coalesce.cpp revision 4514:8373c19be854
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/chaitin.hpp"
30#include "opto/coalesce.hpp"
31#include "opto/connode.hpp"
32#include "opto/indexSet.hpp"
33#include "opto/machnode.hpp"
34#include "opto/matcher.hpp"
35#include "opto/regmask.hpp"
36
37//=============================================================================
38//------------------------------Dump-------------------------------------------
39#ifndef PRODUCT
40void PhaseCoalesce::dump(Node *n) const {
41  // Being a const function means I cannot use 'Find'
42  uint r = _phc._lrg_map.find(n);
43  tty->print("L%d/N%d ",r,n->_idx);
44}
45
46//------------------------------dump-------------------------------------------
47void PhaseCoalesce::dump() const {
48  // I know I have a block layout now, so I can print blocks in a loop
49  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
50    uint j;
51    Block *b = _phc._cfg._blocks[i];
52    // Print a nice block header
53    tty->print("B%d: ",b->_pre_order);
54    for( j=1; j<b->num_preds(); j++ )
55      tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
56    tty->print("-> ");
57    for( j=0; j<b->_num_succs; j++ )
58      tty->print("B%d ",b->_succs[j]->_pre_order);
59    tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
60    uint cnt = b->_nodes.size();
61    for( j=0; j<cnt; j++ ) {
62      Node *n = b->_nodes[j];
63      dump( n );
64      tty->print("\t%s\t",n->Name());
65
66      // Dump the inputs
67      uint k;                   // Exit value of loop
68      for( k=0; k<n->req(); k++ ) // For all required inputs
69        if( n->in(k) ) dump( n->in(k) );
70        else tty->print("_ ");
71      int any_prec = 0;
72      for( ; k<n->len(); k++ )          // For all precedence inputs
73        if( n->in(k) ) {
74          if( !any_prec++ ) tty->print(" |");
75          dump( n->in(k) );
76        }
77
78      // Dump node-specific info
79      n->dump_spec(tty);
80      tty->print("\n");
81
82    }
83    tty->print("\n");
84  }
85}
86#endif
87
88//------------------------------combine_these_two------------------------------
89// Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
90void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
91  uint lr1 = _phc._lrg_map.find(n1);
92  uint lr2 = _phc._lrg_map.find(n2);
93  if( lr1 != lr2 &&             // Different live ranges already AND
94      !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
95    LRG *lrg1 = &_phc.lrgs(lr1);
96    LRG *lrg2 = &_phc.lrgs(lr2);
97    // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
98
99    // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
100    // and in general that's a bad thing.  However, int->oop conversions only
101    // happen at GC points, so the lifetime of the misclassified raw-pointer
102    // is from the CheckCastPP (that converts it to an oop) backwards up
103    // through a merge point and into the slow-path call, and around the
104    // diamond up to the heap-top check and back down into the slow-path call.
105    // The misclassified raw pointer is NOT live across the slow-path call,
106    // and so does not appear in any GC info, so the fact that it is
107    // misclassified is OK.
108
109    if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
110        // Compatible final mask
111        lrg1->mask().overlap( lrg2->mask() ) ) {
112      // Merge larger into smaller.
113      if( lr1 > lr2 ) {
114        uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
115        Node   *n =   n1;   n1 =   n2;   n2 =    n;
116        LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
117      }
118      // Union lr2 into lr1
119      _phc.Union( n1, n2 );
120      if (lrg1->_maxfreq < lrg2->_maxfreq)
121        lrg1->_maxfreq = lrg2->_maxfreq;
122      // Merge in the IFG
123      _phc._ifg->Union( lr1, lr2 );
124      // Combine register restrictions
125      lrg1->AND(lrg2->mask());
126    }
127  }
128}
129
130//------------------------------coalesce_driver--------------------------------
131// Copy coalescing
132void PhaseCoalesce::coalesce_driver( ) {
133
134  verify();
135  // Coalesce from high frequency to low
136  for( uint i=0; i<_phc._cfg._num_blocks; i++ )
137    coalesce( _phc._blks[i] );
138
139}
140
141//------------------------------insert_copy_with_overlap-----------------------
142// I am inserting copies to come out of SSA form.  In the general case, I am
143// doing a parallel renaming.  I'm in the Named world now, so I can't do a
144// general parallel renaming.  All the copies now use  "names" (live-ranges)
145// to carry values instead of the explicit use-def chains.  Suppose I need to
146// insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
147// If I insert them in the wrong order then L128 will get clobbered before it
148// can get used by the second copy.  This cannot happen in the SSA model;
149// direct use-def chains get me the right value.  It DOES happen in the named
150// model so I have to handle the reordering of copies.
151//
152// In general, I need to topo-sort the placed copies to avoid conflicts.
153// Its possible to have a closed cycle of copies (e.g., recirculating the same
154// values around a loop).  In this case I need a temp to break the cycle.
155void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
156
157  // Scan backwards for the locations of the last use of the dst_name.
158  // I am about to clobber the dst_name, so the copy must be inserted
159  // after the last use.  Last use is really first-use on a backwards scan.
160  uint i = b->end_idx()-1;
161  while(1) {
162    Node *n = b->_nodes[i];
163    // Check for end of virtual copies; this is also the end of the
164    // parallel renaming effort.
165    if (n->_idx < _unique) {
166      break;
167    }
168    uint idx = n->is_Copy();
169    assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
170    if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
171      break;
172    }
173    i--;
174  }
175  uint last_use_idx = i;
176
177  // Also search for any kill of src_name that exits the block.
178  // Since the copy uses src_name, I have to come before any kill.
179  uint kill_src_idx = b->end_idx();
180  // There can be only 1 kill that exits any block and that is
181  // the last kill.  Thus it is the first kill on a backwards scan.
182  i = b->end_idx()-1;
183  while (1) {
184    Node *n = b->_nodes[i];
185    // Check for end of virtual copies; this is also the end of the
186    // parallel renaming effort.
187    if (n->_idx < _unique) {
188      break;
189    }
190    assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
191    if (_phc._lrg_map.find(n) == src_name) {
192      kill_src_idx = i;
193      break;
194    }
195    i--;
196  }
197  // Need a temp?  Last use of dst comes after the kill of src?
198  if (last_use_idx >= kill_src_idx) {
199    // Need to break a cycle with a temp
200    uint idx = copy->is_Copy();
201    Node *tmp = copy->clone();
202    uint max_lrg_id = _phc._lrg_map.max_lrg_id();
203    _phc.new_lrg(tmp, max_lrg_id);
204    _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
205
206    // Insert new temp between copy and source
207    tmp ->set_req(idx,copy->in(idx));
208    copy->set_req(idx,tmp);
209    // Save source in temp early, before source is killed
210    b->_nodes.insert(kill_src_idx,tmp);
211    _phc._cfg._bbs.map( tmp->_idx, b );
212    last_use_idx++;
213  }
214
215  // Insert just after last use
216  b->_nodes.insert(last_use_idx+1,copy);
217}
218
219//------------------------------insert_copies----------------------------------
220void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
221  // We do LRGs compressing and fix a liveout data only here since the other
222  // place in Split() is guarded by the assert which we never hit.
223  _phc._lrg_map.compress_uf_map_for_nodes();
224  // Fix block's liveout data for compressed live ranges.
225  for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
226    uint compressed_lrg = _phc._lrg_map.find(lrg);
227    if (lrg != compressed_lrg) {
228      for (uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++) {
229        IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
230        if (liveout->member(lrg)) {
231          liveout->remove(lrg);
232          liveout->insert(compressed_lrg);
233        }
234      }
235    }
236  }
237
238  // All new nodes added are actual copies to replace virtual copies.
239  // Nodes with index less than '_unique' are original, non-virtual Nodes.
240  _unique = C->unique();
241
242  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
243    Block *b = _phc._cfg._blocks[i];
244    uint cnt = b->num_preds();  // Number of inputs to the Phi
245
246    for( uint l = 1; l<b->_nodes.size(); l++ ) {
247      Node *n = b->_nodes[l];
248
249      // Do not use removed-copies, use copied value instead
250      uint ncnt = n->req();
251      for( uint k = 1; k<ncnt; k++ ) {
252        Node *copy = n->in(k);
253        uint cidx = copy->is_Copy();
254        if( cidx ) {
255          Node *def = copy->in(cidx);
256          if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
257            n->set_req(k, def);
258          }
259        }
260      }
261
262      // Remove any explicit copies that get coalesced.
263      uint cidx = n->is_Copy();
264      if( cidx ) {
265        Node *def = n->in(cidx);
266        if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
267          n->replace_by(def);
268          n->set_req(cidx,NULL);
269          b->_nodes.remove(l);
270          l--;
271          continue;
272        }
273      }
274
275      if (n->is_Phi()) {
276        // Get the chosen name for the Phi
277        uint phi_name = _phc._lrg_map.find(n);
278        // Ignore the pre-allocated specials
279        if (!phi_name) {
280          continue;
281        }
282        // Check for mismatch inputs to Phi
283        for (uint j = 1; j < cnt; j++) {
284          Node *m = n->in(j);
285          uint src_name = _phc._lrg_map.find(m);
286          if (src_name != phi_name) {
287            Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
288            Node *copy;
289            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
290            // Rematerialize constants instead of copying them
291            if( m->is_Mach() && m->as_Mach()->is_Con() &&
292                m->as_Mach()->rematerialize() ) {
293              copy = m->clone();
294              // Insert the copy in the predecessor basic block
295              pred->add_inst(copy);
296              // Copy any flags as well
297              _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
298            } else {
299              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
300              copy = new (C) MachSpillCopyNode(m, *rm, *rm);
301              // Find a good place to insert.  Kinda tricky, use a subroutine
302              insert_copy_with_overlap(pred,copy,phi_name,src_name);
303            }
304            // Insert the copy in the use-def chain
305            n->set_req(j, copy);
306            _phc._cfg._bbs.map( copy->_idx, pred );
307            // Extend ("register allocate") the names array for the copy.
308            _phc._lrg_map.extend(copy->_idx, phi_name);
309          } // End of if Phi names do not match
310        } // End of for all inputs to Phi
311      } else { // End of if Phi
312
313        // Now check for 2-address instructions
314        uint idx;
315        if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
316          // Get the chosen name for the Node
317          uint name = _phc._lrg_map.find(n);
318          assert (name, "no 2-address specials");
319          // Check for name mis-match on the 2-address input
320          Node *m = n->in(idx);
321          if (_phc._lrg_map.find(m) != name) {
322            Node *copy;
323            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
324            // At this point it is unsafe to extend live ranges (6550579).
325            // Rematerialize only constants as we do for Phi above.
326            if(m->is_Mach() && m->as_Mach()->is_Con() &&
327               m->as_Mach()->rematerialize()) {
328              copy = m->clone();
329              // Insert the copy in the basic block, just before us
330              b->_nodes.insert(l++, copy);
331              if(_phc.clone_projs(b, l, m, copy, _phc._lrg_map)) {
332                l++;
333              }
334            } else {
335              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
336              copy = new (C) MachSpillCopyNode(m, *rm, *rm);
337              // Insert the copy in the basic block, just before us
338              b->_nodes.insert(l++, copy);
339            }
340            // Insert the copy in the use-def chain
341            n->set_req(idx, copy);
342            // Extend ("register allocate") the names array for the copy.
343            _phc._lrg_map.extend(copy->_idx, name);
344            _phc._cfg._bbs.map( copy->_idx, b );
345          }
346
347        } // End of is two-adr
348
349        // Insert a copy at a debug use for a lrg which has high frequency
350        if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs)) {
351          // Walk the debug inputs to the node and check for lrg freq
352          JVMState* jvms = n->jvms();
353          uint debug_start = jvms ? jvms->debug_start() : 999999;
354          uint debug_end   = jvms ? jvms->debug_end()   : 999999;
355          for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
356            // Do not split monitors; they are only needed for debug table
357            // entries and need no code.
358            if (jvms->is_monitor_use(inpidx)) {
359              continue;
360            }
361            Node *inp = n->in(inpidx);
362            uint nidx = _phc._lrg_map.live_range_id(inp);
363            LRG &lrg = lrgs(nidx);
364
365            // If this lrg has a high frequency use/def
366            if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
367              // If the live range is also live out of this block (like it
368              // would be for a fast/slow idiom), the normal spill mechanism
369              // does an excellent job.  If it is not live out of this block
370              // (like it would be for debug info to uncommon trap) splitting
371              // the live range now allows a better allocation in the high
372              // frequency blocks.
373              //   Build_IFG_virtual has converted the live sets to
374              // live-IN info, not live-OUT info.
375              uint k;
376              for( k=0; k < b->_num_succs; k++ )
377                if( _phc._live->live(b->_succs[k])->member( nidx ) )
378                  break;      // Live in to some successor block?
379              if( k < b->_num_succs )
380                continue;     // Live out; do not pre-split
381              // Split the lrg at this use
382              const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
383              Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
384              // Insert the copy in the use-def chain
385              n->set_req(inpidx, copy );
386              // Insert the copy in the basic block, just before us
387              b->_nodes.insert( l++, copy );
388              // Extend ("register allocate") the names array for the copy.
389              uint max_lrg_id = _phc._lrg_map.max_lrg_id();
390              _phc.new_lrg(copy, max_lrg_id);
391              _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
392              _phc._cfg._bbs.map(copy->_idx, b);
393              //tty->print_cr("Split a debug use in Aggressive Coalesce");
394            }  // End of if high frequency use/def
395          }  // End of for all debug inputs
396        }  // End of if low frequency safepoint
397
398      } // End of if Phi
399
400    } // End of for all instructions
401  } // End of for all blocks
402}
403
404//=============================================================================
405//------------------------------coalesce---------------------------------------
406// Aggressive (but pessimistic) copy coalescing of a single block
407
408// The following coalesce pass represents a single round of aggressive
409// pessimistic coalesce.  "Aggressive" means no attempt to preserve
410// colorability when coalescing.  This occasionally means more spills, but
411// it also means fewer rounds of coalescing for better code - and that means
412// faster compiles.
413
414// "Pessimistic" means we do not hit the fixed point in one pass (and we are
415// reaching for the least fixed point to boot).  This is typically solved
416// with a few more rounds of coalescing, but the compiler must run fast.  We
417// could optimistically coalescing everything touching PhiNodes together
418// into one big live range, then check for self-interference.  Everywhere
419// the live range interferes with self it would have to be split.  Finding
420// the right split points can be done with some heuristics (based on
421// expected frequency of edges in the live range).  In short, it's a real
422// research problem and the timeline is too short to allow such research.
423// Further thoughts: (1) build the LR in a pass, (2) find self-interference
424// in another pass, (3) per each self-conflict, split, (4) split by finding
425// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
426// according to the GCM algorithm (or just exec freq on CFG edges).
427
428void PhaseAggressiveCoalesce::coalesce( Block *b ) {
429  // Copies are still "virtual" - meaning we have not made them explicitly
430  // copies.  Instead, Phi functions of successor blocks have mis-matched
431  // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
432  // up the live-ranges.  Check for Phis in successor blocks.
433  uint i;
434  for( i=0; i<b->_num_succs; i++ ) {
435    Block *bs = b->_succs[i];
436    // Find index of 'b' in 'bs' predecessors
437    uint j=1;
438    while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
439    // Visit all the Phis in successor block
440    for( uint k = 1; k<bs->_nodes.size(); k++ ) {
441      Node *n = bs->_nodes[k];
442      if( !n->is_Phi() ) break;
443      combine_these_two( n, n->in(j) );
444    }
445  } // End of for all successor blocks
446
447
448  // Check _this_ block for 2-address instructions and copies.
449  uint cnt = b->end_idx();
450  for( i = 1; i<cnt; i++ ) {
451    Node *n = b->_nodes[i];
452    uint idx;
453    // 2-address instructions have a virtual Copy matching their input
454    // to their output
455    if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
456      MachNode *mach = n->as_Mach();
457      combine_these_two(mach, mach->in(idx));
458    }
459  } // End of for all instructions in block
460}
461
462//=============================================================================
463//------------------------------PhaseConservativeCoalesce----------------------
464PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
465  _ulr.initialize(_phc._lrg_map.max_lrg_id());
466}
467
468//------------------------------verify-----------------------------------------
469void PhaseConservativeCoalesce::verify() {
470#ifdef ASSERT
471  _phc.set_was_low();
472#endif
473}
474
475//------------------------------union_helper-----------------------------------
476void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
477  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
478  // union-find tree
479  _phc.Union( lr1_node, lr2_node );
480
481  // Single-def live range ONLY if both live ranges are single-def.
482  // If both are single def, then src_def powers one live range
483  // and def_copy powers the other.  After merging, src_def powers
484  // the combined live range.
485  lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
486                        lrgs(lr2).is_multidef() )
487    ? NodeSentinel : src_def;
488  lrgs(lr2)._def = NULL;    // No def for lrg 2
489  lrgs(lr2).Clear();        // Force empty mask for LRG 2
490  //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
491  lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
492  lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
493
494  if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
495    lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
496
497  // Copy original value instead.  Intermediate copies go dead, and
498  // the dst_copy becomes useless.
499  int didx = dst_copy->is_Copy();
500  dst_copy->set_req( didx, src_def );
501  // Add copy to free list
502  // _phc.free_spillcopy(b->_nodes[bindex]);
503  assert( b->_nodes[bindex] == dst_copy, "" );
504  dst_copy->replace_by( dst_copy->in(didx) );
505  dst_copy->set_req( didx, NULL);
506  b->_nodes.remove(bindex);
507  if( bindex < b->_ihrp_index ) b->_ihrp_index--;
508  if( bindex < b->_fhrp_index ) b->_fhrp_index--;
509
510  // Stretched lr1; add it to liveness of intermediate blocks
511  Block *b2 = _phc._cfg._bbs[src_copy->_idx];
512  while( b != b2 ) {
513    b = _phc._cfg._bbs[b->pred(1)->_idx];
514    _phc._live->live(b)->insert(lr1);
515  }
516}
517
518//------------------------------compute_separating_interferences---------------
519// Factored code from copy_copy that computes extra interferences from
520// lengthening a live range by double-coalescing.
521uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
522
523  assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
524  assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
525  Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
526  Block *b2 = b;
527  uint bindex2 = bindex;
528  while( 1 ) {
529    // Find previous instruction
530    bindex2--;                  // Chain backwards 1 instruction
531    while( bindex2 == 0 ) {     // At block start, find prior block
532      assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
533      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
534      bindex2 = b2->end_idx()-1;
535    }
536    // Get prior instruction
537    assert(bindex2 < b2->_nodes.size(), "index out of bounds");
538    Node *x = b2->_nodes[bindex2];
539    if( x == prev_copy ) {      // Previous copy in copy chain?
540      if( prev_copy == src_copy)// Found end of chain and all interferences
541        break;                  // So break out of loop
542      // Else work back one in copy chain
543      prev_copy = prev_copy->in(prev_copy->is_Copy());
544    } else {                    // Else collect interferences
545      uint lidx = _phc._lrg_map.find(x);
546      // Found another def of live-range being stretched?
547      if(lidx == lr1) {
548        return max_juint;
549      }
550      if(lidx == lr2) {
551        return max_juint;
552      }
553
554      // If we attempt to coalesce across a bound def
555      if( lrgs(lidx).is_bound() ) {
556        // Do not let the coalesced LRG expect to get the bound color
557        rm.SUBTRACT( lrgs(lidx).mask() );
558        // Recompute rm_size
559        rm_size = rm.Size();
560        //if( rm._flags ) rm_size += 1000000;
561        if( reg_degree >= rm_size ) return max_juint;
562      }
563      if( rm.overlap(lrgs(lidx).mask()) ) {
564        // Insert lidx into union LRG; returns TRUE if actually inserted
565        if( _ulr.insert(lidx) ) {
566          // Infinite-stack neighbors do not alter colorability, as they
567          // can always color to some other color.
568          if( !lrgs(lidx).mask().is_AllStack() ) {
569            // If this coalesce will make any new neighbor uncolorable,
570            // do not coalesce.
571            if( lrgs(lidx).just_lo_degree() )
572              return max_juint;
573            // Bump our degree
574            if( ++reg_degree >= rm_size )
575              return max_juint;
576          } // End of if not infinite-stack neighbor
577        } // End of if actually inserted
578      } // End of if live range overlaps
579    } // End of else collect interferences for 1 node
580  } // End of while forever, scan back for interferences
581  return reg_degree;
582}
583
584//------------------------------update_ifg-------------------------------------
585void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
586  // Some original neighbors of lr1 might have gone away
587  // because the constrained register mask prevented them.
588  // Remove lr1 from such neighbors.
589  IndexSetIterator one(n_lr1);
590  uint neighbor;
591  LRG &lrg1 = lrgs(lr1);
592  while ((neighbor = one.next()) != 0)
593    if( !_ulr.member(neighbor) )
594      if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
595        lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
596
597
598  // lr2 is now called (coalesced into) lr1.
599  // Remove lr2 from the IFG.
600  IndexSetIterator two(n_lr2);
601  LRG &lrg2 = lrgs(lr2);
602  while ((neighbor = two.next()) != 0)
603    if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
604      lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
605
606  // Some neighbors of intermediate copies now interfere with the
607  // combined live range.
608  IndexSetIterator three(&_ulr);
609  while ((neighbor = three.next()) != 0)
610    if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
611      lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
612}
613
614//------------------------------record_bias------------------------------------
615static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
616  // Tag copy bias here
617  if( !ifg->lrgs(lr1)._copy_bias )
618    ifg->lrgs(lr1)._copy_bias = lr2;
619  if( !ifg->lrgs(lr2)._copy_bias )
620    ifg->lrgs(lr2)._copy_bias = lr1;
621}
622
623//------------------------------copy_copy--------------------------------------
624// See if I can coalesce a series of multiple copies together.  I need the
625// final dest copy and the original src copy.  They can be the same Node.
626// Compute the compatible register masks.
627bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
628
629  if (!dst_copy->is_SpillCopy()) {
630    return false;
631  }
632  if (!src_copy->is_SpillCopy()) {
633    return false;
634  }
635  Node *src_def = src_copy->in(src_copy->is_Copy());
636  uint lr1 = _phc._lrg_map.find(dst_copy);
637  uint lr2 = _phc._lrg_map.find(src_def);
638
639  // Same live ranges already?
640  if (lr1 == lr2) {
641    return false;
642  }
643
644  // Interfere?
645  if (_phc._ifg->test_edge_sq(lr1, lr2)) {
646    return false;
647  }
648
649  // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
650  if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
651    return false;
652  }
653
654  // Coalescing between an aligned live range and a mis-aligned live range?
655  // No, no!  Alignment changes how we count degree.
656  if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
657    return false;
658  }
659
660  // Sort; use smaller live-range number
661  Node *lr1_node = dst_copy;
662  Node *lr2_node = src_def;
663  if (lr1 > lr2) {
664    uint tmp = lr1; lr1 = lr2; lr2 = tmp;
665    lr1_node = src_def;  lr2_node = dst_copy;
666  }
667
668  // Check for compatibility of the 2 live ranges by
669  // intersecting their allowed register sets.
670  RegMask rm = lrgs(lr1).mask();
671  rm.AND(lrgs(lr2).mask());
672  // Number of bits free
673  uint rm_size = rm.Size();
674
675  if (UseFPUForSpilling && rm.is_AllStack() ) {
676    // Don't coalesce when frequency difference is large
677    Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
678    Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
679    if (src_def_b->_freq > 10*dst_b->_freq )
680      return false;
681  }
682
683  // If we can use any stack slot, then effective size is infinite
684  if( rm.is_AllStack() ) rm_size += 1000000;
685  // Incompatible masks, no way to coalesce
686  if( rm_size == 0 ) return false;
687
688  // Another early bail-out test is when we are double-coalescing and the
689  // 2 copies are separated by some control flow.
690  if( dst_copy != src_copy ) {
691    Block *src_b = _phc._cfg._bbs[src_copy->_idx];
692    Block *b2 = b;
693    while( b2 != src_b ) {
694      if( b2->num_preds() > 2 ){// Found merge-point
695        _phc._lost_opp_cflow_coalesce++;
696        // extra record_bias commented out because Chris believes it is not
697        // productive.  Since we can record only 1 bias, we want to choose one
698        // that stands a chance of working and this one probably does not.
699        //record_bias( _phc._lrgs, lr1, lr2 );
700        return false;           // To hard to find all interferences
701      }
702      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
703    }
704  }
705
706  // Union the two interference sets together into '_ulr'
707  uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
708
709  if( reg_degree >= rm_size ) {
710    record_bias( _phc._ifg, lr1, lr2 );
711    return false;
712  }
713
714  // Now I need to compute all the interferences between dst_copy and
715  // src_copy.  I'm not willing visit the entire interference graph, so
716  // I limit my search to things in dst_copy's block or in a straight
717  // line of previous blocks.  I give up at merge points or when I get
718  // more interferences than my degree.  I can stop when I find src_copy.
719  if( dst_copy != src_copy ) {
720    reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
721    if( reg_degree == max_juint ) {
722      record_bias( _phc._ifg, lr1, lr2 );
723      return false;
724    }
725  } // End of if dst_copy & src_copy are different
726
727
728  // ---- THE COMBINED LRG IS COLORABLE ----
729
730  // YEAH - Now coalesce this copy away
731  assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
732
733  IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
734  IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
735
736  // Update the interference graph
737  update_ifg(lr1, lr2, n_lr1, n_lr2);
738
739  _ulr.remove(lr1);
740
741  // Uncomment the following code to trace Coalescing in great detail.
742  //
743  //if (false) {
744  //  tty->cr();
745  //  tty->print_cr("#######################################");
746  //  tty->print_cr("union %d and %d", lr1, lr2);
747  //  n_lr1->dump();
748  //  n_lr2->dump();
749  //  tty->print_cr("resulting set is");
750  //  _ulr.dump();
751  //}
752
753  // Replace n_lr1 with the new combined live range.  _ulr will use
754  // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
755  // send its internal memory to the free list.
756  _ulr.swap(n_lr1);
757  _ulr.clear();
758  n_lr2->clear();
759
760  lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
761  lrgs(lr2).set_degree( 0 );
762
763  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
764  // union-find tree
765  union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
766  // Combine register restrictions
767  lrgs(lr1).set_mask(rm);
768  lrgs(lr1).compute_set_mask_size();
769  lrgs(lr1)._cost += lrgs(lr2)._cost;
770  lrgs(lr1)._area += lrgs(lr2)._area;
771
772  // While its uncommon to successfully coalesce live ranges that started out
773  // being not-lo-degree, it can happen.  In any case the combined coalesced
774  // live range better Simplify nicely.
775  lrgs(lr1)._was_lo = 1;
776
777  // kinda expensive to do all the time
778  //tty->print_cr("warning: slow verify happening");
779  //_phc._ifg->verify( &_phc );
780  return true;
781}
782
783//------------------------------coalesce---------------------------------------
784// Conservative (but pessimistic) copy coalescing of a single block
785void PhaseConservativeCoalesce::coalesce( Block *b ) {
786  // Bail out on infrequent blocks
787  if( b->is_uncommon(_phc._cfg._bbs) )
788    return;
789  // Check this block for copies.
790  for( uint i = 1; i<b->end_idx(); i++ ) {
791    // Check for actual copies on inputs.  Coalesce a copy into its
792    // input if use and copy's input are compatible.
793    Node *copy1 = b->_nodes[i];
794    uint idx1 = copy1->is_Copy();
795    if( !idx1 ) continue;       // Not a copy
796
797    if( copy_copy(copy1,copy1,b,i) ) {
798      i--;                      // Retry, same location in block
799      PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
800      continue;
801    }
802  }
803}
804