coalesce.cpp revision 1879:f95d63e2154a
1/*
2 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/block.hpp"
28#include "opto/cfgnode.hpp"
29#include "opto/chaitin.hpp"
30#include "opto/coalesce.hpp"
31#include "opto/connode.hpp"
32#include "opto/indexSet.hpp"
33#include "opto/machnode.hpp"
34#include "opto/matcher.hpp"
35#include "opto/regmask.hpp"
36
37//=============================================================================
38//------------------------------reset_uf_map-----------------------------------
39void PhaseChaitin::reset_uf_map( uint maxlrg ) {
40  _maxlrg = maxlrg;
41  // Force the Union-Find mapping to be at least this large
42  _uf_map.extend(_maxlrg,0);
43  // Initialize it to be the ID mapping.
44  for( uint i=0; i<_maxlrg; i++ )
45    _uf_map.map(i,i);
46}
47
48//------------------------------compress_uf_map--------------------------------
49// Make all Nodes map directly to their final live range; no need for
50// the Union-Find mapping after this call.
51void PhaseChaitin::compress_uf_map_for_nodes( ) {
52  // For all Nodes, compress mapping
53  uint unique = _names.Size();
54  for( uint i=0; i<unique; i++ ) {
55    uint lrg = _names[i];
56    uint compressed_lrg = Find(lrg);
57    if( lrg != compressed_lrg )
58      _names.map(i,compressed_lrg);
59  }
60}
61
62//------------------------------Find-------------------------------------------
63// Straight out of Tarjan's union-find algorithm
64uint PhaseChaitin::Find_compress( uint lrg ) {
65  uint cur = lrg;
66  uint next = _uf_map[cur];
67  while( next != cur ) {        // Scan chain of equivalences
68    assert( next < cur, "always union smaller" );
69    cur = next;                 // until find a fixed-point
70    next = _uf_map[cur];
71  }
72  // Core of union-find algorithm: update chain of
73  // equivalences to be equal to the root.
74  while( lrg != next ) {
75    uint tmp = _uf_map[lrg];
76    _uf_map.map(lrg, next);
77    lrg = tmp;
78  }
79  return lrg;
80}
81
82//------------------------------Find-------------------------------------------
83// Straight out of Tarjan's union-find algorithm
84uint PhaseChaitin::Find_compress( const Node *n ) {
85  uint lrg = Find_compress(_names[n->_idx]);
86  _names.map(n->_idx,lrg);
87  return lrg;
88}
89
90//------------------------------Find_const-------------------------------------
91// Like Find above, but no path compress, so bad asymptotic behavior
92uint PhaseChaitin::Find_const( uint lrg ) const {
93  if( !lrg ) return lrg;        // Ignore the zero LRG
94  // Off the end?  This happens during debugging dumps when you got
95  // brand new live ranges but have not told the allocator yet.
96  if( lrg >= _maxlrg ) return lrg;
97  uint next = _uf_map[lrg];
98  while( next != lrg ) {        // Scan chain of equivalences
99    assert( next < lrg, "always union smaller" );
100    lrg = next;                 // until find a fixed-point
101    next = _uf_map[lrg];
102  }
103  return next;
104}
105
106//------------------------------Find-------------------------------------------
107// Like Find above, but no path compress, so bad asymptotic behavior
108uint PhaseChaitin::Find_const( const Node *n ) const {
109  if( n->_idx >= _names.Size() ) return 0; // not mapped, usual for debug dump
110  return Find_const( _names[n->_idx] );
111}
112
113//------------------------------Union------------------------------------------
114// union 2 sets together.
115void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
116  uint src = Find(src_n);
117  uint dst = Find(dst_n);
118  assert( src, "" );
119  assert( dst, "" );
120  assert( src < _maxlrg, "oob" );
121  assert( dst < _maxlrg, "oob" );
122  assert( src < dst, "always union smaller" );
123  _uf_map.map(dst,src);
124}
125
126//------------------------------new_lrg----------------------------------------
127void PhaseChaitin::new_lrg( const Node *x, uint lrg ) {
128  // Make the Node->LRG mapping
129  _names.extend(x->_idx,lrg);
130  // Make the Union-Find mapping an identity function
131  _uf_map.extend(lrg,lrg);
132}
133
134//------------------------------clone_projs------------------------------------
135// After cloning some rematerialized instruction, clone any MachProj's that
136// follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
137// use G3 as an address temp.
138int PhaseChaitin::clone_projs( Block *b, uint idx, Node *con, Node *copy, uint &maxlrg ) {
139  Block *bcon = _cfg._bbs[con->_idx];
140  uint cindex = bcon->find_node(con);
141  Node *con_next = bcon->_nodes[cindex+1];
142  if( con_next->in(0) != con || con_next->Opcode() != Op_MachProj )
143    return false;               // No MachProj's follow
144
145  // Copy kills after the cloned constant
146  Node *kills = con_next->clone();
147  kills->set_req( 0, copy );
148  b->_nodes.insert( idx, kills );
149  _cfg._bbs.map( kills->_idx, b );
150  new_lrg( kills, maxlrg++ );
151  return true;
152}
153
154//------------------------------compact----------------------------------------
155// Renumber the live ranges to compact them.  Makes the IFG smaller.
156void PhaseChaitin::compact() {
157  // Current the _uf_map contains a series of short chains which are headed
158  // by a self-cycle.  All the chains run from big numbers to little numbers.
159  // The Find() call chases the chains & shortens them for the next Find call.
160  // We are going to change this structure slightly.  Numbers above a moving
161  // wave 'i' are unchanged.  Numbers below 'j' point directly to their
162  // compacted live range with no further chaining.  There are no chains or
163  // cycles below 'i', so the Find call no longer works.
164  uint j=1;
165  uint i;
166  for( i=1; i < _maxlrg; i++ ) {
167    uint lr = _uf_map[i];
168    // Ignore unallocated live ranges
169    if( !lr ) continue;
170    assert( lr <= i, "" );
171    _uf_map.map(i, ( lr == i ) ? j++ : _uf_map[lr]);
172  }
173  if( false )                  // PrintOptoCompactLiveRanges
174    printf("Compacted %d LRs from %d\n",i-j,i);
175  // Now change the Node->LR mapping to reflect the compacted names
176  uint unique = _names.Size();
177  for( i=0; i<unique; i++ )
178    _names.map(i,_uf_map[_names[i]]);
179
180  // Reset the Union-Find mapping
181  reset_uf_map(j);
182
183}
184
185//=============================================================================
186//------------------------------Dump-------------------------------------------
187#ifndef PRODUCT
188void PhaseCoalesce::dump( Node *n ) const {
189  // Being a const function means I cannot use 'Find'
190  uint r = _phc.Find(n);
191  tty->print("L%d/N%d ",r,n->_idx);
192}
193
194//------------------------------dump-------------------------------------------
195void PhaseCoalesce::dump() const {
196  // I know I have a block layout now, so I can print blocks in a loop
197  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
198    uint j;
199    Block *b = _phc._cfg._blocks[i];
200    // Print a nice block header
201    tty->print("B%d: ",b->_pre_order);
202    for( j=1; j<b->num_preds(); j++ )
203      tty->print("B%d ", _phc._cfg._bbs[b->pred(j)->_idx]->_pre_order);
204    tty->print("-> ");
205    for( j=0; j<b->_num_succs; j++ )
206      tty->print("B%d ",b->_succs[j]->_pre_order);
207    tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
208    uint cnt = b->_nodes.size();
209    for( j=0; j<cnt; j++ ) {
210      Node *n = b->_nodes[j];
211      dump( n );
212      tty->print("\t%s\t",n->Name());
213
214      // Dump the inputs
215      uint k;                   // Exit value of loop
216      for( k=0; k<n->req(); k++ ) // For all required inputs
217        if( n->in(k) ) dump( n->in(k) );
218        else tty->print("_ ");
219      int any_prec = 0;
220      for( ; k<n->len(); k++ )          // For all precedence inputs
221        if( n->in(k) ) {
222          if( !any_prec++ ) tty->print(" |");
223          dump( n->in(k) );
224        }
225
226      // Dump node-specific info
227      n->dump_spec(tty);
228      tty->print("\n");
229
230    }
231    tty->print("\n");
232  }
233}
234#endif
235
236//------------------------------combine_these_two------------------------------
237// Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
238void PhaseCoalesce::combine_these_two( Node *n1, Node *n2 ) {
239  uint lr1 = _phc.Find(n1);
240  uint lr2 = _phc.Find(n2);
241  if( lr1 != lr2 &&             // Different live ranges already AND
242      !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
243    LRG *lrg1 = &_phc.lrgs(lr1);
244    LRG *lrg2 = &_phc.lrgs(lr2);
245    // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
246
247    // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
248    // and in general that's a bad thing.  However, int->oop conversions only
249    // happen at GC points, so the lifetime of the misclassified raw-pointer
250    // is from the CheckCastPP (that converts it to an oop) backwards up
251    // through a merge point and into the slow-path call, and around the
252    // diamond up to the heap-top check and back down into the slow-path call.
253    // The misclassified raw pointer is NOT live across the slow-path call,
254    // and so does not appear in any GC info, so the fact that it is
255    // misclassified is OK.
256
257    if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
258        // Compatible final mask
259        lrg1->mask().overlap( lrg2->mask() ) ) {
260      // Merge larger into smaller.
261      if( lr1 > lr2 ) {
262        uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
263        Node   *n =   n1;   n1 =   n2;   n2 =    n;
264        LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
265      }
266      // Union lr2 into lr1
267      _phc.Union( n1, n2 );
268      if (lrg1->_maxfreq < lrg2->_maxfreq)
269        lrg1->_maxfreq = lrg2->_maxfreq;
270      // Merge in the IFG
271      _phc._ifg->Union( lr1, lr2 );
272      // Combine register restrictions
273      lrg1->AND(lrg2->mask());
274    }
275  }
276}
277
278//------------------------------coalesce_driver--------------------------------
279// Copy coalescing
280void PhaseCoalesce::coalesce_driver( ) {
281
282  verify();
283  // Coalesce from high frequency to low
284  for( uint i=0; i<_phc._cfg._num_blocks; i++ )
285    coalesce( _phc._blks[i] );
286
287}
288
289//------------------------------insert_copy_with_overlap-----------------------
290// I am inserting copies to come out of SSA form.  In the general case, I am
291// doing a parallel renaming.  I'm in the Named world now, so I can't do a
292// general parallel renaming.  All the copies now use  "names" (live-ranges)
293// to carry values instead of the explicit use-def chains.  Suppose I need to
294// insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
295// If I insert them in the wrong order then L128 will get clobbered before it
296// can get used by the second copy.  This cannot happen in the SSA model;
297// direct use-def chains get me the right value.  It DOES happen in the named
298// model so I have to handle the reordering of copies.
299//
300// In general, I need to topo-sort the placed copies to avoid conflicts.
301// Its possible to have a closed cycle of copies (e.g., recirculating the same
302// values around a loop).  In this case I need a temp to break the cycle.
303void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
304
305  // Scan backwards for the locations of the last use of the dst_name.
306  // I am about to clobber the dst_name, so the copy must be inserted
307  // after the last use.  Last use is really first-use on a backwards scan.
308  uint i = b->end_idx()-1;
309  while( 1 ) {
310    Node *n = b->_nodes[i];
311    // Check for end of virtual copies; this is also the end of the
312    // parallel renaming effort.
313    if( n->_idx < _unique ) break;
314    uint idx = n->is_Copy();
315    assert( idx || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
316    if( idx && _phc.Find(n->in(idx)) == dst_name ) break;
317    i--;
318  }
319  uint last_use_idx = i;
320
321  // Also search for any kill of src_name that exits the block.
322  // Since the copy uses src_name, I have to come before any kill.
323  uint kill_src_idx = b->end_idx();
324  // There can be only 1 kill that exits any block and that is
325  // the last kill.  Thus it is the first kill on a backwards scan.
326  i = b->end_idx()-1;
327  while( 1 ) {
328    Node *n = b->_nodes[i];
329    // Check for end of virtual copies; this is also the end of the
330    // parallel renaming effort.
331    if( n->_idx < _unique ) break;
332    assert( n->is_Copy() || n->is_Con() || n->Opcode() == Op_MachProj, "Only copies during parallel renaming" );
333    if( _phc.Find(n) == src_name ) {
334      kill_src_idx = i;
335      break;
336    }
337    i--;
338  }
339  // Need a temp?  Last use of dst comes after the kill of src?
340  if( last_use_idx >= kill_src_idx ) {
341    // Need to break a cycle with a temp
342    uint idx = copy->is_Copy();
343    Node *tmp = copy->clone();
344    _phc.new_lrg(tmp,_phc._maxlrg++);
345    // Insert new temp between copy and source
346    tmp ->set_req(idx,copy->in(idx));
347    copy->set_req(idx,tmp);
348    // Save source in temp early, before source is killed
349    b->_nodes.insert(kill_src_idx,tmp);
350    _phc._cfg._bbs.map( tmp->_idx, b );
351    last_use_idx++;
352  }
353
354  // Insert just after last use
355  b->_nodes.insert(last_use_idx+1,copy);
356}
357
358//------------------------------insert_copies----------------------------------
359void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
360  // We do LRGs compressing and fix a liveout data only here since the other
361  // place in Split() is guarded by the assert which we never hit.
362  _phc.compress_uf_map_for_nodes();
363  // Fix block's liveout data for compressed live ranges.
364  for(uint lrg = 1; lrg < _phc._maxlrg; lrg++ ) {
365    uint compressed_lrg = _phc.Find(lrg);
366    if( lrg != compressed_lrg ) {
367      for( uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++ ) {
368        IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
369        if( liveout->member(lrg) ) {
370          liveout->remove(lrg);
371          liveout->insert(compressed_lrg);
372        }
373      }
374    }
375  }
376
377  // All new nodes added are actual copies to replace virtual copies.
378  // Nodes with index less than '_unique' are original, non-virtual Nodes.
379  _unique = C->unique();
380
381  for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
382    Block *b = _phc._cfg._blocks[i];
383    uint cnt = b->num_preds();  // Number of inputs to the Phi
384
385    for( uint l = 1; l<b->_nodes.size(); l++ ) {
386      Node *n = b->_nodes[l];
387
388      // Do not use removed-copies, use copied value instead
389      uint ncnt = n->req();
390      for( uint k = 1; k<ncnt; k++ ) {
391        Node *copy = n->in(k);
392        uint cidx = copy->is_Copy();
393        if( cidx ) {
394          Node *def = copy->in(cidx);
395          if( _phc.Find(copy) == _phc.Find(def) )
396            n->set_req(k,def);
397        }
398      }
399
400      // Remove any explicit copies that get coalesced.
401      uint cidx = n->is_Copy();
402      if( cidx ) {
403        Node *def = n->in(cidx);
404        if( _phc.Find(n) == _phc.Find(def) ) {
405          n->replace_by(def);
406          n->set_req(cidx,NULL);
407          b->_nodes.remove(l);
408          l--;
409          continue;
410        }
411      }
412
413      if( n->is_Phi() ) {
414        // Get the chosen name for the Phi
415        uint phi_name = _phc.Find( n );
416        // Ignore the pre-allocated specials
417        if( !phi_name ) continue;
418        // Check for mismatch inputs to Phi
419        for( uint j = 1; j<cnt; j++ ) {
420          Node *m = n->in(j);
421          uint src_name = _phc.Find(m);
422          if( src_name != phi_name ) {
423            Block *pred = _phc._cfg._bbs[b->pred(j)->_idx];
424            Node *copy;
425            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
426            // Rematerialize constants instead of copying them
427            if( m->is_Mach() && m->as_Mach()->is_Con() &&
428                m->as_Mach()->rematerialize() ) {
429              copy = m->clone();
430              // Insert the copy in the predecessor basic block
431              pred->add_inst(copy);
432              // Copy any flags as well
433              _phc.clone_projs( pred, pred->end_idx(), m, copy, _phc._maxlrg );
434            } else {
435              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
436              copy = new (C) MachSpillCopyNode(m,*rm,*rm);
437              // Find a good place to insert.  Kinda tricky, use a subroutine
438              insert_copy_with_overlap(pred,copy,phi_name,src_name);
439            }
440            // Insert the copy in the use-def chain
441            n->set_req( j, copy );
442            _phc._cfg._bbs.map( copy->_idx, pred );
443            // Extend ("register allocate") the names array for the copy.
444            _phc._names.extend( copy->_idx, phi_name );
445          } // End of if Phi names do not match
446        } // End of for all inputs to Phi
447      } else { // End of if Phi
448
449        // Now check for 2-address instructions
450        uint idx;
451        if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
452          // Get the chosen name for the Node
453          uint name = _phc.Find( n );
454          assert( name, "no 2-address specials" );
455          // Check for name mis-match on the 2-address input
456          Node *m = n->in(idx);
457          if( _phc.Find(m) != name ) {
458            Node *copy;
459            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
460            // At this point it is unsafe to extend live ranges (6550579).
461            // Rematerialize only constants as we do for Phi above.
462            if( m->is_Mach() && m->as_Mach()->is_Con() &&
463                m->as_Mach()->rematerialize() ) {
464              copy = m->clone();
465              // Insert the copy in the basic block, just before us
466              b->_nodes.insert( l++, copy );
467              if( _phc.clone_projs( b, l, m, copy, _phc._maxlrg ) )
468                l++;
469            } else {
470              const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
471              copy = new (C) MachSpillCopyNode( m, *rm, *rm );
472              // Insert the copy in the basic block, just before us
473              b->_nodes.insert( l++, copy );
474            }
475            // Insert the copy in the use-def chain
476            n->set_req(idx, copy );
477            // Extend ("register allocate") the names array for the copy.
478            _phc._names.extend( copy->_idx, name );
479            _phc._cfg._bbs.map( copy->_idx, b );
480          }
481
482        } // End of is two-adr
483
484        // Insert a copy at a debug use for a lrg which has high frequency
485        if( b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(_phc._cfg._bbs) ) {
486          // Walk the debug inputs to the node and check for lrg freq
487          JVMState* jvms = n->jvms();
488          uint debug_start = jvms ? jvms->debug_start() : 999999;
489          uint debug_end   = jvms ? jvms->debug_end()   : 999999;
490          for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
491            // Do not split monitors; they are only needed for debug table
492            // entries and need no code.
493            if( jvms->is_monitor_use(inpidx) ) continue;
494            Node *inp = n->in(inpidx);
495            uint nidx = _phc.n2lidx(inp);
496            LRG &lrg = lrgs(nidx);
497
498            // If this lrg has a high frequency use/def
499            if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
500              // If the live range is also live out of this block (like it
501              // would be for a fast/slow idiom), the normal spill mechanism
502              // does an excellent job.  If it is not live out of this block
503              // (like it would be for debug info to uncommon trap) splitting
504              // the live range now allows a better allocation in the high
505              // frequency blocks.
506              //   Build_IFG_virtual has converted the live sets to
507              // live-IN info, not live-OUT info.
508              uint k;
509              for( k=0; k < b->_num_succs; k++ )
510                if( _phc._live->live(b->_succs[k])->member( nidx ) )
511                  break;      // Live in to some successor block?
512              if( k < b->_num_succs )
513                continue;     // Live out; do not pre-split
514              // Split the lrg at this use
515              const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
516              Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
517              // Insert the copy in the use-def chain
518              n->set_req(inpidx, copy );
519              // Insert the copy in the basic block, just before us
520              b->_nodes.insert( l++, copy );
521              // Extend ("register allocate") the names array for the copy.
522              _phc.new_lrg( copy, _phc._maxlrg++ );
523              _phc._cfg._bbs.map( copy->_idx, b );
524              //tty->print_cr("Split a debug use in Aggressive Coalesce");
525            }  // End of if high frequency use/def
526          }  // End of for all debug inputs
527        }  // End of if low frequency safepoint
528
529      } // End of if Phi
530
531    } // End of for all instructions
532  } // End of for all blocks
533}
534
535//=============================================================================
536//------------------------------coalesce---------------------------------------
537// Aggressive (but pessimistic) copy coalescing of a single block
538
539// The following coalesce pass represents a single round of aggressive
540// pessimistic coalesce.  "Aggressive" means no attempt to preserve
541// colorability when coalescing.  This occasionally means more spills, but
542// it also means fewer rounds of coalescing for better code - and that means
543// faster compiles.
544
545// "Pessimistic" means we do not hit the fixed point in one pass (and we are
546// reaching for the least fixed point to boot).  This is typically solved
547// with a few more rounds of coalescing, but the compiler must run fast.  We
548// could optimistically coalescing everything touching PhiNodes together
549// into one big live range, then check for self-interference.  Everywhere
550// the live range interferes with self it would have to be split.  Finding
551// the right split points can be done with some heuristics (based on
552// expected frequency of edges in the live range).  In short, it's a real
553// research problem and the timeline is too short to allow such research.
554// Further thoughts: (1) build the LR in a pass, (2) find self-interference
555// in another pass, (3) per each self-conflict, split, (4) split by finding
556// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
557// according to the GCM algorithm (or just exec freq on CFG edges).
558
559void PhaseAggressiveCoalesce::coalesce( Block *b ) {
560  // Copies are still "virtual" - meaning we have not made them explicitly
561  // copies.  Instead, Phi functions of successor blocks have mis-matched
562  // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
563  // up the live-ranges.  Check for Phis in successor blocks.
564  uint i;
565  for( i=0; i<b->_num_succs; i++ ) {
566    Block *bs = b->_succs[i];
567    // Find index of 'b' in 'bs' predecessors
568    uint j=1;
569    while( _phc._cfg._bbs[bs->pred(j)->_idx] != b ) j++;
570    // Visit all the Phis in successor block
571    for( uint k = 1; k<bs->_nodes.size(); k++ ) {
572      Node *n = bs->_nodes[k];
573      if( !n->is_Phi() ) break;
574      combine_these_two( n, n->in(j) );
575    }
576  } // End of for all successor blocks
577
578
579  // Check _this_ block for 2-address instructions and copies.
580  uint cnt = b->end_idx();
581  for( i = 1; i<cnt; i++ ) {
582    Node *n = b->_nodes[i];
583    uint idx;
584    // 2-address instructions have a virtual Copy matching their input
585    // to their output
586    if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
587      MachNode *mach = n->as_Mach();
588      combine_these_two( mach, mach->in(idx) );
589    }
590  } // End of for all instructions in block
591}
592
593//=============================================================================
594//------------------------------PhaseConservativeCoalesce----------------------
595PhaseConservativeCoalesce::PhaseConservativeCoalesce( PhaseChaitin &chaitin ) : PhaseCoalesce(chaitin) {
596  _ulr.initialize(_phc._maxlrg);
597}
598
599//------------------------------verify-----------------------------------------
600void PhaseConservativeCoalesce::verify() {
601#ifdef ASSERT
602  _phc.set_was_low();
603#endif
604}
605
606//------------------------------union_helper-----------------------------------
607void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
608  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
609  // union-find tree
610  _phc.Union( lr1_node, lr2_node );
611
612  // Single-def live range ONLY if both live ranges are single-def.
613  // If both are single def, then src_def powers one live range
614  // and def_copy powers the other.  After merging, src_def powers
615  // the combined live range.
616  lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
617                        lrgs(lr2).is_multidef() )
618    ? NodeSentinel : src_def;
619  lrgs(lr2)._def = NULL;    // No def for lrg 2
620  lrgs(lr2).Clear();        // Force empty mask for LRG 2
621  //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
622  lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
623  lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
624
625  if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
626    lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
627
628  // Copy original value instead.  Intermediate copies go dead, and
629  // the dst_copy becomes useless.
630  int didx = dst_copy->is_Copy();
631  dst_copy->set_req( didx, src_def );
632  // Add copy to free list
633  // _phc.free_spillcopy(b->_nodes[bindex]);
634  assert( b->_nodes[bindex] == dst_copy, "" );
635  dst_copy->replace_by( dst_copy->in(didx) );
636  dst_copy->set_req( didx, NULL);
637  b->_nodes.remove(bindex);
638  if( bindex < b->_ihrp_index ) b->_ihrp_index--;
639  if( bindex < b->_fhrp_index ) b->_fhrp_index--;
640
641  // Stretched lr1; add it to liveness of intermediate blocks
642  Block *b2 = _phc._cfg._bbs[src_copy->_idx];
643  while( b != b2 ) {
644    b = _phc._cfg._bbs[b->pred(1)->_idx];
645    _phc._live->live(b)->insert(lr1);
646  }
647}
648
649//------------------------------compute_separating_interferences---------------
650// Factored code from copy_copy that computes extra interferences from
651// lengthening a live range by double-coalescing.
652uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
653
654  assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
655  assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
656  Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
657  Block *b2 = b;
658  uint bindex2 = bindex;
659  while( 1 ) {
660    // Find previous instruction
661    bindex2--;                  // Chain backwards 1 instruction
662    while( bindex2 == 0 ) {     // At block start, find prior block
663      assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
664      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
665      bindex2 = b2->end_idx()-1;
666    }
667    // Get prior instruction
668    assert(bindex2 < b2->_nodes.size(), "index out of bounds");
669    Node *x = b2->_nodes[bindex2];
670    if( x == prev_copy ) {      // Previous copy in copy chain?
671      if( prev_copy == src_copy)// Found end of chain and all interferences
672        break;                  // So break out of loop
673      // Else work back one in copy chain
674      prev_copy = prev_copy->in(prev_copy->is_Copy());
675    } else {                    // Else collect interferences
676      uint lidx = _phc.Find(x);
677      // Found another def of live-range being stretched?
678      if( lidx == lr1 ) return max_juint;
679      if( lidx == lr2 ) return max_juint;
680
681      // If we attempt to coalesce across a bound def
682      if( lrgs(lidx).is_bound() ) {
683        // Do not let the coalesced LRG expect to get the bound color
684        rm.SUBTRACT( lrgs(lidx).mask() );
685        // Recompute rm_size
686        rm_size = rm.Size();
687        //if( rm._flags ) rm_size += 1000000;
688        if( reg_degree >= rm_size ) return max_juint;
689      }
690      if( rm.overlap(lrgs(lidx).mask()) ) {
691        // Insert lidx into union LRG; returns TRUE if actually inserted
692        if( _ulr.insert(lidx) ) {
693          // Infinite-stack neighbors do not alter colorability, as they
694          // can always color to some other color.
695          if( !lrgs(lidx).mask().is_AllStack() ) {
696            // If this coalesce will make any new neighbor uncolorable,
697            // do not coalesce.
698            if( lrgs(lidx).just_lo_degree() )
699              return max_juint;
700            // Bump our degree
701            if( ++reg_degree >= rm_size )
702              return max_juint;
703          } // End of if not infinite-stack neighbor
704        } // End of if actually inserted
705      } // End of if live range overlaps
706    } // End of else collect interferences for 1 node
707  } // End of while forever, scan back for interferences
708  return reg_degree;
709}
710
711//------------------------------update_ifg-------------------------------------
712void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
713  // Some original neighbors of lr1 might have gone away
714  // because the constrained register mask prevented them.
715  // Remove lr1 from such neighbors.
716  IndexSetIterator one(n_lr1);
717  uint neighbor;
718  LRG &lrg1 = lrgs(lr1);
719  while ((neighbor = one.next()) != 0)
720    if( !_ulr.member(neighbor) )
721      if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
722        lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
723
724
725  // lr2 is now called (coalesced into) lr1.
726  // Remove lr2 from the IFG.
727  IndexSetIterator two(n_lr2);
728  LRG &lrg2 = lrgs(lr2);
729  while ((neighbor = two.next()) != 0)
730    if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
731      lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
732
733  // Some neighbors of intermediate copies now interfere with the
734  // combined live range.
735  IndexSetIterator three(&_ulr);
736  while ((neighbor = three.next()) != 0)
737    if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
738      lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
739}
740
741//------------------------------record_bias------------------------------------
742static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
743  // Tag copy bias here
744  if( !ifg->lrgs(lr1)._copy_bias )
745    ifg->lrgs(lr1)._copy_bias = lr2;
746  if( !ifg->lrgs(lr2)._copy_bias )
747    ifg->lrgs(lr2)._copy_bias = lr1;
748}
749
750//------------------------------copy_copy--------------------------------------
751// See if I can coalesce a series of multiple copies together.  I need the
752// final dest copy and the original src copy.  They can be the same Node.
753// Compute the compatible register masks.
754bool PhaseConservativeCoalesce::copy_copy( Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
755
756  if( !dst_copy->is_SpillCopy() ) return false;
757  if( !src_copy->is_SpillCopy() ) return false;
758  Node *src_def = src_copy->in(src_copy->is_Copy());
759  uint lr1 = _phc.Find(dst_copy);
760  uint lr2 = _phc.Find(src_def );
761
762  // Same live ranges already?
763  if( lr1 == lr2 ) return false;
764
765  // Interfere?
766  if( _phc._ifg->test_edge_sq( lr1, lr2 ) ) return false;
767
768  // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
769  if( !lrgs(lr1)._is_oop && lrgs(lr2)._is_oop ) // not an oop->int cast
770    return false;
771
772  // Coalescing between an aligned live range and a mis-aligned live range?
773  // No, no!  Alignment changes how we count degree.
774  if( lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj )
775    return false;
776
777  // Sort; use smaller live-range number
778  Node *lr1_node = dst_copy;
779  Node *lr2_node = src_def;
780  if( lr1 > lr2 ) {
781    uint tmp = lr1; lr1 = lr2; lr2 = tmp;
782    lr1_node = src_def;  lr2_node = dst_copy;
783  }
784
785  // Check for compatibility of the 2 live ranges by
786  // intersecting their allowed register sets.
787  RegMask rm = lrgs(lr1).mask();
788  rm.AND(lrgs(lr2).mask());
789  // Number of bits free
790  uint rm_size = rm.Size();
791
792  if (UseFPUForSpilling && rm.is_AllStack() ) {
793    // Don't coalesce when frequency difference is large
794    Block *dst_b = _phc._cfg._bbs[dst_copy->_idx];
795    Block *src_def_b = _phc._cfg._bbs[src_def->_idx];
796    if (src_def_b->_freq > 10*dst_b->_freq )
797      return false;
798  }
799
800  // If we can use any stack slot, then effective size is infinite
801  if( rm.is_AllStack() ) rm_size += 1000000;
802  // Incompatible masks, no way to coalesce
803  if( rm_size == 0 ) return false;
804
805  // Another early bail-out test is when we are double-coalescing and the
806  // 2 copies are separated by some control flow.
807  if( dst_copy != src_copy ) {
808    Block *src_b = _phc._cfg._bbs[src_copy->_idx];
809    Block *b2 = b;
810    while( b2 != src_b ) {
811      if( b2->num_preds() > 2 ){// Found merge-point
812        _phc._lost_opp_cflow_coalesce++;
813        // extra record_bias commented out because Chris believes it is not
814        // productive.  Since we can record only 1 bias, we want to choose one
815        // that stands a chance of working and this one probably does not.
816        //record_bias( _phc._lrgs, lr1, lr2 );
817        return false;           // To hard to find all interferences
818      }
819      b2 = _phc._cfg._bbs[b2->pred(1)->_idx];
820    }
821  }
822
823  // Union the two interference sets together into '_ulr'
824  uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
825
826  if( reg_degree >= rm_size ) {
827    record_bias( _phc._ifg, lr1, lr2 );
828    return false;
829  }
830
831  // Now I need to compute all the interferences between dst_copy and
832  // src_copy.  I'm not willing visit the entire interference graph, so
833  // I limit my search to things in dst_copy's block or in a straight
834  // line of previous blocks.  I give up at merge points or when I get
835  // more interferences than my degree.  I can stop when I find src_copy.
836  if( dst_copy != src_copy ) {
837    reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
838    if( reg_degree == max_juint ) {
839      record_bias( _phc._ifg, lr1, lr2 );
840      return false;
841    }
842  } // End of if dst_copy & src_copy are different
843
844
845  // ---- THE COMBINED LRG IS COLORABLE ----
846
847  // YEAH - Now coalesce this copy away
848  assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
849
850  IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
851  IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
852
853  // Update the interference graph
854  update_ifg(lr1, lr2, n_lr1, n_lr2);
855
856  _ulr.remove(lr1);
857
858  // Uncomment the following code to trace Coalescing in great detail.
859  //
860  //if (false) {
861  //  tty->cr();
862  //  tty->print_cr("#######################################");
863  //  tty->print_cr("union %d and %d", lr1, lr2);
864  //  n_lr1->dump();
865  //  n_lr2->dump();
866  //  tty->print_cr("resulting set is");
867  //  _ulr.dump();
868  //}
869
870  // Replace n_lr1 with the new combined live range.  _ulr will use
871  // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
872  // send its internal memory to the free list.
873  _ulr.swap(n_lr1);
874  _ulr.clear();
875  n_lr2->clear();
876
877  lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
878  lrgs(lr2).set_degree( 0 );
879
880  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
881  // union-find tree
882  union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
883  // Combine register restrictions
884  lrgs(lr1).set_mask(rm);
885  lrgs(lr1).compute_set_mask_size();
886  lrgs(lr1)._cost += lrgs(lr2)._cost;
887  lrgs(lr1)._area += lrgs(lr2)._area;
888
889  // While its uncommon to successfully coalesce live ranges that started out
890  // being not-lo-degree, it can happen.  In any case the combined coalesced
891  // live range better Simplify nicely.
892  lrgs(lr1)._was_lo = 1;
893
894  // kinda expensive to do all the time
895  //tty->print_cr("warning: slow verify happening");
896  //_phc._ifg->verify( &_phc );
897  return true;
898}
899
900//------------------------------coalesce---------------------------------------
901// Conservative (but pessimistic) copy coalescing of a single block
902void PhaseConservativeCoalesce::coalesce( Block *b ) {
903  // Bail out on infrequent blocks
904  if( b->is_uncommon(_phc._cfg._bbs) )
905    return;
906  // Check this block for copies.
907  for( uint i = 1; i<b->end_idx(); i++ ) {
908    // Check for actual copies on inputs.  Coalesce a copy into its
909    // input if use and copy's input are compatible.
910    Node *copy1 = b->_nodes[i];
911    uint idx1 = copy1->is_Copy();
912    if( !idx1 ) continue;       // Not a copy
913
914    if( copy_copy(copy1,copy1,b,i) ) {
915      i--;                      // Retry, same location in block
916      PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
917      continue;
918    }
919
920    /* do not attempt pairs.  About 1/2 of all pairs can be removed by
921       post-alloc.  The other set are too few to bother.
922    Node *copy2 = copy1->in(idx1);
923    uint idx2 = copy2->is_Copy();
924    if( !idx2 ) continue;
925    if( copy_copy(copy1,copy2,b,i) ) {
926      i--;                      // Retry, same location in block
927      PhaseChaitin::_conserv_coalesce_pair++; // Collect stats on success
928      continue;
929    }
930    */
931  }
932}
933