1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/chaitin.hpp"
30#include "opto/coalesce.hpp"
31#include "opto/connode.hpp"
32#include "opto/indexSet.hpp"
33#include "opto/machnode.hpp"
34#include "opto/matcher.hpp"
35#include "opto/regmask.hpp"
36
37#ifndef PRODUCT
38void PhaseCoalesce::dump(Node *n) const {
39  // Being a const function means I cannot use 'Find'
40  uint r = _phc._lrg_map.find(n);
41  tty->print("L%d/N%d ",r,n->_idx);
42}
43
44void PhaseCoalesce::dump() const {
45  // I know I have a block layout now, so I can print blocks in a loop
46  for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
47    uint j;
48    Block* b = _phc._cfg.get_block(i);
49    // Print a nice block header
50    tty->print("B%d: ",b->_pre_order);
51    for( j=1; j<b->num_preds(); j++ )
52      tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
53    tty->print("-> ");
54    for( j=0; j<b->_num_succs; j++ )
55      tty->print("B%d ",b->_succs[j]->_pre_order);
56    tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
57    uint cnt = b->number_of_nodes();
58    for( j=0; j<cnt; j++ ) {
59      Node *n = b->get_node(j);
60      dump( n );
61      tty->print("\t%s\t",n->Name());
62
63      // Dump the inputs
64      uint k;                   // Exit value of loop
65      for( k=0; k<n->req(); k++ ) // For all required inputs
66        if( n->in(k) ) dump( n->in(k) );
67        else tty->print("_ ");
68      int any_prec = 0;
69      for( ; k<n->len(); k++ )          // For all precedence inputs
70        if( n->in(k) ) {
71          if( !any_prec++ ) tty->print(" |");
72          dump( n->in(k) );
73        }
74
75      // Dump node-specific info
76      n->dump_spec(tty);
77      tty->print("\n");
78
79    }
80    tty->print("\n");
81  }
82}
83#endif
84
85// Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
86void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
87  uint lr1 = _phc._lrg_map.find(n1);
88  uint lr2 = _phc._lrg_map.find(n2);
89  if( lr1 != lr2 &&             // Different live ranges already AND
90      !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
91    LRG *lrg1 = &_phc.lrgs(lr1);
92    LRG *lrg2 = &_phc.lrgs(lr2);
93    // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
94
95    // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
96    // and in general that's a bad thing.  However, int->oop conversions only
97    // happen at GC points, so the lifetime of the misclassified raw-pointer
98    // is from the CheckCastPP (that converts it to an oop) backwards up
99    // through a merge point and into the slow-path call, and around the
100    // diamond up to the heap-top check and back down into the slow-path call.
101    // The misclassified raw pointer is NOT live across the slow-path call,
102    // and so does not appear in any GC info, so the fact that it is
103    // misclassified is OK.
104
105    if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
106        // Compatible final mask
107        lrg1->mask().overlap( lrg2->mask() ) ) {
108      // Merge larger into smaller.
109      if( lr1 > lr2 ) {
110        uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
111        Node   *n =   n1;   n1 =   n2;   n2 =    n;
112        LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
113      }
114      // Union lr2 into lr1
115      _phc.Union( n1, n2 );
116      if (lrg1->_maxfreq < lrg2->_maxfreq)
117        lrg1->_maxfreq = lrg2->_maxfreq;
118      // Merge in the IFG
119      _phc._ifg->Union( lr1, lr2 );
120      // Combine register restrictions
121      lrg1->AND(lrg2->mask());
122    }
123  }
124}
125
126// Copy coalescing
127void PhaseCoalesce::coalesce_driver() {
128  verify();
129  // Coalesce from high frequency to low
130  for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
131    coalesce(_phc._blks[i]);
132  }
133}
134
135// I am inserting copies to come out of SSA form.  In the general case, I am
136// doing a parallel renaming.  I'm in the Named world now, so I can't do a
137// general parallel renaming.  All the copies now use  "names" (live-ranges)
138// to carry values instead of the explicit use-def chains.  Suppose I need to
139// insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
140// If I insert them in the wrong order then L128 will get clobbered before it
141// can get used by the second copy.  This cannot happen in the SSA model;
142// direct use-def chains get me the right value.  It DOES happen in the named
143// model so I have to handle the reordering of copies.
144//
145// In general, I need to topo-sort the placed copies to avoid conflicts.
146// Its possible to have a closed cycle of copies (e.g., recirculating the same
147// values around a loop).  In this case I need a temp to break the cycle.
148void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
149
150  // Scan backwards for the locations of the last use of the dst_name.
151  // I am about to clobber the dst_name, so the copy must be inserted
152  // after the last use.  Last use is really first-use on a backwards scan.
153  uint i = b->end_idx()-1;
154  while(1) {
155    Node *n = b->get_node(i);
156    // Check for end of virtual copies; this is also the end of the
157    // parallel renaming effort.
158    if (n->_idx < _unique) {
159      break;
160    }
161    uint idx = n->is_Copy();
162    assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
163    if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
164      break;
165    }
166    i--;
167  }
168  uint last_use_idx = i;
169
170  // Also search for any kill of src_name that exits the block.
171  // Since the copy uses src_name, I have to come before any kill.
172  uint kill_src_idx = b->end_idx();
173  // There can be only 1 kill that exits any block and that is
174  // the last kill.  Thus it is the first kill on a backwards scan.
175  i = b->end_idx()-1;
176  while (1) {
177    Node *n = b->get_node(i);
178    // Check for end of virtual copies; this is also the end of the
179    // parallel renaming effort.
180    if (n->_idx < _unique) {
181      break;
182    }
183    assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
184    if (_phc._lrg_map.find(n) == src_name) {
185      kill_src_idx = i;
186      break;
187    }
188    i--;
189  }
190  // Need a temp?  Last use of dst comes after the kill of src?
191  if (last_use_idx >= kill_src_idx) {
192    // Need to break a cycle with a temp
193    uint idx = copy->is_Copy();
194    Node *tmp = copy->clone();
195    uint max_lrg_id = _phc._lrg_map.max_lrg_id();
196    _phc.new_lrg(tmp, max_lrg_id);
197    _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
198
199    // Insert new temp between copy and source
200    tmp ->set_req(idx,copy->in(idx));
201    copy->set_req(idx,tmp);
202    // Save source in temp early, before source is killed
203    b->insert_node(tmp, kill_src_idx);
204    _phc._cfg.map_node_to_block(tmp, b);
205    last_use_idx++;
206  }
207
208  // Insert just after last use
209  b->insert_node(copy, last_use_idx + 1);
210}
211
212void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
213  // We do LRGs compressing and fix a liveout data only here since the other
214  // place in Split() is guarded by the assert which we never hit.
215  _phc._lrg_map.compress_uf_map_for_nodes();
216  // Fix block's liveout data for compressed live ranges.
217  for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
218    uint compressed_lrg = _phc._lrg_map.find(lrg);
219    if (lrg != compressed_lrg) {
220      for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
221        IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
222        if (liveout->member(lrg)) {
223          liveout->remove(lrg);
224          liveout->insert(compressed_lrg);
225        }
226      }
227    }
228  }
229
230  // All new nodes added are actual copies to replace virtual copies.
231  // Nodes with index less than '_unique' are original, non-virtual Nodes.
232  _unique = C->unique();
233
234  for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
235    C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
236    if (C->failing()) return;
237    Block *b = _phc._cfg.get_block(i);
238    uint cnt = b->num_preds();  // Number of inputs to the Phi
239
240    for( uint l = 1; l<b->number_of_nodes(); l++ ) {
241      Node *n = b->get_node(l);
242
243      // Do not use removed-copies, use copied value instead
244      uint ncnt = n->req();
245      for( uint k = 1; k<ncnt; k++ ) {
246        Node *copy = n->in(k);
247        uint cidx = copy->is_Copy();
248        if( cidx ) {
249          Node *def = copy->in(cidx);
250          if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
251            n->set_req(k, def);
252          }
253        }
254      }
255
256      // Remove any explicit copies that get coalesced.
257      uint cidx = n->is_Copy();
258      if( cidx ) {
259        Node *def = n->in(cidx);
260        if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
261          n->replace_by(def);
262          n->set_req(cidx,NULL);
263          b->remove_node(l);
264          l--;
265          continue;
266        }
267      }
268
269      if (n->is_Phi()) {
270        // Get the chosen name for the Phi
271        uint phi_name = _phc._lrg_map.find(n);
272        // Ignore the pre-allocated specials
273        if (!phi_name) {
274          continue;
275        }
276        // Check for mismatch inputs to Phi
277        for (uint j = 1; j < cnt; j++) {
278          Node *m = n->in(j);
279          uint src_name = _phc._lrg_map.find(m);
280          if (src_name != phi_name) {
281            Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
282            Node *copy;
283            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
284            // Rematerialize constants instead of copying them.
285            // We do this only for immediate constants, we avoid constant table loads
286            // because that will unsafely extend the live range of the constant table base.
287            if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
288                m->as_Mach()->rematerialize()) {
289              copy = m->clone();
290              // Insert the copy in the predecessor basic block
291              pred->add_inst(copy);
292              // Copy any flags as well
293              _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
294            } else {
295              uint ireg = m->ideal_reg();
296              if (ireg == 0 || ireg == Op_RegFlags) {
297                assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
298                       m->_idx, m->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::PhiInput));
299                C->record_method_not_compilable("attempted to spill a non-spillable item");
300                return;
301              }
302              const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
303              copy = new MachSpillCopyNode(MachSpillCopyNode::PhiInput, m, *rm, *rm);
304              // Find a good place to insert.  Kinda tricky, use a subroutine
305              insert_copy_with_overlap(pred,copy,phi_name,src_name);
306            }
307            // Insert the copy in the use-def chain
308            n->set_req(j, copy);
309            _phc._cfg.map_node_to_block(copy, pred);
310            // Extend ("register allocate") the names array for the copy.
311            _phc._lrg_map.extend(copy->_idx, phi_name);
312          } // End of if Phi names do not match
313        } // End of for all inputs to Phi
314      } else { // End of if Phi
315
316        // Now check for 2-address instructions
317        uint idx;
318        if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
319          // Get the chosen name for the Node
320          uint name = _phc._lrg_map.find(n);
321          assert (name, "no 2-address specials");
322          // Check for name mis-match on the 2-address input
323          Node *m = n->in(idx);
324          if (_phc._lrg_map.find(m) != name) {
325            Node *copy;
326            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
327            // At this point it is unsafe to extend live ranges (6550579).
328            // Rematerialize only constants as we do for Phi above.
329            if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
330                m->as_Mach()->rematerialize()) {
331              copy = m->clone();
332              // Insert the copy in the basic block, just before us
333              b->insert_node(copy, l++);
334              l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
335            } else {
336              uint ireg = m->ideal_reg();
337              if (ireg == 0 || ireg == Op_RegFlags) {
338                assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
339                       m->_idx, m->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::TwoAddress));
340                C->record_method_not_compilable("attempted to spill a non-spillable item");
341                return;
342              }
343              const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
344              copy = new MachSpillCopyNode(MachSpillCopyNode::TwoAddress, m, *rm, *rm);
345              // Insert the copy in the basic block, just before us
346              b->insert_node(copy, l++);
347            }
348            // Insert the copy in the use-def chain
349            n->set_req(idx, copy);
350            // Extend ("register allocate") the names array for the copy.
351            _phc._lrg_map.extend(copy->_idx, name);
352            _phc._cfg.map_node_to_block(copy, b);
353          }
354
355        } // End of is two-adr
356
357        // Insert a copy at a debug use for a lrg which has high frequency
358        if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
359          // Walk the debug inputs to the node and check for lrg freq
360          JVMState* jvms = n->jvms();
361          uint debug_start = jvms ? jvms->debug_start() : 999999;
362          uint debug_end   = jvms ? jvms->debug_end()   : 999999;
363          for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
364            // Do not split monitors; they are only needed for debug table
365            // entries and need no code.
366            if (jvms->is_monitor_use(inpidx)) {
367              continue;
368            }
369            Node *inp = n->in(inpidx);
370            uint nidx = _phc._lrg_map.live_range_id(inp);
371            LRG &lrg = lrgs(nidx);
372
373            // If this lrg has a high frequency use/def
374            if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
375              // If the live range is also live out of this block (like it
376              // would be for a fast/slow idiom), the normal spill mechanism
377              // does an excellent job.  If it is not live out of this block
378              // (like it would be for debug info to uncommon trap) splitting
379              // the live range now allows a better allocation in the high
380              // frequency blocks.
381              //   Build_IFG_virtual has converted the live sets to
382              // live-IN info, not live-OUT info.
383              uint k;
384              for( k=0; k < b->_num_succs; k++ )
385                if( _phc._live->live(b->_succs[k])->member( nidx ) )
386                  break;      // Live in to some successor block?
387              if( k < b->_num_succs )
388                continue;     // Live out; do not pre-split
389              // Split the lrg at this use
390              uint ireg = inp->ideal_reg();
391              if (ireg == 0 || ireg == Op_RegFlags) {
392                assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
393                       inp->_idx, inp->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::DebugUse));
394                C->record_method_not_compilable("attempted to spill a non-spillable item");
395                return;
396              }
397              const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
398              Node* copy = new MachSpillCopyNode(MachSpillCopyNode::DebugUse, inp, *rm, *rm);
399              // Insert the copy in the use-def chain
400              n->set_req(inpidx, copy );
401              // Insert the copy in the basic block, just before us
402              b->insert_node(copy,  l++);
403              // Extend ("register allocate") the names array for the copy.
404              uint max_lrg_id = _phc._lrg_map.max_lrg_id();
405              _phc.new_lrg(copy, max_lrg_id);
406              _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
407              _phc._cfg.map_node_to_block(copy, b);
408              //tty->print_cr("Split a debug use in Aggressive Coalesce");
409            }  // End of if high frequency use/def
410          }  // End of for all debug inputs
411        }  // End of if low frequency safepoint
412
413      } // End of if Phi
414
415    } // End of for all instructions
416  } // End of for all blocks
417}
418
419
420// Aggressive (but pessimistic) copy coalescing of a single block
421
422// The following coalesce pass represents a single round of aggressive
423// pessimistic coalesce.  "Aggressive" means no attempt to preserve
424// colorability when coalescing.  This occasionally means more spills, but
425// it also means fewer rounds of coalescing for better code - and that means
426// faster compiles.
427
428// "Pessimistic" means we do not hit the fixed point in one pass (and we are
429// reaching for the least fixed point to boot).  This is typically solved
430// with a few more rounds of coalescing, but the compiler must run fast.  We
431// could optimistically coalescing everything touching PhiNodes together
432// into one big live range, then check for self-interference.  Everywhere
433// the live range interferes with self it would have to be split.  Finding
434// the right split points can be done with some heuristics (based on
435// expected frequency of edges in the live range).  In short, it's a real
436// research problem and the timeline is too short to allow such research.
437// Further thoughts: (1) build the LR in a pass, (2) find self-interference
438// in another pass, (3) per each self-conflict, split, (4) split by finding
439// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
440// according to the GCM algorithm (or just exec freq on CFG edges).
441
442void PhaseAggressiveCoalesce::coalesce( Block *b ) {
443  // Copies are still "virtual" - meaning we have not made them explicitly
444  // copies.  Instead, Phi functions of successor blocks have mis-matched
445  // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
446  // up the live-ranges.  Check for Phis in successor blocks.
447  uint i;
448  for( i=0; i<b->_num_succs; i++ ) {
449    Block *bs = b->_succs[i];
450    // Find index of 'b' in 'bs' predecessors
451    uint j=1;
452    while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
453      j++;
454    }
455
456    // Visit all the Phis in successor block
457    for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
458      Node *n = bs->get_node(k);
459      if( !n->is_Phi() ) break;
460      combine_these_two( n, n->in(j) );
461    }
462  } // End of for all successor blocks
463
464
465  // Check _this_ block for 2-address instructions and copies.
466  uint cnt = b->end_idx();
467  for( i = 1; i<cnt; i++ ) {
468    Node *n = b->get_node(i);
469    uint idx;
470    // 2-address instructions have a virtual Copy matching their input
471    // to their output
472    if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
473      MachNode *mach = n->as_Mach();
474      combine_these_two(mach, mach->in(idx));
475    }
476  } // End of for all instructions in block
477}
478
479PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
480  _ulr.initialize(_phc._lrg_map.max_lrg_id());
481}
482
483void PhaseConservativeCoalesce::verify() {
484#ifdef ASSERT
485  _phc.set_was_low();
486#endif
487}
488
489void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
490  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
491  // union-find tree
492  _phc.Union( lr1_node, lr2_node );
493
494  // Single-def live range ONLY if both live ranges are single-def.
495  // If both are single def, then src_def powers one live range
496  // and def_copy powers the other.  After merging, src_def powers
497  // the combined live range.
498  lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
499                        lrgs(lr2).is_multidef() )
500    ? NodeSentinel : src_def;
501  lrgs(lr2)._def = NULL;    // No def for lrg 2
502  lrgs(lr2).Clear();        // Force empty mask for LRG 2
503  //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
504  lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
505  lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
506
507  if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
508    lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
509
510  // Copy original value instead.  Intermediate copies go dead, and
511  // the dst_copy becomes useless.
512  int didx = dst_copy->is_Copy();
513  dst_copy->set_req( didx, src_def );
514  // Add copy to free list
515  // _phc.free_spillcopy(b->_nodes[bindex]);
516  assert( b->get_node(bindex) == dst_copy, "" );
517  dst_copy->replace_by( dst_copy->in(didx) );
518  dst_copy->set_req( didx, NULL);
519  b->remove_node(bindex);
520  if( bindex < b->_ihrp_index ) b->_ihrp_index--;
521  if( bindex < b->_fhrp_index ) b->_fhrp_index--;
522
523  // Stretched lr1; add it to liveness of intermediate blocks
524  Block *b2 = _phc._cfg.get_block_for_node(src_copy);
525  while( b != b2 ) {
526    b = _phc._cfg.get_block_for_node(b->pred(1));
527    _phc._live->live(b)->insert(lr1);
528  }
529}
530
531// Factored code from copy_copy that computes extra interferences from
532// lengthening a live range by double-coalescing.
533uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
534
535  assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
536  assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
537  Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
538  Block *b2 = b;
539  uint bindex2 = bindex;
540  while( 1 ) {
541    // Find previous instruction
542    bindex2--;                  // Chain backwards 1 instruction
543    while( bindex2 == 0 ) {     // At block start, find prior block
544      assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
545      b2 = _phc._cfg.get_block_for_node(b2->pred(1));
546      bindex2 = b2->end_idx()-1;
547    }
548    // Get prior instruction
549    assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
550    Node *x = b2->get_node(bindex2);
551    if( x == prev_copy ) {      // Previous copy in copy chain?
552      if( prev_copy == src_copy)// Found end of chain and all interferences
553        break;                  // So break out of loop
554      // Else work back one in copy chain
555      prev_copy = prev_copy->in(prev_copy->is_Copy());
556    } else {                    // Else collect interferences
557      uint lidx = _phc._lrg_map.find(x);
558      // Found another def of live-range being stretched?
559      if(lidx == lr1) {
560        return max_juint;
561      }
562      if(lidx == lr2) {
563        return max_juint;
564      }
565
566      // If we attempt to coalesce across a bound def
567      if( lrgs(lidx).is_bound() ) {
568        // Do not let the coalesced LRG expect to get the bound color
569        rm.SUBTRACT( lrgs(lidx).mask() );
570        // Recompute rm_size
571        rm_size = rm.Size();
572        //if( rm._flags ) rm_size += 1000000;
573        if( reg_degree >= rm_size ) return max_juint;
574      }
575      if( rm.overlap(lrgs(lidx).mask()) ) {
576        // Insert lidx into union LRG; returns TRUE if actually inserted
577        if( _ulr.insert(lidx) ) {
578          // Infinite-stack neighbors do not alter colorability, as they
579          // can always color to some other color.
580          if( !lrgs(lidx).mask().is_AllStack() ) {
581            // If this coalesce will make any new neighbor uncolorable,
582            // do not coalesce.
583            if( lrgs(lidx).just_lo_degree() )
584              return max_juint;
585            // Bump our degree
586            if( ++reg_degree >= rm_size )
587              return max_juint;
588          } // End of if not infinite-stack neighbor
589        } // End of if actually inserted
590      } // End of if live range overlaps
591    } // End of else collect interferences for 1 node
592  } // End of while forever, scan back for interferences
593  return reg_degree;
594}
595
596void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
597  // Some original neighbors of lr1 might have gone away
598  // because the constrained register mask prevented them.
599  // Remove lr1 from such neighbors.
600  IndexSetIterator one(n_lr1);
601  uint neighbor;
602  LRG &lrg1 = lrgs(lr1);
603  while ((neighbor = one.next()) != 0)
604    if( !_ulr.member(neighbor) )
605      if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
606        lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
607
608
609  // lr2 is now called (coalesced into) lr1.
610  // Remove lr2 from the IFG.
611  IndexSetIterator two(n_lr2);
612  LRG &lrg2 = lrgs(lr2);
613  while ((neighbor = two.next()) != 0)
614    if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
615      lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
616
617  // Some neighbors of intermediate copies now interfere with the
618  // combined live range.
619  IndexSetIterator three(&_ulr);
620  while ((neighbor = three.next()) != 0)
621    if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
622      lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
623}
624
625static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
626  // Tag copy bias here
627  if( !ifg->lrgs(lr1)._copy_bias )
628    ifg->lrgs(lr1)._copy_bias = lr2;
629  if( !ifg->lrgs(lr2)._copy_bias )
630    ifg->lrgs(lr2)._copy_bias = lr1;
631}
632
633// See if I can coalesce a series of multiple copies together.  I need the
634// final dest copy and the original src copy.  They can be the same Node.
635// Compute the compatible register masks.
636bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
637
638  if (!dst_copy->is_SpillCopy()) {
639    return false;
640  }
641  if (!src_copy->is_SpillCopy()) {
642    return false;
643  }
644  Node *src_def = src_copy->in(src_copy->is_Copy());
645  uint lr1 = _phc._lrg_map.find(dst_copy);
646  uint lr2 = _phc._lrg_map.find(src_def);
647
648  // Same live ranges already?
649  if (lr1 == lr2) {
650    return false;
651  }
652
653  // Interfere?
654  if (_phc._ifg->test_edge_sq(lr1, lr2)) {
655    return false;
656  }
657
658  // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
659  if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
660    return false;
661  }
662
663  // Coalescing between an aligned live range and a mis-aligned live range?
664  // No, no!  Alignment changes how we count degree.
665  if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
666    return false;
667  }
668
669  // Sort; use smaller live-range number
670  Node *lr1_node = dst_copy;
671  Node *lr2_node = src_def;
672  if (lr1 > lr2) {
673    uint tmp = lr1; lr1 = lr2; lr2 = tmp;
674    lr1_node = src_def;  lr2_node = dst_copy;
675  }
676
677  // Check for compatibility of the 2 live ranges by
678  // intersecting their allowed register sets.
679  RegMask rm = lrgs(lr1).mask();
680  rm.AND(lrgs(lr2).mask());
681  // Number of bits free
682  uint rm_size = rm.Size();
683
684  if (UseFPUForSpilling && rm.is_AllStack() ) {
685    // Don't coalesce when frequency difference is large
686    Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
687    Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
688    if (src_def_b->_freq > 10*dst_b->_freq )
689      return false;
690  }
691
692  // If we can use any stack slot, then effective size is infinite
693  if( rm.is_AllStack() ) rm_size += 1000000;
694  // Incompatible masks, no way to coalesce
695  if( rm_size == 0 ) return false;
696
697  // Another early bail-out test is when we are double-coalescing and the
698  // 2 copies are separated by some control flow.
699  if( dst_copy != src_copy ) {
700    Block *src_b = _phc._cfg.get_block_for_node(src_copy);
701    Block *b2 = b;
702    while( b2 != src_b ) {
703      if( b2->num_preds() > 2 ){// Found merge-point
704        _phc._lost_opp_cflow_coalesce++;
705        // extra record_bias commented out because Chris believes it is not
706        // productive.  Since we can record only 1 bias, we want to choose one
707        // that stands a chance of working and this one probably does not.
708        //record_bias( _phc._lrgs, lr1, lr2 );
709        return false;           // To hard to find all interferences
710      }
711      b2 = _phc._cfg.get_block_for_node(b2->pred(1));
712    }
713  }
714
715  // Union the two interference sets together into '_ulr'
716  uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
717
718  if( reg_degree >= rm_size ) {
719    record_bias( _phc._ifg, lr1, lr2 );
720    return false;
721  }
722
723  // Now I need to compute all the interferences between dst_copy and
724  // src_copy.  I'm not willing visit the entire interference graph, so
725  // I limit my search to things in dst_copy's block or in a straight
726  // line of previous blocks.  I give up at merge points or when I get
727  // more interferences than my degree.  I can stop when I find src_copy.
728  if( dst_copy != src_copy ) {
729    reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
730    if( reg_degree == max_juint ) {
731      record_bias( _phc._ifg, lr1, lr2 );
732      return false;
733    }
734  } // End of if dst_copy & src_copy are different
735
736
737  // ---- THE COMBINED LRG IS COLORABLE ----
738
739  // YEAH - Now coalesce this copy away
740  assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
741
742  IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
743  IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
744
745  // Update the interference graph
746  update_ifg(lr1, lr2, n_lr1, n_lr2);
747
748  _ulr.remove(lr1);
749
750  // Uncomment the following code to trace Coalescing in great detail.
751  //
752  //if (false) {
753  //  tty->cr();
754  //  tty->print_cr("#######################################");
755  //  tty->print_cr("union %d and %d", lr1, lr2);
756  //  n_lr1->dump();
757  //  n_lr2->dump();
758  //  tty->print_cr("resulting set is");
759  //  _ulr.dump();
760  //}
761
762  // Replace n_lr1 with the new combined live range.  _ulr will use
763  // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
764  // send its internal memory to the free list.
765  _ulr.swap(n_lr1);
766  _ulr.clear();
767  n_lr2->clear();
768
769  lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
770  lrgs(lr2).set_degree( 0 );
771
772  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
773  // union-find tree
774  union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
775  // Combine register restrictions
776  lrgs(lr1).set_mask(rm);
777  lrgs(lr1).compute_set_mask_size();
778  lrgs(lr1)._cost += lrgs(lr2)._cost;
779  lrgs(lr1)._area += lrgs(lr2)._area;
780
781  // While its uncommon to successfully coalesce live ranges that started out
782  // being not-lo-degree, it can happen.  In any case the combined coalesced
783  // live range better Simplify nicely.
784  lrgs(lr1)._was_lo = 1;
785
786  // kinda expensive to do all the time
787  //tty->print_cr("warning: slow verify happening");
788  //_phc._ifg->verify( &_phc );
789  return true;
790}
791
792// Conservative (but pessimistic) copy coalescing of a single block
793void PhaseConservativeCoalesce::coalesce( Block *b ) {
794  // Bail out on infrequent blocks
795  if (_phc._cfg.is_uncommon(b)) {
796    return;
797  }
798  // Check this block for copies.
799  for( uint i = 1; i<b->end_idx(); i++ ) {
800    // Check for actual copies on inputs.  Coalesce a copy into its
801    // input if use and copy's input are compatible.
802    Node *copy1 = b->get_node(i);
803    uint idx1 = copy1->is_Copy();
804    if( !idx1 ) continue;       // Not a copy
805
806    if( copy_copy(copy1,copy1,b,i) ) {
807      i--;                      // Retry, same location in block
808      PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
809      continue;
810    }
811  }
812}
813