1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "libadt/vectset.hpp"
27#include "memory/allocation.hpp"
28#include "memory/resourceArea.hpp"
29#include "opto/block.hpp"
30#include "opto/machnode.hpp"
31#include "opto/phaseX.hpp"
32#include "opto/rootnode.hpp"
33
34// Portions of code courtesy of Clifford Click
35
36// A data structure that holds all the information needed to find dominators.
37struct Tarjan {
38  Block *_block;                // Basic block for this info
39
40  uint _semi;                   // Semi-dominators
41  uint _size;                   // Used for faster LINK and EVAL
42  Tarjan *_parent;              // Parent in DFS
43  Tarjan *_label;               // Used for LINK and EVAL
44  Tarjan *_ancestor;            // Used for LINK and EVAL
45  Tarjan *_child;               // Used for faster LINK and EVAL
46  Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
47  Tarjan *_bucket;              // Set of vertices with given semidominator
48
49  Tarjan *_dom_child;           // Child in dominator tree
50  Tarjan *_dom_next;            // Next in dominator tree
51
52  // Fast union-find work
53  void COMPRESS();
54  Tarjan *EVAL(void);
55  void LINK( Tarjan *w, Tarjan *tarjan0 );
56
57  void setdepth( uint size );
58
59};
60
61// Compute the dominator tree of the CFG.  The CFG must already have been
62// constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
63void PhaseCFG::build_dominator_tree() {
64  // Pre-grow the blocks array, prior to the ResourceMark kicking in
65  _blocks.map(number_of_blocks(), 0);
66
67  ResourceMark rm;
68  // Setup mappings from my Graph to Tarjan's stuff and back
69  // Note: Tarjan uses 1-based arrays
70  Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);
71
72  // Tarjan's algorithm, almost verbatim:
73  // Step 1:
74  uint dfsnum = do_DFS(tarjan, number_of_blocks());
75  if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
76    // If the returned dfsnum does not match the number of blocks, then we
77    // must have some unreachable loops.  These can be made at any time by
78    // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
79    // IterGVN can always make more that are not cleaned up.  Highly unlikely
80    // except in ZKM.jar, where endless irreducible loops cause the loop opts
81    // to not get run.
82    //
83    // Having found unreachable loops, we have made a bad RPO _block layout.
84    // We can re-run the above DFS pass with the correct number of blocks,
85    // and hack the Tarjan algorithm below to be robust in the presence of
86    // such dead loops (as was done for the NTarjan code farther below).
87    // Since this situation is so unlikely, instead I've decided to bail out.
88    // CNC 7/24/2001
89    C->record_method_not_compilable("unreachable loop");
90    return;
91  }
92  _blocks._cnt = number_of_blocks();
93
94  // Tarjan is using 1-based arrays, so these are some initialize flags
95  tarjan[0]._size = tarjan[0]._semi = 0;
96  tarjan[0]._label = &tarjan[0];
97
98  for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
99    Tarjan *w = &tarjan[i];     // Get vertex from DFS
100
101    // Step 2:
102    Node *whead = w->_block->head();
103    for (uint j = 1; j < whead->req(); j++) {
104      Block* b = get_block_for_node(whead->in(j));
105      Tarjan *vx = &tarjan[b->_pre_order];
106      Tarjan *u = vx->EVAL();
107      if( u->_semi < w->_semi )
108        w->_semi = u->_semi;
109    }
110
111    // w is added to a bucket here, and only here.
112    // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
113    // Thus bucket can be a linked list.
114    // Thus we do not need a small integer name for each Block.
115    w->_bucket = tarjan[w->_semi]._bucket;
116    tarjan[w->_semi]._bucket = w;
117
118    w->_parent->LINK( w, &tarjan[0] );
119
120    // Step 3:
121    for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
122      Tarjan *u = vx->EVAL();
123      vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
124    }
125  }
126
127  // Step 4:
128  for (uint i = 2; i <= number_of_blocks(); i++) {
129    Tarjan *w = &tarjan[i];
130    if( w->_dom != &tarjan[w->_semi] )
131      w->_dom = w->_dom->_dom;
132    w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
133  }
134  // No immediate dominator for the root
135  Tarjan *w = &tarjan[get_root_block()->_pre_order];
136  w->_dom = NULL;
137  w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
138
139  // Convert the dominator tree array into my kind of graph
140  for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
141    Tarjan *t = &tarjan[i];     // Handy access
142    Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
143    if( tdom )  {               // Root has no immediate dominator
144      t->_block->_idom = tdom->_block; // Set immediate dominator
145      t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
146      tdom->_dom_child = t;     // Make me a child of my parent
147    } else
148      t->_block->_idom = NULL;  // Root
149  }
150  w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree
151
152}
153
154class Block_Stack {
155  private:
156    struct Block_Descr {
157      Block  *block;     // Block
158      int    index;      // Index of block's successor pushed on stack
159      int    freq_idx;   // Index of block's most frequent successor
160    };
161    Block_Descr *_stack_top;
162    Block_Descr *_stack_max;
163    Block_Descr *_stack;
164    Tarjan *_tarjan;
165    uint most_frequent_successor( Block *b );
166  public:
167    Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
168      _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
169      _stack_max = _stack + size;
170      _stack_top = _stack - 1; // stack is empty
171    }
172    void push(uint pre_order, Block *b) {
173      Tarjan *t = &_tarjan[pre_order]; // Fast local access
174      b->_pre_order = pre_order;    // Flag as visited
175      t->_block = b;                // Save actual block
176      t->_semi = pre_order;         // Block to DFS map
177      t->_label = t;                // DFS to vertex map
178      t->_ancestor = NULL;          // Fast LINK & EVAL setup
179      t->_child = &_tarjan[0];      // Sentenial
180      t->_size = 1;
181      t->_bucket = NULL;
182      if (pre_order == 1)
183        t->_parent = NULL;          // first block doesn't have parent
184      else {
185        // Save parent (current top block on stack) in DFS
186        t->_parent = &_tarjan[_stack_top->block->_pre_order];
187      }
188      // Now put this block on stack
189      ++_stack_top;
190      assert(_stack_top < _stack_max, ""); // assert if stack have to grow
191      _stack_top->block  = b;
192      _stack_top->index  = -1;
193      // Find the index into b->succs[] array of the most frequent successor.
194      _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
195    }
196    Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
197    bool is_nonempty() { return (_stack_top >= _stack); }
198    bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
199    Block* next_successor()  {
200      int i = _stack_top->index;
201      i++;
202      if (i == _stack_top->freq_idx) i++;
203      if (i >= (int)(_stack_top->block->_num_succs)) {
204        i = _stack_top->freq_idx;   // process most frequent successor last
205      }
206      _stack_top->index = i;
207      return _stack_top->block->_succs[ i ];
208    }
209};
210
211// Find the index into the b->succs[] array of the most frequent successor.
212uint Block_Stack::most_frequent_successor( Block *b ) {
213  uint freq_idx = 0;
214  int eidx = b->end_idx();
215  Node *n = b->get_node(eidx);
216  int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
217  switch( op ) {
218  case Op_CountedLoopEnd:
219  case Op_If: {               // Split frequency amongst children
220    float prob = n->as_MachIf()->_prob;
221    // Is succ[0] the TRUE branch or the FALSE branch?
222    if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
223      prob = 1.0f - prob;
224    freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
225    break;
226  }
227  case Op_Catch:                // Split frequency amongst children
228    for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
229      if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
230        break;
231    // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
232    if( freq_idx == b->_num_succs ) freq_idx = 0;
233    break;
234    // Currently there is no support for finding out the most
235    // frequent successor for jumps, so lets just make it the first one
236  case Op_Jump:
237  case Op_Root:
238  case Op_Goto:
239  case Op_NeverBranch:
240    freq_idx = 0;               // fall thru
241    break;
242  case Op_TailCall:
243  case Op_TailJump:
244  case Op_Return:
245  case Op_Halt:
246  case Op_Rethrow:
247    break;
248  default:
249    ShouldNotReachHere();
250  }
251  return freq_idx;
252}
253
254// Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
255// 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
256uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
257  Block* root_block = get_root_block();
258  uint pre_order = 1;
259  // Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
260  Block_Stack bstack(tarjan, number_of_blocks() + 1);
261
262  // Push on stack the state for the first block
263  bstack.push(pre_order, root_block);
264  ++pre_order;
265
266  while (bstack.is_nonempty()) {
267    if (!bstack.last_successor()) {
268      // Walk over all successors in pre-order (DFS).
269      Block* next_block = bstack.next_successor();
270      if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
271        // Push on stack the state of successor
272        bstack.push(pre_order, next_block);
273        ++pre_order;
274      }
275    }
276    else {
277      // Build a reverse post-order in the CFG _blocks array
278      Block *stack_top = bstack.pop();
279      stack_top->_rpo = --rpo_counter;
280      _blocks.map(stack_top->_rpo, stack_top);
281    }
282  }
283  return pre_order;
284}
285
286void Tarjan::COMPRESS()
287{
288  assert( _ancestor != 0, "" );
289  if( _ancestor->_ancestor != 0 ) {
290    _ancestor->COMPRESS( );
291    if( _ancestor->_label->_semi < _label->_semi )
292      _label = _ancestor->_label;
293    _ancestor = _ancestor->_ancestor;
294  }
295}
296
297Tarjan *Tarjan::EVAL() {
298  if( !_ancestor ) return _label;
299  COMPRESS();
300  return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
301}
302
303void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
304  Tarjan *s = w;
305  while( w->_label->_semi < s->_child->_label->_semi ) {
306    if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
307      s->_child->_ancestor = s;
308      s->_child = s->_child->_child;
309    } else {
310      s->_child->_size = s->_size;
311      s = s->_ancestor = s->_child;
312    }
313  }
314  s->_label = w->_label;
315  _size += w->_size;
316  if( _size < (w->_size << 1) ) {
317    Tarjan *tmp = s; s = _child; _child = tmp;
318  }
319  while( s != tarjan0 ) {
320    s->_ancestor = this;
321    s = s->_child;
322  }
323}
324
325void Tarjan::setdepth( uint stack_size ) {
326  Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
327  Tarjan **next = top;
328  Tarjan **last;
329  uint depth = 0;
330  *top = this;
331  ++top;
332  do {
333    // next level
334    ++depth;
335    last = top;
336    do {
337      // Set current depth for all tarjans on this level
338      Tarjan *t = *next;     // next tarjan from stack
339      ++next;
340      do {
341        t->_block->_dom_depth = depth; // Set depth in dominator tree
342        Tarjan *dom_child = t->_dom_child;
343        t = t->_dom_next;    // next tarjan
344        if (dom_child != NULL) {
345          *top = dom_child;  // save child on stack
346          ++top;
347        }
348      } while (t != NULL);
349    } while (next < last);
350  } while (last < top);
351}
352
353// Compute dominators on the Sea of Nodes form
354// A data structure that holds all the information needed to find dominators.
355struct NTarjan {
356  Node *_control;               // Control node associated with this info
357
358  uint _semi;                   // Semi-dominators
359  uint _size;                   // Used for faster LINK and EVAL
360  NTarjan *_parent;             // Parent in DFS
361  NTarjan *_label;              // Used for LINK and EVAL
362  NTarjan *_ancestor;           // Used for LINK and EVAL
363  NTarjan *_child;              // Used for faster LINK and EVAL
364  NTarjan *_dom;                // Parent in dominator tree (immediate dom)
365  NTarjan *_bucket;             // Set of vertices with given semidominator
366
367  NTarjan *_dom_child;          // Child in dominator tree
368  NTarjan *_dom_next;           // Next in dominator tree
369
370  // Perform DFS search.
371  // Setup 'vertex' as DFS to vertex mapping.
372  // Setup 'semi' as vertex to DFS mapping.
373  // Set 'parent' to DFS parent.
374  static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
375  void setdepth( uint size, uint *dom_depth );
376
377  // Fast union-find work
378  void COMPRESS();
379  NTarjan *EVAL(void);
380  void LINK( NTarjan *w, NTarjan *ntarjan0 );
381#ifndef PRODUCT
382  void dump(int offset) const;
383#endif
384};
385
386// Compute the dominator tree of the sea of nodes.  This version walks all CFG
387// nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
388// it needs a count of the CFG nodes for the mapping table. This is the
389// Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
390void PhaseIdealLoop::Dominators() {
391  ResourceMark rm;
392  // Setup mappings from my Graph to Tarjan's stuff and back
393  // Note: Tarjan uses 1-based arrays
394  NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
395  // Initialize _control field for fast reference
396  int i;
397  for( i= C->unique()-1; i>=0; i-- )
398    ntarjan[i]._control = NULL;
399
400  // Store the DFS order for the main loop
401  const uint fill_value = max_juint;
402  uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
403  memset(dfsorder, fill_value, (C->unique()+1) * sizeof(uint));
404
405  // Tarjan's algorithm, almost verbatim:
406  // Step 1:
407  VectorSet visited(Thread::current()->resource_area());
408  int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
409
410  // Tarjan is using 1-based arrays, so these are some initialize flags
411  ntarjan[0]._size = ntarjan[0]._semi = 0;
412  ntarjan[0]._label = &ntarjan[0];
413
414  for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
415    NTarjan *w = &ntarjan[i];            // Get Node from DFS
416    assert(w->_control != NULL,"bad DFS walk");
417
418    // Step 2:
419    Node *whead = w->_control;
420    for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
421      if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
422        continue;                            // Only process control nodes
423      uint b = dfsorder[whead->in(j)->_idx];
424      if(b == fill_value) continue;
425      NTarjan *vx = &ntarjan[b];
426      NTarjan *u = vx->EVAL();
427      if( u->_semi < w->_semi )
428        w->_semi = u->_semi;
429    }
430
431    // w is added to a bucket here, and only here.
432    // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
433    // Thus bucket can be a linked list.
434    w->_bucket = ntarjan[w->_semi]._bucket;
435    ntarjan[w->_semi]._bucket = w;
436
437    w->_parent->LINK( w, &ntarjan[0] );
438
439    // Step 3:
440    for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
441      NTarjan *u = vx->EVAL();
442      vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
443    }
444
445    // Cleanup any unreachable loops now.  Unreachable loops are loops that
446    // flow into the main graph (and hence into ROOT) but are not reachable
447    // from above.  Such code is dead, but requires a global pass to detect
448    // it; this global pass was the 'build_loop_tree' pass run just prior.
449    if( !_verify_only && whead->is_Region() ) {
450      for( uint i = 1; i < whead->req(); i++ ) {
451        if (!has_node(whead->in(i))) {
452          // Kill dead input path
453          assert( !visited.test(whead->in(i)->_idx),
454                  "input with no loop must be dead" );
455          _igvn.delete_input_of(whead, i);
456          for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
457            Node* p = whead->fast_out(j);
458            if( p->is_Phi() ) {
459              _igvn.delete_input_of(p, i);
460            }
461          }
462          i--;                  // Rerun same iteration
463        } // End of if dead input path
464      } // End of for all input paths
465    } // End if if whead is a Region
466  } // End of for all Nodes in reverse DFS order
467
468  // Step 4:
469  for( i=2; i < dfsnum; i++ ) { // DFS order
470    NTarjan *w = &ntarjan[i];
471    assert(w->_control != NULL,"Bad DFS walk");
472    if( w->_dom != &ntarjan[w->_semi] )
473      w->_dom = w->_dom->_dom;
474    w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
475  }
476  // No immediate dominator for the root
477  NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
478  w->_dom = NULL;
479  w->_parent = NULL;
480  w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
481
482  // Convert the dominator tree array into my kind of graph
483  for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
484    NTarjan *t = &ntarjan[i];          // Handy access
485    assert(t->_control != NULL,"Bad DFS walk");
486    NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
487    if( tdom )  {                      // Root has no immediate dominator
488      _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
489      t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
490      tdom->_dom_child = t;            // Make me a child of my parent
491    } else
492      _idom[C->root()->_idx] = NULL; // Root
493  }
494  w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
495  // Pick up the 'top' node as well
496  _idom     [C->top()->_idx] = C->root();
497  _dom_depth[C->top()->_idx] = 1;
498
499  // Debug Print of Dominator tree
500  if( PrintDominators ) {
501#ifndef PRODUCT
502    w->dump(0);
503#endif
504  }
505}
506
507// Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
508// 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
509int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
510  // Allocate stack of size C->live_nodes()/8 to avoid frequent realloc
511  GrowableArray <Node *> dfstack(pil->C->live_nodes() >> 3);
512  Node *b = pil->C->root();
513  int dfsnum = 1;
514  dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
515  dfstack.push(b);
516
517  while (dfstack.is_nonempty()) {
518    b = dfstack.pop();
519    if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
520      NTarjan *w = &ntarjan[dfsnum];
521      // Only fully process control nodes
522      w->_control = b;                 // Save actual node
523      // Use parent's cached dfsnum to identify "Parent in DFS"
524      w->_parent = &ntarjan[dfsorder[b->_idx]];
525      dfsorder[b->_idx] = dfsnum;      // Save DFS order info
526      w->_semi = dfsnum;               // Node to DFS map
527      w->_label = w;                   // DFS to vertex map
528      w->_ancestor = NULL;             // Fast LINK & EVAL setup
529      w->_child = &ntarjan[0];         // Sentinal
530      w->_size = 1;
531      w->_bucket = NULL;
532
533      // Need DEF-USE info for this pass
534      for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
535        Node* s = b->raw_out(i);       // Get a use
536        // CFG nodes only and not dead stuff
537        if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
538          dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
539          dfstack.push(s);
540        }
541      }
542      dfsnum++;  // update after parent's dfsnum has been cached.
543    }
544  }
545
546  return dfsnum;
547}
548
549void NTarjan::COMPRESS()
550{
551  assert( _ancestor != 0, "" );
552  if( _ancestor->_ancestor != 0 ) {
553    _ancestor->COMPRESS( );
554    if( _ancestor->_label->_semi < _label->_semi )
555      _label = _ancestor->_label;
556    _ancestor = _ancestor->_ancestor;
557  }
558}
559
560NTarjan *NTarjan::EVAL() {
561  if( !_ancestor ) return _label;
562  COMPRESS();
563  return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
564}
565
566void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
567  NTarjan *s = w;
568  while( w->_label->_semi < s->_child->_label->_semi ) {
569    if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
570      s->_child->_ancestor = s;
571      s->_child = s->_child->_child;
572    } else {
573      s->_child->_size = s->_size;
574      s = s->_ancestor = s->_child;
575    }
576  }
577  s->_label = w->_label;
578  _size += w->_size;
579  if( _size < (w->_size << 1) ) {
580    NTarjan *tmp = s; s = _child; _child = tmp;
581  }
582  while( s != ntarjan0 ) {
583    s->_ancestor = this;
584    s = s->_child;
585  }
586}
587
588void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
589  NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
590  NTarjan **next = top;
591  NTarjan **last;
592  uint depth = 0;
593  *top = this;
594  ++top;
595  do {
596    // next level
597    ++depth;
598    last = top;
599    do {
600      // Set current depth for all tarjans on this level
601      NTarjan *t = *next;    // next tarjan from stack
602      ++next;
603      do {
604        dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
605        NTarjan *dom_child = t->_dom_child;
606        t = t->_dom_next;    // next tarjan
607        if (dom_child != NULL) {
608          *top = dom_child;  // save child on stack
609          ++top;
610        }
611      } while (t != NULL);
612    } while (next < last);
613  } while (last < top);
614}
615
616#ifndef PRODUCT
617void NTarjan::dump(int offset) const {
618  // Dump the data from this node
619  int i;
620  for(i = offset; i >0; i--)  // Use indenting for tree structure
621    tty->print("  ");
622  tty->print("Dominator Node: ");
623  _control->dump();               // Control node for this dom node
624  tty->print("\n");
625  for(i = offset; i >0; i--)      // Use indenting for tree structure
626    tty->print("  ");
627  tty->print("semi:%d, size:%d\n",_semi, _size);
628  for(i = offset; i >0; i--)      // Use indenting for tree structure
629    tty->print("  ");
630  tty->print("DFS Parent: ");
631  if(_parent != NULL)
632    _parent->_control->dump();    // Parent in DFS
633  tty->print("\n");
634  for(i = offset; i >0; i--)      // Use indenting for tree structure
635    tty->print("  ");
636  tty->print("Dom Parent: ");
637  if(_dom != NULL)
638    _dom->_control->dump();       // Parent in Dominator Tree
639  tty->print("\n");
640
641  // Recurse over remaining tree
642  if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
643  if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree
644
645}
646#endif
647