1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/systemDictionary.hpp"
27#include "memory/allocation.inline.hpp"
28#include "memory/resourceArea.hpp"
29#include "oops/objArrayKlass.hpp"
30#include "opto/addnode.hpp"
31#include "opto/castnode.hpp"
32#include "opto/cfgnode.hpp"
33#include "opto/connode.hpp"
34#include "opto/convertnode.hpp"
35#include "opto/loopnode.hpp"
36#include "opto/machnode.hpp"
37#include "opto/movenode.hpp"
38#include "opto/narrowptrnode.hpp"
39#include "opto/mulnode.hpp"
40#include "opto/phaseX.hpp"
41#include "opto/regmask.hpp"
42#include "opto/runtime.hpp"
43#include "opto/subnode.hpp"
44#include "utilities/vmError.hpp"
45
46// Portions of code courtesy of Clifford Click
47
48// Optimization - Graph Style
49
50//=============================================================================
51//------------------------------Value------------------------------------------
52// Compute the type of the RegionNode.
53const Type* RegionNode::Value(PhaseGVN* phase) const {
54  for( uint i=1; i<req(); ++i ) {       // For all paths in
55    Node *n = in(i);            // Get Control source
56    if( !n ) continue;          // Missing inputs are TOP
57    if( phase->type(n) == Type::CONTROL )
58      return Type::CONTROL;
59  }
60  return Type::TOP;             // All paths dead?  Then so are we
61}
62
63//------------------------------Identity---------------------------------------
64// Check for Region being Identity.
65Node* RegionNode::Identity(PhaseGVN* phase) {
66  // Cannot have Region be an identity, even if it has only 1 input.
67  // Phi users cannot have their Region input folded away for them,
68  // since they need to select the proper data input
69  return this;
70}
71
72//------------------------------merge_region-----------------------------------
73// If a Region flows into a Region, merge into one big happy merge.  This is
74// hard to do if there is stuff that has to happen
75static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
76  if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
77    return NULL;
78  Node *progress = NULL;        // Progress flag
79  PhaseIterGVN *igvn = phase->is_IterGVN();
80
81  uint rreq = region->req();
82  for( uint i = 1; i < rreq; i++ ) {
83    Node *r = region->in(i);
84    if( r && r->Opcode() == Op_Region && // Found a region?
85        r->in(0) == r &&        // Not already collapsed?
86        r != region &&          // Avoid stupid situations
87        r->outcnt() == 2 ) {    // Self user and 'region' user only?
88      assert(!r->as_Region()->has_phi(), "no phi users");
89      if( !progress ) {         // No progress
90        if (region->has_phi()) {
91          return NULL;        // Only flatten if no Phi users
92          // igvn->hash_delete( phi );
93        }
94        igvn->hash_delete( region );
95        progress = region;      // Making progress
96      }
97      igvn->hash_delete( r );
98
99      // Append inputs to 'r' onto 'region'
100      for( uint j = 1; j < r->req(); j++ ) {
101        // Move an input from 'r' to 'region'
102        region->add_req(r->in(j));
103        r->set_req(j, phase->C->top());
104        // Update phis of 'region'
105        //for( uint k = 0; k < max; k++ ) {
106        //  Node *phi = region->out(k);
107        //  if( phi->is_Phi() ) {
108        //    phi->add_req(phi->in(i));
109        //  }
110        //}
111
112        rreq++;                 // One more input to Region
113      } // Found a region to merge into Region
114      igvn->_worklist.push(r);
115      // Clobber pointer to the now dead 'r'
116      region->set_req(i, phase->C->top());
117    }
118  }
119
120  return progress;
121}
122
123
124
125//--------------------------------has_phi--------------------------------------
126// Helper function: Return any PhiNode that uses this region or NULL
127PhiNode* RegionNode::has_phi() const {
128  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
129    Node* phi = fast_out(i);
130    if (phi->is_Phi()) {   // Check for Phi users
131      assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
132      return phi->as_Phi();  // this one is good enough
133    }
134  }
135
136  return NULL;
137}
138
139
140//-----------------------------has_unique_phi----------------------------------
141// Helper function: Return the only PhiNode that uses this region or NULL
142PhiNode* RegionNode::has_unique_phi() const {
143  // Check that only one use is a Phi
144  PhiNode* only_phi = NULL;
145  for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
146    Node* phi = fast_out(i);
147    if (phi->is_Phi()) {   // Check for Phi users
148      assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
149      if (only_phi == NULL) {
150        only_phi = phi->as_Phi();
151      } else {
152        return NULL;  // multiple phis
153      }
154    }
155  }
156
157  return only_phi;
158}
159
160
161//------------------------------check_phi_clipping-----------------------------
162// Helper function for RegionNode's identification of FP clipping
163// Check inputs to the Phi
164static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
165  min     = NULL;
166  max     = NULL;
167  val     = NULL;
168  min_idx = 0;
169  max_idx = 0;
170  val_idx = 0;
171  uint  phi_max = phi->req();
172  if( phi_max == 4 ) {
173    for( uint j = 1; j < phi_max; ++j ) {
174      Node *n = phi->in(j);
175      int opcode = n->Opcode();
176      switch( opcode ) {
177      case Op_ConI:
178        {
179          if( min == NULL ) {
180            min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
181            min_idx = j;
182          } else {
183            max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
184            max_idx = j;
185            if( min->get_int() > max->get_int() ) {
186              // Swap min and max
187              ConNode *temp;
188              uint     temp_idx;
189              temp     = min;     min     = max;     max     = temp;
190              temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
191            }
192          }
193        }
194        break;
195      default:
196        {
197          val = n;
198          val_idx = j;
199        }
200        break;
201      }
202    }
203  }
204  return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
205}
206
207
208//------------------------------check_if_clipping------------------------------
209// Helper function for RegionNode's identification of FP clipping
210// Check that inputs to Region come from two IfNodes,
211//
212//            If
213//      False    True
214//       If        |
215//  False  True    |
216//    |      |     |
217//  RegionNode_inputs
218//
219static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
220  top_if = NULL;
221  bot_if = NULL;
222
223  // Check control structure above RegionNode for (if  ( if  ) )
224  Node *in1 = region->in(1);
225  Node *in2 = region->in(2);
226  Node *in3 = region->in(3);
227  // Check that all inputs are projections
228  if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
229    Node *in10 = in1->in(0);
230    Node *in20 = in2->in(0);
231    Node *in30 = in3->in(0);
232    // Check that #1 and #2 are ifTrue and ifFalse from same If
233    if( in10 != NULL && in10->is_If() &&
234        in20 != NULL && in20->is_If() &&
235        in30 != NULL && in30->is_If() && in10 == in20 &&
236        (in1->Opcode() != in2->Opcode()) ) {
237      Node  *in100 = in10->in(0);
238      Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
239      // Check that control for in10 comes from other branch of IF from in3
240      if( in1000 != NULL && in1000->is_If() &&
241          in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
242        // Control pattern checks
243        top_if = (IfNode*)in1000;
244        bot_if = (IfNode*)in10;
245      }
246    }
247  }
248
249  return (top_if != NULL);
250}
251
252
253//------------------------------check_convf2i_clipping-------------------------
254// Helper function for RegionNode's identification of FP clipping
255// Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
256static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
257  convf2i = NULL;
258
259  // Check for the RShiftNode
260  Node *rshift = phi->in(idx);
261  assert( rshift, "Previous checks ensure phi input is present");
262  if( rshift->Opcode() != Op_RShiftI )  { return false; }
263
264  // Check for the LShiftNode
265  Node *lshift = rshift->in(1);
266  assert( lshift, "Previous checks ensure phi input is present");
267  if( lshift->Opcode() != Op_LShiftI )  { return false; }
268
269  // Check for the ConvF2INode
270  Node *conv = lshift->in(1);
271  if( conv->Opcode() != Op_ConvF2I ) { return false; }
272
273  // Check that shift amounts are only to get sign bits set after F2I
274  jint max_cutoff     = max->get_int();
275  jint min_cutoff     = min->get_int();
276  jint left_shift     = lshift->in(2)->get_int();
277  jint right_shift    = rshift->in(2)->get_int();
278  jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
279  if( left_shift != right_shift ||
280      0 > left_shift || left_shift >= BitsPerJavaInteger ||
281      max_post_shift < max_cutoff ||
282      max_post_shift < -min_cutoff ) {
283    // Shifts are necessary but current transformation eliminates them
284    return false;
285  }
286
287  // OK to return the result of ConvF2I without shifting
288  convf2i = (ConvF2INode*)conv;
289  return true;
290}
291
292
293//------------------------------check_compare_clipping-------------------------
294// Helper function for RegionNode's identification of FP clipping
295static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
296  Node *i1 = iff->in(1);
297  if ( !i1->is_Bool() ) { return false; }
298  BoolNode *bool1 = i1->as_Bool();
299  if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
300  else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
301  const Node *cmpF = bool1->in(1);
302  if( cmpF->Opcode() != Op_CmpF )      { return false; }
303  // Test that the float value being compared against
304  // is equivalent to the int value used as a limit
305  Node *nodef = cmpF->in(2);
306  if( nodef->Opcode() != Op_ConF ) { return false; }
307  jfloat conf = nodef->getf();
308  jint   coni = limit->get_int();
309  if( ((int)conf) != coni )        { return false; }
310  input = cmpF->in(1);
311  return true;
312}
313
314//------------------------------is_unreachable_region--------------------------
315// Find if the Region node is reachable from the root.
316bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
317  assert(req() == 2, "");
318
319  // First, cut the simple case of fallthrough region when NONE of
320  // region's phis references itself directly or through a data node.
321  uint max = outcnt();
322  uint i;
323  for (i = 0; i < max; i++) {
324    Node* phi = raw_out(i);
325    if (phi != NULL && phi->is_Phi()) {
326      assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
327      if (phi->outcnt() == 0)
328        continue; // Safe case - no loops
329      if (phi->outcnt() == 1) {
330        Node* u = phi->raw_out(0);
331        // Skip if only one use is an other Phi or Call or Uncommon trap.
332        // It is safe to consider this case as fallthrough.
333        if (u != NULL && (u->is_Phi() || u->is_CFG()))
334          continue;
335      }
336      // Check when phi references itself directly or through an other node.
337      if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
338        break; // Found possible unsafe data loop.
339    }
340  }
341  if (i >= max)
342    return false; // An unsafe case was NOT found - don't need graph walk.
343
344  // Unsafe case - check if the Region node is reachable from root.
345  ResourceMark rm;
346
347  Arena *a = Thread::current()->resource_area();
348  Node_List nstack(a);
349  VectorSet visited(a);
350
351  // Mark all control nodes reachable from root outputs
352  Node *n = (Node*)phase->C->root();
353  nstack.push(n);
354  visited.set(n->_idx);
355  while (nstack.size() != 0) {
356    n = nstack.pop();
357    uint max = n->outcnt();
358    for (uint i = 0; i < max; i++) {
359      Node* m = n->raw_out(i);
360      if (m != NULL && m->is_CFG()) {
361        if (phase->eqv(m, this)) {
362          return false; // We reached the Region node - it is not dead.
363        }
364        if (!visited.test_set(m->_idx))
365          nstack.push(m);
366      }
367    }
368  }
369
370  return true; // The Region node is unreachable - it is dead.
371}
372
373bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
374  // Incremental inlining + PhaseStringOpts sometimes produce:
375  //
376  // cmpP with 1 top input
377  //           |
378  //          If
379  //         /  \
380  //   IfFalse  IfTrue  /- Some Node
381  //         \  /      /    /
382  //        Region    / /-MergeMem
383  //             \---Phi
384  //
385  //
386  // It's expected by PhaseStringOpts that the Region goes away and is
387  // replaced by If's control input but because there's still a Phi,
388  // the Region stays in the graph. The top input from the cmpP is
389  // propagated forward and a subgraph that is useful goes away. The
390  // code below replaces the Phi with the MergeMem so that the Region
391  // is simplified.
392
393  PhiNode* phi = has_unique_phi();
394  if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
395    MergeMemNode* m = NULL;
396    assert(phi->req() == 3, "same as region");
397    for (uint i = 1; i < 3; ++i) {
398      Node *mem = phi->in(i);
399      if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
400        // Nothing is control-dependent on path #i except the region itself.
401        m = mem->as_MergeMem();
402        uint j = 3 - i;
403        Node* other = phi->in(j);
404        if (other && other == m->base_memory()) {
405          // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
406          // This will allow the diamond to collapse completely.
407          phase->is_IterGVN()->replace_node(phi, m);
408          return true;
409        }
410      }
411    }
412  }
413  return false;
414}
415
416//------------------------------Ideal------------------------------------------
417// Return a node which is more "ideal" than the current node.  Must preserve
418// the CFG, but we can still strip out dead paths.
419Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
420  if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
421  assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
422
423  // Check for RegionNode with no Phi users and both inputs come from either
424  // arm of the same IF.  If found, then the control-flow split is useless.
425  bool has_phis = false;
426  if (can_reshape) {            // Need DU info to check for Phi users
427    has_phis = (has_phi() != NULL);       // Cache result
428    if (has_phis && try_clean_mem_phi(phase)) {
429      has_phis = false;
430    }
431
432    if (!has_phis) {            // No Phi users?  Nothing merging?
433      for (uint i = 1; i < req()-1; i++) {
434        Node *if1 = in(i);
435        if( !if1 ) continue;
436        Node *iff = if1->in(0);
437        if( !iff || !iff->is_If() ) continue;
438        for( uint j=i+1; j<req(); j++ ) {
439          if( in(j) && in(j)->in(0) == iff &&
440              if1->Opcode() != in(j)->Opcode() ) {
441            // Add the IF Projections to the worklist. They (and the IF itself)
442            // will be eliminated if dead.
443            phase->is_IterGVN()->add_users_to_worklist(iff);
444            set_req(i, iff->in(0));// Skip around the useless IF diamond
445            set_req(j, NULL);
446            return this;      // Record progress
447          }
448        }
449      }
450    }
451  }
452
453  // Remove TOP or NULL input paths. If only 1 input path remains, this Region
454  // degrades to a copy.
455  bool add_to_worklist = false;
456  bool modified = false;
457  int cnt = 0;                  // Count of values merging
458  DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
459  int del_it = 0;               // The last input path we delete
460  // For all inputs...
461  for( uint i=1; i<req(); ++i ){// For all paths in
462    Node *n = in(i);            // Get the input
463    if( n != NULL ) {
464      // Remove useless control copy inputs
465      if( n->is_Region() && n->as_Region()->is_copy() ) {
466        set_req(i, n->nonnull_req());
467        modified = true;
468        i--;
469        continue;
470      }
471      if( n->is_Proj() ) {      // Remove useless rethrows
472        Node *call = n->in(0);
473        if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
474          set_req(i, call->in(0));
475          modified = true;
476          i--;
477          continue;
478        }
479      }
480      if( phase->type(n) == Type::TOP ) {
481        set_req(i, NULL);       // Ignore TOP inputs
482        modified = true;
483        i--;
484        continue;
485      }
486      cnt++;                    // One more value merging
487
488    } else if (can_reshape) {   // Else found dead path with DU info
489      PhaseIterGVN *igvn = phase->is_IterGVN();
490      del_req(i);               // Yank path from self
491      del_it = i;
492      uint max = outcnt();
493      DUIterator j;
494      bool progress = true;
495      while(progress) {         // Need to establish property over all users
496        progress = false;
497        for (j = outs(); has_out(j); j++) {
498          Node *n = out(j);
499          if( n->req() != req() && n->is_Phi() ) {
500            assert( n->in(0) == this, "" );
501            igvn->hash_delete(n); // Yank from hash before hacking edges
502            n->set_req_X(i,NULL,igvn);// Correct DU info
503            n->del_req(i);        // Yank path from Phis
504            if( max != outcnt() ) {
505              progress = true;
506              j = refresh_out_pos(j);
507              max = outcnt();
508            }
509          }
510        }
511      }
512      add_to_worklist = true;
513      i--;
514    }
515  }
516
517  if (can_reshape && cnt == 1) {
518    // Is it dead loop?
519    // If it is LoopNopde it had 2 (+1 itself) inputs and
520    // one of them was cut. The loop is dead if it was EntryContol.
521    // Loop node may have only one input because entry path
522    // is removed in PhaseIdealLoop::Dominators().
523    assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
524    if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
525                             (del_it == 0 && is_unreachable_region(phase)))) ||
526        (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
527      // Yes,  the region will be removed during the next step below.
528      // Cut the backedge input and remove phis since no data paths left.
529      // We don't cut outputs to other nodes here since we need to put them
530      // on the worklist.
531      PhaseIterGVN *igvn = phase->is_IterGVN();
532      if (in(1)->outcnt() == 1) {
533        igvn->_worklist.push(in(1));
534      }
535      del_req(1);
536      cnt = 0;
537      assert( req() == 1, "no more inputs expected" );
538      uint max = outcnt();
539      bool progress = true;
540      Node *top = phase->C->top();
541      DUIterator j;
542      while(progress) {
543        progress = false;
544        for (j = outs(); has_out(j); j++) {
545          Node *n = out(j);
546          if( n->is_Phi() ) {
547            assert( igvn->eqv(n->in(0), this), "" );
548            assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
549            // Break dead loop data path.
550            // Eagerly replace phis with top to avoid phis copies generation.
551            igvn->replace_node(n, top);
552            if( max != outcnt() ) {
553              progress = true;
554              j = refresh_out_pos(j);
555              max = outcnt();
556            }
557          }
558        }
559      }
560      add_to_worklist = true;
561    }
562  }
563  if (add_to_worklist) {
564    phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
565  }
566
567  if( cnt <= 1 ) {              // Only 1 path in?
568    set_req(0, NULL);           // Null control input for region copy
569    if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
570      // No inputs or all inputs are NULL.
571      return NULL;
572    } else if (can_reshape) {   // Optimization phase - remove the node
573      PhaseIterGVN *igvn = phase->is_IterGVN();
574      Node *parent_ctrl;
575      if( cnt == 0 ) {
576        assert( req() == 1, "no inputs expected" );
577        // During IGVN phase such region will be subsumed by TOP node
578        // so region's phis will have TOP as control node.
579        // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
580        // Also set other user's input to top.
581        parent_ctrl = phase->C->top();
582      } else {
583        // The fallthrough case since we already checked dead loops above.
584        parent_ctrl = in(1);
585        assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
586        assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
587      }
588      if (!add_to_worklist)
589        igvn->add_users_to_worklist(this); // Check for further allowed opts
590      for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
591        Node* n = last_out(i);
592        igvn->hash_delete(n); // Remove from worklist before modifying edges
593        if( n->is_Phi() ) {   // Collapse all Phis
594          // Eagerly replace phis to avoid copies generation.
595          Node* in;
596          if( cnt == 0 ) {
597            assert( n->req() == 1, "No data inputs expected" );
598            in = parent_ctrl; // replaced by top
599          } else {
600            assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
601            in = n->in(1);               // replaced by unique input
602            if( n->as_Phi()->is_unsafe_data_reference(in) )
603              in = phase->C->top();      // replaced by top
604          }
605          igvn->replace_node(n, in);
606        }
607        else if( n->is_Region() ) { // Update all incoming edges
608          assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
609          uint uses_found = 0;
610          for( uint k=1; k < n->req(); k++ ) {
611            if( n->in(k) == this ) {
612              n->set_req(k, parent_ctrl);
613              uses_found++;
614            }
615          }
616          if( uses_found > 1 ) { // (--i) done at the end of the loop.
617            i -= (uses_found - 1);
618          }
619        }
620        else {
621          assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
622          n->set_req(0, parent_ctrl);
623        }
624#ifdef ASSERT
625        for( uint k=0; k < n->req(); k++ ) {
626          assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
627        }
628#endif
629      }
630      // Remove the RegionNode itself from DefUse info
631      igvn->remove_dead_node(this);
632      return NULL;
633    }
634    return this;                // Record progress
635  }
636
637
638  // If a Region flows into a Region, merge into one big happy merge.
639  if (can_reshape) {
640    Node *m = merge_region(this, phase);
641    if (m != NULL)  return m;
642  }
643
644  // Check if this region is the root of a clipping idiom on floats
645  if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
646    // Check that only one use is a Phi and that it simplifies to two constants +
647    PhiNode* phi = has_unique_phi();
648    if (phi != NULL) {          // One Phi user
649      // Check inputs to the Phi
650      ConNode *min;
651      ConNode *max;
652      Node    *val;
653      uint     min_idx;
654      uint     max_idx;
655      uint     val_idx;
656      if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
657        IfNode *top_if;
658        IfNode *bot_if;
659        if( check_if_clipping( this, bot_if, top_if ) ) {
660          // Control pattern checks, now verify compares
661          Node   *top_in = NULL;   // value being compared against
662          Node   *bot_in = NULL;
663          if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
664              check_compare_clipping( false, top_if, max, top_in ) ) {
665            if( bot_in == top_in ) {
666              PhaseIterGVN *gvn = phase->is_IterGVN();
667              assert( gvn != NULL, "Only had DefUse info in IterGVN");
668              // Only remaining check is that bot_in == top_in == (Phi's val + mods)
669
670              // Check for the ConvF2INode
671              ConvF2INode *convf2i;
672              if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
673                convf2i->in(1) == bot_in ) {
674                // Matched pattern, including LShiftI; RShiftI, replace with integer compares
675                // max test
676                Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
677                Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
678                IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
679                Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
680                Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
681                // min test
682                cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
683                boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
684                iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
685                Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
686                ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
687                // update input edges to region node
688                set_req_X( min_idx, if_min, gvn );
689                set_req_X( max_idx, if_max, gvn );
690                set_req_X( val_idx, ifF,    gvn );
691                // remove unnecessary 'LShiftI; RShiftI' idiom
692                gvn->hash_delete(phi);
693                phi->set_req_X( val_idx, convf2i, gvn );
694                gvn->hash_find_insert(phi);
695                // Return transformed region node
696                return this;
697              }
698            }
699          }
700        }
701      }
702    }
703  }
704
705  return modified ? this : NULL;
706}
707
708
709
710const RegMask &RegionNode::out_RegMask() const {
711  return RegMask::Empty;
712}
713
714// Find the one non-null required input.  RegionNode only
715Node *Node::nonnull_req() const {
716  assert( is_Region(), "" );
717  for( uint i = 1; i < _cnt; i++ )
718    if( in(i) )
719      return in(i);
720  ShouldNotReachHere();
721  return NULL;
722}
723
724
725//=============================================================================
726// note that these functions assume that the _adr_type field is flattened
727uint PhiNode::hash() const {
728  const Type* at = _adr_type;
729  return TypeNode::hash() + (at ? at->hash() : 0);
730}
731uint PhiNode::cmp( const Node &n ) const {
732  return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
733}
734static inline
735const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
736  if (at == NULL || at == TypePtr::BOTTOM)  return at;
737  return Compile::current()->alias_type(at)->adr_type();
738}
739
740//----------------------------make---------------------------------------------
741// create a new phi with edges matching r and set (initially) to x
742PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
743  uint preds = r->req();   // Number of predecessor paths
744  assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
745  PhiNode* p = new PhiNode(r, t, at);
746  for (uint j = 1; j < preds; j++) {
747    // Fill in all inputs, except those which the region does not yet have
748    if (r->in(j) != NULL)
749      p->init_req(j, x);
750  }
751  return p;
752}
753PhiNode* PhiNode::make(Node* r, Node* x) {
754  const Type*    t  = x->bottom_type();
755  const TypePtr* at = NULL;
756  if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
757  return make(r, x, t, at);
758}
759PhiNode* PhiNode::make_blank(Node* r, Node* x) {
760  const Type*    t  = x->bottom_type();
761  const TypePtr* at = NULL;
762  if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
763  return new PhiNode(r, t, at);
764}
765
766
767//------------------------slice_memory-----------------------------------------
768// create a new phi with narrowed memory type
769PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
770  PhiNode* mem = (PhiNode*) clone();
771  *(const TypePtr**)&mem->_adr_type = adr_type;
772  // convert self-loops, or else we get a bad graph
773  for (uint i = 1; i < req(); i++) {
774    if ((const Node*)in(i) == this)  mem->set_req(i, mem);
775  }
776  mem->verify_adr_type();
777  return mem;
778}
779
780//------------------------split_out_instance-----------------------------------
781// Split out an instance type from a bottom phi.
782PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
783  const TypeOopPtr *t_oop = at->isa_oopptr();
784  assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
785  const TypePtr *t = adr_type();
786  assert(type() == Type::MEMORY &&
787         (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
788          t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
789          t->is_oopptr()->cast_to_exactness(true)
790           ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
791           ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
792         "bottom or raw memory required");
793
794  // Check if an appropriate node already exists.
795  Node *region = in(0);
796  for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
797    Node* use = region->fast_out(k);
798    if( use->is_Phi()) {
799      PhiNode *phi2 = use->as_Phi();
800      if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
801        return phi2;
802      }
803    }
804  }
805  Compile *C = igvn->C;
806  Arena *a = Thread::current()->resource_area();
807  Node_Array node_map = new Node_Array(a);
808  Node_Stack stack(a, C->live_nodes() >> 4);
809  PhiNode *nphi = slice_memory(at);
810  igvn->register_new_node_with_optimizer( nphi );
811  node_map.map(_idx, nphi);
812  stack.push((Node *)this, 1);
813  while(!stack.is_empty()) {
814    PhiNode *ophi = stack.node()->as_Phi();
815    uint i = stack.index();
816    assert(i >= 1, "not control edge");
817    stack.pop();
818    nphi = node_map[ophi->_idx]->as_Phi();
819    for (; i < ophi->req(); i++) {
820      Node *in = ophi->in(i);
821      if (in == NULL || igvn->type(in) == Type::TOP)
822        continue;
823      Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
824      PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
825      if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
826        opt = node_map[optphi->_idx];
827        if (opt == NULL) {
828          stack.push(ophi, i);
829          nphi = optphi->slice_memory(at);
830          igvn->register_new_node_with_optimizer( nphi );
831          node_map.map(optphi->_idx, nphi);
832          ophi = optphi;
833          i = 0; // will get incremented at top of loop
834          continue;
835        }
836      }
837      nphi->set_req(i, opt);
838    }
839  }
840  return nphi;
841}
842
843//------------------------verify_adr_type--------------------------------------
844#ifdef ASSERT
845void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
846  if (visited.test_set(_idx))  return;  //already visited
847
848  // recheck constructor invariants:
849  verify_adr_type(false);
850
851  // recheck local phi/phi consistency:
852  assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
853         "adr_type must be consistent across phi nest");
854
855  // walk around
856  for (uint i = 1; i < req(); i++) {
857    Node* n = in(i);
858    if (n == NULL)  continue;
859    const Node* np = in(i);
860    if (np->is_Phi()) {
861      np->as_Phi()->verify_adr_type(visited, at);
862    } else if (n->bottom_type() == Type::TOP
863               || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
864      // ignore top inputs
865    } else {
866      const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
867      // recheck phi/non-phi consistency at leaves:
868      assert((nat != NULL) == (at != NULL), "");
869      assert(nat == at || nat == TypePtr::BOTTOM,
870             "adr_type must be consistent at leaves of phi nest");
871    }
872  }
873}
874
875// Verify a whole nest of phis rooted at this one.
876void PhiNode::verify_adr_type(bool recursive) const {
877  if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
878  if (Node::in_dump())               return;  // muzzle asserts when printing
879
880  assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
881
882  if (!VerifyAliases)       return;  // verify thoroughly only if requested
883
884  assert(_adr_type == flatten_phi_adr_type(_adr_type),
885         "Phi::adr_type must be pre-normalized");
886
887  if (recursive) {
888    VectorSet visited(Thread::current()->resource_area());
889    verify_adr_type(visited, _adr_type);
890  }
891}
892#endif
893
894
895//------------------------------Value------------------------------------------
896// Compute the type of the PhiNode
897const Type* PhiNode::Value(PhaseGVN* phase) const {
898  Node *r = in(0);              // RegionNode
899  if( !r )                      // Copy or dead
900    return in(1) ? phase->type(in(1)) : Type::TOP;
901
902  // Note: During parsing, phis are often transformed before their regions.
903  // This means we have to use type_or_null to defend against untyped regions.
904  if( phase->type_or_null(r) == Type::TOP )  // Dead code?
905    return Type::TOP;
906
907  // Check for trip-counted loop.  If so, be smarter.
908  CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
909  if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
910    // protect against init_trip() or limit() returning NULL
911    if (l->can_be_counted_loop(phase)) {
912      const Node *init   = l->init_trip();
913      const Node *limit  = l->limit();
914      const Node* stride = l->stride();
915      if (init != NULL && limit != NULL && stride != NULL) {
916        const TypeInt* lo = phase->type(init)->isa_int();
917        const TypeInt* hi = phase->type(limit)->isa_int();
918        const TypeInt* stride_t = phase->type(stride)->isa_int();
919        if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
920          assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
921          if (stride_t->_hi < 0) {          // Down-counter loop
922            swap(lo, hi);
923            return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
924          } else if (stride_t->_lo >= 0) {
925            return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
926          }
927        }
928      }
929    } else if (l->in(LoopNode::LoopBackControl) != NULL &&
930               in(LoopNode::EntryControl) != NULL &&
931               phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
932      // During CCP, if we saturate the type of a counted loop's Phi
933      // before the special code for counted loop above has a chance
934      // to run (that is as long as the type of the backedge's control
935      // is top), we might end up with non monotonic types
936      return phase->type(in(LoopNode::EntryControl));
937    }
938  }
939
940  // Until we have harmony between classes and interfaces in the type
941  // lattice, we must tread carefully around phis which implicitly
942  // convert the one to the other.
943  const TypePtr* ttp = _type->make_ptr();
944  const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
945  const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
946  bool is_intf = false;
947  if (ttip != NULL) {
948    ciKlass* k = ttip->klass();
949    if (k->is_loaded() && k->is_interface())
950      is_intf = true;
951  }
952  if (ttkp != NULL) {
953    ciKlass* k = ttkp->klass();
954    if (k->is_loaded() && k->is_interface())
955      is_intf = true;
956  }
957
958  // Default case: merge all inputs
959  const Type *t = Type::TOP;        // Merged type starting value
960  for (uint i = 1; i < req(); ++i) {// For all paths in
961    // Reachable control path?
962    if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
963      const Type* ti = phase->type(in(i));
964      // We assume that each input of an interface-valued Phi is a true
965      // subtype of that interface.  This might not be true of the meet
966      // of all the input types.  The lattice is not distributive in
967      // such cases.  Ward off asserts in type.cpp by refusing to do
968      // meets between interfaces and proper classes.
969      const TypePtr* tip = ti->make_ptr();
970      const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
971      if (tiip) {
972        bool ti_is_intf = false;
973        ciKlass* k = tiip->klass();
974        if (k->is_loaded() && k->is_interface())
975          ti_is_intf = true;
976        if (is_intf != ti_is_intf)
977          { t = _type; break; }
978      }
979      t = t->meet_speculative(ti);
980    }
981  }
982
983  // The worst-case type (from ciTypeFlow) should be consistent with "t".
984  // That is, we expect that "t->higher_equal(_type)" holds true.
985  // There are various exceptions:
986  // - Inputs which are phis might in fact be widened unnecessarily.
987  //   For example, an input might be a widened int while the phi is a short.
988  // - Inputs might be BotPtrs but this phi is dependent on a null check,
989  //   and postCCP has removed the cast which encodes the result of the check.
990  // - The type of this phi is an interface, and the inputs are classes.
991  // - Value calls on inputs might produce fuzzy results.
992  //   (Occurrences of this case suggest improvements to Value methods.)
993  //
994  // It is not possible to see Type::BOTTOM values as phi inputs,
995  // because the ciTypeFlow pre-pass produces verifier-quality types.
996  const Type* ft = t->filter_speculative(_type);  // Worst case type
997
998#ifdef ASSERT
999  // The following logic has been moved into TypeOopPtr::filter.
1000  const Type* jt = t->join_speculative(_type);
1001  if (jt->empty()) {           // Emptied out???
1002
1003    // Check for evil case of 't' being a class and '_type' expecting an
1004    // interface.  This can happen because the bytecodes do not contain
1005    // enough type info to distinguish a Java-level interface variable
1006    // from a Java-level object variable.  If we meet 2 classes which
1007    // both implement interface I, but their meet is at 'j/l/O' which
1008    // doesn't implement I, we have no way to tell if the result should
1009    // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1010    // into a Phi which "knows" it's an Interface type we'll have to
1011    // uplift the type.
1012    if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1013      assert(ft == _type, ""); // Uplift to interface
1014    } else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1015      assert(ft == _type, ""); // Uplift to interface
1016    } else {
1017      // We also have to handle 'evil cases' of interface- vs. class-arrays
1018      Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1019      if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1020          assert(ft == _type, "");   // Uplift to array of interface
1021      } else {
1022        // Otherwise it's something stupid like non-overlapping int ranges
1023        // found on dying counted loops.
1024        assert(ft == Type::TOP, ""); // Canonical empty value
1025      }
1026    }
1027  }
1028
1029  else {
1030
1031    // If we have an interface-typed Phi and we narrow to a class type, the join
1032    // should report back the class.  However, if we have a J/L/Object
1033    // class-typed Phi and an interface flows in, it's possible that the meet &
1034    // join report an interface back out.  This isn't possible but happens
1035    // because the type system doesn't interact well with interfaces.
1036    const TypePtr *jtp = jt->make_ptr();
1037    const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1038    const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1039    if( jtip && ttip ) {
1040      if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1041          ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1042        assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1043               ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1044        jt = ft;
1045      }
1046    }
1047    if( jtkp && ttkp ) {
1048      if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1049          !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1050          ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1051        assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1052               ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1053        jt = ft;
1054      }
1055    }
1056    if (jt != ft && jt->base() == ft->base()) {
1057      if (jt->isa_int() &&
1058          jt->is_int()->_lo == ft->is_int()->_lo &&
1059          jt->is_int()->_hi == ft->is_int()->_hi)
1060        jt = ft;
1061      if (jt->isa_long() &&
1062          jt->is_long()->_lo == ft->is_long()->_lo &&
1063          jt->is_long()->_hi == ft->is_long()->_hi)
1064        jt = ft;
1065    }
1066    if (jt != ft) {
1067      tty->print("merge type:  "); t->dump(); tty->cr();
1068      tty->print("kill type:   "); _type->dump(); tty->cr();
1069      tty->print("join type:   "); jt->dump(); tty->cr();
1070      tty->print("filter type: "); ft->dump(); tty->cr();
1071    }
1072    assert(jt == ft, "");
1073  }
1074#endif //ASSERT
1075
1076  // Deal with conversion problems found in data loops.
1077  ft = phase->saturate(ft, phase->type_or_null(this), _type);
1078
1079  return ft;
1080}
1081
1082
1083//------------------------------is_diamond_phi---------------------------------
1084// Does this Phi represent a simple well-shaped diamond merge?  Return the
1085// index of the true path or 0 otherwise.
1086// If check_control_only is true, do not inspect the If node at the
1087// top, and return -1 (not an edge number) on success.
1088int PhiNode::is_diamond_phi(bool check_control_only) const {
1089  // Check for a 2-path merge
1090  Node *region = in(0);
1091  if( !region ) return 0;
1092  if( region->req() != 3 ) return 0;
1093  if(         req() != 3 ) return 0;
1094  // Check that both paths come from the same If
1095  Node *ifp1 = region->in(1);
1096  Node *ifp2 = region->in(2);
1097  if( !ifp1 || !ifp2 ) return 0;
1098  Node *iff = ifp1->in(0);
1099  if( !iff || !iff->is_If() ) return 0;
1100  if( iff != ifp2->in(0) ) return 0;
1101  if (check_control_only)  return -1;
1102  // Check for a proper bool/cmp
1103  const Node *b = iff->in(1);
1104  if( !b->is_Bool() ) return 0;
1105  const Node *cmp = b->in(1);
1106  if( !cmp->is_Cmp() ) return 0;
1107
1108  // Check for branching opposite expected
1109  if( ifp2->Opcode() == Op_IfTrue ) {
1110    assert( ifp1->Opcode() == Op_IfFalse, "" );
1111    return 2;
1112  } else {
1113    assert( ifp1->Opcode() == Op_IfTrue, "" );
1114    return 1;
1115  }
1116}
1117
1118//----------------------------check_cmove_id-----------------------------------
1119// Check for CMove'ing a constant after comparing against the constant.
1120// Happens all the time now, since if we compare equality vs a constant in
1121// the parser, we "know" the variable is constant on one path and we force
1122// it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1123// conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1124// general in that we don't need constants.  Since CMove's are only inserted
1125// in very special circumstances, we do it here on generic Phi's.
1126Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1127  assert(true_path !=0, "only diamond shape graph expected");
1128
1129  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1130  // phi->region->if_proj->ifnode->bool->cmp
1131  Node*     region = in(0);
1132  Node*     iff    = region->in(1)->in(0);
1133  BoolNode* b      = iff->in(1)->as_Bool();
1134  Node*     cmp    = b->in(1);
1135  Node*     tval   = in(true_path);
1136  Node*     fval   = in(3-true_path);
1137  Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1138  if (id == NULL)
1139    return NULL;
1140
1141  // Either value might be a cast that depends on a branch of 'iff'.
1142  // Since the 'id' value will float free of the diamond, either
1143  // decast or return failure.
1144  Node* ctl = id->in(0);
1145  if (ctl != NULL && ctl->in(0) == iff) {
1146    if (id->is_ConstraintCast()) {
1147      return id->in(1);
1148    } else {
1149      // Don't know how to disentangle this value.
1150      return NULL;
1151    }
1152  }
1153
1154  return id;
1155}
1156
1157//------------------------------Identity---------------------------------------
1158// Check for Region being Identity.
1159Node* PhiNode::Identity(PhaseGVN* phase) {
1160  // Check for no merging going on
1161  // (There used to be special-case code here when this->region->is_Loop.
1162  // It would check for a tributary phi on the backedge that the main phi
1163  // trivially, perhaps with a single cast.  The unique_input method
1164  // does all this and more, by reducing such tributaries to 'this'.)
1165  Node* uin = unique_input(phase, false);
1166  if (uin != NULL) {
1167    return uin;
1168  }
1169
1170  int true_path = is_diamond_phi();
1171  if (true_path != 0) {
1172    Node* id = is_cmove_id(phase, true_path);
1173    if (id != NULL)  return id;
1174  }
1175
1176  return this;                     // No identity
1177}
1178
1179//-----------------------------unique_input------------------------------------
1180// Find the unique value, discounting top, self-loops, and casts.
1181// Return top if there are no inputs, and self if there are multiple.
1182Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1183  //  1) One unique direct input,
1184  // or if uncast is true:
1185  //  2) some of the inputs have an intervening ConstraintCast
1186  //  3) an input is a self loop
1187  //
1188  //  1) input   or   2) input     or   3) input __
1189  //     /   \           /   \               \  /  \
1190  //     \   /          |    cast             phi  cast
1191  //      phi            \   /               /  \  /
1192  //                      phi               /    --
1193
1194  Node* r = in(0);                      // RegionNode
1195  if (r == NULL)  return in(1);         // Already degraded to a Copy
1196  Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1197
1198  for (uint i = 1, cnt = req(); i < cnt; ++i) {
1199    Node* rc = r->in(i);
1200    if (rc == NULL || phase->type(rc) == Type::TOP)
1201      continue;                 // ignore unreachable control path
1202    Node* n = in(i);
1203    if (n == NULL)
1204      continue;
1205    Node* un = n;
1206    if (uncast) {
1207#ifdef ASSERT
1208      Node* m = un->uncast();
1209#endif
1210      while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1211        Node* next = un->in(1);
1212        if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1213          // risk exposing raw ptr at safepoint
1214          break;
1215        }
1216        un = next;
1217      }
1218      assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1219    }
1220    if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1221      continue; // ignore if top, or in(i) and "this" are in a data cycle
1222    }
1223    // Check for a unique input (maybe uncasted)
1224    if (input == NULL) {
1225      input = un;
1226    } else if (input != un) {
1227      input = NodeSentinel; // no unique input
1228    }
1229  }
1230  if (input == NULL) {
1231    return phase->C->top();        // no inputs
1232  }
1233
1234  if (input != NodeSentinel) {
1235    return input;           // one unique direct input
1236  }
1237
1238  // Nothing.
1239  return NULL;
1240}
1241
1242//------------------------------is_x2logic-------------------------------------
1243// Check for simple convert-to-boolean pattern
1244// If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1245// Convert Phi to an ConvIB.
1246static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1247  assert(true_path !=0, "only diamond shape graph expected");
1248  // Convert the true/false index into an expected 0/1 return.
1249  // Map 2->0 and 1->1.
1250  int flipped = 2-true_path;
1251
1252  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1253  // phi->region->if_proj->ifnode->bool->cmp
1254  Node *region = phi->in(0);
1255  Node *iff = region->in(1)->in(0);
1256  BoolNode *b = (BoolNode*)iff->in(1);
1257  const CmpNode *cmp = (CmpNode*)b->in(1);
1258
1259  Node *zero = phi->in(1);
1260  Node *one  = phi->in(2);
1261  const Type *tzero = phase->type( zero );
1262  const Type *tone  = phase->type( one  );
1263
1264  // Check for compare vs 0
1265  const Type *tcmp = phase->type(cmp->in(2));
1266  if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1267    // Allow cmp-vs-1 if the other input is bounded by 0-1
1268    if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1269      return NULL;
1270    flipped = 1-flipped;        // Test is vs 1 instead of 0!
1271  }
1272
1273  // Check for setting zero/one opposite expected
1274  if( tzero == TypeInt::ZERO ) {
1275    if( tone == TypeInt::ONE ) {
1276    } else return NULL;
1277  } else if( tzero == TypeInt::ONE ) {
1278    if( tone == TypeInt::ZERO ) {
1279      flipped = 1-flipped;
1280    } else return NULL;
1281  } else return NULL;
1282
1283  // Check for boolean test backwards
1284  if( b->_test._test == BoolTest::ne ) {
1285  } else if( b->_test._test == BoolTest::eq ) {
1286    flipped = 1-flipped;
1287  } else return NULL;
1288
1289  // Build int->bool conversion
1290  Node *n = new Conv2BNode( cmp->in(1) );
1291  if( flipped )
1292    n = new XorINode( phase->transform(n), phase->intcon(1) );
1293
1294  return n;
1295}
1296
1297//------------------------------is_cond_add------------------------------------
1298// Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1299// To be profitable the control flow has to disappear; there can be no other
1300// values merging here.  We replace the test-and-branch with:
1301// "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1302// moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1303// Then convert Y to 0-or-Y and finally add.
1304// This is a key transform for SpecJava _201_compress.
1305static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1306  assert(true_path !=0, "only diamond shape graph expected");
1307
1308  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1309  // phi->region->if_proj->ifnode->bool->cmp
1310  RegionNode *region = (RegionNode*)phi->in(0);
1311  Node *iff = region->in(1)->in(0);
1312  BoolNode* b = iff->in(1)->as_Bool();
1313  const CmpNode *cmp = (CmpNode*)b->in(1);
1314
1315  // Make sure only merging this one phi here
1316  if (region->has_unique_phi() != phi)  return NULL;
1317
1318  // Make sure each arm of the diamond has exactly one output, which we assume
1319  // is the region.  Otherwise, the control flow won't disappear.
1320  if (region->in(1)->outcnt() != 1) return NULL;
1321  if (region->in(2)->outcnt() != 1) return NULL;
1322
1323  // Check for "(P < Q)" of type signed int
1324  if (b->_test._test != BoolTest::lt)  return NULL;
1325  if (cmp->Opcode() != Op_CmpI)        return NULL;
1326
1327  Node *p = cmp->in(1);
1328  Node *q = cmp->in(2);
1329  Node *n1 = phi->in(  true_path);
1330  Node *n2 = phi->in(3-true_path);
1331
1332  int op = n1->Opcode();
1333  if( op != Op_AddI           // Need zero as additive identity
1334      /*&&op != Op_SubI &&
1335      op != Op_AddP &&
1336      op != Op_XorI &&
1337      op != Op_OrI*/ )
1338    return NULL;
1339
1340  Node *x = n2;
1341  Node *y = NULL;
1342  if( x == n1->in(1) ) {
1343    y = n1->in(2);
1344  } else if( x == n1->in(2) ) {
1345    y = n1->in(1);
1346  } else return NULL;
1347
1348  // Not so profitable if compare and add are constants
1349  if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1350    return NULL;
1351
1352  Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1353  Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1354  return new AddINode(j_and,x);
1355}
1356
1357//------------------------------is_absolute------------------------------------
1358// Check for absolute value.
1359static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1360  assert(true_path !=0, "only diamond shape graph expected");
1361
1362  int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1363  int  phi_x_idx = 0;           // Index of phi input where to find naked x
1364
1365  // ABS ends with the merge of 2 control flow paths.
1366  // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1367  int false_path = 3 - true_path;
1368
1369  // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1370  // phi->region->if_proj->ifnode->bool->cmp
1371  BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1372
1373  // Check bool sense
1374  switch( bol->_test._test ) {
1375  case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1376  case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1377  case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1378  case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1379  default:           return NULL;                              break;
1380  }
1381
1382  // Test is next
1383  Node *cmp = bol->in(1);
1384  const Type *tzero = NULL;
1385  switch( cmp->Opcode() ) {
1386  case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1387  case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1388  default: return NULL;
1389  }
1390
1391  // Find zero input of compare; the other input is being abs'd
1392  Node *x = NULL;
1393  bool flip = false;
1394  if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1395    x = cmp->in(3 - cmp_zero_idx);
1396  } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1397    // The test is inverted, we should invert the result...
1398    x = cmp->in(cmp_zero_idx);
1399    flip = true;
1400  } else {
1401    return NULL;
1402  }
1403
1404  // Next get the 2 pieces being selected, one is the original value
1405  // and the other is the negated value.
1406  if( phi_root->in(phi_x_idx) != x ) return NULL;
1407
1408  // Check other phi input for subtract node
1409  Node *sub = phi_root->in(3 - phi_x_idx);
1410
1411  // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1412  if( tzero == TypeF::ZERO ) {
1413    if( sub->Opcode() != Op_SubF ||
1414        sub->in(2) != x ||
1415        phase->type(sub->in(1)) != tzero ) return NULL;
1416    x = new AbsFNode(x);
1417    if (flip) {
1418      x = new SubFNode(sub->in(1), phase->transform(x));
1419    }
1420  } else {
1421    if( sub->Opcode() != Op_SubD ||
1422        sub->in(2) != x ||
1423        phase->type(sub->in(1)) != tzero ) return NULL;
1424    x = new AbsDNode(x);
1425    if (flip) {
1426      x = new SubDNode(sub->in(1), phase->transform(x));
1427    }
1428  }
1429
1430  return x;
1431}
1432
1433//------------------------------split_once-------------------------------------
1434// Helper for split_flow_path
1435static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1436  igvn->hash_delete(n);         // Remove from hash before hacking edges
1437
1438  uint j = 1;
1439  for (uint i = phi->req()-1; i > 0; i--) {
1440    if (phi->in(i) == val) {   // Found a path with val?
1441      // Add to NEW Region/Phi, no DU info
1442      newn->set_req( j++, n->in(i) );
1443      // Remove from OLD Region/Phi
1444      n->del_req(i);
1445    }
1446  }
1447
1448  // Register the new node but do not transform it.  Cannot transform until the
1449  // entire Region/Phi conglomerate has been hacked as a single huge transform.
1450  igvn->register_new_node_with_optimizer( newn );
1451
1452  // Now I can point to the new node.
1453  n->add_req(newn);
1454  igvn->_worklist.push(n);
1455}
1456
1457//------------------------------split_flow_path--------------------------------
1458// Check for merging identical values and split flow paths
1459static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1460  BasicType bt = phi->type()->basic_type();
1461  if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1462    return NULL;                // Bail out on funny non-value stuff
1463  if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1464    return NULL;                // third unequal input to be worth doing
1465
1466  // Scan for a constant
1467  uint i;
1468  for( i = 1; i < phi->req()-1; i++ ) {
1469    Node *n = phi->in(i);
1470    if( !n ) return NULL;
1471    if( phase->type(n) == Type::TOP ) return NULL;
1472    if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1473      break;
1474  }
1475  if( i >= phi->req() )         // Only split for constants
1476    return NULL;
1477
1478  Node *val = phi->in(i);       // Constant to split for
1479  uint hit = 0;                 // Number of times it occurs
1480  Node *r = phi->region();
1481
1482  for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1483    Node *n = phi->in(i);
1484    if( !n ) return NULL;
1485    if( phase->type(n) == Type::TOP ) return NULL;
1486    if( phi->in(i) == val ) {
1487      hit++;
1488      if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1489        return NULL;            // don't split loop entry path
1490      }
1491    }
1492  }
1493
1494  if( hit <= 1 ||               // Make sure we find 2 or more
1495      hit == phi->req()-1 )     // and not ALL the same value
1496    return NULL;
1497
1498  // Now start splitting out the flow paths that merge the same value.
1499  // Split first the RegionNode.
1500  PhaseIterGVN *igvn = phase->is_IterGVN();
1501  RegionNode *newr = new RegionNode(hit+1);
1502  split_once(igvn, phi, val, r, newr);
1503
1504  // Now split all other Phis than this one
1505  for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1506    Node* phi2 = r->fast_out(k);
1507    if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1508      PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1509      split_once(igvn, phi, val, phi2, newphi);
1510    }
1511  }
1512
1513  // Clean up this guy
1514  igvn->hash_delete(phi);
1515  for( i = phi->req()-1; i > 0; i-- ) {
1516    if( phi->in(i) == val ) {
1517      phi->del_req(i);
1518    }
1519  }
1520  phi->add_req(val);
1521
1522  return phi;
1523}
1524
1525//=============================================================================
1526//------------------------------simple_data_loop_check-------------------------
1527//  Try to determining if the phi node in a simple safe/unsafe data loop.
1528//  Returns:
1529// enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1530// Safe       - safe case when the phi and it's inputs reference only safe data
1531//              nodes;
1532// Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1533//              is no reference back to the phi - need a graph walk
1534//              to determine if it is in a loop;
1535// UnsafeLoop - unsafe case when the phi references itself directly or through
1536//              unsafe data node.
1537//  Note: a safe data node is a node which could/never reference itself during
1538//  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1539//  I mark Phi nodes as safe node not only because they can reference itself
1540//  but also to prevent mistaking the fallthrough case inside an outer loop
1541//  as dead loop when the phi references itselfs through an other phi.
1542PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1543  // It is unsafe loop if the phi node references itself directly.
1544  if (in == (Node*)this)
1545    return UnsafeLoop; // Unsafe loop
1546  // Unsafe loop if the phi node references itself through an unsafe data node.
1547  // Exclude cases with null inputs or data nodes which could reference
1548  // itself (safe for dead loops).
1549  if (in != NULL && !in->is_dead_loop_safe()) {
1550    // Check inputs of phi's inputs also.
1551    // It is much less expensive then full graph walk.
1552    uint cnt = in->req();
1553    uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1554    for (; i < cnt; ++i) {
1555      Node* m = in->in(i);
1556      if (m == (Node*)this)
1557        return UnsafeLoop; // Unsafe loop
1558      if (m != NULL && !m->is_dead_loop_safe()) {
1559        // Check the most common case (about 30% of all cases):
1560        // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1561        Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1562        if (m1 == (Node*)this)
1563          return UnsafeLoop; // Unsafe loop
1564        if (m1 != NULL && m1 == m->in(2) &&
1565            m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1566          continue; // Safe case
1567        }
1568        // The phi references an unsafe node - need full analysis.
1569        return Unsafe;
1570      }
1571    }
1572  }
1573  return Safe; // Safe case - we can optimize the phi node.
1574}
1575
1576//------------------------------is_unsafe_data_reference-----------------------
1577// If phi can be reached through the data input - it is data loop.
1578bool PhiNode::is_unsafe_data_reference(Node *in) const {
1579  assert(req() > 1, "");
1580  // First, check simple cases when phi references itself directly or
1581  // through an other node.
1582  LoopSafety safety = simple_data_loop_check(in);
1583  if (safety == UnsafeLoop)
1584    return true;  // phi references itself - unsafe loop
1585  else if (safety == Safe)
1586    return false; // Safe case - phi could be replaced with the unique input.
1587
1588  // Unsafe case when we should go through data graph to determine
1589  // if the phi references itself.
1590
1591  ResourceMark rm;
1592
1593  Arena *a = Thread::current()->resource_area();
1594  Node_List nstack(a);
1595  VectorSet visited(a);
1596
1597  nstack.push(in); // Start with unique input.
1598  visited.set(in->_idx);
1599  while (nstack.size() != 0) {
1600    Node* n = nstack.pop();
1601    uint cnt = n->req();
1602    uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1603    for (; i < cnt; i++) {
1604      Node* m = n->in(i);
1605      if (m == (Node*)this) {
1606        return true;    // Data loop
1607      }
1608      if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1609        if (!visited.test_set(m->_idx))
1610          nstack.push(m);
1611      }
1612    }
1613  }
1614  return false; // The phi is not reachable from its inputs
1615}
1616
1617
1618//------------------------------Ideal------------------------------------------
1619// Return a node which is more "ideal" than the current node.  Must preserve
1620// the CFG, but we can still strip out dead paths.
1621Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1622  // The next should never happen after 6297035 fix.
1623  if( is_copy() )               // Already degraded to a Copy ?
1624    return NULL;                // No change
1625
1626  Node *r = in(0);              // RegionNode
1627  assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1628
1629  // Note: During parsing, phis are often transformed before their regions.
1630  // This means we have to use type_or_null to defend against untyped regions.
1631  if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1632    return NULL;                // No change
1633
1634  Node *top = phase->C->top();
1635  bool new_phi = (outcnt() == 0); // transforming new Phi
1636  // No change for igvn if new phi is not hooked
1637  if (new_phi && can_reshape)
1638    return NULL;
1639
1640  // The are 2 situations when only one valid phi's input is left
1641  // (in addition to Region input).
1642  // One: region is not loop - replace phi with this input.
1643  // Two: region is loop - replace phi with top since this data path is dead
1644  //                       and we need to break the dead data loop.
1645  Node* progress = NULL;        // Record if any progress made
1646  for( uint j = 1; j < req(); ++j ){ // For all paths in
1647    // Check unreachable control paths
1648    Node* rc = r->in(j);
1649    Node* n = in(j);            // Get the input
1650    if (rc == NULL || phase->type(rc) == Type::TOP) {
1651      if (n != top) {           // Not already top?
1652        PhaseIterGVN *igvn = phase->is_IterGVN();
1653        if (can_reshape && igvn != NULL) {
1654          igvn->_worklist.push(r);
1655        }
1656        set_req(j, top);        // Nuke it down
1657        progress = this;        // Record progress
1658      }
1659    }
1660  }
1661
1662  if (can_reshape && outcnt() == 0) {
1663    // set_req() above may kill outputs if Phi is referenced
1664    // only by itself on the dead (top) control path.
1665    return top;
1666  }
1667
1668  bool uncasted = false;
1669  Node* uin = unique_input(phase, false);
1670  if (uin == NULL && can_reshape) {
1671    uncasted = true;
1672    uin = unique_input(phase, true);
1673  }
1674  if (uin == top) {             // Simplest case: no alive inputs.
1675    if (can_reshape)            // IGVN transformation
1676      return top;
1677    else
1678      return NULL;              // Identity will return TOP
1679  } else if (uin != NULL) {
1680    // Only one not-NULL unique input path is left.
1681    // Determine if this input is backedge of a loop.
1682    // (Skip new phis which have no uses and dead regions).
1683    if (outcnt() > 0 && r->in(0) != NULL) {
1684      // First, take the short cut when we know it is a loop and
1685      // the EntryControl data path is dead.
1686      // Loop node may have only one input because entry path
1687      // is removed in PhaseIdealLoop::Dominators().
1688      assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1689      bool is_loop = (r->is_Loop() && r->req() == 3);
1690      // Then, check if there is a data loop when phi references itself directly
1691      // or through other data nodes.
1692      if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1693          (!is_loop && is_unsafe_data_reference(uin))) {
1694        // Break this data loop to avoid creation of a dead loop.
1695        if (can_reshape) {
1696          return top;
1697        } else {
1698          // We can't return top if we are in Parse phase - cut inputs only
1699          // let Identity to handle the case.
1700          replace_edge(uin, top);
1701          return NULL;
1702        }
1703      }
1704    }
1705
1706    if (uncasted) {
1707      // Add cast nodes between the phi to be removed and its unique input.
1708      // Wait until after parsing for the type information to propagate from the casts.
1709      assert(can_reshape, "Invalid during parsing");
1710      const Type* phi_type = bottom_type();
1711      assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1712      // Add casts to carry the control dependency of the Phi that is
1713      // going away
1714      Node* cast = NULL;
1715      if (phi_type->isa_int()) {
1716        cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1717      } else {
1718        const Type* uin_type = phase->type(uin);
1719        if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1720          cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1721        } else {
1722          // Use a CastPP for a cast to not null and a CheckCastPP for
1723          // a cast to a new klass (and both if both null-ness and
1724          // klass change).
1725
1726          // If the type of phi is not null but the type of uin may be
1727          // null, uin's type must be casted to not null
1728          if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1729              uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1730            cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1731          }
1732
1733          // If the type of phi and uin, both casted to not null,
1734          // differ the klass of uin must be (check)cast'ed to match
1735          // that of phi
1736          if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1737            Node* n = uin;
1738            if (cast != NULL) {
1739              cast = phase->transform(cast);
1740              n = cast;
1741            }
1742            cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1743          }
1744          if (cast == NULL) {
1745            cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1746          }
1747        }
1748      }
1749      assert(cast != NULL, "cast should be set");
1750      cast = phase->transform(cast);
1751      // set all inputs to the new cast(s) so the Phi is removed by Identity
1752      PhaseIterGVN* igvn = phase->is_IterGVN();
1753      for (uint i = 1; i < req(); i++) {
1754        set_req_X(i, cast, igvn);
1755      }
1756      uin = cast;
1757    }
1758
1759    // One unique input.
1760    debug_only(Node* ident = Identity(phase));
1761    // The unique input must eventually be detected by the Identity call.
1762#ifdef ASSERT
1763    if (ident != uin && !ident->is_top()) {
1764      // print this output before failing assert
1765      r->dump(3);
1766      this->dump(3);
1767      ident->dump();
1768      uin->dump();
1769    }
1770#endif
1771    assert(ident == uin || ident->is_top(), "Identity must clean this up");
1772    return NULL;
1773  }
1774
1775  Node* opt = NULL;
1776  int true_path = is_diamond_phi();
1777  if( true_path != 0 ) {
1778    // Check for CMove'ing identity. If it would be unsafe,
1779    // handle it here. In the safe case, let Identity handle it.
1780    Node* unsafe_id = is_cmove_id(phase, true_path);
1781    if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1782      opt = unsafe_id;
1783
1784    // Check for simple convert-to-boolean pattern
1785    if( opt == NULL )
1786      opt = is_x2logic(phase, this, true_path);
1787
1788    // Check for absolute value
1789    if( opt == NULL )
1790      opt = is_absolute(phase, this, true_path);
1791
1792    // Check for conditional add
1793    if( opt == NULL && can_reshape )
1794      opt = is_cond_add(phase, this, true_path);
1795
1796    // These 4 optimizations could subsume the phi:
1797    // have to check for a dead data loop creation.
1798    if( opt != NULL ) {
1799      if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1800        // Found dead loop.
1801        if( can_reshape )
1802          return top;
1803        // We can't return top if we are in Parse phase - cut inputs only
1804        // to stop further optimizations for this phi. Identity will return TOP.
1805        assert(req() == 3, "only diamond merge phi here");
1806        set_req(1, top);
1807        set_req(2, top);
1808        return NULL;
1809      } else {
1810        return opt;
1811      }
1812    }
1813  }
1814
1815  // Check for merging identical values and split flow paths
1816  if (can_reshape) {
1817    opt = split_flow_path(phase, this);
1818    // This optimization only modifies phi - don't need to check for dead loop.
1819    assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1820    if (opt != NULL)  return opt;
1821  }
1822
1823  if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1824    // Try to undo Phi of AddP:
1825    // (Phi (AddP base base y) (AddP base2 base2 y))
1826    // becomes:
1827    // newbase := (Phi base base2)
1828    // (AddP newbase newbase y)
1829    //
1830    // This occurs as a result of unsuccessful split_thru_phi and
1831    // interferes with taking advantage of addressing modes. See the
1832    // clone_shift_expressions code in matcher.cpp
1833    Node* addp = in(1);
1834    const Type* type = addp->in(AddPNode::Base)->bottom_type();
1835    Node* y = addp->in(AddPNode::Offset);
1836    if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1837      // make sure that all the inputs are similar to the first one,
1838      // i.e. AddP with base == address and same offset as first AddP
1839      bool doit = true;
1840      for (uint i = 2; i < req(); i++) {
1841        if (in(i) == NULL ||
1842            in(i)->Opcode() != Op_AddP ||
1843            in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1844            in(i)->in(AddPNode::Offset) != y) {
1845          doit = false;
1846          break;
1847        }
1848        // Accumulate type for resulting Phi
1849        type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1850      }
1851      Node* base = NULL;
1852      if (doit) {
1853        // Check for neighboring AddP nodes in a tree.
1854        // If they have a base, use that it.
1855        for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1856          Node* u = this->fast_out(k);
1857          if (u->is_AddP()) {
1858            Node* base2 = u->in(AddPNode::Base);
1859            if (base2 != NULL && !base2->is_top()) {
1860              if (base == NULL)
1861                base = base2;
1862              else if (base != base2)
1863                { doit = false; break; }
1864            }
1865          }
1866        }
1867      }
1868      if (doit) {
1869        if (base == NULL) {
1870          base = new PhiNode(in(0), type, NULL);
1871          for (uint i = 1; i < req(); i++) {
1872            base->init_req(i, in(i)->in(AddPNode::Base));
1873          }
1874          phase->is_IterGVN()->register_new_node_with_optimizer(base);
1875        }
1876        return new AddPNode(base, base, y);
1877      }
1878    }
1879  }
1880
1881  // Split phis through memory merges, so that the memory merges will go away.
1882  // Piggy-back this transformation on the search for a unique input....
1883  // It will be as if the merged memory is the unique value of the phi.
1884  // (Do not attempt this optimization unless parsing is complete.
1885  // It would make the parser's memory-merge logic sick.)
1886  // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1887  if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1888    // see if this phi should be sliced
1889    uint merge_width = 0;
1890    bool saw_self = false;
1891    for( uint i=1; i<req(); ++i ) {// For all paths in
1892      Node *ii = in(i);
1893      // TOP inputs should not be counted as safe inputs because if the
1894      // Phi references itself through all other inputs then splitting the
1895      // Phi through memory merges would create dead loop at later stage.
1896      if (ii == top) {
1897        return NULL; // Delay optimization until graph is cleaned.
1898      }
1899      if (ii->is_MergeMem()) {
1900        MergeMemNode* n = ii->as_MergeMem();
1901        merge_width = MAX2(merge_width, n->req());
1902        saw_self = saw_self || phase->eqv(n->base_memory(), this);
1903      }
1904    }
1905
1906    // This restriction is temporarily necessary to ensure termination:
1907    if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1908
1909    if (merge_width > Compile::AliasIdxRaw) {
1910      // found at least one non-empty MergeMem
1911      const TypePtr* at = adr_type();
1912      if (at != TypePtr::BOTTOM) {
1913        // Patch the existing phi to select an input from the merge:
1914        // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1915        //     Phi:AT1(...m1...)
1916        int alias_idx = phase->C->get_alias_index(at);
1917        for (uint i=1; i<req(); ++i) {
1918          Node *ii = in(i);
1919          if (ii->is_MergeMem()) {
1920            MergeMemNode* n = ii->as_MergeMem();
1921            // compress paths and change unreachable cycles to TOP
1922            // If not, we can update the input infinitely along a MergeMem cycle
1923            // Equivalent code is in MemNode::Ideal_common
1924            Node *m  = phase->transform(n);
1925            if (outcnt() == 0) {  // Above transform() may kill us!
1926              return top;
1927            }
1928            // If transformed to a MergeMem, get the desired slice
1929            // Otherwise the returned node represents memory for every slice
1930            Node *new_mem = (m->is_MergeMem()) ?
1931                             m->as_MergeMem()->memory_at(alias_idx) : m;
1932            // Update input if it is progress over what we have now
1933            if (new_mem != ii) {
1934              set_req(i, new_mem);
1935              progress = this;
1936            }
1937          }
1938        }
1939      } else {
1940        // We know that at least one MergeMem->base_memory() == this
1941        // (saw_self == true). If all other inputs also references this phi
1942        // (directly or through data nodes) - it is dead loop.
1943        bool saw_safe_input = false;
1944        for (uint j = 1; j < req(); ++j) {
1945          Node *n = in(j);
1946          if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1947            continue;              // skip known cases
1948          if (!is_unsafe_data_reference(n)) {
1949            saw_safe_input = true; // found safe input
1950            break;
1951          }
1952        }
1953        if (!saw_safe_input)
1954          return top; // all inputs reference back to this phi - dead loop
1955
1956        // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1957        //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1958        PhaseIterGVN *igvn = phase->is_IterGVN();
1959        Node* hook = new Node(1);
1960        PhiNode* new_base = (PhiNode*) clone();
1961        // Must eagerly register phis, since they participate in loops.
1962        if (igvn) {
1963          igvn->register_new_node_with_optimizer(new_base);
1964          hook->add_req(new_base);
1965        }
1966        MergeMemNode* result = MergeMemNode::make(new_base);
1967        for (uint i = 1; i < req(); ++i) {
1968          Node *ii = in(i);
1969          if (ii->is_MergeMem()) {
1970            MergeMemNode* n = ii->as_MergeMem();
1971            for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1972              // If we have not seen this slice yet, make a phi for it.
1973              bool made_new_phi = false;
1974              if (mms.is_empty()) {
1975                Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1976                made_new_phi = true;
1977                if (igvn) {
1978                  igvn->register_new_node_with_optimizer(new_phi);
1979                  hook->add_req(new_phi);
1980                }
1981                mms.set_memory(new_phi);
1982              }
1983              Node* phi = mms.memory();
1984              assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1985              phi->set_req(i, mms.memory2());
1986            }
1987          }
1988        }
1989        // Distribute all self-loops.
1990        { // (Extra braces to hide mms.)
1991          for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1992            Node* phi = mms.memory();
1993            for (uint i = 1; i < req(); ++i) {
1994              if (phi->in(i) == this)  phi->set_req(i, phi);
1995            }
1996          }
1997        }
1998        // now transform the new nodes, and return the mergemem
1999        for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2000          Node* phi = mms.memory();
2001          mms.set_memory(phase->transform(phi));
2002        }
2003        if (igvn) { // Unhook.
2004          igvn->hash_delete(hook);
2005          for (uint i = 1; i < hook->req(); i++) {
2006            hook->set_req(i, NULL);
2007          }
2008        }
2009        // Replace self with the result.
2010        return result;
2011      }
2012    }
2013    //
2014    // Other optimizations on the memory chain
2015    //
2016    const TypePtr* at = adr_type();
2017    for( uint i=1; i<req(); ++i ) {// For all paths in
2018      Node *ii = in(i);
2019      Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2020      if (ii != new_in ) {
2021        set_req(i, new_in);
2022        progress = this;
2023      }
2024    }
2025  }
2026
2027#ifdef _LP64
2028  // Push DecodeN/DecodeNKlass down through phi.
2029  // The rest of phi graph will transform by split EncodeP node though phis up.
2030  if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2031    bool may_push = true;
2032    bool has_decodeN = false;
2033    bool is_decodeN = false;
2034    for (uint i=1; i<req(); ++i) {// For all paths in
2035      Node *ii = in(i);
2036      if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2037        // Do optimization if a non dead path exist.
2038        if (ii->in(1)->bottom_type() != Type::TOP) {
2039          has_decodeN = true;
2040          is_decodeN = ii->is_DecodeN();
2041        }
2042      } else if (!ii->is_Phi()) {
2043        may_push = false;
2044      }
2045    }
2046
2047    if (has_decodeN && may_push) {
2048      PhaseIterGVN *igvn = phase->is_IterGVN();
2049      // Make narrow type for new phi.
2050      const Type* narrow_t;
2051      if (is_decodeN) {
2052        narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2053      } else {
2054        narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2055      }
2056      PhiNode* new_phi = new PhiNode(r, narrow_t);
2057      uint orig_cnt = req();
2058      for (uint i=1; i<req(); ++i) {// For all paths in
2059        Node *ii = in(i);
2060        Node* new_ii = NULL;
2061        if (ii->is_DecodeNarrowPtr()) {
2062          assert(ii->bottom_type() == bottom_type(), "sanity");
2063          new_ii = ii->in(1);
2064        } else {
2065          assert(ii->is_Phi(), "sanity");
2066          if (ii->as_Phi() == this) {
2067            new_ii = new_phi;
2068          } else {
2069            if (is_decodeN) {
2070              new_ii = new EncodePNode(ii, narrow_t);
2071            } else {
2072              new_ii = new EncodePKlassNode(ii, narrow_t);
2073            }
2074            igvn->register_new_node_with_optimizer(new_ii);
2075          }
2076        }
2077        new_phi->set_req(i, new_ii);
2078      }
2079      igvn->register_new_node_with_optimizer(new_phi, this);
2080      if (is_decodeN) {
2081        progress = new DecodeNNode(new_phi, bottom_type());
2082      } else {
2083        progress = new DecodeNKlassNode(new_phi, bottom_type());
2084      }
2085    }
2086  }
2087#endif
2088
2089  return progress;              // Return any progress
2090}
2091
2092//------------------------------is_tripcount-----------------------------------
2093bool PhiNode::is_tripcount() const {
2094  return (in(0) != NULL && in(0)->is_CountedLoop() &&
2095          in(0)->as_CountedLoop()->phi() == this);
2096}
2097
2098//------------------------------out_RegMask------------------------------------
2099const RegMask &PhiNode::in_RegMask(uint i) const {
2100  return i ? out_RegMask() : RegMask::Empty;
2101}
2102
2103const RegMask &PhiNode::out_RegMask() const {
2104  uint ideal_reg = _type->ideal_reg();
2105  assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2106  if( ideal_reg == 0 ) return RegMask::Empty;
2107  assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2108  return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2109}
2110
2111#ifndef PRODUCT
2112void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2113  // For a PhiNode, the set of related nodes includes all inputs till level 2,
2114  // and all outputs till level 1. In compact mode, inputs till level 1 are
2115  // collected.
2116  this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2117  this->collect_nodes(out_rel, -1, false, false);
2118}
2119
2120void PhiNode::dump_spec(outputStream *st) const {
2121  TypeNode::dump_spec(st);
2122  if (is_tripcount()) {
2123    st->print(" #tripcount");
2124  }
2125}
2126#endif
2127
2128
2129//=============================================================================
2130const Type* GotoNode::Value(PhaseGVN* phase) const {
2131  // If the input is reachable, then we are executed.
2132  // If the input is not reachable, then we are not executed.
2133  return phase->type(in(0));
2134}
2135
2136Node* GotoNode::Identity(PhaseGVN* phase) {
2137  return in(0);                // Simple copy of incoming control
2138}
2139
2140const RegMask &GotoNode::out_RegMask() const {
2141  return RegMask::Empty;
2142}
2143
2144#ifndef PRODUCT
2145//-----------------------------related-----------------------------------------
2146// The related nodes of a GotoNode are all inputs at level 1, as well as the
2147// outputs at level 1. This is regardless of compact mode.
2148void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2149  this->collect_nodes(in_rel, 1, false, false);
2150  this->collect_nodes(out_rel, -1, false, false);
2151}
2152#endif
2153
2154
2155//=============================================================================
2156const RegMask &JumpNode::out_RegMask() const {
2157  return RegMask::Empty;
2158}
2159
2160#ifndef PRODUCT
2161//-----------------------------related-----------------------------------------
2162// The related nodes of a JumpNode are all inputs at level 1, as well as the
2163// outputs at level 2 (to include actual jump targets beyond projection nodes).
2164// This is regardless of compact mode.
2165void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2166  this->collect_nodes(in_rel, 1, false, false);
2167  this->collect_nodes(out_rel, -2, false, false);
2168}
2169#endif
2170
2171//=============================================================================
2172const RegMask &JProjNode::out_RegMask() const {
2173  return RegMask::Empty;
2174}
2175
2176//=============================================================================
2177const RegMask &CProjNode::out_RegMask() const {
2178  return RegMask::Empty;
2179}
2180
2181
2182
2183//=============================================================================
2184
2185uint PCTableNode::hash() const { return Node::hash() + _size; }
2186uint PCTableNode::cmp( const Node &n ) const
2187{ return _size == ((PCTableNode&)n)._size; }
2188
2189const Type *PCTableNode::bottom_type() const {
2190  const Type** f = TypeTuple::fields(_size);
2191  for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2192  return TypeTuple::make(_size, f);
2193}
2194
2195//------------------------------Value------------------------------------------
2196// Compute the type of the PCTableNode.  If reachable it is a tuple of
2197// Control, otherwise the table targets are not reachable
2198const Type* PCTableNode::Value(PhaseGVN* phase) const {
2199  if( phase->type(in(0)) == Type::CONTROL )
2200    return bottom_type();
2201  return Type::TOP;             // All paths dead?  Then so are we
2202}
2203
2204//------------------------------Ideal------------------------------------------
2205// Return a node which is more "ideal" than the current node.  Strip out
2206// control copies
2207Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2208  return remove_dead_region(phase, can_reshape) ? this : NULL;
2209}
2210
2211//=============================================================================
2212uint JumpProjNode::hash() const {
2213  return Node::hash() + _dest_bci;
2214}
2215
2216uint JumpProjNode::cmp( const Node &n ) const {
2217  return ProjNode::cmp(n) &&
2218    _dest_bci == ((JumpProjNode&)n)._dest_bci;
2219}
2220
2221#ifndef PRODUCT
2222void JumpProjNode::dump_spec(outputStream *st) const {
2223  ProjNode::dump_spec(st);
2224  st->print("@bci %d ",_dest_bci);
2225}
2226
2227void JumpProjNode::dump_compact_spec(outputStream *st) const {
2228  ProjNode::dump_compact_spec(st);
2229  st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2230}
2231
2232void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2233  // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2234  this->collect_nodes(in_rel, 1, false, false);
2235  this->collect_nodes(out_rel, -1, false, false);
2236}
2237#endif
2238
2239//=============================================================================
2240//------------------------------Value------------------------------------------
2241// Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2242// have the default "fall_through_index" path.
2243const Type* CatchNode::Value(PhaseGVN* phase) const {
2244  // Unreachable?  Then so are all paths from here.
2245  if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2246  // First assume all paths are reachable
2247  const Type** f = TypeTuple::fields(_size);
2248  for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2249  // Identify cases that will always throw an exception
2250  // () rethrow call
2251  // () virtual or interface call with NULL receiver
2252  // () call is a check cast with incompatible arguments
2253  if( in(1)->is_Proj() ) {
2254    Node *i10 = in(1)->in(0);
2255    if( i10->is_Call() ) {
2256      CallNode *call = i10->as_Call();
2257      // Rethrows always throw exceptions, never return
2258      if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2259        f[CatchProjNode::fall_through_index] = Type::TOP;
2260      } else if( call->req() > TypeFunc::Parms ) {
2261        const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2262        // Check for null receiver to virtual or interface calls
2263        if( call->is_CallDynamicJava() &&
2264            arg0->higher_equal(TypePtr::NULL_PTR) ) {
2265          f[CatchProjNode::fall_through_index] = Type::TOP;
2266        }
2267      } // End of if not a runtime stub
2268    } // End of if have call above me
2269  } // End of slot 1 is not a projection
2270  return TypeTuple::make(_size, f);
2271}
2272
2273//=============================================================================
2274uint CatchProjNode::hash() const {
2275  return Node::hash() + _handler_bci;
2276}
2277
2278
2279uint CatchProjNode::cmp( const Node &n ) const {
2280  return ProjNode::cmp(n) &&
2281    _handler_bci == ((CatchProjNode&)n)._handler_bci;
2282}
2283
2284
2285//------------------------------Identity---------------------------------------
2286// If only 1 target is possible, choose it if it is the main control
2287Node* CatchProjNode::Identity(PhaseGVN* phase) {
2288  // If my value is control and no other value is, then treat as ID
2289  const TypeTuple *t = phase->type(in(0))->is_tuple();
2290  if (t->field_at(_con) != Type::CONTROL)  return this;
2291  // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2292  // also remove any exception table entry.  Thus we must know the call
2293  // feeding the Catch will not really throw an exception.  This is ok for
2294  // the main fall-thru control (happens when we know a call can never throw
2295  // an exception) or for "rethrow", because a further optimization will
2296  // yank the rethrow (happens when we inline a function that can throw an
2297  // exception and the caller has no handler).  Not legal, e.g., for passing
2298  // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2299  // These cases MUST throw an exception via the runtime system, so the VM
2300  // will be looking for a table entry.
2301  Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2302  CallNode *call;
2303  if (_con != TypeFunc::Control && // Bail out if not the main control.
2304      !(proj->is_Proj() &&      // AND NOT a rethrow
2305        proj->in(0)->is_Call() &&
2306        (call = proj->in(0)->as_Call()) &&
2307        call->entry_point() == OptoRuntime::rethrow_stub()))
2308    return this;
2309
2310  // Search for any other path being control
2311  for (uint i = 0; i < t->cnt(); i++) {
2312    if (i != _con && t->field_at(i) == Type::CONTROL)
2313      return this;
2314  }
2315  // Only my path is possible; I am identity on control to the jump
2316  return in(0)->in(0);
2317}
2318
2319
2320#ifndef PRODUCT
2321void CatchProjNode::dump_spec(outputStream *st) const {
2322  ProjNode::dump_spec(st);
2323  st->print("@bci %d ",_handler_bci);
2324}
2325#endif
2326
2327//=============================================================================
2328//------------------------------Identity---------------------------------------
2329// Check for CreateEx being Identity.
2330Node* CreateExNode::Identity(PhaseGVN* phase) {
2331  if( phase->type(in(1)) == Type::TOP ) return in(1);
2332  if( phase->type(in(0)) == Type::TOP ) return in(0);
2333  // We only come from CatchProj, unless the CatchProj goes away.
2334  // If the CatchProj is optimized away, then we just carry the
2335  // exception oop through.
2336  CallNode *call = in(1)->in(0)->as_Call();
2337
2338  return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2339    ? this
2340    : call->in(TypeFunc::Parms);
2341}
2342
2343//=============================================================================
2344//------------------------------Value------------------------------------------
2345// Check for being unreachable.
2346const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2347  if (!in(0) || in(0)->is_top()) return Type::TOP;
2348  return bottom_type();
2349}
2350
2351//------------------------------Ideal------------------------------------------
2352// Check for no longer being part of a loop
2353Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2354  if (can_reshape && !in(0)->is_Loop()) {
2355    // Dead code elimination can sometimes delete this projection so
2356    // if it's not there, there's nothing to do.
2357    Node* fallthru = proj_out(0);
2358    if (fallthru != NULL) {
2359      phase->is_IterGVN()->replace_node(fallthru, in(0));
2360    }
2361    return phase->C->top();
2362  }
2363  return NULL;
2364}
2365
2366#ifndef PRODUCT
2367void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2368  st->print("%s", Name());
2369}
2370#endif
2371