1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_CHAITIN_HPP
26#define SHARE_VM_OPTO_CHAITIN_HPP
27
28#include "code/vmreg.hpp"
29#include "memory/resourceArea.hpp"
30#include "opto/connode.hpp"
31#include "opto/live.hpp"
32#include "opto/matcher.hpp"
33#include "opto/phase.hpp"
34#include "opto/regalloc.hpp"
35#include "opto/regmask.hpp"
36#include "opto/machnode.hpp"
37
38class LoopTree;
39class Matcher;
40class PhaseCFG;
41class PhaseLive;
42class PhaseRegAlloc;
43class   PhaseChaitin;
44
45#define OPTO_DEBUG_SPLIT_FREQ  BLOCK_FREQUENCY(0.001)
46#define OPTO_LRG_HIGH_FREQ     BLOCK_FREQUENCY(0.25)
47
48//------------------------------LRG--------------------------------------------
49// Live-RanGe structure.
50class LRG : public ResourceObj {
51  friend class VMStructs;
52public:
53  static const uint AllStack_size = 0xFFFFF; // This mask size is used to tell that the mask of this LRG supports stack positions
54  enum { SPILL_REG=29999 };     // Register number of a spilled LRG
55
56  double _cost;                 // 2 for loads/1 for stores times block freq
57  double _area;                 // Sum of all simultaneously live values
58  double score() const;         // Compute score from cost and area
59  double _maxfreq;              // Maximum frequency of any def or use
60
61  Node *_def;                   // Check for multi-def live ranges
62#ifndef PRODUCT
63  GrowableArray<Node*>* _defs;
64#endif
65
66  uint _risk_bias;              // Index of LRG which we want to avoid color
67  uint _copy_bias;              // Index of LRG which we want to share color
68
69  uint _next;                   // Index of next LRG in linked list
70  uint _prev;                   // Index of prev LRG in linked list
71private:
72  uint _reg;                    // Chosen register; undefined if mask is plural
73public:
74  // Return chosen register for this LRG.  Error if the LRG is not bound to
75  // a single register.
76  OptoReg::Name reg() const { return OptoReg::Name(_reg); }
77  void set_reg( OptoReg::Name r ) { _reg = r; }
78
79private:
80  uint _eff_degree;             // Effective degree: Sum of neighbors _num_regs
81public:
82  int degree() const { assert( _degree_valid , "" ); return _eff_degree; }
83  // Degree starts not valid and any change to the IFG neighbor
84  // set makes it not valid.
85  void set_degree( uint degree ) {
86    _eff_degree = degree;
87    debug_only(_degree_valid = 1;)
88    assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
89  }
90  // Made a change that hammered degree
91  void invalid_degree() { debug_only(_degree_valid=0;) }
92  // Incrementally modify degree.  If it was correct, it should remain correct
93  void inc_degree( uint mod ) {
94    _eff_degree += mod;
95    assert(!_mask.is_AllStack() || (_mask.is_AllStack() && lo_degree()), "_eff_degree can't be bigger than AllStack_size - _num_regs if the mask supports stack registers");
96  }
97  // Compute the degree between 2 live ranges
98  int compute_degree( LRG &l ) const;
99  bool mask_is_nonempty_and_up() const {
100    return mask().is_UP() && mask_size();
101  }
102  bool is_float_or_vector() const {
103    return _is_float || _is_vector;
104  }
105
106private:
107  RegMask _mask;                // Allowed registers for this LRG
108  uint _mask_size;              // cache of _mask.Size();
109public:
110  int compute_mask_size() const { return _mask.is_AllStack() ? AllStack_size : _mask.Size(); }
111  void set_mask_size( int size ) {
112    assert((size == (int)AllStack_size) || (size == (int)_mask.Size()), "");
113    _mask_size = size;
114#ifdef ASSERT
115    _msize_valid=1;
116    if (_is_vector) {
117      assert(!_fat_proj, "sanity");
118      _mask.verify_sets(_num_regs);
119    } else if (_num_regs == 2 && !_fat_proj) {
120      _mask.verify_pairs();
121    }
122#endif
123  }
124  void compute_set_mask_size() { set_mask_size(compute_mask_size()); }
125  int mask_size() const { assert( _msize_valid, "mask size not valid" );
126                          return _mask_size; }
127  // Get the last mask size computed, even if it does not match the
128  // count of bits in the current mask.
129  int get_invalid_mask_size() const { return _mask_size; }
130  const RegMask &mask() const { return _mask; }
131  void set_mask( const RegMask &rm ) { _mask = rm; debug_only(_msize_valid=0;)}
132  void AND( const RegMask &rm ) { _mask.AND(rm); debug_only(_msize_valid=0;)}
133  void SUBTRACT( const RegMask &rm ) { _mask.SUBTRACT(rm); debug_only(_msize_valid=0;)}
134  void Clear()   { _mask.Clear()  ; debug_only(_msize_valid=1); _mask_size = 0; }
135  void Set_All() { _mask.Set_All(); debug_only(_msize_valid=1); _mask_size = RegMask::CHUNK_SIZE; }
136
137  void Insert( OptoReg::Name reg ) { _mask.Insert(reg);  debug_only(_msize_valid=0;) }
138  void Remove( OptoReg::Name reg ) { _mask.Remove(reg);  debug_only(_msize_valid=0;) }
139  void clear_to_pairs() { _mask.clear_to_pairs(); debug_only(_msize_valid=0;) }
140  void clear_to_sets()  { _mask.clear_to_sets(_num_regs); debug_only(_msize_valid=0;) }
141
142  // Number of registers this live range uses when it colors
143private:
144  uint16_t _num_regs;           // 2 for Longs and Doubles, 1 for all else
145                                // except _num_regs is kill count for fat_proj
146public:
147  int num_regs() const { return _num_regs; }
148  void set_num_regs( int reg ) { assert( _num_regs == reg || !_num_regs, "" ); _num_regs = reg; }
149
150private:
151  // Number of physical registers this live range uses when it colors
152  // Architecture and register-set dependent
153  uint16_t _reg_pressure;
154public:
155  void set_reg_pressure(int i)  { _reg_pressure = i; }
156  int      reg_pressure() const { return _reg_pressure; }
157
158  // How much 'wiggle room' does this live range have?
159  // How many color choices can it make (scaled by _num_regs)?
160  int degrees_of_freedom() const { return mask_size() - _num_regs; }
161  // Bound LRGs have ZERO degrees of freedom.  We also count
162  // must_spill as bound.
163  bool is_bound  () const { return _is_bound; }
164  // Negative degrees-of-freedom; even with no neighbors this
165  // live range must spill.
166  bool not_free() const { return degrees_of_freedom() <  0; }
167  // Is this live range of "low-degree"?  Trivially colorable?
168  bool lo_degree () const { return degree() <= degrees_of_freedom(); }
169  // Is this live range just barely "low-degree"?  Trivially colorable?
170  bool just_lo_degree () const { return degree() == degrees_of_freedom(); }
171
172  uint   _is_oop:1,             // Live-range holds an oop
173         _is_float:1,           // True if in float registers
174         _is_vector:1,          // True if in vector registers
175         _was_spilled1:1,       // True if prior spilling on def
176         _was_spilled2:1,       // True if twice prior spilling on def
177         _is_bound:1,           // live range starts life with no
178                                // degrees of freedom.
179         _direct_conflict:1,    // True if def and use registers in conflict
180         _must_spill:1,         // live range has lost all degrees of freedom
181    // If _fat_proj is set, live range does NOT require aligned, adjacent
182    // registers and has NO interferences.
183    // If _fat_proj is clear, live range requires num_regs() to be a power of
184    // 2, and it requires registers to form an aligned, adjacent set.
185         _fat_proj:1,           //
186         _was_lo:1,             // Was lo-degree prior to coalesce
187         _msize_valid:1,        // _mask_size cache valid
188         _degree_valid:1,       // _degree cache valid
189         _has_copy:1,           // Adjacent to some copy instruction
190         _at_risk:1;            // Simplify says this guy is at risk to spill
191
192
193  // Alive if non-zero, dead if zero
194  bool alive() const { return _def != NULL; }
195  bool is_multidef() const { return _def == NodeSentinel; }
196  bool is_singledef() const { return _def != NodeSentinel; }
197
198#ifndef PRODUCT
199  void dump( ) const;
200#endif
201};
202
203//------------------------------IFG--------------------------------------------
204//                         InterFerence Graph
205// An undirected graph implementation.  Created with a fixed number of
206// vertices.  Edges can be added & tested.  Vertices can be removed, then
207// added back later with all edges intact.  Can add edges between one vertex
208// and a list of other vertices.  Can union vertices (and their edges)
209// together.  The IFG needs to be really really fast, and also fairly
210// abstract!  It needs abstraction so I can fiddle with the implementation to
211// get even more speed.
212class PhaseIFG : public Phase {
213  friend class VMStructs;
214  // Current implementation: a triangular adjacency list.
215
216  // Array of adjacency-lists, indexed by live-range number
217  IndexSet *_adjs;
218
219  // Assertion bit for proper use of Squaring
220  bool _is_square;
221
222  // Live range structure goes here
223  LRG *_lrgs;                   // Array of LRG structures
224
225public:
226  // Largest live-range number
227  uint _maxlrg;
228
229  Arena *_arena;
230
231  // Keep track of inserted and deleted Nodes
232  VectorSet *_yanked;
233
234  PhaseIFG( Arena *arena );
235  void init( uint maxlrg );
236
237  // Add edge between a and b.  Returns true if actually addded.
238  int add_edge( uint a, uint b );
239
240  // Add edge between a and everything in the vector
241  void add_vector( uint a, IndexSet *vec );
242
243  // Test for edge existance
244  int test_edge( uint a, uint b ) const;
245
246  // Square-up matrix for faster Union
247  void SquareUp();
248
249  // Return number of LRG neighbors
250  uint neighbor_cnt( uint a ) const { return _adjs[a].count(); }
251  // Union edges of b into a on Squared-up matrix
252  void Union( uint a, uint b );
253  // Test for edge in Squared-up matrix
254  int test_edge_sq( uint a, uint b ) const;
255  // Yank a Node and all connected edges from the IFG.  Be prepared to
256  // re-insert the yanked Node in reverse order of yanking.  Return a
257  // list of neighbors (edges) yanked.
258  IndexSet *remove_node( uint a );
259  // Reinsert a yanked Node
260  void re_insert( uint a );
261  // Return set of neighbors
262  IndexSet *neighbors( uint a ) const { return &_adjs[a]; }
263
264#ifndef PRODUCT
265  // Dump the IFG
266  void dump() const;
267  void stats() const;
268  void verify( const PhaseChaitin * ) const;
269#endif
270
271  //--------------- Live Range Accessors
272  LRG &lrgs(uint idx) const { assert(idx < _maxlrg, "oob"); return _lrgs[idx]; }
273
274  // Compute and set effective degree.  Might be folded into SquareUp().
275  void Compute_Effective_Degree();
276
277  // Compute effective degree as the sum of neighbors' _sizes.
278  int effective_degree( uint lidx ) const;
279};
280
281// The LiveRangeMap class is responsible for storing node to live range id mapping.
282// Each node is mapped to a live range id (a virtual register). Nodes that are
283// not considered for register allocation are given live range id 0.
284class LiveRangeMap VALUE_OBJ_CLASS_SPEC {
285
286private:
287
288  uint _max_lrg_id;
289
290  // Union-find map.  Declared as a short for speed.
291  // Indexed by live-range number, it returns the compacted live-range number
292  LRG_List _uf_map;
293
294  // Map from Nodes to live ranges
295  LRG_List _names;
296
297  // Straight out of Tarjan's union-find algorithm
298  uint find_compress(const Node *node) {
299    uint lrg_id = find_compress(_names.at(node->_idx));
300    _names.at_put(node->_idx, lrg_id);
301    return lrg_id;
302  }
303
304  uint find_compress(uint lrg);
305
306public:
307
308  const LRG_List& names() {
309    return _names;
310  }
311
312  uint max_lrg_id() const {
313    return _max_lrg_id;
314  }
315
316  void set_max_lrg_id(uint max_lrg_id) {
317    _max_lrg_id = max_lrg_id;
318  }
319
320  uint size() const {
321    return _names.length();
322  }
323
324  uint live_range_id(uint idx) const {
325    return _names.at(idx);
326  }
327
328  uint live_range_id(const Node *node) const {
329    return _names.at(node->_idx);
330  }
331
332  uint uf_live_range_id(uint lrg_id) const {
333    return _uf_map.at(lrg_id);
334  }
335
336  void map(uint idx, uint lrg_id) {
337    _names.at_put(idx, lrg_id);
338  }
339
340  void uf_map(uint dst_lrg_id, uint src_lrg_id) {
341    _uf_map.at_put(dst_lrg_id, src_lrg_id);
342  }
343
344  void extend(uint idx, uint lrg_id) {
345    _names.at_put_grow(idx, lrg_id);
346  }
347
348  void uf_extend(uint dst_lrg_id, uint src_lrg_id) {
349    _uf_map.at_put_grow(dst_lrg_id, src_lrg_id);
350  }
351
352  LiveRangeMap(Arena* arena, uint unique)
353  : _names(arena, unique, unique, 0)
354  , _uf_map(arena, unique, unique, 0)
355  , _max_lrg_id(0) {}
356
357  uint find_id( const Node *n ) {
358    uint retval = live_range_id(n);
359    assert(retval == find(n),"Invalid node to lidx mapping");
360    return retval;
361  }
362
363  // Reset the Union-Find map to identity
364  void reset_uf_map(uint max_lrg_id);
365
366  // Make all Nodes map directly to their final live range; no need for
367  // the Union-Find mapping after this call.
368  void compress_uf_map_for_nodes();
369
370  uint find(uint lidx) {
371    uint uf_lidx = _uf_map.at(lidx);
372    return (uf_lidx == lidx) ? uf_lidx : find_compress(lidx);
373  }
374
375  // Convert a Node into a Live Range Index - a lidx
376  uint find(const Node *node) {
377    uint lidx = live_range_id(node);
378    uint uf_lidx = _uf_map.at(lidx);
379    return (uf_lidx == lidx) ? uf_lidx : find_compress(node);
380  }
381
382  // Like Find above, but no path compress, so bad asymptotic behavior
383  uint find_const(uint lrg) const;
384
385  // Like Find above, but no path compress, so bad asymptotic behavior
386  uint find_const(const Node *node) const {
387    if(node->_idx >= (uint)_names.length()) {
388      return 0; // not mapped, usual for debug dump
389    }
390    return find_const(_names.at(node->_idx));
391  }
392};
393
394//------------------------------Chaitin----------------------------------------
395// Briggs-Chaitin style allocation, mostly.
396class PhaseChaitin : public PhaseRegAlloc {
397  friend class VMStructs;
398
399  int _trip_cnt;
400  int _alternate;
401
402  PhaseLive *_live;             // Liveness, used in the interference graph
403  PhaseIFG *_ifg;               // Interference graph (for original chunk)
404  Node_List **_lrg_nodes;       // Array of node; lists for lrgs which spill
405  VectorSet _spilled_once;      // Nodes that have been spilled
406  VectorSet _spilled_twice;     // Nodes that have been spilled twice
407
408  // Combine the Live Range Indices for these 2 Nodes into a single live
409  // range.  Future requests for any Node in either live range will
410  // return the live range index for the combined live range.
411  void Union( const Node *src, const Node *dst );
412
413  void new_lrg( const Node *x, uint lrg );
414
415  // Compact live ranges, removing unused ones.  Return new maxlrg.
416  void compact();
417
418  uint _lo_degree;              // Head of lo-degree LRGs list
419  uint _lo_stk_degree;          // Head of lo-stk-degree LRGs list
420  uint _hi_degree;              // Head of hi-degree LRGs list
421  uint _simplified;             // Linked list head of simplified LRGs
422
423  // Helper functions for Split()
424  uint split_DEF(Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
425  uint split_USE(MachSpillCopyNode::SpillType spill_type, Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
426
427  //------------------------------clone_projs------------------------------------
428  // After cloning some rematerialized instruction, clone any MachProj's that
429  // follow it.  Example: Intel zero is XOR, kills flags.  Sparc FP constants
430  // use G3 as an address temp.
431  int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
432
433  int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
434    uint max_lrg_id = lrg_map.max_lrg_id();
435    int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
436    if (found_projs > 0) {
437      // max_lrg_id is updated during call above
438      lrg_map.set_max_lrg_id(max_lrg_id);
439    }
440    return found_projs;
441  }
442
443  Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
444                            int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
445  // True if lidx is used before any real register is def'd in the block
446  bool prompt_use( Block *b, uint lidx );
447  Node *get_spillcopy_wide(MachSpillCopyNode::SpillType spill_type, Node *def, Node *use, uint uidx );
448  // Insert the spill at chosen location.  Skip over any intervening Proj's or
449  // Phis.  Skip over a CatchNode and projs, inserting in the fall-through block
450  // instead.  Update high-pressure indices.  Create a new live range.
451  void insert_proj( Block *b, uint i, Node *spill, uint maxlrg );
452
453  bool is_high_pressure( Block *b, LRG *lrg, uint insidx );
454
455  uint _oldphi;                 // Node index which separates pre-allocation nodes
456
457  Block **_blks;                // Array of blocks sorted by frequency for coalescing
458
459  float _high_frequency_lrg;    // Frequency at which LRG will be spilled for debug info
460
461#ifndef PRODUCT
462  bool _trace_spilling;
463#endif
464
465public:
466  PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool track_liveout_pressure);
467  ~PhaseChaitin() {}
468
469  LiveRangeMap _lrg_map;
470
471  LRG &lrgs(uint idx) const { return _ifg->lrgs(idx); }
472
473  // Do all the real work of allocate
474  void Register_Allocate();
475
476  float high_frequency_lrg() const { return _high_frequency_lrg; }
477
478  // Used when scheduling info generated, not in general register allocation
479  bool _scheduling_info_generated;
480
481  void set_ifg(PhaseIFG &ifg) { _ifg = &ifg;  }
482  void set_live(PhaseLive &live) { _live = &live; }
483  PhaseLive* get_live() { return _live; }
484
485  // Populate the live range maps with ssa info for scheduling
486  void mark_ssa();
487
488#ifndef PRODUCT
489  bool trace_spilling() const { return _trace_spilling; }
490#endif
491
492private:
493  // De-SSA the world.  Assign registers to Nodes.  Use the same register for
494  // all inputs to a PhiNode, effectively coalescing live ranges.  Insert
495  // copies as needed.
496  void de_ssa();
497
498  // Add edge between reg and everything in the vector.
499  // Same as _ifg->add_vector(reg,live) EXCEPT use the RegMask
500  // information to trim the set of interferences.  Return the
501  // count of edges added.
502  void interfere_with_live(uint lid, IndexSet* liveout);
503#ifdef ASSERT
504  // Count register pressure for asserts
505  uint count_int_pressure(IndexSet* liveout);
506  uint count_float_pressure(IndexSet* liveout);
507#endif
508
509  // Build the interference graph using virtual registers only.
510  // Used for aggressive coalescing.
511  void build_ifg_virtual( );
512
513  // used when computing the register pressure for each block in the CFG. This
514  // is done during IFG creation.
515  class Pressure {
516      // keeps track of the register pressure at the current
517      // instruction (used when stepping backwards in the block)
518      uint _current_pressure;
519
520      // keeps track of the instruction index of the first low to high register pressure
521      // transition (starting from the top) in the block
522      // if high_pressure_index == 0 then the whole block is high pressure
523      // if high_pressure_index = b.end_idx() + 1 then the whole block is low pressure
524      uint _high_pressure_index;
525
526      // stores the highest pressure we find
527      uint _final_pressure;
528
529      // number of live ranges that constitute high register pressure
530      uint _high_pressure_limit;
531
532      // initial pressure observed
533      uint _start_pressure;
534
535    public:
536
537      // lower the register pressure and look for a low to high pressure
538      // transition
539      void lower(LRG& lrg, uint& location) {
540        _current_pressure -= lrg.reg_pressure();
541        if (_current_pressure == _high_pressure_limit) {
542          _high_pressure_index = location;
543        }
544      }
545
546      // raise the pressure and store the pressure if it's the biggest
547      // pressure so far
548      void raise(LRG &lrg) {
549        _current_pressure += lrg.reg_pressure();
550        if (_current_pressure > _final_pressure) {
551          _final_pressure = _current_pressure;
552        }
553      }
554
555      void init(int limit) {
556        _current_pressure = 0;
557        _high_pressure_index = 0;
558        _final_pressure = 0;
559        _high_pressure_limit = limit;
560        _start_pressure = 0;
561      }
562
563      uint high_pressure_index() const {
564        return _high_pressure_index;
565      }
566
567      uint final_pressure() const {
568        return _final_pressure;
569      }
570
571      uint start_pressure() const {
572        return _start_pressure;
573      }
574
575      uint current_pressure() const {
576        return _current_pressure;
577      }
578
579      uint high_pressure_limit() const {
580        return _high_pressure_limit;
581      }
582
583      void lower_high_pressure_index() {
584        _high_pressure_index--;
585      }
586
587      void set_high_pressure_index_to_block_start() {
588        _high_pressure_index = 0;
589      }
590
591      void set_start_pressure(int value) {
592        _start_pressure = value;
593        _final_pressure = value;
594      }
595
596      void set_current_pressure(int value) {
597        _current_pressure = value;
598      }
599
600      void check_pressure_at_fatproj(uint fatproj_location, RegMask& fatproj_mask) {
601        // this pressure is only valid at this instruction, i.e. we don't need to lower
602        // the register pressure since the fat proj was never live before (going backwards)
603        uint new_pressure = current_pressure() + fatproj_mask.Size();
604        if (new_pressure > final_pressure()) {
605          _final_pressure = new_pressure;
606        }
607
608        // if we were at a low pressure and now and the fat proj is at high pressure, record the fat proj location
609        // as coming from a low to high (to low again)
610        if (current_pressure() <= high_pressure_limit() && new_pressure > high_pressure_limit()) {
611          _high_pressure_index = fatproj_location;
612        }
613      }
614
615      Pressure(uint high_pressure_index, uint high_pressure_limit)
616        : _current_pressure(0)
617        , _high_pressure_index(high_pressure_index)
618        , _final_pressure(0)
619        , _high_pressure_limit(high_pressure_limit)
620        , _start_pressure(0) {}
621  };
622
623  void check_for_high_pressure_transition_at_fatproj(uint& block_reg_pressure, uint location, LRG& lrg, Pressure& pressure, const int op_regtype);
624  void add_input_to_liveout(Block* b, Node* n, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
625  void compute_initial_block_pressure(Block* b, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure, double cost);
626  bool remove_node_if_not_used(Block* b, uint location, Node* n, uint lid, IndexSet* liveout);
627  void assign_high_score_to_immediate_copies(Block* b, Node* n, LRG& lrg, uint next_inst, uint last_inst);
628  void remove_interference_from_copy(Block* b, uint location, uint lid_copy, IndexSet* liveout, double cost, Pressure& int_pressure, Pressure& float_pressure);
629  void remove_bound_register_from_interfering_live_ranges(LRG& lrg, IndexSet* liveout, uint& must_spill);
630  void check_for_high_pressure_block(Pressure& pressure);
631  void adjust_high_pressure_index(Block* b, uint& hrp_index, Pressure& pressure);
632
633  // Build the interference graph using physical registers when available.
634  // That is, if 2 live ranges are simultaneously alive but in their
635  // acceptable register sets do not overlap, then they do not interfere.
636  uint build_ifg_physical( ResourceArea *a );
637
638public:
639  // Gather LiveRanGe information, including register masks and base pointer/
640  // derived pointer relationships.
641  void gather_lrg_masks( bool mod_cisc_masks );
642
643  // user visible pressure variables for scheduling
644  Pressure _sched_int_pressure;
645  Pressure _sched_float_pressure;
646  Pressure _scratch_int_pressure;
647  Pressure _scratch_float_pressure;
648
649  // Pressure functions for user context
650  void lower_pressure(Block* b, uint location, LRG& lrg, IndexSet* liveout, Pressure& int_pressure, Pressure& float_pressure);
651  void raise_pressure(Block* b, LRG& lrg, Pressure& int_pressure, Pressure& float_pressure);
652  void compute_entry_block_pressure(Block* b);
653  void compute_exit_block_pressure(Block* b);
654  void print_pressure_info(Pressure& pressure, const char *str);
655
656private:
657  // Force the bases of derived pointers to be alive at GC points.
658  bool stretch_base_pointer_live_ranges( ResourceArea *a );
659  // Helper to stretch above; recursively discover the base Node for
660  // a given derived Node.  Easy for AddP-related machine nodes, but
661  // needs to be recursive for derived Phis.
662  Node *find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg );
663
664  // Set the was-lo-degree bit.  Conservative coalescing should not change the
665  // colorability of the graph.  If any live range was of low-degree before
666  // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
667  void set_was_low();
668
669  // Split live-ranges that must spill due to register conflicts (as opposed
670  // to capacity spills).  Typically these are things def'd in a register
671  // and used on the stack or vice-versa.
672  void pre_spill();
673
674  // Init LRG caching of degree, numregs.  Init lo_degree list.
675  void cache_lrg_info( );
676
677  // Simplify the IFG by removing LRGs of low degree with no copies
678  void Pre_Simplify();
679
680  // Simplify the IFG by removing LRGs of low degree
681  void Simplify();
682
683  // Select colors by re-inserting edges into the IFG.
684  // Return TRUE if any spills occurred.
685  uint Select( );
686  // Helper function for select which allows biased coloring
687  OptoReg::Name choose_color( LRG &lrg, int chunk );
688  // Helper function which implements biasing heuristic
689  OptoReg::Name bias_color( LRG &lrg, int chunk );
690
691  // Split uncolorable live ranges
692  // Return new number of live ranges
693  uint Split(uint maxlrg, ResourceArea* split_arena);
694
695  // Copy 'was_spilled'-edness from one Node to another.
696  void copy_was_spilled( Node *src, Node *dst );
697  // Set the 'spilled_once' or 'spilled_twice' flag on a node.
698  void set_was_spilled( Node *n );
699
700  // Convert ideal spill-nodes into machine loads & stores
701  // Set C->failing when fixup spills could not complete, node limit exceeded.
702  void fixup_spills();
703
704  // Post-Allocation peephole copy removal
705  void post_allocate_copy_removal();
706  Node *skip_copies( Node *c );
707  // Replace the old node with the current live version of that value
708  // and yank the old value if it's dead.
709  int replace_and_yank_if_dead( Node *old, OptoReg::Name nreg,
710      Block *current_block, Node_List& value, Node_List& regnd ) {
711    Node* v = regnd[nreg];
712    assert(v->outcnt() != 0, "no dead values");
713    old->replace_by(v);
714    return yank_if_dead(old, current_block, &value, &regnd);
715  }
716
717  int yank_if_dead( Node *old, Block *current_block, Node_List *value, Node_List *regnd ) {
718    return yank_if_dead_recurse(old, old, current_block, value, regnd);
719  }
720  int yank_if_dead_recurse(Node *old, Node *orig_old, Block *current_block,
721      Node_List *value, Node_List *regnd);
722  int yank( Node *old, Block *current_block, Node_List *value, Node_List *regnd );
723  int elide_copy( Node *n, int k, Block *current_block, Node_List &value, Node_List &regnd, bool can_change_regs );
724  int use_prior_register( Node *copy, uint idx, Node *def, Block *current_block, Node_List &value, Node_List &regnd );
725  bool may_be_copy_of_callee( Node *def ) const;
726
727  // If nreg already contains the same constant as val then eliminate it
728  bool eliminate_copy_of_constant(Node* val, Node* n,
729      Block *current_block, Node_List& value, Node_List &regnd,
730      OptoReg::Name nreg, OptoReg::Name nreg2);
731  // Extend the node to LRG mapping
732  void add_reference( const Node *node, const Node *old_node);
733
734  // Record the first use of a def in the block for a register.
735  class RegDefUse {
736    Node* _def;
737    Node* _first_use;
738  public:
739    RegDefUse() : _def(NULL), _first_use(NULL) { }
740    Node* def() const       { return _def;       }
741    Node* first_use() const { return _first_use; }
742
743    void update(Node* def, Node* use) {
744      if (_def != def) {
745        _def = def;
746        _first_use = use;
747      }
748    }
749    void clear() {
750      _def = NULL;
751      _first_use = NULL;
752    }
753  };
754  typedef GrowableArray<RegDefUse> RegToDefUseMap;
755  int possibly_merge_multidef(Node *n, uint k, Block *block, RegToDefUseMap& reg2defuse);
756
757  // Merge nodes that are a part of a multidef lrg and produce the same value within a block.
758  void merge_multidefs();
759
760private:
761
762  static int _final_loads, _final_stores, _final_copies, _final_memoves;
763  static double _final_load_cost, _final_store_cost, _final_copy_cost, _final_memove_cost;
764  static int _conserv_coalesce, _conserv_coalesce_pair;
765  static int _conserv_coalesce_trie, _conserv_coalesce_quad;
766  static int _post_alloc;
767  static int _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce;
768  static int _used_cisc_instructions, _unused_cisc_instructions;
769  static int _allocator_attempts, _allocator_successes;
770
771#ifndef PRODUCT
772  static uint _high_pressure, _low_pressure;
773
774  void dump() const;
775  void dump( const Node *n ) const;
776  void dump( const Block * b ) const;
777  void dump_degree_lists() const;
778  void dump_simplified() const;
779  void dump_lrg( uint lidx, bool defs_only) const;
780  void dump_lrg( uint lidx) const {
781    // dump defs and uses by default
782    dump_lrg(lidx, false);
783  }
784  void dump_bb( uint pre_order ) const;
785
786  // Verify that base pointers and derived pointers are still sane
787  void verify_base_ptrs( ResourceArea *a ) const;
788
789  void verify( ResourceArea *a, bool verify_ifg = false ) const;
790
791  void dump_for_spill_split_recycle() const;
792
793public:
794  void dump_frame() const;
795  char *dump_register( const Node *n, char *buf  ) const;
796private:
797  static void print_chaitin_statistics();
798#endif
799  friend class PhaseCoalesce;
800  friend class PhaseAggressiveCoalesce;
801  friend class PhaseConservativeCoalesce;
802};
803
804#endif // SHARE_VM_OPTO_CHAITIN_HPP
805