callnode.hpp revision 420:a1980da045cc
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29class Chaitin;
30class NamedCounter;
31class MultiNode;
32class  SafePointNode;
33class   CallNode;
34class     CallJavaNode;
35class       CallStaticJavaNode;
36class       CallDynamicJavaNode;
37class     CallRuntimeNode;
38class       CallLeafNode;
39class         CallLeafNoFPNode;
40class     AllocateNode;
41class       AllocateArrayNode;
42class     LockNode;
43class     UnlockNode;
44class JVMState;
45class OopMap;
46class State;
47class StartNode;
48class MachCallNode;
49class FastLockNode;
50
51//------------------------------StartNode--------------------------------------
52// The method start node
53class StartNode : public MultiNode {
54  virtual uint cmp( const Node &n ) const;
55  virtual uint size_of() const; // Size is bigger
56public:
57  const TypeTuple *_domain;
58  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
59    init_class_id(Class_Start);
60    init_flags(Flag_is_block_start);
61    init_req(0,this);
62    init_req(1,root);
63  }
64  virtual int Opcode() const;
65  virtual bool pinned() const { return true; };
66  virtual const Type *bottom_type() const;
67  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
68  virtual const Type *Value( PhaseTransform *phase ) const;
69  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
70  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
71  virtual const RegMask &in_RegMask(uint) const;
72  virtual Node *match( const ProjNode *proj, const Matcher *m );
73  virtual uint ideal_reg() const { return 0; }
74#ifndef PRODUCT
75  virtual void  dump_spec(outputStream *st) const;
76#endif
77};
78
79//------------------------------StartOSRNode-----------------------------------
80// The method start node for on stack replacement code
81class StartOSRNode : public StartNode {
82public:
83  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
84  virtual int   Opcode() const;
85  static  const TypeTuple *osr_domain();
86};
87
88
89//------------------------------ParmNode---------------------------------------
90// Incoming parameters
91class ParmNode : public ProjNode {
92  static const char * const names[TypeFunc::Parms+1];
93public:
94  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
95    init_class_id(Class_Parm);
96  }
97  virtual int Opcode() const;
98  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
99  virtual uint ideal_reg() const;
100#ifndef PRODUCT
101  virtual void dump_spec(outputStream *st) const;
102#endif
103};
104
105
106//------------------------------ReturnNode-------------------------------------
107// Return from subroutine node
108class ReturnNode : public Node {
109public:
110  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
111  virtual int Opcode() const;
112  virtual bool  is_CFG() const { return true; }
113  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
114  virtual bool depends_only_on_test() const { return false; }
115  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
116  virtual const Type *Value( PhaseTransform *phase ) const;
117  virtual uint ideal_reg() const { return NotAMachineReg; }
118  virtual uint match_edge(uint idx) const;
119#ifndef PRODUCT
120  virtual void dump_req() const;
121#endif
122};
123
124
125//------------------------------RethrowNode------------------------------------
126// Rethrow of exception at call site.  Ends a procedure before rethrowing;
127// ends the current basic block like a ReturnNode.  Restores registers and
128// unwinds stack.  Rethrow happens in the caller's method.
129class RethrowNode : public Node {
130 public:
131  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
132  virtual int Opcode() const;
133  virtual bool  is_CFG() const { return true; }
134  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
135  virtual bool depends_only_on_test() const { return false; }
136  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
137  virtual const Type *Value( PhaseTransform *phase ) const;
138  virtual uint match_edge(uint idx) const;
139  virtual uint ideal_reg() const { return NotAMachineReg; }
140#ifndef PRODUCT
141  virtual void dump_req() const;
142#endif
143};
144
145
146//------------------------------TailCallNode-----------------------------------
147// Pop stack frame and jump indirect
148class TailCallNode : public ReturnNode {
149public:
150  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
151    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
152    init_req(TypeFunc::Parms, target);
153    init_req(TypeFunc::Parms+1, moop);
154  }
155
156  virtual int Opcode() const;
157  virtual uint match_edge(uint idx) const;
158};
159
160//------------------------------TailJumpNode-----------------------------------
161// Pop stack frame and jump indirect
162class TailJumpNode : public ReturnNode {
163public:
164  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
165    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
166    init_req(TypeFunc::Parms, target);
167    init_req(TypeFunc::Parms+1, ex_oop);
168  }
169
170  virtual int Opcode() const;
171  virtual uint match_edge(uint idx) const;
172};
173
174//-------------------------------JVMState-------------------------------------
175// A linked list of JVMState nodes captures the whole interpreter state,
176// plus GC roots, for all active calls at some call site in this compilation
177// unit.  (If there is no inlining, then the list has exactly one link.)
178// This provides a way to map the optimized program back into the interpreter,
179// or to let the GC mark the stack.
180class JVMState : public ResourceObj {
181private:
182  JVMState*         _caller;    // List pointer for forming scope chains
183  uint              _depth;     // One mroe than caller depth, or one.
184  uint              _locoff;    // Offset to locals in input edge mapping
185  uint              _stkoff;    // Offset to stack in input edge mapping
186  uint              _monoff;    // Offset to monitors in input edge mapping
187  uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
188  uint              _endoff;    // Offset to end of input edge mapping
189  uint              _sp;        // Jave Expression Stack Pointer for this state
190  int               _bci;       // Byte Code Index of this JVM point
191  ciMethod*         _method;    // Method Pointer
192  SafePointNode*    _map;       // Map node associated with this scope
193public:
194  friend class Compile;
195
196  // Because JVMState objects live over the entire lifetime of the
197  // Compile object, they are allocated into the comp_arena, which
198  // does not get resource marked or reset during the compile process
199  void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
200  void operator delete( void * ) { } // fast deallocation
201
202  // Create a new JVMState, ready for abstract interpretation.
203  JVMState(ciMethod* method, JVMState* caller);
204  JVMState(int stack_size);  // root state; has a null method
205
206  // Access functions for the JVM
207  uint              locoff() const { return _locoff; }
208  uint              stkoff() const { return _stkoff; }
209  uint              argoff() const { return _stkoff + _sp; }
210  uint              monoff() const { return _monoff; }
211  uint              scloff() const { return _scloff; }
212  uint              endoff() const { return _endoff; }
213  uint              oopoff() const { return debug_end(); }
214
215  int            loc_size() const { return _stkoff - _locoff; }
216  int            stk_size() const { return _monoff - _stkoff; }
217  int            mon_size() const { return _scloff - _monoff; }
218  int            scl_size() const { return _endoff - _scloff; }
219
220  bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
221  bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
222  bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
223  bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
224
225  uint              sp()     const { return _sp; }
226  int               bci()    const { return _bci; }
227  bool          has_method() const { return _method != NULL; }
228  ciMethod*         method() const { assert(has_method(), ""); return _method; }
229  JVMState*         caller() const { return _caller; }
230  SafePointNode*    map()    const { return _map; }
231  uint              depth()  const { return _depth; }
232  uint        debug_start()  const; // returns locoff of root caller
233  uint        debug_end()    const; // returns endoff of self
234  uint        debug_size()   const {
235    return loc_size() + sp() + mon_size() + scl_size();
236  }
237  uint        debug_depth()  const; // returns sum of debug_size values at all depths
238
239  // Returns the JVM state at the desired depth (1 == root).
240  JVMState* of_depth(int d) const;
241
242  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
243  bool same_calls_as(const JVMState* that) const;
244
245  // Monitors (monitors are stored as (boxNode, objNode) pairs
246  enum { logMonitorEdges = 1 };
247  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
248  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
249  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
250  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
251  bool is_monitor_box(uint off)    const {
252    assert(is_mon(off), "should be called only for monitor edge");
253    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
254  }
255  bool is_monitor_use(uint off)    const { return (is_mon(off)
256                                                   && is_monitor_box(off))
257                                             || (caller() && caller()->is_monitor_use(off)); }
258
259  // Initialization functions for the JVM
260  void              set_locoff(uint off) { _locoff = off; }
261  void              set_stkoff(uint off) { _stkoff = off; }
262  void              set_monoff(uint off) { _monoff = off; }
263  void              set_scloff(uint off) { _scloff = off; }
264  void              set_endoff(uint off) { _endoff = off; }
265  void              set_offsets(uint off) {
266    _locoff = _stkoff = _monoff = _scloff = _endoff = off;
267  }
268  void              set_map(SafePointNode *map) { _map = map; }
269  void              set_sp(uint sp) { _sp = sp; }
270  void              set_bci(int bci) { _bci = bci; }
271
272  // Miscellaneous utility functions
273  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
274  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
275
276#ifndef PRODUCT
277  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
278  void      dump_spec(outputStream *st) const;
279  void      dump_on(outputStream* st) const;
280  void      dump() const {
281    dump_on(tty);
282  }
283#endif
284};
285
286//------------------------------SafePointNode----------------------------------
287// A SafePointNode is a subclass of a MultiNode for convenience (and
288// potential code sharing) only - conceptually it is independent of
289// the Node semantics.
290class SafePointNode : public MultiNode {
291  virtual uint           cmp( const Node &n ) const;
292  virtual uint           size_of() const;       // Size is bigger
293
294public:
295  SafePointNode(uint edges, JVMState* jvms,
296                // A plain safepoint advertises no memory effects (NULL):
297                const TypePtr* adr_type = NULL)
298    : MultiNode( edges ),
299      _jvms(jvms),
300      _oop_map(NULL),
301      _adr_type(adr_type)
302  {
303    init_class_id(Class_SafePoint);
304  }
305
306  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
307  JVMState* const _jvms;      // Pointer to list of JVM State objects
308  const TypePtr*  _adr_type;  // What type of memory does this node produce?
309
310  // Many calls take *all* of memory as input,
311  // but some produce a limited subset of that memory as output.
312  // The adr_type reports the call's behavior as a store, not a load.
313
314  virtual JVMState* jvms() const { return _jvms; }
315  void set_jvms(JVMState* s) {
316    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
317  }
318  OopMap *oop_map() const { return _oop_map; }
319  void set_oop_map(OopMap *om) { _oop_map = om; }
320
321  // Functionality from old debug nodes which has changed
322  Node *local(JVMState* jvms, uint idx) const {
323    assert(verify_jvms(jvms), "jvms must match");
324    return in(jvms->locoff() + idx);
325  }
326  Node *stack(JVMState* jvms, uint idx) const {
327    assert(verify_jvms(jvms), "jvms must match");
328    return in(jvms->stkoff() + idx);
329  }
330  Node *argument(JVMState* jvms, uint idx) const {
331    assert(verify_jvms(jvms), "jvms must match");
332    return in(jvms->argoff() + idx);
333  }
334  Node *monitor_box(JVMState* jvms, uint idx) const {
335    assert(verify_jvms(jvms), "jvms must match");
336    return in(jvms->monitor_box_offset(idx));
337  }
338  Node *monitor_obj(JVMState* jvms, uint idx) const {
339    assert(verify_jvms(jvms), "jvms must match");
340    return in(jvms->monitor_obj_offset(idx));
341  }
342
343  void  set_local(JVMState* jvms, uint idx, Node *c);
344
345  void  set_stack(JVMState* jvms, uint idx, Node *c) {
346    assert(verify_jvms(jvms), "jvms must match");
347    set_req(jvms->stkoff() + idx, c);
348  }
349  void  set_argument(JVMState* jvms, uint idx, Node *c) {
350    assert(verify_jvms(jvms), "jvms must match");
351    set_req(jvms->argoff() + idx, c);
352  }
353  void ensure_stack(JVMState* jvms, uint stk_size) {
354    assert(verify_jvms(jvms), "jvms must match");
355    int grow_by = (int)stk_size - (int)jvms->stk_size();
356    if (grow_by > 0)  grow_stack(jvms, grow_by);
357  }
358  void grow_stack(JVMState* jvms, uint grow_by);
359  // Handle monitor stack
360  void push_monitor( const FastLockNode *lock );
361  void pop_monitor ();
362  Node *peek_monitor_box() const;
363  Node *peek_monitor_obj() const;
364
365  // Access functions for the JVM
366  Node *control  () const { return in(TypeFunc::Control  ); }
367  Node *i_o      () const { return in(TypeFunc::I_O      ); }
368  Node *memory   () const { return in(TypeFunc::Memory   ); }
369  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
370  Node *frameptr () const { return in(TypeFunc::FramePtr ); }
371
372  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
373  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
374  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
375
376  MergeMemNode* merged_memory() const {
377    return in(TypeFunc::Memory)->as_MergeMem();
378  }
379
380  // The parser marks useless maps as dead when it's done with them:
381  bool is_killed() { return in(TypeFunc::Control) == NULL; }
382
383  // Exception states bubbling out of subgraphs such as inlined calls
384  // are recorded here.  (There might be more than one, hence the "next".)
385  // This feature is used only for safepoints which serve as "maps"
386  // for JVM states during parsing, intrinsic expansion, etc.
387  SafePointNode*         next_exception() const;
388  void               set_next_exception(SafePointNode* n);
389  bool                   has_exceptions() const { return next_exception() != NULL; }
390
391  // Standard Node stuff
392  virtual int            Opcode() const;
393  virtual bool           pinned() const { return true; }
394  virtual const Type    *Value( PhaseTransform *phase ) const;
395  virtual const Type    *bottom_type() const { return Type::CONTROL; }
396  virtual const TypePtr *adr_type() const { return _adr_type; }
397  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
398  virtual Node          *Identity( PhaseTransform *phase );
399  virtual uint           ideal_reg() const { return 0; }
400  virtual const RegMask &in_RegMask(uint) const;
401  virtual const RegMask &out_RegMask() const;
402  virtual uint           match_edge(uint idx) const;
403
404  static  bool           needs_polling_address_input();
405
406#ifndef PRODUCT
407  virtual void              dump_spec(outputStream *st) const;
408#endif
409};
410
411//------------------------------SafePointScalarObjectNode----------------------
412// A SafePointScalarObjectNode represents the state of a scalarized object
413// at a safepoint.
414
415class SafePointScalarObjectNode: public TypeNode {
416  uint _first_index; // First input edge index of a SafePoint node where
417                     // states of the scalarized object fields are collected.
418  uint _n_fields;    // Number of non-static fields of the scalarized object.
419  DEBUG_ONLY(AllocateNode* _alloc;)
420public:
421  SafePointScalarObjectNode(const TypeOopPtr* tp,
422#ifdef ASSERT
423                            AllocateNode* alloc,
424#endif
425                            uint first_index, uint n_fields);
426  virtual int Opcode() const;
427  virtual uint           ideal_reg() const;
428  virtual const RegMask &in_RegMask(uint) const;
429  virtual const RegMask &out_RegMask() const;
430  virtual uint           match_edge(uint idx) const;
431
432  uint first_index() const { return _first_index; }
433  uint n_fields()    const { return _n_fields; }
434  DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
435
436  // SafePointScalarObject should be always pinned to the control edge
437  // of the SafePoint node for which it was generated.
438  virtual bool pinned() const; // { return true; }
439
440  virtual uint size_of() const { return sizeof(*this); }
441
442  // Assumes that "this" is an argument to a safepoint node "s", and that
443  // "new_call" is being created to correspond to "s".  But the difference
444  // between the start index of the jvmstates of "new_call" and "s" is
445  // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
446  // corresponds appropriately to "this" in "new_call".  Assumes that
447  // "sosn_map" is a map, specific to the translation of "s" to "new_call",
448  // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
449  SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
450
451#ifndef PRODUCT
452  virtual void              dump_spec(outputStream *st) const;
453#endif
454};
455
456//------------------------------CallNode---------------------------------------
457// Call nodes now subsume the function of debug nodes at callsites, so they
458// contain the functionality of a full scope chain of debug nodes.
459class CallNode : public SafePointNode {
460public:
461  const TypeFunc *_tf;        // Function type
462  address      _entry_point;  // Address of method being called
463  float        _cnt;          // Estimate of number of times called
464
465  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
466    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
467      _tf(tf),
468      _entry_point(addr),
469      _cnt(COUNT_UNKNOWN)
470  {
471    init_class_id(Class_Call);
472    init_flags(Flag_is_Call);
473  }
474
475  const TypeFunc* tf()        const { return _tf; }
476  const address entry_point() const { return _entry_point; }
477  const float   cnt()         const { return _cnt; }
478
479  void set_tf(const TypeFunc* tf) { _tf = tf; }
480  void set_entry_point(address p) { _entry_point = p; }
481  void set_cnt(float c)           { _cnt = c; }
482
483  virtual const Type *bottom_type() const;
484  virtual const Type *Value( PhaseTransform *phase ) const;
485  virtual Node *Identity( PhaseTransform *phase ) { return this; }
486  virtual uint        cmp( const Node &n ) const;
487  virtual uint        size_of() const = 0;
488  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
489  virtual Node       *match( const ProjNode *proj, const Matcher *m );
490  virtual uint        ideal_reg() const { return NotAMachineReg; }
491  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
492  // for some macro nodes whose expansion does not have a safepoint on the fast path.
493  virtual bool        guaranteed_safepoint()  { return true; }
494  // For macro nodes, the JVMState gets modified during expansion, so when cloning
495  // the node the JVMState must be cloned.
496  virtual void        clone_jvms() { }   // default is not to clone
497
498  // Returns true if the call may modify n
499  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
500  // Does this node have a use of n other than in debug information?
501  bool                has_non_debug_use(Node *n);
502  // Returns the unique CheckCastPP of a call
503  // or result projection is there are several CheckCastPP
504  // or returns NULL if there is no one.
505  Node *result_cast();
506
507  virtual uint match_edge(uint idx) const;
508
509#ifndef PRODUCT
510  virtual void        dump_req()  const;
511  virtual void        dump_spec(outputStream *st) const;
512#endif
513};
514
515//------------------------------CallJavaNode-----------------------------------
516// Make a static or dynamic subroutine call node using Java calling
517// convention.  (The "Java" calling convention is the compiler's calling
518// convention, as opposed to the interpreter's or that of native C.)
519class CallJavaNode : public CallNode {
520protected:
521  virtual uint cmp( const Node &n ) const;
522  virtual uint size_of() const; // Size is bigger
523
524  bool    _optimized_virtual;
525  ciMethod* _method;            // Method being direct called
526public:
527  const int       _bci;         // Byte Code Index of call byte code
528  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
529    : CallNode(tf, addr, TypePtr::BOTTOM),
530      _method(method), _bci(bci), _optimized_virtual(false)
531  {
532    init_class_id(Class_CallJava);
533  }
534
535  virtual int   Opcode() const;
536  ciMethod* method() const                { return _method; }
537  void  set_method(ciMethod *m)           { _method = m; }
538  void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
539  bool  is_optimized_virtual() const      { return _optimized_virtual; }
540
541#ifndef PRODUCT
542  virtual void  dump_spec(outputStream *st) const;
543#endif
544};
545
546//------------------------------CallStaticJavaNode-----------------------------
547// Make a direct subroutine call using Java calling convention (for static
548// calls and optimized virtual calls, plus calls to wrappers for run-time
549// routines); generates static stub.
550class CallStaticJavaNode : public CallJavaNode {
551  virtual uint cmp( const Node &n ) const;
552  virtual uint size_of() const; // Size is bigger
553public:
554  CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
555    : CallJavaNode(tf, addr, method, bci), _name(NULL) {
556    init_class_id(Class_CallStaticJava);
557  }
558  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
559                     const TypePtr* adr_type)
560    : CallJavaNode(tf, addr, NULL, bci), _name(name) {
561    init_class_id(Class_CallStaticJava);
562    // This node calls a runtime stub, which often has narrow memory effects.
563    _adr_type = adr_type;
564  }
565  const char *_name;            // Runtime wrapper name
566
567  // If this is an uncommon trap, return the request code, else zero.
568  int uncommon_trap_request() const;
569  static int extract_uncommon_trap_request(const Node* call);
570
571  virtual int         Opcode() const;
572#ifndef PRODUCT
573  virtual void        dump_spec(outputStream *st) const;
574#endif
575};
576
577//------------------------------CallDynamicJavaNode----------------------------
578// Make a dispatched call using Java calling convention.
579class CallDynamicJavaNode : public CallJavaNode {
580  virtual uint cmp( const Node &n ) const;
581  virtual uint size_of() const; // Size is bigger
582public:
583  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
584    init_class_id(Class_CallDynamicJava);
585  }
586
587  int _vtable_index;
588  virtual int   Opcode() const;
589#ifndef PRODUCT
590  virtual void  dump_spec(outputStream *st) const;
591#endif
592};
593
594//------------------------------CallRuntimeNode--------------------------------
595// Make a direct subroutine call node into compiled C++ code.
596class CallRuntimeNode : public CallNode {
597  virtual uint cmp( const Node &n ) const;
598  virtual uint size_of() const; // Size is bigger
599public:
600  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
601                  const TypePtr* adr_type)
602    : CallNode(tf, addr, adr_type),
603      _name(name)
604  {
605    init_class_id(Class_CallRuntime);
606  }
607
608  const char *_name;            // Printable name, if _method is NULL
609  virtual int   Opcode() const;
610  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
611
612#ifndef PRODUCT
613  virtual void  dump_spec(outputStream *st) const;
614#endif
615};
616
617//------------------------------CallLeafNode-----------------------------------
618// Make a direct subroutine call node into compiled C++ code, without
619// safepoints
620class CallLeafNode : public CallRuntimeNode {
621public:
622  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
623               const TypePtr* adr_type)
624    : CallRuntimeNode(tf, addr, name, adr_type)
625  {
626    init_class_id(Class_CallLeaf);
627  }
628  virtual int   Opcode() const;
629  virtual bool        guaranteed_safepoint()  { return false; }
630#ifndef PRODUCT
631  virtual void  dump_spec(outputStream *st) const;
632#endif
633};
634
635//------------------------------CallLeafNoFPNode-------------------------------
636// CallLeafNode, not using floating point or using it in the same manner as
637// the generated code
638class CallLeafNoFPNode : public CallLeafNode {
639public:
640  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
641                   const TypePtr* adr_type)
642    : CallLeafNode(tf, addr, name, adr_type)
643  {
644  }
645  virtual int   Opcode() const;
646};
647
648
649//------------------------------Allocate---------------------------------------
650// High-level memory allocation
651//
652//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
653//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
654//  they have 2 memory projections and 2 i_o projections (which are distinguished by
655//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
656//  order to differentiate the uses of the projection on the normal control path from
657//  those on the exception return path.
658//
659class AllocateNode : public CallNode {
660public:
661  enum {
662    // Output:
663    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
664    // Inputs:
665    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
666    KlassNode,                        // type (maybe dynamic) of the obj.
667    InitialTest,                      // slow-path test (may be constant)
668    ALength,                          // array length (or TOP if none)
669    ParmLimit
670  };
671
672  static const TypeFunc* alloc_type() {
673    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
674    fields[AllocSize]   = TypeInt::POS;
675    fields[KlassNode]   = TypeInstPtr::NOTNULL;
676    fields[InitialTest] = TypeInt::BOOL;
677    fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
678
679    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
680
681    // create result type (range)
682    fields = TypeTuple::fields(1);
683    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
684
685    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
686
687    return TypeFunc::make(domain, range);
688  }
689
690  bool _is_scalar_replaceable;  // Result of Escape Analysis
691
692  virtual uint size_of() const; // Size is bigger
693  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
694               Node *size, Node *klass_node, Node *initial_test);
695  // Expansion modifies the JVMState, so we need to clone it
696  virtual void  clone_jvms() {
697    set_jvms(jvms()->clone_deep(Compile::current()));
698  }
699  virtual int Opcode() const;
700  virtual uint ideal_reg() const { return Op_RegP; }
701  virtual bool        guaranteed_safepoint()  { return false; }
702
703  // allocations do not modify their arguments
704  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
705
706  // Pattern-match a possible usage of AllocateNode.
707  // Return null if no allocation is recognized.
708  // The operand is the pointer produced by the (possible) allocation.
709  // It must be a projection of the Allocate or its subsequent CastPP.
710  // (Note:  This function is defined in file graphKit.cpp, near
711  // GraphKit::new_instance/new_array, whose output it recognizes.)
712  // The 'ptr' may not have an offset unless the 'offset' argument is given.
713  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
714
715  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
716  // an offset, which is reported back to the caller.
717  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
718  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
719                                        intptr_t& offset);
720
721  // Dig the klass operand out of a (possible) allocation site.
722  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
723    AllocateNode* allo = Ideal_allocation(ptr, phase);
724    return (allo == NULL) ? NULL : allo->in(KlassNode);
725  }
726
727  // Conservatively small estimate of offset of first non-header byte.
728  int minimum_header_size() {
729    return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
730                                instanceOopDesc::base_offset_in_bytes();
731  }
732
733  // Return the corresponding initialization barrier (or null if none).
734  // Walks out edges to find it...
735  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
736  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
737  InitializeNode* initialization();
738
739  // Convenience for initialization->maybe_set_complete(phase)
740  bool maybe_set_complete(PhaseGVN* phase);
741};
742
743//------------------------------AllocateArray---------------------------------
744//
745// High-level array allocation
746//
747class AllocateArrayNode : public AllocateNode {
748public:
749  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
750                    Node* size, Node* klass_node, Node* initial_test,
751                    Node* count_val
752                    )
753    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
754                   initial_test)
755  {
756    init_class_id(Class_AllocateArray);
757    set_req(AllocateNode::ALength,        count_val);
758  }
759  virtual int Opcode() const;
760  virtual uint size_of() const; // Size is bigger
761
762  // Dig the length operand out of a array allocation site.
763  Node* Ideal_length() {
764    return in(AllocateNode::ALength);
765  }
766
767  // Dig the length operand out of a array allocation site and narrow the
768  // type with a CastII, if necesssary
769  Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
770
771  // Pattern-match a possible usage of AllocateArrayNode.
772  // Return null if no allocation is recognized.
773  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
774    AllocateNode* allo = Ideal_allocation(ptr, phase);
775    return (allo == NULL || !allo->is_AllocateArray())
776           ? NULL : allo->as_AllocateArray();
777  }
778};
779
780//------------------------------AbstractLockNode-----------------------------------
781class AbstractLockNode: public CallNode {
782private:
783 bool _eliminate;    // indicates this lock can be safely eliminated
784#ifndef PRODUCT
785  NamedCounter* _counter;
786#endif
787
788protected:
789  // helper functions for lock elimination
790  //
791
792  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
793                            GrowableArray<AbstractLockNode*> &lock_ops);
794  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
795                                       GrowableArray<AbstractLockNode*> &lock_ops);
796  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
797                               GrowableArray<AbstractLockNode*> &lock_ops);
798  LockNode *find_matching_lock(UnlockNode* unlock);
799
800
801public:
802  AbstractLockNode(const TypeFunc *tf)
803    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
804      _eliminate(false)
805  {
806#ifndef PRODUCT
807    _counter = NULL;
808#endif
809  }
810  virtual int Opcode() const = 0;
811  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
812  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
813  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
814  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
815
816  virtual uint size_of() const { return sizeof(*this); }
817
818  bool is_eliminated()         {return _eliminate; }
819  // mark node as eliminated and update the counter if there is one
820  void set_eliminated();
821
822  // locking does not modify its arguments
823  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
824
825#ifndef PRODUCT
826  void create_lock_counter(JVMState* s);
827  NamedCounter* counter() const { return _counter; }
828#endif
829};
830
831//------------------------------Lock---------------------------------------
832// High-level lock operation
833//
834// This is a subclass of CallNode because it is a macro node which gets expanded
835// into a code sequence containing a call.  This node takes 3 "parameters":
836//    0  -  object to lock
837//    1 -   a BoxLockNode
838//    2 -   a FastLockNode
839//
840class LockNode : public AbstractLockNode {
841public:
842
843  static const TypeFunc *lock_type() {
844    // create input type (domain)
845    const Type **fields = TypeTuple::fields(3);
846    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
847    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
848    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
849    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
850
851    // create result type (range)
852    fields = TypeTuple::fields(0);
853
854    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
855
856    return TypeFunc::make(domain,range);
857  }
858
859  virtual int Opcode() const;
860  virtual uint size_of() const; // Size is bigger
861  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
862    init_class_id(Class_Lock);
863    init_flags(Flag_is_macro);
864    C->add_macro_node(this);
865  }
866  virtual bool        guaranteed_safepoint()  { return false; }
867
868  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
869  // Expansion modifies the JVMState, so we need to clone it
870  virtual void  clone_jvms() {
871    set_jvms(jvms()->clone_deep(Compile::current()));
872  }
873};
874
875//------------------------------Unlock---------------------------------------
876// High-level unlock operation
877class UnlockNode : public AbstractLockNode {
878public:
879  virtual int Opcode() const;
880  virtual uint size_of() const; // Size is bigger
881  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
882    init_class_id(Class_Unlock);
883    init_flags(Flag_is_macro);
884    C->add_macro_node(this);
885  }
886  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
887  // unlock is never a safepoint
888  virtual bool        guaranteed_safepoint()  { return false; }
889};
890