callnode.hpp revision 113:ba764ed4b6f2
1/*
2 * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27// Optimization - Graph Style
28
29class Chaitin;
30class NamedCounter;
31class MultiNode;
32class  SafePointNode;
33class   CallNode;
34class     CallJavaNode;
35class       CallStaticJavaNode;
36class       CallDynamicJavaNode;
37class     CallRuntimeNode;
38class       CallLeafNode;
39class         CallLeafNoFPNode;
40class     AllocateNode;
41class       AllocateArrayNode;
42class     LockNode;
43class     UnlockNode;
44class JVMState;
45class OopMap;
46class State;
47class StartNode;
48class MachCallNode;
49class FastLockNode;
50
51//------------------------------StartNode--------------------------------------
52// The method start node
53class StartNode : public MultiNode {
54  virtual uint cmp( const Node &n ) const;
55  virtual uint size_of() const; // Size is bigger
56public:
57  const TypeTuple *_domain;
58  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
59    init_class_id(Class_Start);
60    init_flags(Flag_is_block_start);
61    init_req(0,this);
62    init_req(1,root);
63  }
64  virtual int Opcode() const;
65  virtual bool pinned() const { return true; };
66  virtual const Type *bottom_type() const;
67  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
68  virtual const Type *Value( PhaseTransform *phase ) const;
69  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
70  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
71  virtual const RegMask &in_RegMask(uint) const;
72  virtual Node *match( const ProjNode *proj, const Matcher *m );
73  virtual uint ideal_reg() const { return 0; }
74#ifndef PRODUCT
75  virtual void  dump_spec(outputStream *st) const;
76#endif
77};
78
79//------------------------------StartOSRNode-----------------------------------
80// The method start node for on stack replacement code
81class StartOSRNode : public StartNode {
82public:
83  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
84  virtual int   Opcode() const;
85  static  const TypeTuple *osr_domain();
86};
87
88
89//------------------------------ParmNode---------------------------------------
90// Incoming parameters
91class ParmNode : public ProjNode {
92  static const char * const names[TypeFunc::Parms+1];
93public:
94  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
95    init_class_id(Class_Parm);
96  }
97  virtual int Opcode() const;
98  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
99  virtual uint ideal_reg() const;
100#ifndef PRODUCT
101  virtual void dump_spec(outputStream *st) const;
102#endif
103};
104
105
106//------------------------------ReturnNode-------------------------------------
107// Return from subroutine node
108class ReturnNode : public Node {
109public:
110  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
111  virtual int Opcode() const;
112  virtual bool  is_CFG() const { return true; }
113  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
114  virtual bool depends_only_on_test() const { return false; }
115  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
116  virtual const Type *Value( PhaseTransform *phase ) const;
117  virtual uint ideal_reg() const { return NotAMachineReg; }
118  virtual uint match_edge(uint idx) const;
119#ifndef PRODUCT
120  virtual void dump_req() const;
121#endif
122};
123
124
125//------------------------------RethrowNode------------------------------------
126// Rethrow of exception at call site.  Ends a procedure before rethrowing;
127// ends the current basic block like a ReturnNode.  Restores registers and
128// unwinds stack.  Rethrow happens in the caller's method.
129class RethrowNode : public Node {
130 public:
131  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
132  virtual int Opcode() const;
133  virtual bool  is_CFG() const { return true; }
134  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
135  virtual bool depends_only_on_test() const { return false; }
136  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
137  virtual const Type *Value( PhaseTransform *phase ) const;
138  virtual uint match_edge(uint idx) const;
139  virtual uint ideal_reg() const { return NotAMachineReg; }
140#ifndef PRODUCT
141  virtual void dump_req() const;
142#endif
143};
144
145
146//------------------------------TailCallNode-----------------------------------
147// Pop stack frame and jump indirect
148class TailCallNode : public ReturnNode {
149public:
150  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
151    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
152    init_req(TypeFunc::Parms, target);
153    init_req(TypeFunc::Parms+1, moop);
154  }
155
156  virtual int Opcode() const;
157  virtual uint match_edge(uint idx) const;
158};
159
160//------------------------------TailJumpNode-----------------------------------
161// Pop stack frame and jump indirect
162class TailJumpNode : public ReturnNode {
163public:
164  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
165    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
166    init_req(TypeFunc::Parms, target);
167    init_req(TypeFunc::Parms+1, ex_oop);
168  }
169
170  virtual int Opcode() const;
171  virtual uint match_edge(uint idx) const;
172};
173
174//-------------------------------JVMState-------------------------------------
175// A linked list of JVMState nodes captures the whole interpreter state,
176// plus GC roots, for all active calls at some call site in this compilation
177// unit.  (If there is no inlining, then the list has exactly one link.)
178// This provides a way to map the optimized program back into the interpreter,
179// or to let the GC mark the stack.
180class JVMState : public ResourceObj {
181private:
182  JVMState*         _caller;    // List pointer for forming scope chains
183  uint              _depth;     // One mroe than caller depth, or one.
184  uint              _locoff;    // Offset to locals in input edge mapping
185  uint              _stkoff;    // Offset to stack in input edge mapping
186  uint              _monoff;    // Offset to monitors in input edge mapping
187  uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
188  uint              _endoff;    // Offset to end of input edge mapping
189  uint              _sp;        // Jave Expression Stack Pointer for this state
190  int               _bci;       // Byte Code Index of this JVM point
191  ciMethod*         _method;    // Method Pointer
192  SafePointNode*    _map;       // Map node associated with this scope
193public:
194  friend class Compile;
195
196  // Because JVMState objects live over the entire lifetime of the
197  // Compile object, they are allocated into the comp_arena, which
198  // does not get resource marked or reset during the compile process
199  void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
200  void operator delete( void * ) { } // fast deallocation
201
202  // Create a new JVMState, ready for abstract interpretation.
203  JVMState(ciMethod* method, JVMState* caller);
204  JVMState(int stack_size);  // root state; has a null method
205
206  // Access functions for the JVM
207  uint              locoff() const { return _locoff; }
208  uint              stkoff() const { return _stkoff; }
209  uint              argoff() const { return _stkoff + _sp; }
210  uint              monoff() const { return _monoff; }
211  uint              scloff() const { return _scloff; }
212  uint              endoff() const { return _endoff; }
213  uint              oopoff() const { return debug_end(); }
214
215  int            loc_size() const { return _stkoff - _locoff; }
216  int            stk_size() const { return _monoff - _stkoff; }
217  int            mon_size() const { return _scloff - _monoff; }
218  int            scl_size() const { return _endoff - _scloff; }
219
220  bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
221  bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
222  bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
223  bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
224
225  uint              sp()     const { return _sp; }
226  int               bci()    const { return _bci; }
227  bool          has_method() const { return _method != NULL; }
228  ciMethod*         method() const { assert(has_method(), ""); return _method; }
229  JVMState*         caller() const { return _caller; }
230  SafePointNode*    map()    const { return _map; }
231  uint              depth()  const { return _depth; }
232  uint        debug_start()  const; // returns locoff of root caller
233  uint        debug_end()    const; // returns endoff of self
234  uint        debug_size()   const {
235    return loc_size() + sp() + mon_size() + scl_size();
236  }
237  uint        debug_depth()  const; // returns sum of debug_size values at all depths
238
239  // Returns the JVM state at the desired depth (1 == root).
240  JVMState* of_depth(int d) const;
241
242  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
243  bool same_calls_as(const JVMState* that) const;
244
245  // Monitors (monitors are stored as (boxNode, objNode) pairs
246  enum { logMonitorEdges = 1 };
247  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
248  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
249  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
250  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
251  bool is_monitor_box(uint off)    const {
252    assert(is_mon(off), "should be called only for monitor edge");
253    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
254  }
255  bool is_monitor_use(uint off)    const { return (is_mon(off)
256                                                   && is_monitor_box(off))
257                                             || (caller() && caller()->is_monitor_use(off)); }
258
259  // Initialization functions for the JVM
260  void              set_locoff(uint off) { _locoff = off; }
261  void              set_stkoff(uint off) { _stkoff = off; }
262  void              set_monoff(uint off) { _monoff = off; }
263  void              set_scloff(uint off) { _scloff = off; }
264  void              set_endoff(uint off) { _endoff = off; }
265  void              set_offsets(uint off) {
266    _locoff = _stkoff = _monoff = _scloff = _endoff = off;
267  }
268  void              set_map(SafePointNode *map) { _map = map; }
269  void              set_sp(uint sp) { _sp = sp; }
270  void              set_bci(int bci) { _bci = bci; }
271
272  // Miscellaneous utility functions
273  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
274  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
275
276#ifndef PRODUCT
277  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
278  void      dump_spec(outputStream *st) const;
279  void      dump_on(outputStream* st) const;
280  void      dump() const {
281    dump_on(tty);
282  }
283#endif
284};
285
286//------------------------------SafePointNode----------------------------------
287// A SafePointNode is a subclass of a MultiNode for convenience (and
288// potential code sharing) only - conceptually it is independent of
289// the Node semantics.
290class SafePointNode : public MultiNode {
291  virtual uint           cmp( const Node &n ) const;
292  virtual uint           size_of() const;       // Size is bigger
293
294public:
295  SafePointNode(uint edges, JVMState* jvms,
296                // A plain safepoint advertises no memory effects (NULL):
297                const TypePtr* adr_type = NULL)
298    : MultiNode( edges ),
299      _jvms(jvms),
300      _oop_map(NULL),
301      _adr_type(adr_type)
302  {
303    init_class_id(Class_SafePoint);
304  }
305
306  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
307  JVMState* const _jvms;      // Pointer to list of JVM State objects
308  const TypePtr*  _adr_type;  // What type of memory does this node produce?
309
310  // Many calls take *all* of memory as input,
311  // but some produce a limited subset of that memory as output.
312  // The adr_type reports the call's behavior as a store, not a load.
313
314  virtual JVMState* jvms() const { return _jvms; }
315  void set_jvms(JVMState* s) {
316    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
317  }
318  OopMap *oop_map() const { return _oop_map; }
319  void set_oop_map(OopMap *om) { _oop_map = om; }
320
321  // Functionality from old debug nodes which has changed
322  Node *local(JVMState* jvms, uint idx) const {
323    assert(verify_jvms(jvms), "jvms must match");
324    return in(jvms->locoff() + idx);
325  }
326  Node *stack(JVMState* jvms, uint idx) const {
327    assert(verify_jvms(jvms), "jvms must match");
328    return in(jvms->stkoff() + idx);
329  }
330  Node *argument(JVMState* jvms, uint idx) const {
331    assert(verify_jvms(jvms), "jvms must match");
332    return in(jvms->argoff() + idx);
333  }
334  Node *monitor_box(JVMState* jvms, uint idx) const {
335    assert(verify_jvms(jvms), "jvms must match");
336    return in(jvms->monitor_box_offset(idx));
337  }
338  Node *monitor_obj(JVMState* jvms, uint idx) const {
339    assert(verify_jvms(jvms), "jvms must match");
340    return in(jvms->monitor_obj_offset(idx));
341  }
342
343  void  set_local(JVMState* jvms, uint idx, Node *c);
344
345  void  set_stack(JVMState* jvms, uint idx, Node *c) {
346    assert(verify_jvms(jvms), "jvms must match");
347    set_req(jvms->stkoff() + idx, c);
348  }
349  void  set_argument(JVMState* jvms, uint idx, Node *c) {
350    assert(verify_jvms(jvms), "jvms must match");
351    set_req(jvms->argoff() + idx, c);
352  }
353  void ensure_stack(JVMState* jvms, uint stk_size) {
354    assert(verify_jvms(jvms), "jvms must match");
355    int grow_by = (int)stk_size - (int)jvms->stk_size();
356    if (grow_by > 0)  grow_stack(jvms, grow_by);
357  }
358  void grow_stack(JVMState* jvms, uint grow_by);
359  // Handle monitor stack
360  void push_monitor( const FastLockNode *lock );
361  void pop_monitor ();
362  Node *peek_monitor_box() const;
363  Node *peek_monitor_obj() const;
364
365  // Access functions for the JVM
366  Node *control  () const { return in(TypeFunc::Control  ); }
367  Node *i_o      () const { return in(TypeFunc::I_O      ); }
368  Node *memory   () const { return in(TypeFunc::Memory   ); }
369  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
370  Node *frameptr () const { return in(TypeFunc::FramePtr ); }
371
372  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
373  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
374  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
375
376  MergeMemNode* merged_memory() const {
377    return in(TypeFunc::Memory)->as_MergeMem();
378  }
379
380  // The parser marks useless maps as dead when it's done with them:
381  bool is_killed() { return in(TypeFunc::Control) == NULL; }
382
383  // Exception states bubbling out of subgraphs such as inlined calls
384  // are recorded here.  (There might be more than one, hence the "next".)
385  // This feature is used only for safepoints which serve as "maps"
386  // for JVM states during parsing, intrinsic expansion, etc.
387  SafePointNode*         next_exception() const;
388  void               set_next_exception(SafePointNode* n);
389  bool                   has_exceptions() const { return next_exception() != NULL; }
390
391  // Does this node have a use of n other than in debug information?
392  virtual bool           has_non_debug_use(Node *n)  {return false; }
393
394  // Standard Node stuff
395  virtual int            Opcode() const;
396  virtual bool           pinned() const { return true; }
397  virtual const Type    *Value( PhaseTransform *phase ) const;
398  virtual const Type    *bottom_type() const { return Type::CONTROL; }
399  virtual const TypePtr *adr_type() const { return _adr_type; }
400  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
401  virtual Node          *Identity( PhaseTransform *phase );
402  virtual uint           ideal_reg() const { return 0; }
403  virtual const RegMask &in_RegMask(uint) const;
404  virtual const RegMask &out_RegMask() const;
405  virtual uint           match_edge(uint idx) const;
406
407  static  bool           needs_polling_address_input();
408
409#ifndef PRODUCT
410  virtual void              dump_spec(outputStream *st) const;
411#endif
412};
413
414//------------------------------SafePointScalarObjectNode----------------------
415// A SafePointScalarObjectNode represents the state of a scalarized object
416// at a safepoint.
417
418class SafePointScalarObjectNode: public TypeNode {
419  uint _first_index; // First input edge index of a SafePoint node where
420                     // states of the scalarized object fields are collected.
421  uint _n_fields;    // Number of non-static fields of the scalarized object.
422  DEBUG_ONLY(AllocateNode* _alloc;)
423public:
424  SafePointScalarObjectNode(const TypeOopPtr* tp,
425#ifdef ASSERT
426                            AllocateNode* alloc,
427#endif
428                            uint first_index, uint n_fields);
429  virtual int Opcode() const;
430  virtual uint           ideal_reg() const;
431  virtual const RegMask &in_RegMask(uint) const;
432  virtual const RegMask &out_RegMask() const;
433  virtual uint           match_edge(uint idx) const;
434
435  uint first_index() const { return _first_index; }
436  uint n_fields()    const { return _n_fields; }
437  DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
438
439  virtual uint size_of() const { return sizeof(*this); }
440
441  // Assumes that "this" is an argument to a safepoint node "s", and that
442  // "new_call" is being created to correspond to "s".  But the difference
443  // between the start index of the jvmstates of "new_call" and "s" is
444  // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
445  // corresponds appropriately to "this" in "new_call".  Assumes that
446  // "sosn_map" is a map, specific to the translation of "s" to "new_call",
447  // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
448  SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
449
450#ifndef PRODUCT
451  virtual void              dump_spec(outputStream *st) const;
452#endif
453};
454
455//------------------------------CallNode---------------------------------------
456// Call nodes now subsume the function of debug nodes at callsites, so they
457// contain the functionality of a full scope chain of debug nodes.
458class CallNode : public SafePointNode {
459public:
460  const TypeFunc *_tf;        // Function type
461  address      _entry_point;  // Address of method being called
462  float        _cnt;          // Estimate of number of times called
463
464  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
465    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
466      _tf(tf),
467      _entry_point(addr),
468      _cnt(COUNT_UNKNOWN)
469  {
470    init_class_id(Class_Call);
471    init_flags(Flag_is_Call);
472  }
473
474  const TypeFunc* tf()        const { return _tf; }
475  const address entry_point() const { return _entry_point; }
476  const float   cnt()         const { return _cnt; }
477
478  void set_tf(const TypeFunc* tf) { _tf = tf; }
479  void set_entry_point(address p) { _entry_point = p; }
480  void set_cnt(float c)           { _cnt = c; }
481
482  virtual const Type *bottom_type() const;
483  virtual const Type *Value( PhaseTransform *phase ) const;
484  virtual Node *Identity( PhaseTransform *phase ) { return this; }
485  virtual uint        cmp( const Node &n ) const;
486  virtual uint        size_of() const = 0;
487  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
488  virtual Node       *match( const ProjNode *proj, const Matcher *m );
489  virtual uint        ideal_reg() const { return NotAMachineReg; }
490  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
491  // for some macro nodes whose expansion does not have a safepoint on the fast path.
492  virtual bool        guaranteed_safepoint()  { return true; }
493  // For macro nodes, the JVMState gets modified during expansion, so when cloning
494  // the node the JVMState must be cloned.
495  virtual void        clone_jvms() { }   // default is not to clone
496
497  // Returns true if the call may modify n
498  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
499  // Does this node have a use of n other than in debug information?
500  virtual bool        has_non_debug_use(Node *n);
501  // Returns the unique CheckCastPP of a call
502  // or result projection is there are several CheckCastPP
503  // or returns NULL if there is no one.
504  Node *result_cast();
505
506  virtual uint match_edge(uint idx) const;
507
508#ifndef PRODUCT
509  virtual void        dump_req()  const;
510  virtual void        dump_spec(outputStream *st) const;
511#endif
512};
513
514//------------------------------CallJavaNode-----------------------------------
515// Make a static or dynamic subroutine call node using Java calling
516// convention.  (The "Java" calling convention is the compiler's calling
517// convention, as opposed to the interpreter's or that of native C.)
518class CallJavaNode : public CallNode {
519protected:
520  virtual uint cmp( const Node &n ) const;
521  virtual uint size_of() const; // Size is bigger
522
523  bool    _optimized_virtual;
524  ciMethod* _method;            // Method being direct called
525public:
526  const int       _bci;         // Byte Code Index of call byte code
527  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
528    : CallNode(tf, addr, TypePtr::BOTTOM),
529      _method(method), _bci(bci), _optimized_virtual(false)
530  {
531    init_class_id(Class_CallJava);
532  }
533
534  virtual int   Opcode() const;
535  ciMethod* method() const                { return _method; }
536  void  set_method(ciMethod *m)           { _method = m; }
537  void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
538  bool  is_optimized_virtual() const      { return _optimized_virtual; }
539
540#ifndef PRODUCT
541  virtual void  dump_spec(outputStream *st) const;
542#endif
543};
544
545//------------------------------CallStaticJavaNode-----------------------------
546// Make a direct subroutine call using Java calling convention (for static
547// calls and optimized virtual calls, plus calls to wrappers for run-time
548// routines); generates static stub.
549class CallStaticJavaNode : public CallJavaNode {
550  virtual uint cmp( const Node &n ) const;
551  virtual uint size_of() const; // Size is bigger
552public:
553  CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
554    : CallJavaNode(tf, addr, method, bci), _name(NULL) {
555    init_class_id(Class_CallStaticJava);
556  }
557  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
558                     const TypePtr* adr_type)
559    : CallJavaNode(tf, addr, NULL, bci), _name(name) {
560    init_class_id(Class_CallStaticJava);
561    // This node calls a runtime stub, which often has narrow memory effects.
562    _adr_type = adr_type;
563  }
564  const char *_name;            // Runtime wrapper name
565
566  // If this is an uncommon trap, return the request code, else zero.
567  int uncommon_trap_request() const;
568  static int extract_uncommon_trap_request(const Node* call);
569
570  virtual int         Opcode() const;
571#ifndef PRODUCT
572  virtual void        dump_spec(outputStream *st) const;
573#endif
574};
575
576//------------------------------CallDynamicJavaNode----------------------------
577// Make a dispatched call using Java calling convention.
578class CallDynamicJavaNode : public CallJavaNode {
579  virtual uint cmp( const Node &n ) const;
580  virtual uint size_of() const; // Size is bigger
581public:
582  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
583    init_class_id(Class_CallDynamicJava);
584  }
585
586  int _vtable_index;
587  virtual int   Opcode() const;
588#ifndef PRODUCT
589  virtual void  dump_spec(outputStream *st) const;
590#endif
591};
592
593//------------------------------CallRuntimeNode--------------------------------
594// Make a direct subroutine call node into compiled C++ code.
595class CallRuntimeNode : public CallNode {
596  virtual uint cmp( const Node &n ) const;
597  virtual uint size_of() const; // Size is bigger
598public:
599  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
600                  const TypePtr* adr_type)
601    : CallNode(tf, addr, adr_type),
602      _name(name)
603  {
604    init_class_id(Class_CallRuntime);
605  }
606
607  const char *_name;            // Printable name, if _method is NULL
608  virtual int   Opcode() const;
609  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
610
611#ifndef PRODUCT
612  virtual void  dump_spec(outputStream *st) const;
613#endif
614};
615
616//------------------------------CallLeafNode-----------------------------------
617// Make a direct subroutine call node into compiled C++ code, without
618// safepoints
619class CallLeafNode : public CallRuntimeNode {
620public:
621  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
622               const TypePtr* adr_type)
623    : CallRuntimeNode(tf, addr, name, adr_type)
624  {
625    init_class_id(Class_CallLeaf);
626  }
627  virtual int   Opcode() const;
628  virtual bool        guaranteed_safepoint()  { return false; }
629#ifndef PRODUCT
630  virtual void  dump_spec(outputStream *st) const;
631#endif
632};
633
634//------------------------------CallLeafNoFPNode-------------------------------
635// CallLeafNode, not using floating point or using it in the same manner as
636// the generated code
637class CallLeafNoFPNode : public CallLeafNode {
638public:
639  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
640                   const TypePtr* adr_type)
641    : CallLeafNode(tf, addr, name, adr_type)
642  {
643  }
644  virtual int   Opcode() const;
645};
646
647
648//------------------------------Allocate---------------------------------------
649// High-level memory allocation
650//
651//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
652//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
653//  they have 2 memory projections and 2 i_o projections (which are distinguished by
654//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
655//  order to differentiate the uses of the projection on the normal control path from
656//  those on the exception return path.
657//
658class AllocateNode : public CallNode {
659public:
660  enum {
661    // Output:
662    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
663    // Inputs:
664    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
665    KlassNode,                        // type (maybe dynamic) of the obj.
666    InitialTest,                      // slow-path test (may be constant)
667    ALength,                          // array length (or TOP if none)
668    ParmLimit
669  };
670
671  static const TypeFunc* alloc_type() {
672    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
673    fields[AllocSize]   = TypeInt::POS;
674    fields[KlassNode]   = TypeInstPtr::NOTNULL;
675    fields[InitialTest] = TypeInt::BOOL;
676    fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
677
678    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
679
680    // create result type (range)
681    fields = TypeTuple::fields(1);
682    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
683
684    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
685
686    return TypeFunc::make(domain, range);
687  }
688
689  bool _is_scalar_replaceable;  // Result of Escape Analysis
690
691  virtual uint size_of() const; // Size is bigger
692  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
693               Node *size, Node *klass_node, Node *initial_test);
694  // Expansion modifies the JVMState, so we need to clone it
695  virtual void  clone_jvms() {
696    set_jvms(jvms()->clone_deep(Compile::current()));
697  }
698  virtual int Opcode() const;
699  virtual uint ideal_reg() const { return Op_RegP; }
700  virtual bool        guaranteed_safepoint()  { return false; }
701
702  // allocations do not modify their arguments
703  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
704
705  // Pattern-match a possible usage of AllocateNode.
706  // Return null if no allocation is recognized.
707  // The operand is the pointer produced by the (possible) allocation.
708  // It must be a projection of the Allocate or its subsequent CastPP.
709  // (Note:  This function is defined in file graphKit.cpp, near
710  // GraphKit::new_instance/new_array, whose output it recognizes.)
711  // The 'ptr' may not have an offset unless the 'offset' argument is given.
712  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
713
714  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
715  // an offset, which is reported back to the caller.
716  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
717  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
718                                        intptr_t& offset);
719
720  // Dig the klass operand out of a (possible) allocation site.
721  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
722    AllocateNode* allo = Ideal_allocation(ptr, phase);
723    return (allo == NULL) ? NULL : allo->in(KlassNode);
724  }
725
726  // Conservatively small estimate of offset of first non-header byte.
727  int minimum_header_size() {
728    return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
729                                instanceOopDesc::base_offset_in_bytes();
730  }
731
732  // Return the corresponding initialization barrier (or null if none).
733  // Walks out edges to find it...
734  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
735  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
736  InitializeNode* initialization();
737
738  // Convenience for initialization->maybe_set_complete(phase)
739  bool maybe_set_complete(PhaseGVN* phase);
740};
741
742//------------------------------AllocateArray---------------------------------
743//
744// High-level array allocation
745//
746class AllocateArrayNode : public AllocateNode {
747public:
748  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
749                    Node* size, Node* klass_node, Node* initial_test,
750                    Node* count_val
751                    )
752    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
753                   initial_test)
754  {
755    init_class_id(Class_AllocateArray);
756    set_req(AllocateNode::ALength,        count_val);
757  }
758  virtual int Opcode() const;
759  virtual uint size_of() const; // Size is bigger
760
761  // Pattern-match a possible usage of AllocateArrayNode.
762  // Return null if no allocation is recognized.
763  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
764    AllocateNode* allo = Ideal_allocation(ptr, phase);
765    return (allo == NULL || !allo->is_AllocateArray())
766           ? NULL : allo->as_AllocateArray();
767  }
768
769  // Dig the length operand out of a (possible) array allocation site.
770  static Node* Ideal_length(Node* ptr, PhaseTransform* phase) {
771    AllocateArrayNode* allo = Ideal_array_allocation(ptr, phase);
772    return (allo == NULL) ? NULL : allo->in(AllocateNode::ALength);
773  }
774};
775
776//------------------------------AbstractLockNode-----------------------------------
777class AbstractLockNode: public CallNode {
778private:
779 bool _eliminate;    // indicates this lock can be safely eliminated
780#ifndef PRODUCT
781  NamedCounter* _counter;
782#endif
783
784protected:
785  // helper functions for lock elimination
786  //
787
788  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
789                            GrowableArray<AbstractLockNode*> &lock_ops);
790  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
791                                       GrowableArray<AbstractLockNode*> &lock_ops);
792  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
793                               GrowableArray<AbstractLockNode*> &lock_ops);
794  LockNode *find_matching_lock(UnlockNode* unlock);
795
796
797public:
798  AbstractLockNode(const TypeFunc *tf)
799    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
800      _eliminate(false)
801  {
802#ifndef PRODUCT
803    _counter = NULL;
804#endif
805  }
806  virtual int Opcode() const = 0;
807  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
808  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
809  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
810  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
811
812  virtual uint size_of() const { return sizeof(*this); }
813
814  bool is_eliminated()         {return _eliminate; }
815  // mark node as eliminated and update the counter if there is one
816  void set_eliminated();
817
818  // locking does not modify its arguments
819  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
820
821#ifndef PRODUCT
822  void create_lock_counter(JVMState* s);
823  NamedCounter* counter() const { return _counter; }
824#endif
825};
826
827//------------------------------Lock---------------------------------------
828// High-level lock operation
829//
830// This is a subclass of CallNode because it is a macro node which gets expanded
831// into a code sequence containing a call.  This node takes 3 "parameters":
832//    0  -  object to lock
833//    1 -   a BoxLockNode
834//    2 -   a FastLockNode
835//
836class LockNode : public AbstractLockNode {
837public:
838
839  static const TypeFunc *lock_type() {
840    // create input type (domain)
841    const Type **fields = TypeTuple::fields(3);
842    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
843    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
844    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
845    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
846
847    // create result type (range)
848    fields = TypeTuple::fields(0);
849
850    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
851
852    return TypeFunc::make(domain,range);
853  }
854
855  virtual int Opcode() const;
856  virtual uint size_of() const; // Size is bigger
857  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
858    init_class_id(Class_Lock);
859    init_flags(Flag_is_macro);
860    C->add_macro_node(this);
861  }
862  virtual bool        guaranteed_safepoint()  { return false; }
863
864  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
865  // Expansion modifies the JVMState, so we need to clone it
866  virtual void  clone_jvms() {
867    set_jvms(jvms()->clone_deep(Compile::current()));
868  }
869};
870
871//------------------------------Unlock---------------------------------------
872// High-level unlock operation
873class UnlockNode : public AbstractLockNode {
874public:
875  virtual int Opcode() const;
876  virtual uint size_of() const; // Size is bigger
877  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
878    init_class_id(Class_Unlock);
879    init_flags(Flag_is_macro);
880    C->add_macro_node(this);
881  }
882  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
883  // unlock is never a safepoint
884  virtual bool        guaranteed_safepoint()  { return false; }
885};
886