domgraph.cpp revision 5776:de6a9e811145
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.hpp"
28#include "opto/block.hpp"
29#include "opto/machnode.hpp"
30#include "opto/phaseX.hpp"
31#include "opto/rootnode.hpp"
32
33// Portions of code courtesy of Clifford Click
34
35// A data structure that holds all the information needed to find dominators.
36struct Tarjan {
37  Block *_block;                // Basic block for this info
38
39  uint _semi;                   // Semi-dominators
40  uint _size;                   // Used for faster LINK and EVAL
41  Tarjan *_parent;              // Parent in DFS
42  Tarjan *_label;               // Used for LINK and EVAL
43  Tarjan *_ancestor;            // Used for LINK and EVAL
44  Tarjan *_child;               // Used for faster LINK and EVAL
45  Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
46  Tarjan *_bucket;              // Set of vertices with given semidominator
47
48  Tarjan *_dom_child;           // Child in dominator tree
49  Tarjan *_dom_next;            // Next in dominator tree
50
51  // Fast union-find work
52  void COMPRESS();
53  Tarjan *EVAL(void);
54  void LINK( Tarjan *w, Tarjan *tarjan0 );
55
56  void setdepth( uint size );
57
58};
59
60// Compute the dominator tree of the CFG.  The CFG must already have been
61// constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
62void PhaseCFG::build_dominator_tree() {
63  // Pre-grow the blocks array, prior to the ResourceMark kicking in
64  _blocks.map(number_of_blocks(), 0);
65
66  ResourceMark rm;
67  // Setup mappings from my Graph to Tarjan's stuff and back
68  // Note: Tarjan uses 1-based arrays
69  Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);
70
71  // Tarjan's algorithm, almost verbatim:
72  // Step 1:
73  uint dfsnum = do_DFS(tarjan, number_of_blocks());
74  if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
75    // If the returned dfsnum does not match the number of blocks, then we
76    // must have some unreachable loops.  These can be made at any time by
77    // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
78    // IterGVN can always make more that are not cleaned up.  Highly unlikely
79    // except in ZKM.jar, where endless irreducible loops cause the loop opts
80    // to not get run.
81    //
82    // Having found unreachable loops, we have made a bad RPO _block layout.
83    // We can re-run the above DFS pass with the correct number of blocks,
84    // and hack the Tarjan algorithm below to be robust in the presence of
85    // such dead loops (as was done for the NTarjan code farther below).
86    // Since this situation is so unlikely, instead I've decided to bail out.
87    // CNC 7/24/2001
88    C->record_method_not_compilable("unreachable loop");
89    return;
90  }
91  _blocks._cnt = number_of_blocks();
92
93  // Tarjan is using 1-based arrays, so these are some initialize flags
94  tarjan[0]._size = tarjan[0]._semi = 0;
95  tarjan[0]._label = &tarjan[0];
96
97  for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
98    Tarjan *w = &tarjan[i];     // Get vertex from DFS
99
100    // Step 2:
101    Node *whead = w->_block->head();
102    for (uint j = 1; j < whead->req(); j++) {
103      Block* b = get_block_for_node(whead->in(j));
104      Tarjan *vx = &tarjan[b->_pre_order];
105      Tarjan *u = vx->EVAL();
106      if( u->_semi < w->_semi )
107        w->_semi = u->_semi;
108    }
109
110    // w is added to a bucket here, and only here.
111    // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
112    // Thus bucket can be a linked list.
113    // Thus we do not need a small integer name for each Block.
114    w->_bucket = tarjan[w->_semi]._bucket;
115    tarjan[w->_semi]._bucket = w;
116
117    w->_parent->LINK( w, &tarjan[0] );
118
119    // Step 3:
120    for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
121      Tarjan *u = vx->EVAL();
122      vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
123    }
124  }
125
126  // Step 4:
127  for (uint i = 2; i <= number_of_blocks(); i++) {
128    Tarjan *w = &tarjan[i];
129    if( w->_dom != &tarjan[w->_semi] )
130      w->_dom = w->_dom->_dom;
131    w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
132  }
133  // No immediate dominator for the root
134  Tarjan *w = &tarjan[get_root_block()->_pre_order];
135  w->_dom = NULL;
136  w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
137
138  // Convert the dominator tree array into my kind of graph
139  for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
140    Tarjan *t = &tarjan[i];     // Handy access
141    Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
142    if( tdom )  {               // Root has no immediate dominator
143      t->_block->_idom = tdom->_block; // Set immediate dominator
144      t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
145      tdom->_dom_child = t;     // Make me a child of my parent
146    } else
147      t->_block->_idom = NULL;  // Root
148  }
149  w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree
150
151}
152
153class Block_Stack {
154  private:
155    struct Block_Descr {
156      Block  *block;     // Block
157      int    index;      // Index of block's successor pushed on stack
158      int    freq_idx;   // Index of block's most frequent successor
159    };
160    Block_Descr *_stack_top;
161    Block_Descr *_stack_max;
162    Block_Descr *_stack;
163    Tarjan *_tarjan;
164    uint most_frequent_successor( Block *b );
165  public:
166    Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
167      _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
168      _stack_max = _stack + size;
169      _stack_top = _stack - 1; // stack is empty
170    }
171    void push(uint pre_order, Block *b) {
172      Tarjan *t = &_tarjan[pre_order]; // Fast local access
173      b->_pre_order = pre_order;    // Flag as visited
174      t->_block = b;                // Save actual block
175      t->_semi = pre_order;         // Block to DFS map
176      t->_label = t;                // DFS to vertex map
177      t->_ancestor = NULL;          // Fast LINK & EVAL setup
178      t->_child = &_tarjan[0];      // Sentenial
179      t->_size = 1;
180      t->_bucket = NULL;
181      if (pre_order == 1)
182        t->_parent = NULL;          // first block doesn't have parent
183      else {
184        // Save parent (current top block on stack) in DFS
185        t->_parent = &_tarjan[_stack_top->block->_pre_order];
186      }
187      // Now put this block on stack
188      ++_stack_top;
189      assert(_stack_top < _stack_max, ""); // assert if stack have to grow
190      _stack_top->block  = b;
191      _stack_top->index  = -1;
192      // Find the index into b->succs[] array of the most frequent successor.
193      _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
194    }
195    Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
196    bool is_nonempty() { return (_stack_top >= _stack); }
197    bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
198    Block* next_successor()  {
199      int i = _stack_top->index;
200      i++;
201      if (i == _stack_top->freq_idx) i++;
202      if (i >= (int)(_stack_top->block->_num_succs)) {
203        i = _stack_top->freq_idx;   // process most frequent successor last
204      }
205      _stack_top->index = i;
206      return _stack_top->block->_succs[ i ];
207    }
208};
209
210// Find the index into the b->succs[] array of the most frequent successor.
211uint Block_Stack::most_frequent_successor( Block *b ) {
212  uint freq_idx = 0;
213  int eidx = b->end_idx();
214  Node *n = b->get_node(eidx);
215  int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
216  switch( op ) {
217  case Op_CountedLoopEnd:
218  case Op_If: {               // Split frequency amongst children
219    float prob = n->as_MachIf()->_prob;
220    // Is succ[0] the TRUE branch or the FALSE branch?
221    if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
222      prob = 1.0f - prob;
223    freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
224    break;
225  }
226  case Op_Catch:                // Split frequency amongst children
227    for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
228      if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
229        break;
230    // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
231    if( freq_idx == b->_num_succs ) freq_idx = 0;
232    break;
233    // Currently there is no support for finding out the most
234    // frequent successor for jumps, so lets just make it the first one
235  case Op_Jump:
236  case Op_Root:
237  case Op_Goto:
238  case Op_NeverBranch:
239    freq_idx = 0;               // fall thru
240    break;
241  case Op_TailCall:
242  case Op_TailJump:
243  case Op_Return:
244  case Op_Halt:
245  case Op_Rethrow:
246    break;
247  default:
248    ShouldNotReachHere();
249  }
250  return freq_idx;
251}
252
253// Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
254// 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
255uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
256  Block* root_block = get_root_block();
257  uint pre_order = 1;
258  // Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
259  Block_Stack bstack(tarjan, number_of_blocks() + 1);
260
261  // Push on stack the state for the first block
262  bstack.push(pre_order, root_block);
263  ++pre_order;
264
265  while (bstack.is_nonempty()) {
266    if (!bstack.last_successor()) {
267      // Walk over all successors in pre-order (DFS).
268      Block* next_block = bstack.next_successor();
269      if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
270        // Push on stack the state of successor
271        bstack.push(pre_order, next_block);
272        ++pre_order;
273      }
274    }
275    else {
276      // Build a reverse post-order in the CFG _blocks array
277      Block *stack_top = bstack.pop();
278      stack_top->_rpo = --rpo_counter;
279      _blocks.map(stack_top->_rpo, stack_top);
280    }
281  }
282  return pre_order;
283}
284
285void Tarjan::COMPRESS()
286{
287  assert( _ancestor != 0, "" );
288  if( _ancestor->_ancestor != 0 ) {
289    _ancestor->COMPRESS( );
290    if( _ancestor->_label->_semi < _label->_semi )
291      _label = _ancestor->_label;
292    _ancestor = _ancestor->_ancestor;
293  }
294}
295
296Tarjan *Tarjan::EVAL() {
297  if( !_ancestor ) return _label;
298  COMPRESS();
299  return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
300}
301
302void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
303  Tarjan *s = w;
304  while( w->_label->_semi < s->_child->_label->_semi ) {
305    if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
306      s->_child->_ancestor = s;
307      s->_child = s->_child->_child;
308    } else {
309      s->_child->_size = s->_size;
310      s = s->_ancestor = s->_child;
311    }
312  }
313  s->_label = w->_label;
314  _size += w->_size;
315  if( _size < (w->_size << 1) ) {
316    Tarjan *tmp = s; s = _child; _child = tmp;
317  }
318  while( s != tarjan0 ) {
319    s->_ancestor = this;
320    s = s->_child;
321  }
322}
323
324void Tarjan::setdepth( uint stack_size ) {
325  Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
326  Tarjan **next = top;
327  Tarjan **last;
328  uint depth = 0;
329  *top = this;
330  ++top;
331  do {
332    // next level
333    ++depth;
334    last = top;
335    do {
336      // Set current depth for all tarjans on this level
337      Tarjan *t = *next;     // next tarjan from stack
338      ++next;
339      do {
340        t->_block->_dom_depth = depth; // Set depth in dominator tree
341        Tarjan *dom_child = t->_dom_child;
342        t = t->_dom_next;    // next tarjan
343        if (dom_child != NULL) {
344          *top = dom_child;  // save child on stack
345          ++top;
346        }
347      } while (t != NULL);
348    } while (next < last);
349  } while (last < top);
350}
351
352// Compute dominators on the Sea of Nodes form
353// A data structure that holds all the information needed to find dominators.
354struct NTarjan {
355  Node *_control;               // Control node associated with this info
356
357  uint _semi;                   // Semi-dominators
358  uint _size;                   // Used for faster LINK and EVAL
359  NTarjan *_parent;             // Parent in DFS
360  NTarjan *_label;              // Used for LINK and EVAL
361  NTarjan *_ancestor;           // Used for LINK and EVAL
362  NTarjan *_child;              // Used for faster LINK and EVAL
363  NTarjan *_dom;                // Parent in dominator tree (immediate dom)
364  NTarjan *_bucket;             // Set of vertices with given semidominator
365
366  NTarjan *_dom_child;          // Child in dominator tree
367  NTarjan *_dom_next;           // Next in dominator tree
368
369  // Perform DFS search.
370  // Setup 'vertex' as DFS to vertex mapping.
371  // Setup 'semi' as vertex to DFS mapping.
372  // Set 'parent' to DFS parent.
373  static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
374  void setdepth( uint size, uint *dom_depth );
375
376  // Fast union-find work
377  void COMPRESS();
378  NTarjan *EVAL(void);
379  void LINK( NTarjan *w, NTarjan *ntarjan0 );
380#ifndef PRODUCT
381  void dump(int offset) const;
382#endif
383};
384
385// Compute the dominator tree of the sea of nodes.  This version walks all CFG
386// nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
387// it needs a count of the CFG nodes for the mapping table. This is the
388// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
389void PhaseIdealLoop::Dominators() {
390  ResourceMark rm;
391  // Setup mappings from my Graph to Tarjan's stuff and back
392  // Note: Tarjan uses 1-based arrays
393  NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
394  // Initialize _control field for fast reference
395  int i;
396  for( i= C->unique()-1; i>=0; i-- )
397    ntarjan[i]._control = NULL;
398
399  // Store the DFS order for the main loop
400  uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
401  memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
402
403  // Tarjan's algorithm, almost verbatim:
404  // Step 1:
405  VectorSet visited(Thread::current()->resource_area());
406  int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
407
408  // Tarjan is using 1-based arrays, so these are some initialize flags
409  ntarjan[0]._size = ntarjan[0]._semi = 0;
410  ntarjan[0]._label = &ntarjan[0];
411
412  for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
413    NTarjan *w = &ntarjan[i];            // Get Node from DFS
414    assert(w->_control != NULL,"bad DFS walk");
415
416    // Step 2:
417    Node *whead = w->_control;
418    for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
419      if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
420        continue;                            // Only process control nodes
421      uint b = dfsorder[whead->in(j)->_idx];
422      if(b == max_uint) continue;
423      NTarjan *vx = &ntarjan[b];
424      NTarjan *u = vx->EVAL();
425      if( u->_semi < w->_semi )
426        w->_semi = u->_semi;
427    }
428
429    // w is added to a bucket here, and only here.
430    // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
431    // Thus bucket can be a linked list.
432    w->_bucket = ntarjan[w->_semi]._bucket;
433    ntarjan[w->_semi]._bucket = w;
434
435    w->_parent->LINK( w, &ntarjan[0] );
436
437    // Step 3:
438    for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
439      NTarjan *u = vx->EVAL();
440      vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
441    }
442
443    // Cleanup any unreachable loops now.  Unreachable loops are loops that
444    // flow into the main graph (and hence into ROOT) but are not reachable
445    // from above.  Such code is dead, but requires a global pass to detect
446    // it; this global pass was the 'build_loop_tree' pass run just prior.
447    if( !_verify_only && whead->is_Region() ) {
448      for( uint i = 1; i < whead->req(); i++ ) {
449        if (!has_node(whead->in(i))) {
450          // Kill dead input path
451          assert( !visited.test(whead->in(i)->_idx),
452                  "input with no loop must be dead" );
453          _igvn.delete_input_of(whead, i);
454          for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
455            Node* p = whead->fast_out(j);
456            if( p->is_Phi() ) {
457              _igvn.delete_input_of(p, i);
458            }
459          }
460          i--;                  // Rerun same iteration
461        } // End of if dead input path
462      } // End of for all input paths
463    } // End if if whead is a Region
464  } // End of for all Nodes in reverse DFS order
465
466  // Step 4:
467  for( i=2; i < dfsnum; i++ ) { // DFS order
468    NTarjan *w = &ntarjan[i];
469    assert(w->_control != NULL,"Bad DFS walk");
470    if( w->_dom != &ntarjan[w->_semi] )
471      w->_dom = w->_dom->_dom;
472    w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
473  }
474  // No immediate dominator for the root
475  NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
476  w->_dom = NULL;
477  w->_parent = NULL;
478  w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
479
480  // Convert the dominator tree array into my kind of graph
481  for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
482    NTarjan *t = &ntarjan[i];          // Handy access
483    assert(t->_control != NULL,"Bad DFS walk");
484    NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
485    if( tdom )  {                      // Root has no immediate dominator
486      _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
487      t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
488      tdom->_dom_child = t;            // Make me a child of my parent
489    } else
490      _idom[C->root()->_idx] = NULL; // Root
491  }
492  w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
493  // Pick up the 'top' node as well
494  _idom     [C->top()->_idx] = C->root();
495  _dom_depth[C->top()->_idx] = 1;
496
497  // Debug Print of Dominator tree
498  if( PrintDominators ) {
499#ifndef PRODUCT
500    w->dump(0);
501#endif
502  }
503}
504
505// Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
506// 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
507int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
508  // Allocate stack of size C->unique()/8 to avoid frequent realloc
509  GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
510  Node *b = pil->C->root();
511  int dfsnum = 1;
512  dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
513  dfstack.push(b);
514
515  while (dfstack.is_nonempty()) {
516    b = dfstack.pop();
517    if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
518      NTarjan *w = &ntarjan[dfsnum];
519      // Only fully process control nodes
520      w->_control = b;                 // Save actual node
521      // Use parent's cached dfsnum to identify "Parent in DFS"
522      w->_parent = &ntarjan[dfsorder[b->_idx]];
523      dfsorder[b->_idx] = dfsnum;      // Save DFS order info
524      w->_semi = dfsnum;               // Node to DFS map
525      w->_label = w;                   // DFS to vertex map
526      w->_ancestor = NULL;             // Fast LINK & EVAL setup
527      w->_child = &ntarjan[0];         // Sentinal
528      w->_size = 1;
529      w->_bucket = NULL;
530
531      // Need DEF-USE info for this pass
532      for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
533        Node* s = b->raw_out(i);       // Get a use
534        // CFG nodes only and not dead stuff
535        if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
536          dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
537          dfstack.push(s);
538        }
539      }
540      dfsnum++;  // update after parent's dfsnum has been cached.
541    }
542  }
543
544  return dfsnum;
545}
546
547void NTarjan::COMPRESS()
548{
549  assert( _ancestor != 0, "" );
550  if( _ancestor->_ancestor != 0 ) {
551    _ancestor->COMPRESS( );
552    if( _ancestor->_label->_semi < _label->_semi )
553      _label = _ancestor->_label;
554    _ancestor = _ancestor->_ancestor;
555  }
556}
557
558NTarjan *NTarjan::EVAL() {
559  if( !_ancestor ) return _label;
560  COMPRESS();
561  return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
562}
563
564void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
565  NTarjan *s = w;
566  while( w->_label->_semi < s->_child->_label->_semi ) {
567    if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
568      s->_child->_ancestor = s;
569      s->_child = s->_child->_child;
570    } else {
571      s->_child->_size = s->_size;
572      s = s->_ancestor = s->_child;
573    }
574  }
575  s->_label = w->_label;
576  _size += w->_size;
577  if( _size < (w->_size << 1) ) {
578    NTarjan *tmp = s; s = _child; _child = tmp;
579  }
580  while( s != ntarjan0 ) {
581    s->_ancestor = this;
582    s = s->_child;
583  }
584}
585
586void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
587  NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
588  NTarjan **next = top;
589  NTarjan **last;
590  uint depth = 0;
591  *top = this;
592  ++top;
593  do {
594    // next level
595    ++depth;
596    last = top;
597    do {
598      // Set current depth for all tarjans on this level
599      NTarjan *t = *next;    // next tarjan from stack
600      ++next;
601      do {
602        dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
603        NTarjan *dom_child = t->_dom_child;
604        t = t->_dom_next;    // next tarjan
605        if (dom_child != NULL) {
606          *top = dom_child;  // save child on stack
607          ++top;
608        }
609      } while (t != NULL);
610    } while (next < last);
611  } while (last < top);
612}
613
614#ifndef PRODUCT
615void NTarjan::dump(int offset) const {
616  // Dump the data from this node
617  int i;
618  for(i = offset; i >0; i--)  // Use indenting for tree structure
619    tty->print("  ");
620  tty->print("Dominator Node: ");
621  _control->dump();               // Control node for this dom node
622  tty->print("\n");
623  for(i = offset; i >0; i--)      // Use indenting for tree structure
624    tty->print("  ");
625  tty->print("semi:%d, size:%d\n",_semi, _size);
626  for(i = offset; i >0; i--)      // Use indenting for tree structure
627    tty->print("  ");
628  tty->print("DFS Parent: ");
629  if(_parent != NULL)
630    _parent->_control->dump();    // Parent in DFS
631  tty->print("\n");
632  for(i = offset; i >0; i--)      // Use indenting for tree structure
633    tty->print("  ");
634  tty->print("Dom Parent: ");
635  if(_dom != NULL)
636    _dom->_control->dump();       // Parent in Dominator Tree
637  tty->print("\n");
638
639  // Recurse over remaining tree
640  if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
641  if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree
642
643}
644#endif
645