addnode.cpp revision 196:d1605aabd0a1
1/*
2 * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27#include "incls/_precompiled.incl"
28#include "incls/_addnode.cpp.incl"
29
30#define MAXFLOAT        ((float)3.40282346638528860e+38)
31
32// Classic Add functionality.  This covers all the usual 'add' behaviors for
33// an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
34// all inherited from this class.  The various identity values are supplied
35// by virtual functions.
36
37
38//=============================================================================
39//------------------------------hash-------------------------------------------
40// Hash function over AddNodes.  Needs to be commutative; i.e., I swap
41// (commute) inputs to AddNodes willy-nilly so the hash function must return
42// the same value in the presence of edge swapping.
43uint AddNode::hash() const {
44  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
45}
46
47//------------------------------Identity---------------------------------------
48// If either input is a constant 0, return the other input.
49Node *AddNode::Identity( PhaseTransform *phase ) {
50  const Type *zero = add_id();  // The additive identity
51  if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
52  if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
53  return this;
54}
55
56//------------------------------commute----------------------------------------
57// Commute operands to move loads and constants to the right.
58static bool commute( Node *add, int con_left, int con_right ) {
59  Node *in1 = add->in(1);
60  Node *in2 = add->in(2);
61
62  // Convert "1+x" into "x+1".
63  // Right is a constant; leave it
64  if( con_right ) return false;
65  // Left is a constant; move it right.
66  if( con_left ) {
67    add->swap_edges(1, 2);
68    return true;
69  }
70
71  // Convert "Load+x" into "x+Load".
72  // Now check for loads
73  if (in2->is_Load()) {
74    if (!in1->is_Load()) {
75      // already x+Load to return
76      return false;
77    }
78    // both are loads, so fall through to sort inputs by idx
79  } else if( in1->is_Load() ) {
80    // Left is a Load and Right is not; move it right.
81    add->swap_edges(1, 2);
82    return true;
83  }
84
85  PhiNode *phi;
86  // Check for tight loop increments: Loop-phi of Add of loop-phi
87  if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
88    return false;
89  if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
90    add->swap_edges(1, 2);
91    return true;
92  }
93
94  // Otherwise, sort inputs (commutativity) to help value numbering.
95  if( in1->_idx > in2->_idx ) {
96    add->swap_edges(1, 2);
97    return true;
98  }
99  return false;
100}
101
102//------------------------------Idealize---------------------------------------
103// If we get here, we assume we are associative!
104Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
105  const Type *t1 = phase->type( in(1) );
106  const Type *t2 = phase->type( in(2) );
107  int con_left  = t1->singleton();
108  int con_right = t2->singleton();
109
110  // Check for commutative operation desired
111  if( commute(this,con_left,con_right) ) return this;
112
113  AddNode *progress = NULL;             // Progress flag
114
115  // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
116  // constant, and the left input is an add of a constant, flatten the
117  // expression tree.
118  Node *add1 = in(1);
119  Node *add2 = in(2);
120  int add1_op = add1->Opcode();
121  int this_op = Opcode();
122  if( con_right && t2 != Type::TOP && // Right input is a constant?
123      add1_op == this_op ) { // Left input is an Add?
124
125    // Type of left _in right input
126    const Type *t12 = phase->type( add1->in(2) );
127    if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
128      // Check for rare case of closed data cycle which can happen inside
129      // unreachable loops. In these cases the computation is undefined.
130#ifdef ASSERT
131      Node *add11    = add1->in(1);
132      int   add11_op = add11->Opcode();
133      if( (add1 == add1->in(1))
134         || (add11_op == this_op && add11->in(1) == add1) ) {
135        assert(false, "dead loop in AddNode::Ideal");
136      }
137#endif
138      // The Add of the flattened expression
139      Node *x1 = add1->in(1);
140      Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
141      PhaseIterGVN *igvn = phase->is_IterGVN();
142      if( igvn ) {
143        set_req_X(2,x2,igvn);
144        set_req_X(1,x1,igvn);
145      } else {
146        set_req(2,x2);
147        set_req(1,x1);
148      }
149      progress = this;            // Made progress
150      add1 = in(1);
151      add1_op = add1->Opcode();
152    }
153  }
154
155  // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
156  if( add1_op == this_op && !con_right ) {
157    Node *a12 = add1->in(2);
158    const Type *t12 = phase->type( a12 );
159    if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
160      add2 = add1->clone();
161      add2->set_req(2, in(2));
162      add2 = phase->transform(add2);
163      set_req(1, add2);
164      set_req(2, a12);
165      progress = this;
166      add2 = a12;
167    }
168  }
169
170  // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
171  int add2_op = add2->Opcode();
172  if( add2_op == this_op && !con_left ) {
173    Node *a22 = add2->in(2);
174    const Type *t22 = phase->type( a22 );
175    if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
176      Node *addx = add2->clone();
177      addx->set_req(1, in(1));
178      addx->set_req(2, add2->in(1));
179      addx = phase->transform(addx);
180      set_req(1, addx);
181      set_req(2, a22);
182      progress = this;
183    }
184  }
185
186  return progress;
187}
188
189//------------------------------Value-----------------------------------------
190// An add node sums it's two _in.  If one input is an RSD, we must mixin
191// the other input's symbols.
192const Type *AddNode::Value( PhaseTransform *phase ) const {
193  // Either input is TOP ==> the result is TOP
194  const Type *t1 = phase->type( in(1) );
195  const Type *t2 = phase->type( in(2) );
196  if( t1 == Type::TOP ) return Type::TOP;
197  if( t2 == Type::TOP ) return Type::TOP;
198
199  // Either input is BOTTOM ==> the result is the local BOTTOM
200  const Type *bot = bottom_type();
201  if( (t1 == bot) || (t2 == bot) ||
202      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
203    return bot;
204
205  // Check for an addition involving the additive identity
206  const Type *tadd = add_of_identity( t1, t2 );
207  if( tadd ) return tadd;
208
209  return add_ring(t1,t2);               // Local flavor of type addition
210}
211
212//------------------------------add_identity-----------------------------------
213// Check for addition of the identity
214const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
215  const Type *zero = add_id();  // The additive identity
216  if( t1->higher_equal( zero ) ) return t2;
217  if( t2->higher_equal( zero ) ) return t1;
218
219  return NULL;
220}
221
222
223//=============================================================================
224//------------------------------Idealize---------------------------------------
225Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
226  int op1 = in(1)->Opcode();
227  int op2 = in(2)->Opcode();
228  // Fold (con1-x)+con2 into (con1+con2)-x
229  if( op1 == Op_SubI ) {
230    const Type *t_sub1 = phase->type( in(1)->in(1) );
231    const Type *t_2    = phase->type( in(2)        );
232    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
233      return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
234                              in(1)->in(2) );
235    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
236    if( op2 == Op_SubI ) {
237      // Check for dead cycle: d = (a-b)+(c-d)
238      assert( in(1)->in(2) != this && in(2)->in(2) != this,
239              "dead loop in AddINode::Ideal" );
240      Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
241      sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
242      sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
243      return sub;
244    }
245  }
246
247  // Convert "x+(0-y)" into "(x-y)"
248  if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
249    return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
250
251  // Convert "(0-y)+x" into "(x-y)"
252  if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
253    return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
254
255  // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
256  // Helps with array allocation math constant folding
257  // See 4790063:
258  // Unrestricted transformation is unsafe for some runtime values of 'x'
259  // ( x ==  0, z == 1, y == -1 ) fails
260  // ( x == -5, z == 1, y ==  1 ) fails
261  // Transform works for small z and small negative y when the addition
262  // (x + (y << z)) does not cross zero.
263  // Implement support for negative y and (x >= -(y << z))
264  // Have not observed cases where type information exists to support
265  // positive y and (x <= -(y << z))
266  if( op1 == Op_URShiftI && op2 == Op_ConI &&
267      in(1)->in(2)->Opcode() == Op_ConI ) {
268    jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
269    jint y = phase->type( in(2) )->is_int()->get_con();
270
271    if( z < 5 && -5 < y && y < 0 ) {
272      const Type *t_in11 = phase->type(in(1)->in(1));
273      if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
274        Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
275        return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
276      }
277    }
278  }
279
280  return AddNode::Ideal(phase, can_reshape);
281}
282
283
284//------------------------------Identity---------------------------------------
285// Fold (x-y)+y  OR  y+(x-y)  into  x
286Node *AddINode::Identity( PhaseTransform *phase ) {
287  if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
288    return in(1)->in(1);
289  }
290  else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
291    return in(2)->in(1);
292  }
293  return AddNode::Identity(phase);
294}
295
296
297//------------------------------add_ring---------------------------------------
298// Supplied function returns the sum of the inputs.  Guaranteed never
299// to be passed a TOP or BOTTOM type, these are filtered out by
300// pre-check.
301const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
302  const TypeInt *r0 = t0->is_int(); // Handy access
303  const TypeInt *r1 = t1->is_int();
304  int lo = r0->_lo + r1->_lo;
305  int hi = r0->_hi + r1->_hi;
306  if( !(r0->is_con() && r1->is_con()) ) {
307    // Not both constants, compute approximate result
308    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
309      lo = min_jint; hi = max_jint; // Underflow on the low side
310    }
311    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
312      lo = min_jint; hi = max_jint; // Overflow on the high side
313    }
314    if( lo > hi ) {               // Handle overflow
315      lo = min_jint; hi = max_jint;
316    }
317  } else {
318    // both constants, compute precise result using 'lo' and 'hi'
319    // Semantics define overflow and underflow for integer addition
320    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
321  }
322  return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
323}
324
325
326//=============================================================================
327//------------------------------Idealize---------------------------------------
328Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
329  int op1 = in(1)->Opcode();
330  int op2 = in(2)->Opcode();
331  // Fold (con1-x)+con2 into (con1+con2)-x
332  if( op1 == Op_SubL ) {
333    const Type *t_sub1 = phase->type( in(1)->in(1) );
334    const Type *t_2    = phase->type( in(2)        );
335    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
336      return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
337                              in(1)->in(2) );
338    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
339    if( op2 == Op_SubL ) {
340      // Check for dead cycle: d = (a-b)+(c-d)
341      assert( in(1)->in(2) != this && in(2)->in(2) != this,
342              "dead loop in AddLNode::Ideal" );
343      Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
344      sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
345      sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
346      return sub;
347    }
348  }
349
350  // Convert "x+(0-y)" into "(x-y)"
351  if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
352    return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
353
354  // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
355  // into "(X<<1)+Y" and let shift-folding happen.
356  if( op2 == Op_AddL &&
357      in(2)->in(1) == in(1) &&
358      op1 != Op_ConL &&
359      0 ) {
360    Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
361    return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
362  }
363
364  return AddNode::Ideal(phase, can_reshape);
365}
366
367
368//------------------------------Identity---------------------------------------
369// Fold (x-y)+y  OR  y+(x-y)  into  x
370Node *AddLNode::Identity( PhaseTransform *phase ) {
371  if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
372    return in(1)->in(1);
373  }
374  else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
375    return in(2)->in(1);
376  }
377  return AddNode::Identity(phase);
378}
379
380
381//------------------------------add_ring---------------------------------------
382// Supplied function returns the sum of the inputs.  Guaranteed never
383// to be passed a TOP or BOTTOM type, these are filtered out by
384// pre-check.
385const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
386  const TypeLong *r0 = t0->is_long(); // Handy access
387  const TypeLong *r1 = t1->is_long();
388  jlong lo = r0->_lo + r1->_lo;
389  jlong hi = r0->_hi + r1->_hi;
390  if( !(r0->is_con() && r1->is_con()) ) {
391    // Not both constants, compute approximate result
392    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
393      lo =min_jlong; hi = max_jlong; // Underflow on the low side
394    }
395    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
396      lo = min_jlong; hi = max_jlong; // Overflow on the high side
397    }
398    if( lo > hi ) {               // Handle overflow
399      lo = min_jlong; hi = max_jlong;
400    }
401  } else {
402    // both constants, compute precise result using 'lo' and 'hi'
403    // Semantics define overflow and underflow for integer addition
404    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
405  }
406  return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
407}
408
409
410//=============================================================================
411//------------------------------add_of_identity--------------------------------
412// Check for addition of the identity
413const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
414  // x ADD 0  should return x unless 'x' is a -zero
415  //
416  // const Type *zero = add_id();     // The additive identity
417  // jfloat f1 = t1->getf();
418  // jfloat f2 = t2->getf();
419  //
420  // if( t1->higher_equal( zero ) ) return t2;
421  // if( t2->higher_equal( zero ) ) return t1;
422
423  return NULL;
424}
425
426//------------------------------add_ring---------------------------------------
427// Supplied function returns the sum of the inputs.
428// This also type-checks the inputs for sanity.  Guaranteed never to
429// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
430const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
431  // We must be adding 2 float constants.
432  return TypeF::make( t0->getf() + t1->getf() );
433}
434
435//------------------------------Ideal------------------------------------------
436Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
437  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
438    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
439  }
440
441  // Floating point additions are not associative because of boundary conditions (infinity)
442  return commute(this,
443                 phase->type( in(1) )->singleton(),
444                 phase->type( in(2) )->singleton() ) ? this : NULL;
445}
446
447
448//=============================================================================
449//------------------------------add_of_identity--------------------------------
450// Check for addition of the identity
451const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
452  // x ADD 0  should return x unless 'x' is a -zero
453  //
454  // const Type *zero = add_id();     // The additive identity
455  // jfloat f1 = t1->getf();
456  // jfloat f2 = t2->getf();
457  //
458  // if( t1->higher_equal( zero ) ) return t2;
459  // if( t2->higher_equal( zero ) ) return t1;
460
461  return NULL;
462}
463//------------------------------add_ring---------------------------------------
464// Supplied function returns the sum of the inputs.
465// This also type-checks the inputs for sanity.  Guaranteed never to
466// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
467const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
468  // We must be adding 2 double constants.
469  return TypeD::make( t0->getd() + t1->getd() );
470}
471
472//------------------------------Ideal------------------------------------------
473Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
474  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
475    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
476  }
477
478  // Floating point additions are not associative because of boundary conditions (infinity)
479  return commute(this,
480                 phase->type( in(1) )->singleton(),
481                 phase->type( in(2) )->singleton() ) ? this : NULL;
482}
483
484
485//=============================================================================
486//------------------------------Identity---------------------------------------
487// If one input is a constant 0, return the other input.
488Node *AddPNode::Identity( PhaseTransform *phase ) {
489  return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
490}
491
492//------------------------------Idealize---------------------------------------
493Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
494  // Bail out if dead inputs
495  if( phase->type( in(Address) ) == Type::TOP ) return NULL;
496
497  // If the left input is an add of a constant, flatten the expression tree.
498  const Node *n = in(Address);
499  if (n->is_AddP() && n->in(Base) == in(Base)) {
500    const AddPNode *addp = n->as_AddP(); // Left input is an AddP
501    assert( !addp->in(Address)->is_AddP() ||
502             addp->in(Address)->as_AddP() != addp,
503            "dead loop in AddPNode::Ideal" );
504    // Type of left input's right input
505    const Type *t = phase->type( addp->in(Offset) );
506    if( t == Type::TOP ) return NULL;
507    const TypeX *t12 = t->is_intptr_t();
508    if( t12->is_con() ) {       // Left input is an add of a constant?
509      // If the right input is a constant, combine constants
510      const Type *temp_t2 = phase->type( in(Offset) );
511      if( temp_t2 == Type::TOP ) return NULL;
512      const TypeX *t2 = temp_t2->is_intptr_t();
513      Node* address;
514      Node* offset;
515      if( t2->is_con() ) {
516        // The Add of the flattened expression
517        address = addp->in(Address);
518        offset  = phase->MakeConX(t2->get_con() + t12->get_con());
519      } else {
520        // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
521        address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
522        offset  = addp->in(Offset);
523      }
524      PhaseIterGVN *igvn = phase->is_IterGVN();
525      if( igvn ) {
526        set_req_X(Address,address,igvn);
527        set_req_X(Offset,offset,igvn);
528      } else {
529        set_req(Address,address);
530        set_req(Offset,offset);
531      }
532      return this;
533    }
534  }
535
536  // Raw pointers?
537  if( in(Base)->bottom_type() == Type::TOP ) {
538    // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
539    if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
540      Node* offset = in(Offset);
541      return new (phase->C, 2) CastX2PNode(offset);
542    }
543  }
544
545  // If the right is an add of a constant, push the offset down.
546  // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
547  // The idea is to merge array_base+scaled_index groups together,
548  // and only have different constant offsets from the same base.
549  const Node *add = in(Offset);
550  if( add->Opcode() == Op_AddX && add->in(1) != add ) {
551    const Type *t22 = phase->type( add->in(2) );
552    if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
553      set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
554      set_req(Offset, add->in(2));
555      return this;              // Made progress
556    }
557  }
558
559  return NULL;                  // No progress
560}
561
562//------------------------------bottom_type------------------------------------
563// Bottom-type is the pointer-type with unknown offset.
564const Type *AddPNode::bottom_type() const {
565  if (in(Address) == NULL)  return TypePtr::BOTTOM;
566  const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
567  if( !tp ) return Type::TOP;   // TOP input means TOP output
568  assert( in(Offset)->Opcode() != Op_ConP, "" );
569  const Type *t = in(Offset)->bottom_type();
570  if( t == Type::TOP )
571    return tp->add_offset(Type::OffsetTop);
572  const TypeX *tx = t->is_intptr_t();
573  intptr_t txoffset = Type::OffsetBot;
574  if (tx->is_con()) {   // Left input is an add of a constant?
575    txoffset = tx->get_con();
576    if (txoffset != (int)txoffset)
577      txoffset = Type::OffsetBot;   // oops:  add_offset will choke on it
578  }
579  return tp->add_offset(txoffset);
580}
581
582//------------------------------Value------------------------------------------
583const Type *AddPNode::Value( PhaseTransform *phase ) const {
584  // Either input is TOP ==> the result is TOP
585  const Type *t1 = phase->type( in(Address) );
586  const Type *t2 = phase->type( in(Offset) );
587  if( t1 == Type::TOP ) return Type::TOP;
588  if( t2 == Type::TOP ) return Type::TOP;
589
590  // Left input is a pointer
591  const TypePtr *p1 = t1->isa_ptr();
592  // Right input is an int
593  const TypeX *p2 = t2->is_intptr_t();
594  // Add 'em
595  intptr_t p2offset = Type::OffsetBot;
596  if (p2->is_con()) {   // Left input is an add of a constant?
597    p2offset = p2->get_con();
598    if (p2offset != (int)p2offset)
599      p2offset = Type::OffsetBot;   // oops:  add_offset will choke on it
600  }
601  return p1->add_offset(p2offset);
602}
603
604//------------------------Ideal_base_and_offset--------------------------------
605// Split an oop pointer into a base and offset.
606// (The offset might be Type::OffsetBot in the case of an array.)
607// Return the base, or NULL if failure.
608Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
609                                      // second return value:
610                                      intptr_t& offset) {
611  if (ptr->is_AddP()) {
612    Node* base = ptr->in(AddPNode::Base);
613    Node* addr = ptr->in(AddPNode::Address);
614    Node* offs = ptr->in(AddPNode::Offset);
615    if (base == addr || base->is_top()) {
616      offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
617      if (offset != Type::OffsetBot) {
618        return addr;
619      }
620    }
621  }
622  offset = Type::OffsetBot;
623  return NULL;
624}
625
626//------------------------------unpack_offsets----------------------------------
627// Collect the AddP offset values into the elements array, giving up
628// if there are more than length.
629int AddPNode::unpack_offsets(Node* elements[], int length) {
630  int count = 0;
631  Node* addr = this;
632  Node* base = addr->in(AddPNode::Base);
633  while (addr->is_AddP()) {
634    if (addr->in(AddPNode::Base) != base) {
635      // give up
636      return -1;
637    }
638    elements[count++] = addr->in(AddPNode::Offset);
639    if (count == length) {
640      // give up
641      return -1;
642    }
643    addr = addr->in(AddPNode::Address);
644  }
645  return count;
646}
647
648//------------------------------match_edge-------------------------------------
649// Do we Match on this edge index or not?  Do not match base pointer edge
650uint AddPNode::match_edge(uint idx) const {
651  return idx > Base;
652}
653
654//---------------------------mach_bottom_type----------------------------------
655// Utility function for use by ADLC.  Implements bottom_type for matched AddP.
656const Type *AddPNode::mach_bottom_type( const MachNode* n) {
657  Node* base = n->in(Base);
658  const Type *t = base->bottom_type();
659  if ( t == Type::TOP ) {
660    // an untyped pointer
661    return TypeRawPtr::BOTTOM;
662  }
663  const TypePtr* tp = t->isa_oopptr();
664  if ( tp == NULL )  return t;
665  if ( tp->_offset == TypePtr::OffsetBot )  return tp;
666
667  // We must carefully add up the various offsets...
668  intptr_t offset = 0;
669  const TypePtr* tptr = NULL;
670
671  uint numopnds = n->num_opnds();
672  uint index = n->oper_input_base();
673  for ( uint i = 1; i < numopnds; i++ ) {
674    MachOper *opnd = n->_opnds[i];
675    // Check for any interesting operand info.
676    // In particular, check for both memory and non-memory operands.
677    // %%%%% Clean this up: use xadd_offset
678    int con = opnd->constant();
679    if ( con == TypePtr::OffsetBot )  goto bottom_out;
680    offset += con;
681    con = opnd->constant_disp();
682    if ( con == TypePtr::OffsetBot )  goto bottom_out;
683    offset += con;
684    if( opnd->scale() != 0 ) goto bottom_out;
685
686    // Check each operand input edge.  Find the 1 allowed pointer
687    // edge.  Other edges must be index edges; track exact constant
688    // inputs and otherwise assume the worst.
689    for ( uint j = opnd->num_edges(); j > 0; j-- ) {
690      Node* edge = n->in(index++);
691      const Type*    et  = edge->bottom_type();
692      const TypeX*   eti = et->isa_intptr_t();
693      if ( eti == NULL ) {
694        // there must be one pointer among the operands
695        guarantee(tptr == NULL, "must be only one pointer operand");
696        tptr = et->isa_oopptr();
697        guarantee(tptr != NULL, "non-int operand must be pointer");
698        continue;
699      }
700      if ( eti->_hi != eti->_lo )  goto bottom_out;
701      offset += eti->_lo;
702    }
703  }
704  guarantee(tptr != NULL, "must be exactly one pointer operand");
705  return tptr->add_offset(offset);
706
707 bottom_out:
708  return tp->add_offset(TypePtr::OffsetBot);
709}
710
711//=============================================================================
712//------------------------------Identity---------------------------------------
713Node *OrINode::Identity( PhaseTransform *phase ) {
714  // x | x => x
715  if (phase->eqv(in(1), in(2))) {
716    return in(1);
717  }
718
719  return AddNode::Identity(phase);
720}
721
722//------------------------------add_ring---------------------------------------
723// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
724// the logical operations the ring's ADD is really a logical OR function.
725// This also type-checks the inputs for sanity.  Guaranteed never to
726// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
727const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
728  const TypeInt *r0 = t0->is_int(); // Handy access
729  const TypeInt *r1 = t1->is_int();
730
731  // If both args are bool, can figure out better types
732  if ( r0 == TypeInt::BOOL ) {
733    if ( r1 == TypeInt::ONE) {
734      return TypeInt::ONE;
735    } else if ( r1 == TypeInt::BOOL ) {
736      return TypeInt::BOOL;
737    }
738  } else if ( r0 == TypeInt::ONE ) {
739    if ( r1 == TypeInt::BOOL ) {
740      return TypeInt::ONE;
741    }
742  }
743
744  // If either input is not a constant, just return all integers.
745  if( !r0->is_con() || !r1->is_con() )
746    return TypeInt::INT;        // Any integer, but still no symbols.
747
748  // Otherwise just OR them bits.
749  return TypeInt::make( r0->get_con() | r1->get_con() );
750}
751
752//=============================================================================
753//------------------------------Identity---------------------------------------
754Node *OrLNode::Identity( PhaseTransform *phase ) {
755  // x | x => x
756  if (phase->eqv(in(1), in(2))) {
757    return in(1);
758  }
759
760  return AddNode::Identity(phase);
761}
762
763//------------------------------add_ring---------------------------------------
764const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
765  const TypeLong *r0 = t0->is_long(); // Handy access
766  const TypeLong *r1 = t1->is_long();
767
768  // If either input is not a constant, just return all integers.
769  if( !r0->is_con() || !r1->is_con() )
770    return TypeLong::LONG;      // Any integer, but still no symbols.
771
772  // Otherwise just OR them bits.
773  return TypeLong::make( r0->get_con() | r1->get_con() );
774}
775
776//=============================================================================
777//------------------------------add_ring---------------------------------------
778// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
779// the logical operations the ring's ADD is really a logical OR function.
780// This also type-checks the inputs for sanity.  Guaranteed never to
781// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
782const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
783  const TypeInt *r0 = t0->is_int(); // Handy access
784  const TypeInt *r1 = t1->is_int();
785
786  // Complementing a boolean?
787  if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
788                               || r1 == TypeInt::BOOL))
789    return TypeInt::BOOL;
790
791  if( !r0->is_con() || !r1->is_con() ) // Not constants
792    return TypeInt::INT;        // Any integer, but still no symbols.
793
794  // Otherwise just XOR them bits.
795  return TypeInt::make( r0->get_con() ^ r1->get_con() );
796}
797
798//=============================================================================
799//------------------------------add_ring---------------------------------------
800const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
801  const TypeLong *r0 = t0->is_long(); // Handy access
802  const TypeLong *r1 = t1->is_long();
803
804  // If either input is not a constant, just return all integers.
805  if( !r0->is_con() || !r1->is_con() )
806    return TypeLong::LONG;      // Any integer, but still no symbols.
807
808  // Otherwise just OR them bits.
809  return TypeLong::make( r0->get_con() ^ r1->get_con() );
810}
811
812//=============================================================================
813//------------------------------add_ring---------------------------------------
814// Supplied function returns the sum of the inputs.
815const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
816  const TypeInt *r0 = t0->is_int(); // Handy access
817  const TypeInt *r1 = t1->is_int();
818
819  // Otherwise just MAX them bits.
820  return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
821}
822
823//=============================================================================
824//------------------------------Idealize---------------------------------------
825// MINs show up in range-check loop limit calculations.  Look for
826// "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
827Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
828  Node *progress = NULL;
829  // Force a right-spline graph
830  Node *l = in(1);
831  Node *r = in(2);
832  // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
833  // to force a right-spline graph for the rest of MinINode::Ideal().
834  if( l->Opcode() == Op_MinI ) {
835    assert( l != l->in(1), "dead loop in MinINode::Ideal" );
836    r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
837    l = l->in(1);
838    set_req(1, l);
839    set_req(2, r);
840    return this;
841  }
842
843  // Get left input & constant
844  Node *x = l;
845  int x_off = 0;
846  if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
847      x->in(2)->is_Con() ) {
848    const Type *t = x->in(2)->bottom_type();
849    if( t == Type::TOP ) return NULL;  // No progress
850    x_off = t->is_int()->get_con();
851    x = x->in(1);
852  }
853
854  // Scan a right-spline-tree for MINs
855  Node *y = r;
856  int y_off = 0;
857  // Check final part of MIN tree
858  if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
859      y->in(2)->is_Con() ) {
860    const Type *t = y->in(2)->bottom_type();
861    if( t == Type::TOP ) return NULL;  // No progress
862    y_off = t->is_int()->get_con();
863    y = y->in(1);
864  }
865  if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
866    swap_edges(1, 2);
867    return this;
868  }
869
870
871  if( r->Opcode() == Op_MinI ) {
872    assert( r != r->in(2), "dead loop in MinINode::Ideal" );
873    y = r->in(1);
874    // Check final part of MIN tree
875    if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
876        y->in(2)->is_Con() ) {
877      const Type *t = y->in(2)->bottom_type();
878      if( t == Type::TOP ) return NULL;  // No progress
879      y_off = t->is_int()->get_con();
880      y = y->in(1);
881    }
882
883    if( x->_idx > y->_idx )
884      return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
885
886    // See if covers: MIN2(x+c0,MIN2(y+c1,z))
887    if( !phase->eqv(x,y) ) return NULL;
888    // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
889    // MIN2(x+c0 or x+c1 which less, z).
890    return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
891  } else {
892    // See if covers: MIN2(x+c0,y+c1)
893    if( !phase->eqv(x,y) ) return NULL;
894    // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
895    return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
896  }
897
898}
899
900//------------------------------add_ring---------------------------------------
901// Supplied function returns the sum of the inputs.
902const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
903  const TypeInt *r0 = t0->is_int(); // Handy access
904  const TypeInt *r1 = t1->is_int();
905
906  // Otherwise just MIN them bits.
907  return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
908}
909