1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OPTO_CALLNODE_HPP
26#define SHARE_VM_OPTO_CALLNODE_HPP
27
28#include "opto/connode.hpp"
29#include "opto/mulnode.hpp"
30#include "opto/multnode.hpp"
31#include "opto/opcodes.hpp"
32#include "opto/phaseX.hpp"
33#include "opto/replacednodes.hpp"
34#include "opto/type.hpp"
35
36// Portions of code courtesy of Clifford Click
37
38// Optimization - Graph Style
39
40class Chaitin;
41class NamedCounter;
42class MultiNode;
43class  SafePointNode;
44class   CallNode;
45class     CallJavaNode;
46class       CallStaticJavaNode;
47class       CallDynamicJavaNode;
48class     CallRuntimeNode;
49class       CallLeafNode;
50class         CallLeafNoFPNode;
51class     AllocateNode;
52class       AllocateArrayNode;
53class     BoxLockNode;
54class     LockNode;
55class     UnlockNode;
56class JVMState;
57class OopMap;
58class State;
59class StartNode;
60class MachCallNode;
61class FastLockNode;
62
63//------------------------------StartNode--------------------------------------
64// The method start node
65class StartNode : public MultiNode {
66  virtual uint cmp( const Node &n ) const;
67  virtual uint size_of() const; // Size is bigger
68public:
69  const TypeTuple *_domain;
70  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
71    init_class_id(Class_Start);
72    init_req(0,this);
73    init_req(1,root);
74  }
75  virtual int Opcode() const;
76  virtual bool pinned() const { return true; };
77  virtual const Type *bottom_type() const;
78  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
79  virtual const Type* Value(PhaseGVN* phase) const;
80  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
81  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
82  virtual const RegMask &in_RegMask(uint) const;
83  virtual Node *match( const ProjNode *proj, const Matcher *m );
84  virtual uint ideal_reg() const { return 0; }
85#ifndef PRODUCT
86  virtual void  dump_spec(outputStream *st) const;
87  virtual void  dump_compact_spec(outputStream *st) const;
88#endif
89};
90
91//------------------------------StartOSRNode-----------------------------------
92// The method start node for on stack replacement code
93class StartOSRNode : public StartNode {
94public:
95  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
96  virtual int   Opcode() const;
97  static  const TypeTuple *osr_domain();
98};
99
100
101//------------------------------ParmNode---------------------------------------
102// Incoming parameters
103class ParmNode : public ProjNode {
104  static const char * const names[TypeFunc::Parms+1];
105public:
106  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
107    init_class_id(Class_Parm);
108  }
109  virtual int Opcode() const;
110  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
111  virtual uint ideal_reg() const;
112#ifndef PRODUCT
113  virtual void dump_spec(outputStream *st) const;
114  virtual void dump_compact_spec(outputStream *st) const;
115  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
116#endif
117};
118
119
120//------------------------------ReturnNode-------------------------------------
121// Return from subroutine node
122class ReturnNode : public Node {
123public:
124  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
125  virtual int Opcode() const;
126  virtual bool  is_CFG() const { return true; }
127  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
128  virtual bool depends_only_on_test() const { return false; }
129  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
130  virtual const Type* Value(PhaseGVN* phase) const;
131  virtual uint ideal_reg() const { return NotAMachineReg; }
132  virtual uint match_edge(uint idx) const;
133#ifndef PRODUCT
134  virtual void dump_req(outputStream *st = tty) const;
135#endif
136};
137
138
139//------------------------------RethrowNode------------------------------------
140// Rethrow of exception at call site.  Ends a procedure before rethrowing;
141// ends the current basic block like a ReturnNode.  Restores registers and
142// unwinds stack.  Rethrow happens in the caller's method.
143class RethrowNode : public Node {
144 public:
145  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
146  virtual int Opcode() const;
147  virtual bool  is_CFG() const { return true; }
148  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
149  virtual bool depends_only_on_test() const { return false; }
150  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
151  virtual const Type* Value(PhaseGVN* phase) const;
152  virtual uint match_edge(uint idx) const;
153  virtual uint ideal_reg() const { return NotAMachineReg; }
154#ifndef PRODUCT
155  virtual void dump_req(outputStream *st = tty) const;
156#endif
157};
158
159
160//------------------------------TailCallNode-----------------------------------
161// Pop stack frame and jump indirect
162class TailCallNode : public ReturnNode {
163public:
164  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
165    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
166    init_req(TypeFunc::Parms, target);
167    init_req(TypeFunc::Parms+1, moop);
168  }
169
170  virtual int Opcode() const;
171  virtual uint match_edge(uint idx) const;
172};
173
174//------------------------------TailJumpNode-----------------------------------
175// Pop stack frame and jump indirect
176class TailJumpNode : public ReturnNode {
177public:
178  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
179    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
180    init_req(TypeFunc::Parms, target);
181    init_req(TypeFunc::Parms+1, ex_oop);
182  }
183
184  virtual int Opcode() const;
185  virtual uint match_edge(uint idx) const;
186};
187
188//-------------------------------JVMState-------------------------------------
189// A linked list of JVMState nodes captures the whole interpreter state,
190// plus GC roots, for all active calls at some call site in this compilation
191// unit.  (If there is no inlining, then the list has exactly one link.)
192// This provides a way to map the optimized program back into the interpreter,
193// or to let the GC mark the stack.
194class JVMState : public ResourceObj {
195  friend class VMStructs;
196public:
197  typedef enum {
198    Reexecute_Undefined = -1, // not defined -- will be translated into false later
199    Reexecute_False     =  0, // false       -- do not reexecute
200    Reexecute_True      =  1  // true        -- reexecute the bytecode
201  } ReexecuteState; //Reexecute State
202
203private:
204  JVMState*         _caller;    // List pointer for forming scope chains
205  uint              _depth;     // One more than caller depth, or one.
206  uint              _locoff;    // Offset to locals in input edge mapping
207  uint              _stkoff;    // Offset to stack in input edge mapping
208  uint              _monoff;    // Offset to monitors in input edge mapping
209  uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
210  uint              _endoff;    // Offset to end of input edge mapping
211  uint              _sp;        // Jave Expression Stack Pointer for this state
212  int               _bci;       // Byte Code Index of this JVM point
213  ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
214  ciMethod*         _method;    // Method Pointer
215  SafePointNode*    _map;       // Map node associated with this scope
216public:
217  friend class Compile;
218  friend class PreserveReexecuteState;
219
220  // Because JVMState objects live over the entire lifetime of the
221  // Compile object, they are allocated into the comp_arena, which
222  // does not get resource marked or reset during the compile process
223  void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
224  void operator delete( void * ) { } // fast deallocation
225
226  // Create a new JVMState, ready for abstract interpretation.
227  JVMState(ciMethod* method, JVMState* caller);
228  JVMState(int stack_size);  // root state; has a null method
229
230  // Access functions for the JVM
231  // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
232  //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
233  uint              locoff() const { return _locoff; }
234  uint              stkoff() const { return _stkoff; }
235  uint              argoff() const { return _stkoff + _sp; }
236  uint              monoff() const { return _monoff; }
237  uint              scloff() const { return _scloff; }
238  uint              endoff() const { return _endoff; }
239  uint              oopoff() const { return debug_end(); }
240
241  int            loc_size() const { return stkoff() - locoff(); }
242  int            stk_size() const { return monoff() - stkoff(); }
243  int            mon_size() const { return scloff() - monoff(); }
244  int            scl_size() const { return endoff() - scloff(); }
245
246  bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
247  bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
248  bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
249  bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
250
251  uint                      sp() const { return _sp; }
252  int                      bci() const { return _bci; }
253  bool        should_reexecute() const { return _reexecute==Reexecute_True; }
254  bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
255  bool              has_method() const { return _method != NULL; }
256  ciMethod*             method() const { assert(has_method(), ""); return _method; }
257  JVMState*             caller() const { return _caller; }
258  SafePointNode*           map() const { return _map; }
259  uint                   depth() const { return _depth; }
260  uint             debug_start() const; // returns locoff of root caller
261  uint               debug_end() const; // returns endoff of self
262  uint              debug_size() const {
263    return loc_size() + sp() + mon_size() + scl_size();
264  }
265  uint        debug_depth()  const; // returns sum of debug_size values at all depths
266
267  // Returns the JVM state at the desired depth (1 == root).
268  JVMState* of_depth(int d) const;
269
270  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
271  bool same_calls_as(const JVMState* that) const;
272
273  // Monitors (monitors are stored as (boxNode, objNode) pairs
274  enum { logMonitorEdges = 1 };
275  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
276  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
277  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
278  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
279  bool is_monitor_box(uint off)    const {
280    assert(is_mon(off), "should be called only for monitor edge");
281    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
282  }
283  bool is_monitor_use(uint off)    const { return (is_mon(off)
284                                                   && is_monitor_box(off))
285                                             || (caller() && caller()->is_monitor_use(off)); }
286
287  // Initialization functions for the JVM
288  void              set_locoff(uint off) { _locoff = off; }
289  void              set_stkoff(uint off) { _stkoff = off; }
290  void              set_monoff(uint off) { _monoff = off; }
291  void              set_scloff(uint off) { _scloff = off; }
292  void              set_endoff(uint off) { _endoff = off; }
293  void              set_offsets(uint off) {
294    _locoff = _stkoff = _monoff = _scloff = _endoff = off;
295  }
296  void              set_map(SafePointNode *map) { _map = map; }
297  void              set_sp(uint sp) { _sp = sp; }
298                    // _reexecute is initialized to "undefined" for a new bci
299  void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
300  void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
301
302  // Miscellaneous utility functions
303  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
304  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
305  void      set_map_deep(SafePointNode *map);// reset map for all callers
306  void      adapt_position(int delta);       // Adapt offsets in in-array after adding an edge.
307  int       interpreter_frame_size() const;
308
309#ifndef PRODUCT
310  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
311  void      dump_spec(outputStream *st) const;
312  void      dump_on(outputStream* st) const;
313  void      dump() const {
314    dump_on(tty);
315  }
316#endif
317};
318
319//------------------------------SafePointNode----------------------------------
320// A SafePointNode is a subclass of a MultiNode for convenience (and
321// potential code sharing) only - conceptually it is independent of
322// the Node semantics.
323class SafePointNode : public MultiNode {
324  virtual uint           cmp( const Node &n ) const;
325  virtual uint           size_of() const;       // Size is bigger
326
327public:
328  SafePointNode(uint edges, JVMState* jvms,
329                // A plain safepoint advertises no memory effects (NULL):
330                const TypePtr* adr_type = NULL)
331    : MultiNode( edges ),
332      _jvms(jvms),
333      _oop_map(NULL),
334      _adr_type(adr_type)
335  {
336    init_class_id(Class_SafePoint);
337  }
338
339  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
340  JVMState* const _jvms;      // Pointer to list of JVM State objects
341  const TypePtr*  _adr_type;  // What type of memory does this node produce?
342  ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
343
344  // Many calls take *all* of memory as input,
345  // but some produce a limited subset of that memory as output.
346  // The adr_type reports the call's behavior as a store, not a load.
347
348  virtual JVMState* jvms() const { return _jvms; }
349  void set_jvms(JVMState* s) {
350    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
351  }
352  OopMap *oop_map() const { return _oop_map; }
353  void set_oop_map(OopMap *om) { _oop_map = om; }
354
355 private:
356  void verify_input(JVMState* jvms, uint idx) const {
357    assert(verify_jvms(jvms), "jvms must match");
358    Node* n = in(idx);
359    assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
360           in(idx + 1)->is_top(), "2nd half of long/double");
361  }
362
363 public:
364  // Functionality from old debug nodes which has changed
365  Node *local(JVMState* jvms, uint idx) const {
366    verify_input(jvms, jvms->locoff() + idx);
367    return in(jvms->locoff() + idx);
368  }
369  Node *stack(JVMState* jvms, uint idx) const {
370    verify_input(jvms, jvms->stkoff() + idx);
371    return in(jvms->stkoff() + idx);
372  }
373  Node *argument(JVMState* jvms, uint idx) const {
374    verify_input(jvms, jvms->argoff() + idx);
375    return in(jvms->argoff() + idx);
376  }
377  Node *monitor_box(JVMState* jvms, uint idx) const {
378    assert(verify_jvms(jvms), "jvms must match");
379    return in(jvms->monitor_box_offset(idx));
380  }
381  Node *monitor_obj(JVMState* jvms, uint idx) const {
382    assert(verify_jvms(jvms), "jvms must match");
383    return in(jvms->monitor_obj_offset(idx));
384  }
385
386  void  set_local(JVMState* jvms, uint idx, Node *c);
387
388  void  set_stack(JVMState* jvms, uint idx, Node *c) {
389    assert(verify_jvms(jvms), "jvms must match");
390    set_req(jvms->stkoff() + idx, c);
391  }
392  void  set_argument(JVMState* jvms, uint idx, Node *c) {
393    assert(verify_jvms(jvms), "jvms must match");
394    set_req(jvms->argoff() + idx, c);
395  }
396  void ensure_stack(JVMState* jvms, uint stk_size) {
397    assert(verify_jvms(jvms), "jvms must match");
398    int grow_by = (int)stk_size - (int)jvms->stk_size();
399    if (grow_by > 0)  grow_stack(jvms, grow_by);
400  }
401  void grow_stack(JVMState* jvms, uint grow_by);
402  // Handle monitor stack
403  void push_monitor( const FastLockNode *lock );
404  void pop_monitor ();
405  Node *peek_monitor_box() const;
406  Node *peek_monitor_obj() const;
407
408  // Access functions for the JVM
409  Node *control  () const { return in(TypeFunc::Control  ); }
410  Node *i_o      () const { return in(TypeFunc::I_O      ); }
411  Node *memory   () const { return in(TypeFunc::Memory   ); }
412  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
413  Node *frameptr () const { return in(TypeFunc::FramePtr ); }
414
415  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
416  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
417  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
418
419  MergeMemNode* merged_memory() const {
420    return in(TypeFunc::Memory)->as_MergeMem();
421  }
422
423  // The parser marks useless maps as dead when it's done with them:
424  bool is_killed() { return in(TypeFunc::Control) == NULL; }
425
426  // Exception states bubbling out of subgraphs such as inlined calls
427  // are recorded here.  (There might be more than one, hence the "next".)
428  // This feature is used only for safepoints which serve as "maps"
429  // for JVM states during parsing, intrinsic expansion, etc.
430  SafePointNode*         next_exception() const;
431  void               set_next_exception(SafePointNode* n);
432  bool                   has_exceptions() const { return next_exception() != NULL; }
433
434  // Helper methods to operate on replaced nodes
435  ReplacedNodes replaced_nodes() const {
436    return _replaced_nodes;
437  }
438
439  void set_replaced_nodes(ReplacedNodes replaced_nodes) {
440    _replaced_nodes = replaced_nodes;
441  }
442
443  void clone_replaced_nodes() {
444    _replaced_nodes.clone();
445  }
446  void record_replaced_node(Node* initial, Node* improved) {
447    _replaced_nodes.record(initial, improved);
448  }
449  void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
450    _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
451  }
452  void delete_replaced_nodes() {
453    _replaced_nodes.reset();
454  }
455  void apply_replaced_nodes(uint idx) {
456    _replaced_nodes.apply(this, idx);
457  }
458  void merge_replaced_nodes_with(SafePointNode* sfpt) {
459    _replaced_nodes.merge_with(sfpt->_replaced_nodes);
460  }
461  bool has_replaced_nodes() const {
462    return !_replaced_nodes.is_empty();
463  }
464
465  // Standard Node stuff
466  virtual int            Opcode() const;
467  virtual bool           pinned() const { return true; }
468  virtual const Type*    Value(PhaseGVN* phase) const;
469  virtual const Type    *bottom_type() const { return Type::CONTROL; }
470  virtual const TypePtr *adr_type() const { return _adr_type; }
471  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
472  virtual Node*          Identity(PhaseGVN* phase);
473  virtual uint           ideal_reg() const { return 0; }
474  virtual const RegMask &in_RegMask(uint) const;
475  virtual const RegMask &out_RegMask() const;
476  virtual uint           match_edge(uint idx) const;
477
478  static  bool           needs_polling_address_input();
479
480#ifndef PRODUCT
481  virtual void           dump_spec(outputStream *st) const;
482  virtual void           related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
483#endif
484};
485
486//------------------------------SafePointScalarObjectNode----------------------
487// A SafePointScalarObjectNode represents the state of a scalarized object
488// at a safepoint.
489
490class SafePointScalarObjectNode: public TypeNode {
491  uint _first_index; // First input edge relative index of a SafePoint node where
492                     // states of the scalarized object fields are collected.
493                     // It is relative to the last (youngest) jvms->_scloff.
494  uint _n_fields;    // Number of non-static fields of the scalarized object.
495  DEBUG_ONLY(AllocateNode* _alloc;)
496
497  virtual uint hash() const ; // { return NO_HASH; }
498  virtual uint cmp( const Node &n ) const;
499
500  uint first_index() const { return _first_index; }
501
502public:
503  SafePointScalarObjectNode(const TypeOopPtr* tp,
504#ifdef ASSERT
505                            AllocateNode* alloc,
506#endif
507                            uint first_index, uint n_fields);
508  virtual int Opcode() const;
509  virtual uint           ideal_reg() const;
510  virtual const RegMask &in_RegMask(uint) const;
511  virtual const RegMask &out_RegMask() const;
512  virtual uint           match_edge(uint idx) const;
513
514  uint first_index(JVMState* jvms) const {
515    assert(jvms != NULL, "missed JVMS");
516    return jvms->scloff() + _first_index;
517  }
518  uint n_fields()    const { return _n_fields; }
519
520#ifdef ASSERT
521  AllocateNode* alloc() const { return _alloc; }
522#endif
523
524  virtual uint size_of() const { return sizeof(*this); }
525
526  // Assumes that "this" is an argument to a safepoint node "s", and that
527  // "new_call" is being created to correspond to "s".  But the difference
528  // between the start index of the jvmstates of "new_call" and "s" is
529  // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
530  // corresponds appropriately to "this" in "new_call".  Assumes that
531  // "sosn_map" is a map, specific to the translation of "s" to "new_call",
532  // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
533  SafePointScalarObjectNode* clone(Dict* sosn_map) const;
534
535#ifndef PRODUCT
536  virtual void              dump_spec(outputStream *st) const;
537#endif
538};
539
540
541// Simple container for the outgoing projections of a call.  Useful
542// for serious surgery on calls.
543class CallProjections : public StackObj {
544public:
545  Node* fallthrough_proj;
546  Node* fallthrough_catchproj;
547  Node* fallthrough_memproj;
548  Node* fallthrough_ioproj;
549  Node* catchall_catchproj;
550  Node* catchall_memproj;
551  Node* catchall_ioproj;
552  Node* resproj;
553  Node* exobj;
554};
555
556class CallGenerator;
557
558//------------------------------CallNode---------------------------------------
559// Call nodes now subsume the function of debug nodes at callsites, so they
560// contain the functionality of a full scope chain of debug nodes.
561class CallNode : public SafePointNode {
562  friend class VMStructs;
563
564protected:
565  bool may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase);
566
567public:
568  const TypeFunc *_tf;        // Function type
569  address      _entry_point;  // Address of method being called
570  float        _cnt;          // Estimate of number of times called
571  CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
572  const char *_name;           // Printable name, if _method is NULL
573
574  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
575    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
576      _tf(tf),
577      _entry_point(addr),
578      _cnt(COUNT_UNKNOWN),
579      _generator(NULL),
580      _name(NULL)
581  {
582    init_class_id(Class_Call);
583  }
584
585  const TypeFunc* tf()         const { return _tf; }
586  const address  entry_point() const { return _entry_point; }
587  const float    cnt()         const { return _cnt; }
588  CallGenerator* generator()   const { return _generator; }
589
590  void set_tf(const TypeFunc* tf)       { _tf = tf; }
591  void set_entry_point(address p)       { _entry_point = p; }
592  void set_cnt(float c)                 { _cnt = c; }
593  void set_generator(CallGenerator* cg) { _generator = cg; }
594
595  virtual const Type *bottom_type() const;
596  virtual const Type* Value(PhaseGVN* phase) const;
597  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
598  virtual Node* Identity(PhaseGVN* phase) { return this; }
599  virtual uint        cmp( const Node &n ) const;
600  virtual uint        size_of() const = 0;
601  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
602  virtual Node       *match( const ProjNode *proj, const Matcher *m );
603  virtual uint        ideal_reg() const { return NotAMachineReg; }
604  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
605  // for some macro nodes whose expansion does not have a safepoint on the fast path.
606  virtual bool        guaranteed_safepoint()  { return true; }
607  // For macro nodes, the JVMState gets modified during expansion. If calls
608  // use MachConstantBase, it gets modified during matching. So when cloning
609  // the node the JVMState must be cloned. Default is not to clone.
610  virtual void clone_jvms(Compile* C) {
611    if (C->needs_clone_jvms() && jvms() != NULL) {
612      set_jvms(jvms()->clone_deep(C));
613      jvms()->set_map_deep(this);
614    }
615  }
616
617  // Returns true if the call may modify n
618  virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
619  // Does this node have a use of n other than in debug information?
620  bool                has_non_debug_use(Node *n);
621  // Returns the unique CheckCastPP of a call
622  // or result projection is there are several CheckCastPP
623  // or returns NULL if there is no one.
624  Node *result_cast();
625  // Does this node returns pointer?
626  bool returns_pointer() const {
627    const TypeTuple *r = tf()->range();
628    return (r->cnt() > TypeFunc::Parms &&
629            r->field_at(TypeFunc::Parms)->isa_ptr());
630  }
631
632  // Collect all the interesting edges from a call for use in
633  // replacing the call by something else.  Used by macro expansion
634  // and the late inlining support.
635  void extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts = true);
636
637  virtual uint match_edge(uint idx) const;
638
639  bool is_call_to_arraycopystub() const;
640
641#ifndef PRODUCT
642  virtual void        dump_req(outputStream *st = tty) const;
643  virtual void        dump_spec(outputStream *st) const;
644#endif
645};
646
647
648//------------------------------CallJavaNode-----------------------------------
649// Make a static or dynamic subroutine call node using Java calling
650// convention.  (The "Java" calling convention is the compiler's calling
651// convention, as opposed to the interpreter's or that of native C.)
652class CallJavaNode : public CallNode {
653  friend class VMStructs;
654protected:
655  virtual uint cmp( const Node &n ) const;
656  virtual uint size_of() const; // Size is bigger
657
658  bool    _optimized_virtual;
659  bool    _method_handle_invoke;
660  bool    _override_symbolic_info; // Override symbolic call site info from bytecode
661  ciMethod* _method;               // Method being direct called
662public:
663  const int       _bci;         // Byte Code Index of call byte code
664  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
665    : CallNode(tf, addr, TypePtr::BOTTOM),
666      _method(method), _bci(bci),
667      _optimized_virtual(false),
668      _method_handle_invoke(false),
669      _override_symbolic_info(false)
670  {
671    init_class_id(Class_CallJava);
672  }
673
674  virtual int   Opcode() const;
675  ciMethod* method() const                 { return _method; }
676  void  set_method(ciMethod *m)            { _method = m; }
677  void  set_optimized_virtual(bool f)      { _optimized_virtual = f; }
678  bool  is_optimized_virtual() const       { return _optimized_virtual; }
679  void  set_method_handle_invoke(bool f)   { _method_handle_invoke = f; }
680  bool  is_method_handle_invoke() const    { return _method_handle_invoke; }
681  void  set_override_symbolic_info(bool f) { _override_symbolic_info = f; }
682  bool  override_symbolic_info() const     { return _override_symbolic_info; }
683
684#ifndef PRODUCT
685  virtual void  dump_spec(outputStream *st) const;
686  virtual void  dump_compact_spec(outputStream *st) const;
687#endif
688};
689
690//------------------------------CallStaticJavaNode-----------------------------
691// Make a direct subroutine call using Java calling convention (for static
692// calls and optimized virtual calls, plus calls to wrappers for run-time
693// routines); generates static stub.
694class CallStaticJavaNode : public CallJavaNode {
695  virtual uint cmp( const Node &n ) const;
696  virtual uint size_of() const; // Size is bigger
697public:
698  CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
699    : CallJavaNode(tf, addr, method, bci) {
700    init_class_id(Class_CallStaticJava);
701    if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
702      init_flags(Flag_is_macro);
703      C->add_macro_node(this);
704    }
705    _is_scalar_replaceable = false;
706    _is_non_escaping = false;
707  }
708  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
709                     const TypePtr* adr_type)
710    : CallJavaNode(tf, addr, NULL, bci) {
711    init_class_id(Class_CallStaticJava);
712    // This node calls a runtime stub, which often has narrow memory effects.
713    _adr_type = adr_type;
714    _is_scalar_replaceable = false;
715    _is_non_escaping = false;
716    _name = name;
717  }
718
719  // Result of Escape Analysis
720  bool _is_scalar_replaceable;
721  bool _is_non_escaping;
722
723  // If this is an uncommon trap, return the request code, else zero.
724  int uncommon_trap_request() const;
725  static int extract_uncommon_trap_request(const Node* call);
726
727  bool is_boxing_method() const {
728    return is_macro() && (method() != NULL) && method()->is_boxing_method();
729  }
730  // Later inlining modifies the JVMState, so we need to clone it
731  // when the call node is cloned (because it is macro node).
732  virtual void  clone_jvms(Compile* C) {
733    if ((jvms() != NULL) && is_boxing_method()) {
734      set_jvms(jvms()->clone_deep(C));
735      jvms()->set_map_deep(this);
736    }
737  }
738
739  virtual int         Opcode() const;
740#ifndef PRODUCT
741  virtual void        dump_spec(outputStream *st) const;
742  virtual void        dump_compact_spec(outputStream *st) const;
743#endif
744};
745
746//------------------------------CallDynamicJavaNode----------------------------
747// Make a dispatched call using Java calling convention.
748class CallDynamicJavaNode : public CallJavaNode {
749  virtual uint cmp( const Node &n ) const;
750  virtual uint size_of() const; // Size is bigger
751public:
752  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
753    init_class_id(Class_CallDynamicJava);
754  }
755
756  int _vtable_index;
757  virtual int   Opcode() const;
758#ifndef PRODUCT
759  virtual void  dump_spec(outputStream *st) const;
760#endif
761};
762
763//------------------------------CallRuntimeNode--------------------------------
764// Make a direct subroutine call node into compiled C++ code.
765class CallRuntimeNode : public CallNode {
766  virtual uint cmp( const Node &n ) const;
767  virtual uint size_of() const; // Size is bigger
768public:
769  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
770                  const TypePtr* adr_type)
771    : CallNode(tf, addr, adr_type)
772  {
773    init_class_id(Class_CallRuntime);
774    _name = name;
775  }
776
777  virtual int   Opcode() const;
778  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
779
780#ifndef PRODUCT
781  virtual void  dump_spec(outputStream *st) const;
782#endif
783};
784
785//------------------------------CallLeafNode-----------------------------------
786// Make a direct subroutine call node into compiled C++ code, without
787// safepoints
788class CallLeafNode : public CallRuntimeNode {
789public:
790  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
791               const TypePtr* adr_type)
792    : CallRuntimeNode(tf, addr, name, adr_type)
793  {
794    init_class_id(Class_CallLeaf);
795  }
796  virtual int   Opcode() const;
797  virtual bool        guaranteed_safepoint()  { return false; }
798#ifndef PRODUCT
799  virtual void  dump_spec(outputStream *st) const;
800#endif
801};
802
803//------------------------------CallLeafNoFPNode-------------------------------
804// CallLeafNode, not using floating point or using it in the same manner as
805// the generated code
806class CallLeafNoFPNode : public CallLeafNode {
807public:
808  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
809                   const TypePtr* adr_type)
810    : CallLeafNode(tf, addr, name, adr_type)
811  {
812  }
813  virtual int   Opcode() const;
814};
815
816
817//------------------------------Allocate---------------------------------------
818// High-level memory allocation
819//
820//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
821//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
822//  they have 2 memory projections and 2 i_o projections (which are distinguished by
823//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
824//  order to differentiate the uses of the projection on the normal control path from
825//  those on the exception return path.
826//
827class AllocateNode : public CallNode {
828public:
829  enum {
830    // Output:
831    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
832    // Inputs:
833    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
834    KlassNode,                        // type (maybe dynamic) of the obj.
835    InitialTest,                      // slow-path test (may be constant)
836    ALength,                          // array length (or TOP if none)
837    ParmLimit
838  };
839
840  static const TypeFunc* alloc_type(const Type* t) {
841    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
842    fields[AllocSize]   = TypeInt::POS;
843    fields[KlassNode]   = TypeInstPtr::NOTNULL;
844    fields[InitialTest] = TypeInt::BOOL;
845    fields[ALength]     = t;  // length (can be a bad length)
846
847    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
848
849    // create result type (range)
850    fields = TypeTuple::fields(1);
851    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
852
853    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
854
855    return TypeFunc::make(domain, range);
856  }
857
858  // Result of Escape Analysis
859  bool _is_scalar_replaceable;
860  bool _is_non_escaping;
861  // True when MemBar for new is redundant with MemBar at initialzer exit
862  bool _is_allocation_MemBar_redundant;
863
864  virtual uint size_of() const; // Size is bigger
865  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
866               Node *size, Node *klass_node, Node *initial_test);
867  // Expansion modifies the JVMState, so we need to clone it
868  virtual void  clone_jvms(Compile* C) {
869    if (jvms() != NULL) {
870      set_jvms(jvms()->clone_deep(C));
871      jvms()->set_map_deep(this);
872    }
873  }
874  virtual int Opcode() const;
875  virtual uint ideal_reg() const { return Op_RegP; }
876  virtual bool        guaranteed_safepoint()  { return false; }
877
878  // allocations do not modify their arguments
879  virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}
880
881  // Pattern-match a possible usage of AllocateNode.
882  // Return null if no allocation is recognized.
883  // The operand is the pointer produced by the (possible) allocation.
884  // It must be a projection of the Allocate or its subsequent CastPP.
885  // (Note:  This function is defined in file graphKit.cpp, near
886  // GraphKit::new_instance/new_array, whose output it recognizes.)
887  // The 'ptr' may not have an offset unless the 'offset' argument is given.
888  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
889
890  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
891  // an offset, which is reported back to the caller.
892  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
893  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
894                                        intptr_t& offset);
895
896  // Dig the klass operand out of a (possible) allocation site.
897  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
898    AllocateNode* allo = Ideal_allocation(ptr, phase);
899    return (allo == NULL) ? NULL : allo->in(KlassNode);
900  }
901
902  // Conservatively small estimate of offset of first non-header byte.
903  int minimum_header_size() {
904    return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
905                                instanceOopDesc::base_offset_in_bytes();
906  }
907
908  // Return the corresponding initialization barrier (or null if none).
909  // Walks out edges to find it...
910  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
911  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
912  InitializeNode* initialization();
913
914  // Convenience for initialization->maybe_set_complete(phase)
915  bool maybe_set_complete(PhaseGVN* phase);
916
917  // Return true if allocation doesn't escape thread, its escape state
918  // needs be noEscape or ArgEscape. InitializeNode._does_not_escape
919  // is true when its allocation's escape state is noEscape or
920  // ArgEscape. In case allocation's InitializeNode is NULL, check
921  // AlllocateNode._is_non_escaping flag.
922  // AlllocateNode._is_non_escaping is true when its escape state is
923  // noEscape.
924  bool does_not_escape_thread() {
925    InitializeNode* init = NULL;
926    return _is_non_escaping || (((init = initialization()) != NULL) && init->does_not_escape());
927  }
928
929  // If object doesn't escape in <.init> method and there is memory barrier
930  // inserted at exit of its <.init>, memory barrier for new is not necessary.
931  // Inovke this method when MemBar at exit of initializer and post-dominate
932  // allocation node.
933  void compute_MemBar_redundancy(ciMethod* initializer);
934  bool is_allocation_MemBar_redundant() { return _is_allocation_MemBar_redundant; }
935};
936
937//------------------------------AllocateArray---------------------------------
938//
939// High-level array allocation
940//
941class AllocateArrayNode : public AllocateNode {
942public:
943  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
944                    Node* size, Node* klass_node, Node* initial_test,
945                    Node* count_val
946                    )
947    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
948                   initial_test)
949  {
950    init_class_id(Class_AllocateArray);
951    set_req(AllocateNode::ALength,        count_val);
952  }
953  virtual int Opcode() const;
954  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
955
956  // Dig the length operand out of a array allocation site.
957  Node* Ideal_length() {
958    return in(AllocateNode::ALength);
959  }
960
961  // Dig the length operand out of a array allocation site and narrow the
962  // type with a CastII, if necesssary
963  Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
964
965  // Pattern-match a possible usage of AllocateArrayNode.
966  // Return null if no allocation is recognized.
967  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
968    AllocateNode* allo = Ideal_allocation(ptr, phase);
969    return (allo == NULL || !allo->is_AllocateArray())
970           ? NULL : allo->as_AllocateArray();
971  }
972};
973
974//------------------------------AbstractLockNode-----------------------------------
975class AbstractLockNode: public CallNode {
976private:
977  enum {
978    Regular = 0,  // Normal lock
979    NonEscObj,    // Lock is used for non escaping object
980    Coarsened,    // Lock was coarsened
981    Nested        // Nested lock
982  } _kind;
983#ifndef PRODUCT
984  NamedCounter* _counter;
985  static const char* _kind_names[Nested+1];
986#endif
987
988protected:
989  // helper functions for lock elimination
990  //
991
992  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
993                            GrowableArray<AbstractLockNode*> &lock_ops);
994  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
995                                       GrowableArray<AbstractLockNode*> &lock_ops);
996  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
997                               GrowableArray<AbstractLockNode*> &lock_ops);
998  LockNode *find_matching_lock(UnlockNode* unlock);
999
1000  // Update the counter to indicate that this lock was eliminated.
1001  void set_eliminated_lock_counter() PRODUCT_RETURN;
1002
1003public:
1004  AbstractLockNode(const TypeFunc *tf)
1005    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
1006      _kind(Regular)
1007  {
1008#ifndef PRODUCT
1009    _counter = NULL;
1010#endif
1011  }
1012  virtual int Opcode() const = 0;
1013  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
1014  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
1015  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
1016  void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
1017
1018  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
1019
1020  virtual uint size_of() const { return sizeof(*this); }
1021
1022  bool is_eliminated()  const { return (_kind != Regular); }
1023  bool is_non_esc_obj() const { return (_kind == NonEscObj); }
1024  bool is_coarsened()   const { return (_kind == Coarsened); }
1025  bool is_nested()      const { return (_kind == Nested); }
1026
1027  const char * kind_as_string() const;
1028  void log_lock_optimization(Compile* c, const char * tag) const;
1029
1030  void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
1031  void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
1032  void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
1033
1034  // locking does not modify its arguments
1035  virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}
1036
1037#ifndef PRODUCT
1038  void create_lock_counter(JVMState* s);
1039  NamedCounter* counter() const { return _counter; }
1040  virtual void dump_spec(outputStream* st) const;
1041  virtual void dump_compact_spec(outputStream* st) const;
1042  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
1043#endif
1044};
1045
1046//------------------------------Lock---------------------------------------
1047// High-level lock operation
1048//
1049// This is a subclass of CallNode because it is a macro node which gets expanded
1050// into a code sequence containing a call.  This node takes 3 "parameters":
1051//    0  -  object to lock
1052//    1 -   a BoxLockNode
1053//    2 -   a FastLockNode
1054//
1055class LockNode : public AbstractLockNode {
1056public:
1057
1058  static const TypeFunc *lock_type() {
1059    // create input type (domain)
1060    const Type **fields = TypeTuple::fields(3);
1061    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
1062    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
1063    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
1064    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
1065
1066    // create result type (range)
1067    fields = TypeTuple::fields(0);
1068
1069    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1070
1071    return TypeFunc::make(domain,range);
1072  }
1073
1074  virtual int Opcode() const;
1075  virtual uint size_of() const; // Size is bigger
1076  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1077    init_class_id(Class_Lock);
1078    init_flags(Flag_is_macro);
1079    C->add_macro_node(this);
1080  }
1081  virtual bool        guaranteed_safepoint()  { return false; }
1082
1083  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1084  // Expansion modifies the JVMState, so we need to clone it
1085  virtual void  clone_jvms(Compile* C) {
1086    if (jvms() != NULL) {
1087      set_jvms(jvms()->clone_deep(C));
1088      jvms()->set_map_deep(this);
1089    }
1090  }
1091
1092  bool is_nested_lock_region(); // Is this Lock nested?
1093  bool is_nested_lock_region(Compile * c); // Why isn't this Lock nested?
1094};
1095
1096//------------------------------Unlock---------------------------------------
1097// High-level unlock operation
1098class UnlockNode : public AbstractLockNode {
1099private:
1100#ifdef ASSERT
1101  JVMState* const _dbg_jvms;      // Pointer to list of JVM State objects
1102#endif
1103public:
1104  virtual int Opcode() const;
1105  virtual uint size_of() const; // Size is bigger
1106  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf )
1107#ifdef ASSERT
1108    , _dbg_jvms(NULL)
1109#endif
1110  {
1111    init_class_id(Class_Unlock);
1112    init_flags(Flag_is_macro);
1113    C->add_macro_node(this);
1114  }
1115  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1116  // unlock is never a safepoint
1117  virtual bool        guaranteed_safepoint()  { return false; }
1118#ifdef ASSERT
1119  void set_dbg_jvms(JVMState* s) {
1120    *(JVMState**)&_dbg_jvms = s;  // override const attribute in the accessor
1121  }
1122  JVMState* dbg_jvms() const { return _dbg_jvms; }
1123#else
1124  JVMState* dbg_jvms() const { return NULL; }
1125#endif
1126};
1127#endif // SHARE_VM_OPTO_CALLNODE_HPP
1128