checked_control = control();
4231    checked_i_o     = i_o();
4232    checked_mem     = memory(adr_type);
4233    checked_value   = cv;
4234    set_control(top());         // no fast path
4235  }
4236
4237  Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4238  if (not_pos != NULL) {
4239    PreserveJVMState pjvms(this);
4240    set_control(not_pos);
4241
4242    // (6) length must not be negative.
4243    if (!length_never_negative) {
4244      generate_negative_guard(copy_length, slow_region);
4245    }
4246
4247    if (!stopped() && must_clear_dest) {
4248      Node* dest_length = alloc->in(AllocateNode::ALength);
4249      if (_gvn.eqv_uncast(copy_length, dest_length)
4250          || _gvn.find_int_con(dest_length, 1) <= 0) {
4251        // There is no zeroing to do.
4252      } else {
4253        // Clear the whole thing since there are no source elements to copy.
4254        generate_clear_array(adr_type, dest, basic_elem_type,
4255                             intcon(0), NULL,
4256                             alloc->in(AllocateNode::AllocSize));
4257      }
4258    }
4259
4260    // Present the results of the fast call.
4261    result_region->init_req(zero_path, control());
4262    result_i_o   ->init_req(zero_path, i_o());
4263    result_memory->init_req(zero_path, memory(adr_type));
4264  }
4265
4266  if (!stopped() && must_clear_dest) {
4267    // We have to initialize the *uncopied* part of the array to zero.
4268    // The copy destination is the slice dest[off..off+len].  The other slices
4269    // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4270    Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4271    Node* dest_length = alloc->in(AllocateNode::ALength);
4272    Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4273                                                          copy_length) );
4274
4275    // If there is a head section that needs zeroing, do it now.
4276    if (find_int_con(dest_offset, -1) != 0) {
4277      generate_clear_array(adr_type, dest, basic_elem_type,
4278                           intcon(0), dest_offset,
4279                           NULL);
4280    }
4281
4282    // Next, perform a dynamic check on the tail length.
4283    // It is often zero, and we can win big if we prove this.
4284    // There are two wins:  Avoid generating the ClearArray
4285    // with its attendant messy index arithmetic, and upgrade
4286    // the copy to a more hardware-friendly word size of 64 bits.
4287    Node* tail_ctl = NULL;
4288    if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4289      Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4290      Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4291      tail_ctl = generate_slow_guard(bol_lt, NULL);
4292      assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4293    }
4294
4295    // At this point, let's assume there is no tail.
4296    if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4297      // There is no tail.  Try an upgrade to a 64-bit copy.
4298      bool didit = false;
4299      { PreserveJVMState pjvms(this);
4300        didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4301                                         src, src_offset, dest, dest_offset,
4302                                         dest_size);
4303        if (didit) {
4304          // Present the results of the block-copying fast call.
4305          result_region->init_req(bcopy_path, control());
4306          result_i_o   ->init_req(bcopy_path, i_o());
4307          result_memory->init_req(bcopy_path, memory(adr_type));
4308        }
4309      }
4310      if (didit)
4311        set_control(top());     // no regular fast path
4312    }
4313
4314    // Clear the tail, if any.
4315    if (tail_ctl != NULL) {
4316      Node* notail_ctl = stopped() ? NULL : control();
4317      set_control(tail_ctl);
4318      if (notail_ctl == NULL) {
4319        generate_clear_array(adr_type, dest, basic_elem_type,
4320                             dest_tail, NULL,
4321                             dest_size);
4322      } else {
4323        // Make a local merge.
4324        Node* done_ctl = new(C,3) RegionNode(3);
4325        Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4326        done_ctl->init_req(1, notail_ctl);
4327        done_mem->init_req(1, memory(adr_type));
4328        generate_clear_array(adr_type, dest, basic_elem_type,
4329                             dest_tail, NULL,
4330                             dest_size);
4331        done_ctl->init_req(2, control());
4332        done_mem->init_req(2, memory(adr_type));
4333        set_control( _gvn.transform(done_ctl) );
4334        set_memory(  _gvn.transform(done_mem), adr_type );
4335      }
4336    }
4337  }
4338
4339  BasicType copy_type = basic_elem_type;
4340  assert(basic_elem_type != T_ARRAY, "caller must fix this");
4341  if (!stopped() && copy_type == T_OBJECT) {
4342    // If src and dest have compatible element types, we can copy bits.
4343    // Types S[] and D[] are compatible if D is a supertype of S.
4344    //
4345    // If they are not, we will use checked_oop_disjoint_arraycopy,
4346    // which performs a fast optimistic per-oop check, and backs off
4347    // further to JVM_ArrayCopy on the first per-oop check that fails.
4348    // (Actually, we don't move raw bits only; the GC requires card marks.)
4349
4350    // Get the klassOop for both src and dest
4351    Node* src_klass  = load_object_klass(src);
4352    Node* dest_klass = load_object_klass(dest);
4353
4354    // Generate the subtype check.
4355    // This might fold up statically, or then again it might not.
4356    //
4357    // Non-static example:  Copying List<String>.elements to a new String[].
4358    // The backing store for a List<String> is always an Object[],
4359    // but its elements are always type String, if the generic types
4360    // are correct at the source level.
4361    //
4362    // Test S[] against D[], not S against D, because (probably)
4363    // the secondary supertype cache is less busy for S[] than S.
4364    // This usually only matters when D is an interface.
4365    Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4366    // Plug failing path into checked_oop_disjoint_arraycopy
4367    if (not_subtype_ctrl != top()) {
4368      PreserveJVMState pjvms(this);
4369      set_control(not_subtype_ctrl);
4370      // (At this point we can assume disjoint_bases, since types differ.)
4371      int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4372      Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4373      Node* n1 = new (C, 3) LoadKlassNode(0, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4374      Node* dest_elem_klass = _gvn.transform(n1);
4375      Node* cv = generate_checkcast_arraycopy(adr_type,
4376                                              dest_elem_klass,
4377                                              src, src_offset, dest, dest_offset,
4378                                              copy_length,
4379                                              nargs);
4380      if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4381      checked_control = control();
4382      checked_i_o     = i_o();
4383      checked_mem     = memory(adr_type);
4384      checked_value   = cv;
4385    }
4386    // At this point we know we do not need type checks on oop stores.
4387
4388    // Let's see if we need card marks:
4389    if (alloc != NULL && use_ReduceInitialCardMarks()) {
4390      // If we do not need card marks, copy using the jint or jlong stub.
4391      copy_type = LP64_ONLY(T_LONG) NOT_LP64(T_INT);
4392      assert(type2aelembytes[basic_elem_type] == type2aelembytes[copy_type],
4393             "sizes agree");
4394    }
4395  }
4396
4397  if (!stopped()) {
4398    // Generate the fast path, if possible.
4399    PreserveJVMState pjvms(this);
4400    generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4401                                 src, src_offset, dest, dest_offset,
4402                                 ConvI2X(copy_length));
4403
4404    // Present the results of the fast call.
4405    result_region->init_req(fast_path, control());
4406    result_i_o   ->init_req(fast_path, i_o());
4407    result_memory->init_req(fast_path, memory(adr_type));
4408  }
4409
4410  // Here are all the slow paths up to this point, in one bundle:
4411  slow_control = top();
4412  if (slow_region != NULL)
4413    slow_control = _gvn.transform(slow_region);
4414  debug_only(slow_region = (RegionNode*)badAddress);
4415
4416  set_control(checked_control);
4417  if (!stopped()) {
4418    // Clean up after the checked call.
4419    // The returned value is either 0 or -1^K,
4420    // where K = number of partially transferred array elements.
4421    Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4422    Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4423    IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4424
4425    // If it is 0, we are done, so transfer to the end.
4426    Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4427    result_region->init_req(checked_path, checks_done);
4428    result_i_o   ->init_req(checked_path, checked_i_o);
4429    result_memory->init_req(checked_path, checked_mem);
4430
4431    // If it is not zero, merge into the slow call.
4432    set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4433    RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4434    PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4435    PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4436    record_for_igvn(slow_reg2);
4437    slow_reg2  ->init_req(1, slow_control);
4438    slow_i_o2  ->init_req(1, slow_i_o);
4439    slow_mem2  ->init_req(1, slow_mem);
4440    slow_reg2  ->init_req(2, control());
4441    slow_i_o2  ->init_req(2, i_o());
4442    slow_mem2  ->init_req(2, memory(adr_type));
4443
4444    slow_control = _gvn.transform(slow_reg2);
4445    slow_i_o     = _gvn.transform(slow_i_o2);
4446    slow_mem     = _gvn.transform(slow_mem2);
4447
4448    if (alloc != NULL) {
4449      // We'll restart from the very beginning, after zeroing the whole thing.
4450      // This can cause double writes, but that's OK since dest is brand new.
4451      // So we ignore the low 31 bits of the value returned from the stub.
4452    } else {
4453      // We must continue the copy exactly where it failed, or else
4454      // another thread might see the wrong number of writes to dest.
4455      Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4456      Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4457      slow_offset->init_req(1, intcon(0));
4458      slow_offset->init_req(2, checked_offset);
4459      slow_offset  = _gvn.transform(slow_offset);
4460
4461      // Adjust the arguments by the conditionally incoming offset.
4462      Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4463      Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4464      Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4465
4466      // Tweak the node variables to adjust the code produced below:
4467      src_offset  = src_off_plus;
4468      dest_offset = dest_off_plus;
4469      copy_length = length_minus;
4470    }
4471  }
4472
4473  set_control(slow_control);
4474  if (!stopped()) {
4475    // Generate the slow path, if needed.
4476    PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4477
4478    set_memory(slow_mem, adr_type);
4479    set_i_o(slow_i_o);
4480
4481    if (must_clear_dest) {
4482      generate_clear_array(adr_type, dest, basic_elem_type,
4483                           intcon(0), NULL,
4484                           alloc->in(AllocateNode::AllocSize));
4485    }
4486
4487    if (dest != original_dest) {
4488      // Promote from rawptr to oop, so it looks right in the call's GC map.
4489      dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
4490                                                      TypeInstPtr::NOTNULL) );
4491
4492      // Edit the call's debug-info to avoid referring to original_dest.
4493      // (The problem with original_dest is that it isn't ready until
4494      // after the InitializeNode completes, but this stuff is before.)
4495      // Substitute in the locally valid dest_oop.
4496      replace_in_map(original_dest, dest);
4497    }
4498
4499    generate_slow_arraycopy(adr_type,
4500                            src, src_offset, dest, dest_offset,
4501                            copy_length, nargs);
4502
4503    result_region->init_req(slow_call_path, control());
4504    result_i_o   ->init_req(slow_call_path, i_o());
4505    result_memory->init_req(slow_call_path, memory(adr_type));
4506  }
4507
4508  // Remove unused edges.
4509  for (uint i = 1; i < result_region->req(); i++) {
4510    if (result_region->in(i) == NULL)
4511      result_region->init_req(i, top());
4512  }
4513
4514  // Finished; return the combined state.
4515  set_control( _gvn.transform(result_region) );
4516  set_i_o(     _gvn.transform(result_i_o)    );
4517  set_memory(  _gvn.transform(result_memory), adr_type );
4518
4519  if (dest != original_dest) {
4520    // Pin the "finished" array node after the arraycopy/zeroing operations.
4521    // Use a secondary InitializeNode memory barrier.
4522    InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4523                                                   Compile::AliasIdxRaw,
4524                                                   raw_dest)->as_Initialize();
4525    init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4526    _gvn.hash_delete(original_dest);
4527    original_dest->set_req(0, control());
4528    _gvn.hash_find_insert(original_dest);  // put back into GVN table
4529  }
4530
4531  // The memory edges above are precise in order to model effects around
4532  // array copyies accurately to allow value numbering of field loads around
4533  // arraycopy.  Such field loads, both before and after, are common in Java
4534  // collections and similar classes involving header/array data structures.
4535  //
4536  // But with low number of register or when some registers are used or killed
4537  // by arraycopy calls it causes registers spilling on stack. See 6544710.
4538  // The next memory barrier is added to avoid it. If the arraycopy can be
4539  // optimized away (which it can, sometimes) then we can manually remove
4540  // the membar also.
4541  if (InsertMemBarAfterArraycopy)
4542    insert_mem_bar(Op_MemBarCPUOrder);
4543}
4544
4545
4546// Helper function which determines if an arraycopy immediately follows
4547// an allocation, with no intervening tests or other escapes for the object.
4548AllocateArrayNode*
4549LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4550                                           RegionNode* slow_region) {
4551  if (stopped())             return NULL;  // no fast path
4552  if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4553
4554  AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4555  if (alloc == NULL)  return NULL;
4556
4557  Node* rawmem = memory(Compile::AliasIdxRaw);
4558  // Is the allocation's memory state untouched?
4559  if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4560    // Bail out if there have been raw-memory effects since the allocation.
4561    // (Example:  There might have been a call or safepoint.)
4562    return NULL;
4563  }
4564  rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4565  if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4566    return NULL;
4567  }
4568
4569  // There must be no unexpected observers of this allocation.
4570  for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4571    Node* obs = ptr->fast_out(i);
4572    if (obs != this->map()) {
4573      return NULL;
4574    }
4575  }
4576
4577  // This arraycopy must unconditionally follow the allocation of the ptr.
4578  Node* alloc_ctl = ptr->in(0);
4579  assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4580
4581  Node* ctl = control();
4582  while (ctl != alloc_ctl) {
4583    // There may be guards which feed into the slow_region.
4584    // Any other control flow means that we might not get a chance
4585    // to finish initializing the allocated object.
4586    if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4587      IfNode* iff = ctl->in(0)->as_If();
4588      Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4589      assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4590      if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4591        ctl = iff->in(0);       // This test feeds the known slow_region.
4592        continue;
4593      }
4594      // One more try:  Various low-level checks bottom out in
4595      // uncommon traps.  If the debug-info of the trap omits
4596      // any reference to the allocation, as we've already
4597      // observed, then there can be no objection to the trap.
4598      bool found_trap = false;
4599      for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4600        Node* obs = not_ctl->fast_out(j);
4601        if (obs->in(0) == not_ctl && obs->is_Call() &&
4602            (obs->as_Call()->entry_point() ==
4603             SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4604          found_trap = true; break;
4605        }
4606      }
4607      if (found_trap) {
4608        ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4609        continue;
4610      }
4611    }
4612    return NULL;
4613  }
4614
4615  // If we get this far, we have an allocation which immediately
4616  // precedes the arraycopy, and we can take over zeroing the new object.
4617  // The arraycopy will finish the initialization, and provide
4618  // a new control state to which we will anchor the destination pointer.
4619
4620  return alloc;
4621}
4622
4623// Helper for initialization of arrays, creating a ClearArray.
4624// It writes zero bits in [start..end), within the body of an array object.
4625// The memory effects are all chained onto the 'adr_type' alias category.
4626//
4627// Since the object is otherwise uninitialized, we are free
4628// to put a little "slop" around the edges of the cleared area,
4629// as long as it does not go back into the array's header,
4630// or beyond the array end within the heap.
4631//
4632// The lower edge can be rounded down to the nearest jint and the
4633// upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4634//
4635// Arguments:
4636//   adr_type           memory slice where writes are generated
4637//   dest               oop of the destination array
4638//   basic_elem_type    element type of the destination
4639//   slice_idx          array index of first element to store
4640//   slice_len          number of elements to store (or NULL)
4641//   dest_size          total size in bytes of the array object
4642//
4643// Exactly one of slice_len or dest_size must be non-NULL.
4644// If dest_size is non-NULL, zeroing extends to the end of the object.
4645// If slice_len is non-NULL, the slice_idx value must be a constant.
4646void
4647LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
4648                                     Node* dest,
4649                                     BasicType basic_elem_type,
4650                                     Node* slice_idx,
4651                                     Node* slice_len,
4652                                     Node* dest_size) {
4653  // one or the other but not both of slice_len and dest_size:
4654  assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
4655  if (slice_len == NULL)  slice_len = top();
4656  if (dest_size == NULL)  dest_size = top();
4657
4658  // operate on this memory slice:
4659  Node* mem = memory(adr_type); // memory slice to operate on
4660
4661  // scaling and rounding of indexes:
4662  int scale = exact_log2(type2aelembytes[basic_elem_type]);
4663  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4664  int clear_low = (-1 << scale) & (BytesPerInt  - 1);
4665  int bump_bit  = (-1 << scale) & BytesPerInt;
4666
4667  // determine constant starts and ends
4668  const intptr_t BIG_NEG = -128;
4669  assert(BIG_NEG + 2*abase < 0, "neg enough");
4670  intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
4671  intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
4672  if (slice_len_con == 0) {
4673    return;                     // nothing to do here
4674  }
4675  intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
4676  intptr_t end_con   = find_intptr_t_con(dest_size, -1);
4677  if (slice_idx_con >= 0 && slice_len_con >= 0) {
4678    assert(end_con < 0, "not two cons");
4679    end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
4680                       BytesPerLong);
4681  }
4682
4683  if (start_con >= 0 && end_con >= 0) {
4684    // Constant start and end.  Simple.
4685    mem = ClearArrayNode::clear_memory(control(), mem, dest,
4686                                       start_con, end_con, &_gvn);
4687  } else if (start_con >= 0 && dest_size != top()) {
4688    // Constant start, pre-rounded end after the tail of the array.
4689    Node* end = dest_size;
4690    mem = ClearArrayNode::clear_memory(control(), mem, dest,
4691                                       start_con, end, &_gvn);
4692  } else if (start_con >= 0 && slice_len != top()) {
4693    // Constant start, non-constant end.  End needs rounding up.
4694    // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
4695    intptr_t end_base  = abase + (slice_idx_con << scale);
4696    int      end_round = (-1 << scale) & (BytesPerLong  - 1);
4697    Node*    end       = ConvI2X(slice_len);
4698    if (scale != 0)
4699      end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
4700    end_base += end_round;
4701    end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
4702    end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
4703    mem = ClearArrayNode::clear_memory(control(), mem, dest,
4704                                       start_con, end, &_gvn);
4705  } else if (start_con < 0 && dest_size != top()) {
4706    // Non-constant start, pre-rounded end after the tail of the array.
4707    // This is almost certainly a "round-to-end" operation.
4708    Node* start = slice_idx;
4709    start = ConvI2X(start);
4710    if (scale != 0)
4711      start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
4712    start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
4713    if ((bump_bit | clear_low) != 0) {
4714      int to_clear = (bump_bit | clear_low);
4715      // Align up mod 8, then store a jint zero unconditionally
4716      // just before the mod-8 boundary.
4717      // This would only fail if the first array element were immediately
4718      // after the length field, and were also at an even offset mod 8.
4719      assert(((abase + bump_bit) & ~to_clear) - BytesPerInt
4720             >= arrayOopDesc::length_offset_in_bytes() + BytesPerInt,
4721             "store must not trash length field");
4722
4723      // Bump 'start' up to (or past) the next jint boundary:
4724      start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
4725      // Round bumped 'start' down to jlong boundary in body of array.
4726      start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
4727      // Store a zero to the immediately preceding jint:
4728      Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-BytesPerInt)) );
4729      Node* p1 = basic_plus_adr(dest, x1);
4730      mem = StoreNode::make(C, control(), mem, p1, adr_type, intcon(0), T_INT);
4731      mem = _gvn.transform(mem);
4732    }
4733
4734    Node* end = dest_size; // pre-rounded
4735    mem = ClearArrayNode::clear_memory(control(), mem, dest,
4736                                       start, end, &_gvn);
4737  } else {
4738    // Non-constant start, unrounded non-constant end.
4739    // (Nobody zeroes a random midsection of an array using this routine.)
4740    ShouldNotReachHere();       // fix caller
4741  }
4742
4743  // Done.
4744  set_memory(mem, adr_type);
4745}
4746
4747
4748bool
4749LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
4750                                         BasicType basic_elem_type,
4751                                         AllocateNode* alloc,
4752                                         Node* src,  Node* src_offset,
4753                                         Node* dest, Node* dest_offset,
4754                                         Node* dest_size) {
4755  // See if there is an advantage from block transfer.
4756  int scale = exact_log2(type2aelembytes[basic_elem_type]);
4757  if (scale >= LogBytesPerLong)
4758    return false;               // it is already a block transfer
4759
4760  // Look at the alignment of the starting offsets.
4761  int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4762  const intptr_t BIG_NEG = -128;
4763  assert(BIG_NEG + 2*abase < 0, "neg enough");
4764
4765  intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
4766  intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
4767  if (src_off < 0 || dest_off < 0)
4768    // At present, we can only understand constants.
4769    return false;
4770
4771  if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
4772    // Non-aligned; too bad.
4773    // One more chance:  Pick off an initial 32-bit word.
4774    // This is a common case, since abase can be odd mod 8.
4775    if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
4776        ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
4777      Node* sptr = basic_plus_adr(src,  src_off);
4778      Node* dptr = basic_plus_adr(dest, dest_off);
4779      Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
4780      store_to_memory(control(), dptr, sval, T_INT, adr_type);
4781      src_off += BytesPerInt;
4782      dest_off += BytesPerInt;
4783    } else {
4784      return false;
4785    }
4786  }
4787  assert(src_off % BytesPerLong == 0, "");
4788  assert(dest_off % BytesPerLong == 0, "");
4789
4790  // Do this copy by giant steps.
4791  Node* sptr  = basic_plus_adr(src,  src_off);
4792  Node* dptr  = basic_plus_adr(dest, dest_off);
4793  Node* countx = dest_size;
4794  countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
4795  countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
4796
4797  bool disjoint_bases = true;   // since alloc != NULL
4798  generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
4799                               sptr, NULL, dptr, NULL, countx);
4800
4801  return true;
4802}
4803
4804
4805// Helper function; generates code for the slow case.
4806// We make a call to a runtime method which emulates the native method,
4807// but without the native wrapper overhead.
4808void
4809LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
4810                                        Node* src,  Node* src_offset,
4811                                        Node* dest, Node* dest_offset,
4812                                        Node* copy_length,
4813                                        int nargs) {
4814  _sp += nargs; // any deopt will start just before call to enclosing method
4815  Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
4816                                 OptoRuntime::slow_arraycopy_Type(),
4817                                 OptoRuntime::slow_arraycopy_Java(),
4818                                 "slow_arraycopy", adr_type,
4819                                 src, src_offset, dest, dest_offset,
4820                                 copy_length);
4821  _sp -= nargs;
4822
4823  // Handle exceptions thrown by this fellow:
4824  make_slow_call_ex(call, env()->Throwable_klass(), false);
4825}
4826
4827// Helper function; generates code for cases requiring runtime checks.
4828Node*
4829LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
4830                                             Node* dest_elem_klass,
4831                                             Node* src,  Node* src_offset,
4832                                             Node* dest, Node* dest_offset,
4833                                             Node* copy_length,
4834                                             int nargs) {
4835  if (stopped())  return NULL;
4836
4837  address copyfunc_addr = StubRoutines::checkcast_arraycopy();
4838  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
4839    return NULL;
4840  }
4841
4842  // Pick out the parameters required to perform a store-check
4843  // for the target array.  This is an optimistic check.  It will
4844  // look in each non-null element's class, at the desired klass's
4845  // super_check_offset, for the desired klass.
4846  int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
4847  Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
4848  Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
4849  Node* check_offset = _gvn.transform(n3);
4850  Node* check_value  = dest_elem_klass;
4851
4852  Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
4853  Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
4854
4855  // (We know the arrays are never conjoint, because their types differ.)
4856  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
4857                                 OptoRuntime::checkcast_arraycopy_Type(),
4858                                 copyfunc_addr, "checkcast_arraycopy", adr_type,
4859                                 // five arguments, of which two are
4860                                 // intptr_t (jlong in LP64)
4861                                 src_start, dest_start,
4862                                 copy_length XTOP,
4863                                 check_offset XTOP,
4864                                 check_value);
4865
4866  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
4867}
4868
4869
4870// Helper function; generates code for cases requiring runtime checks.
4871Node*
4872LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
4873                                           Node* src,  Node* src_offset,
4874                                           Node* dest, Node* dest_offset,
4875                                           Node* copy_length,
4876                                           int nargs) {
4877  if (stopped())  return NULL;
4878
4879  address copyfunc_addr = StubRoutines::generic_arraycopy();
4880  if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
4881    return NULL;
4882  }
4883
4884  Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
4885                    OptoRuntime::generic_arraycopy_Type(),
4886                    copyfunc_addr, "generic_arraycopy", adr_type,
4887                    src, src_offset, dest, dest_offset, copy_length);
4888
4889  return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
4890}
4891
4892// Helper function; generates the fast out-of-line call to an arraycopy stub.
4893void
4894LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
4895                                             BasicType basic_elem_type,
4896                                             bool disjoint_bases,
4897                                             Node* src,  Node* src_offset,
4898                                             Node* dest, Node* dest_offset,
4899                                             Node* copy_length) {
4900  if (stopped())  return;               // nothing to do
4901
4902  Node* src_start  = src;
4903  Node* dest_start = dest;
4904  if (src_offset != NULL || dest_offset != NULL) {
4905    assert(src_offset != NULL && dest_offset != NULL, "");
4906    src_start  = array_element_address(src,  src_offset,  basic_elem_type);
4907    dest_start = array_element_address(dest, dest_offset, basic_elem_type);
4908  }
4909
4910  // Figure out which arraycopy runtime method to call.
4911  const char* copyfunc_name = "arraycopy";
4912  address     copyfunc_addr =
4913      basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
4914                          disjoint_bases, copyfunc_name);
4915
4916  // Call it.  Note that the count_ix value is not scaled to a byte-size.
4917  make_runtime_call(RC_LEAF|RC_NO_FP,
4918                    OptoRuntime::fast_arraycopy_Type(),
4919                    copyfunc_addr, copyfunc_name, adr_type,
4920                    src_start, dest_start, copy_length XTOP);
4921}
4922