1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "memory/allocation.inline.hpp"
27#include "opto/addnode.hpp"
28#include "opto/castnode.hpp"
29#include "opto/cfgnode.hpp"
30#include "opto/connode.hpp"
31#include "opto/machnode.hpp"
32#include "opto/mulnode.hpp"
33#include "opto/phaseX.hpp"
34#include "opto/subnode.hpp"
35
36// Portions of code courtesy of Clifford Click
37
38// Classic Add functionality.  This covers all the usual 'add' behaviors for
39// an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
40// all inherited from this class.  The various identity values are supplied
41// by virtual functions.
42
43
44//=============================================================================
45//------------------------------hash-------------------------------------------
46// Hash function over AddNodes.  Needs to be commutative; i.e., I swap
47// (commute) inputs to AddNodes willy-nilly so the hash function must return
48// the same value in the presence of edge swapping.
49uint AddNode::hash() const {
50  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
51}
52
53//------------------------------Identity---------------------------------------
54// If either input is a constant 0, return the other input.
55Node* AddNode::Identity(PhaseGVN* phase) {
56  const Type *zero = add_id();  // The additive identity
57  if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
58  if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
59  return this;
60}
61
62//------------------------------commute----------------------------------------
63// Commute operands to move loads and constants to the right.
64static bool commute(Node *add, bool con_left, bool con_right) {
65  Node *in1 = add->in(1);
66  Node *in2 = add->in(2);
67
68  // Convert "1+x" into "x+1".
69  // Right is a constant; leave it
70  if( con_right ) return false;
71  // Left is a constant; move it right.
72  if( con_left ) {
73    add->swap_edges(1, 2);
74    return true;
75  }
76
77  // Convert "Load+x" into "x+Load".
78  // Now check for loads
79  if (in2->is_Load()) {
80    if (!in1->is_Load()) {
81      // already x+Load to return
82      return false;
83    }
84    // both are loads, so fall through to sort inputs by idx
85  } else if( in1->is_Load() ) {
86    // Left is a Load and Right is not; move it right.
87    add->swap_edges(1, 2);
88    return true;
89  }
90
91  PhiNode *phi;
92  // Check for tight loop increments: Loop-phi of Add of loop-phi
93  if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
94    return false;
95  if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
96    add->swap_edges(1, 2);
97    return true;
98  }
99
100  // Otherwise, sort inputs (commutativity) to help value numbering.
101  if( in1->_idx > in2->_idx ) {
102    add->swap_edges(1, 2);
103    return true;
104  }
105  return false;
106}
107
108//------------------------------Idealize---------------------------------------
109// If we get here, we assume we are associative!
110Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
111  const Type *t1 = phase->type( in(1) );
112  const Type *t2 = phase->type( in(2) );
113  bool con_left  = t1->singleton();
114  bool con_right = t2->singleton();
115
116  // Check for commutative operation desired
117  if( commute(this,con_left,con_right) ) return this;
118
119  AddNode *progress = NULL;             // Progress flag
120
121  // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
122  // constant, and the left input is an add of a constant, flatten the
123  // expression tree.
124  Node *add1 = in(1);
125  Node *add2 = in(2);
126  int add1_op = add1->Opcode();
127  int this_op = Opcode();
128  if( con_right && t2 != Type::TOP && // Right input is a constant?
129      add1_op == this_op ) { // Left input is an Add?
130
131    // Type of left _in right input
132    const Type *t12 = phase->type( add1->in(2) );
133    if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
134      // Check for rare case of closed data cycle which can happen inside
135      // unreachable loops. In these cases the computation is undefined.
136#ifdef ASSERT
137      Node *add11    = add1->in(1);
138      int   add11_op = add11->Opcode();
139      if( (add1 == add1->in(1))
140         || (add11_op == this_op && add11->in(1) == add1) ) {
141        assert(false, "dead loop in AddNode::Ideal");
142      }
143#endif
144      // The Add of the flattened expression
145      Node *x1 = add1->in(1);
146      Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
147      PhaseIterGVN *igvn = phase->is_IterGVN();
148      if( igvn ) {
149        set_req_X(2,x2,igvn);
150        set_req_X(1,x1,igvn);
151      } else {
152        set_req(2,x2);
153        set_req(1,x1);
154      }
155      progress = this;            // Made progress
156      add1 = in(1);
157      add1_op = add1->Opcode();
158    }
159  }
160
161  // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
162  if( add1_op == this_op && !con_right ) {
163    Node *a12 = add1->in(2);
164    const Type *t12 = phase->type( a12 );
165    if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
166       !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
167      assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
168      add2 = add1->clone();
169      add2->set_req(2, in(2));
170      add2 = phase->transform(add2);
171      set_req(1, add2);
172      set_req(2, a12);
173      progress = this;
174      add2 = a12;
175    }
176  }
177
178  // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
179  int add2_op = add2->Opcode();
180  if( add2_op == this_op && !con_left ) {
181    Node *a22 = add2->in(2);
182    const Type *t22 = phase->type( a22 );
183    if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
184       !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
185      assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
186      Node *addx = add2->clone();
187      addx->set_req(1, in(1));
188      addx->set_req(2, add2->in(1));
189      addx = phase->transform(addx);
190      set_req(1, addx);
191      set_req(2, a22);
192      progress = this;
193      PhaseIterGVN *igvn = phase->is_IterGVN();
194      if (add2->outcnt() == 0 && igvn) {
195        // add disconnected.
196        igvn->_worklist.push(add2);
197      }
198    }
199  }
200
201  return progress;
202}
203
204//------------------------------Value-----------------------------------------
205// An add node sums it's two _in.  If one input is an RSD, we must mixin
206// the other input's symbols.
207const Type* AddNode::Value(PhaseGVN* phase) const {
208  // Either input is TOP ==> the result is TOP
209  const Type *t1 = phase->type( in(1) );
210  const Type *t2 = phase->type( in(2) );
211  if( t1 == Type::TOP ) return Type::TOP;
212  if( t2 == Type::TOP ) return Type::TOP;
213
214  // Either input is BOTTOM ==> the result is the local BOTTOM
215  const Type *bot = bottom_type();
216  if( (t1 == bot) || (t2 == bot) ||
217      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
218    return bot;
219
220  // Check for an addition involving the additive identity
221  const Type *tadd = add_of_identity( t1, t2 );
222  if( tadd ) return tadd;
223
224  return add_ring(t1,t2);               // Local flavor of type addition
225}
226
227//------------------------------add_identity-----------------------------------
228// Check for addition of the identity
229const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
230  const Type *zero = add_id();  // The additive identity
231  if( t1->higher_equal( zero ) ) return t2;
232  if( t2->higher_equal( zero ) ) return t1;
233
234  return NULL;
235}
236
237
238//=============================================================================
239//------------------------------Idealize---------------------------------------
240Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
241  Node* in1 = in(1);
242  Node* in2 = in(2);
243  int op1 = in1->Opcode();
244  int op2 = in2->Opcode();
245  // Fold (con1-x)+con2 into (con1+con2)-x
246  if ( op1 == Op_AddI && op2 == Op_SubI ) {
247    // Swap edges to try optimizations below
248    in1 = in2;
249    in2 = in(1);
250    op1 = op2;
251    op2 = in2->Opcode();
252  }
253  if( op1 == Op_SubI ) {
254    const Type *t_sub1 = phase->type( in1->in(1) );
255    const Type *t_2    = phase->type( in2        );
256    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
257      return new SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) );
258    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
259    if( op2 == Op_SubI ) {
260      // Check for dead cycle: d = (a-b)+(c-d)
261      assert( in1->in(2) != this && in2->in(2) != this,
262              "dead loop in AddINode::Ideal" );
263      Node *sub  = new SubINode(NULL, NULL);
264      sub->init_req(1, phase->transform(new AddINode(in1->in(1), in2->in(1) ) ));
265      sub->init_req(2, phase->transform(new AddINode(in1->in(2), in2->in(2) ) ));
266      return sub;
267    }
268    // Convert "(a-b)+(b+c)" into "(a+c)"
269    if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
270      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
271      return new AddINode(in1->in(1), in2->in(2));
272    }
273    // Convert "(a-b)+(c+b)" into "(a+c)"
274    if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
275      assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
276      return new AddINode(in1->in(1), in2->in(1));
277    }
278    // Convert "(a-b)+(b-c)" into "(a-c)"
279    if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
280      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
281      return new SubINode(in1->in(1), in2->in(2));
282    }
283    // Convert "(a-b)+(c-a)" into "(c-b)"
284    if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
285      assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
286      return new SubINode(in2->in(1), in1->in(2));
287    }
288  }
289
290  // Convert "x+(0-y)" into "(x-y)"
291  if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
292    return new SubINode(in1, in2->in(2) );
293
294  // Convert "(0-y)+x" into "(x-y)"
295  if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
296    return new SubINode( in2, in1->in(2) );
297
298  // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
299  // Helps with array allocation math constant folding
300  // See 4790063:
301  // Unrestricted transformation is unsafe for some runtime values of 'x'
302  // ( x ==  0, z == 1, y == -1 ) fails
303  // ( x == -5, z == 1, y ==  1 ) fails
304  // Transform works for small z and small negative y when the addition
305  // (x + (y << z)) does not cross zero.
306  // Implement support for negative y and (x >= -(y << z))
307  // Have not observed cases where type information exists to support
308  // positive y and (x <= -(y << z))
309  if( op1 == Op_URShiftI && op2 == Op_ConI &&
310      in1->in(2)->Opcode() == Op_ConI ) {
311    jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
312    jint y = phase->type( in2 )->is_int()->get_con();
313
314    if( z < 5 && -5 < y && y < 0 ) {
315      const Type *t_in11 = phase->type(in1->in(1));
316      if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
317        Node *a = phase->transform( new AddINode( in1->in(1), phase->intcon(y<<z) ) );
318        return new URShiftINode( a, in1->in(2) );
319      }
320    }
321  }
322
323  return AddNode::Ideal(phase, can_reshape);
324}
325
326
327//------------------------------Identity---------------------------------------
328// Fold (x-y)+y  OR  y+(x-y)  into  x
329Node* AddINode::Identity(PhaseGVN* phase) {
330  if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
331    return in(1)->in(1);
332  }
333  else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
334    return in(2)->in(1);
335  }
336  return AddNode::Identity(phase);
337}
338
339
340//------------------------------add_ring---------------------------------------
341// Supplied function returns the sum of the inputs.  Guaranteed never
342// to be passed a TOP or BOTTOM type, these are filtered out by
343// pre-check.
344const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
345  const TypeInt *r0 = t0->is_int(); // Handy access
346  const TypeInt *r1 = t1->is_int();
347  int lo = java_add(r0->_lo, r1->_lo);
348  int hi = java_add(r0->_hi, r1->_hi);
349  if( !(r0->is_con() && r1->is_con()) ) {
350    // Not both constants, compute approximate result
351    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
352      lo = min_jint; hi = max_jint; // Underflow on the low side
353    }
354    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
355      lo = min_jint; hi = max_jint; // Overflow on the high side
356    }
357    if( lo > hi ) {               // Handle overflow
358      lo = min_jint; hi = max_jint;
359    }
360  } else {
361    // both constants, compute precise result using 'lo' and 'hi'
362    // Semantics define overflow and underflow for integer addition
363    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
364  }
365  return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
366}
367
368
369//=============================================================================
370//------------------------------Idealize---------------------------------------
371Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
372  Node* in1 = in(1);
373  Node* in2 = in(2);
374  int op1 = in1->Opcode();
375  int op2 = in2->Opcode();
376  // Fold (con1-x)+con2 into (con1+con2)-x
377  if ( op1 == Op_AddL && op2 == Op_SubL ) {
378    // Swap edges to try optimizations below
379    in1 = in2;
380    in2 = in(1);
381    op1 = op2;
382    op2 = in2->Opcode();
383  }
384  // Fold (con1-x)+con2 into (con1+con2)-x
385  if( op1 == Op_SubL ) {
386    const Type *t_sub1 = phase->type( in1->in(1) );
387    const Type *t_2    = phase->type( in2        );
388    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
389      return new SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ), in1->in(2) );
390    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
391    if( op2 == Op_SubL ) {
392      // Check for dead cycle: d = (a-b)+(c-d)
393      assert( in1->in(2) != this && in2->in(2) != this,
394              "dead loop in AddLNode::Ideal" );
395      Node *sub  = new SubLNode(NULL, NULL);
396      sub->init_req(1, phase->transform(new AddLNode(in1->in(1), in2->in(1) ) ));
397      sub->init_req(2, phase->transform(new AddLNode(in1->in(2), in2->in(2) ) ));
398      return sub;
399    }
400    // Convert "(a-b)+(b+c)" into "(a+c)"
401    if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
402      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
403      return new AddLNode(in1->in(1), in2->in(2));
404    }
405    // Convert "(a-b)+(c+b)" into "(a+c)"
406    if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
407      assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
408      return new AddLNode(in1->in(1), in2->in(1));
409    }
410    // Convert "(a-b)+(b-c)" into "(a-c)"
411    if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
412      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
413      return new SubLNode(in1->in(1), in2->in(2));
414    }
415    // Convert "(a-b)+(c-a)" into "(c-b)"
416    if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
417      assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
418      return new SubLNode(in2->in(1), in1->in(2));
419    }
420  }
421
422  // Convert "x+(0-y)" into "(x-y)"
423  if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
424    return new SubLNode( in1, in2->in(2) );
425
426  // Convert "(0-y)+x" into "(x-y)"
427  if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
428    return new SubLNode( in2, in1->in(2) );
429
430  // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
431  // into "(X<<1)+Y" and let shift-folding happen.
432  if( op2 == Op_AddL &&
433      in2->in(1) == in1 &&
434      op1 != Op_ConL &&
435      0 ) {
436    Node *shift = phase->transform(new LShiftLNode(in1,phase->intcon(1)));
437    return new AddLNode(shift,in2->in(2));
438  }
439
440  return AddNode::Ideal(phase, can_reshape);
441}
442
443
444//------------------------------Identity---------------------------------------
445// Fold (x-y)+y  OR  y+(x-y)  into  x
446Node* AddLNode::Identity(PhaseGVN* phase) {
447  if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
448    return in(1)->in(1);
449  }
450  else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
451    return in(2)->in(1);
452  }
453  return AddNode::Identity(phase);
454}
455
456
457//------------------------------add_ring---------------------------------------
458// Supplied function returns the sum of the inputs.  Guaranteed never
459// to be passed a TOP or BOTTOM type, these are filtered out by
460// pre-check.
461const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
462  const TypeLong *r0 = t0->is_long(); // Handy access
463  const TypeLong *r1 = t1->is_long();
464  jlong lo = java_add(r0->_lo, r1->_lo);
465  jlong hi = java_add(r0->_hi, r1->_hi);
466  if( !(r0->is_con() && r1->is_con()) ) {
467    // Not both constants, compute approximate result
468    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
469      lo =min_jlong; hi = max_jlong; // Underflow on the low side
470    }
471    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
472      lo = min_jlong; hi = max_jlong; // Overflow on the high side
473    }
474    if( lo > hi ) {               // Handle overflow
475      lo = min_jlong; hi = max_jlong;
476    }
477  } else {
478    // both constants, compute precise result using 'lo' and 'hi'
479    // Semantics define overflow and underflow for integer addition
480    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
481  }
482  return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
483}
484
485
486//=============================================================================
487//------------------------------add_of_identity--------------------------------
488// Check for addition of the identity
489const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
490  // x ADD 0  should return x unless 'x' is a -zero
491  //
492  // const Type *zero = add_id();     // The additive identity
493  // jfloat f1 = t1->getf();
494  // jfloat f2 = t2->getf();
495  //
496  // if( t1->higher_equal( zero ) ) return t2;
497  // if( t2->higher_equal( zero ) ) return t1;
498
499  return NULL;
500}
501
502//------------------------------add_ring---------------------------------------
503// Supplied function returns the sum of the inputs.
504// This also type-checks the inputs for sanity.  Guaranteed never to
505// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
506const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
507  // We must be adding 2 float constants.
508  return TypeF::make( t0->getf() + t1->getf() );
509}
510
511//------------------------------Ideal------------------------------------------
512Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
513  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
514    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
515  }
516
517  // Floating point additions are not associative because of boundary conditions (infinity)
518  return commute(this,
519                 phase->type( in(1) )->singleton(),
520                 phase->type( in(2) )->singleton() ) ? this : NULL;
521}
522
523
524//=============================================================================
525//------------------------------add_of_identity--------------------------------
526// Check for addition of the identity
527const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
528  // x ADD 0  should return x unless 'x' is a -zero
529  //
530  // const Type *zero = add_id();     // The additive identity
531  // jfloat f1 = t1->getf();
532  // jfloat f2 = t2->getf();
533  //
534  // if( t1->higher_equal( zero ) ) return t2;
535  // if( t2->higher_equal( zero ) ) return t1;
536
537  return NULL;
538}
539//------------------------------add_ring---------------------------------------
540// Supplied function returns the sum of the inputs.
541// This also type-checks the inputs for sanity.  Guaranteed never to
542// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
543const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
544  // We must be adding 2 double constants.
545  return TypeD::make( t0->getd() + t1->getd() );
546}
547
548//------------------------------Ideal------------------------------------------
549Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
550  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
551    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
552  }
553
554  // Floating point additions are not associative because of boundary conditions (infinity)
555  return commute(this,
556                 phase->type( in(1) )->singleton(),
557                 phase->type( in(2) )->singleton() ) ? this : NULL;
558}
559
560
561//=============================================================================
562//------------------------------Identity---------------------------------------
563// If one input is a constant 0, return the other input.
564Node* AddPNode::Identity(PhaseGVN* phase) {
565  return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
566}
567
568//------------------------------Idealize---------------------------------------
569Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
570  // Bail out if dead inputs
571  if( phase->type( in(Address) ) == Type::TOP ) return NULL;
572
573  // If the left input is an add of a constant, flatten the expression tree.
574  const Node *n = in(Address);
575  if (n->is_AddP() && n->in(Base) == in(Base)) {
576    const AddPNode *addp = n->as_AddP(); // Left input is an AddP
577    assert( !addp->in(Address)->is_AddP() ||
578             addp->in(Address)->as_AddP() != addp,
579            "dead loop in AddPNode::Ideal" );
580    // Type of left input's right input
581    const Type *t = phase->type( addp->in(Offset) );
582    if( t == Type::TOP ) return NULL;
583    const TypeX *t12 = t->is_intptr_t();
584    if( t12->is_con() ) {       // Left input is an add of a constant?
585      // If the right input is a constant, combine constants
586      const Type *temp_t2 = phase->type( in(Offset) );
587      if( temp_t2 == Type::TOP ) return NULL;
588      const TypeX *t2 = temp_t2->is_intptr_t();
589      Node* address;
590      Node* offset;
591      if( t2->is_con() ) {
592        // The Add of the flattened expression
593        address = addp->in(Address);
594        offset  = phase->MakeConX(t2->get_con() + t12->get_con());
595      } else {
596        // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
597        address = phase->transform(new AddPNode(in(Base),addp->in(Address),in(Offset)));
598        offset  = addp->in(Offset);
599      }
600      PhaseIterGVN *igvn = phase->is_IterGVN();
601      if( igvn ) {
602        set_req_X(Address,address,igvn);
603        set_req_X(Offset,offset,igvn);
604      } else {
605        set_req(Address,address);
606        set_req(Offset,offset);
607      }
608      return this;
609    }
610  }
611
612  // Raw pointers?
613  if( in(Base)->bottom_type() == Type::TOP ) {
614    // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
615    if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
616      Node* offset = in(Offset);
617      return new CastX2PNode(offset);
618    }
619  }
620
621  // If the right is an add of a constant, push the offset down.
622  // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
623  // The idea is to merge array_base+scaled_index groups together,
624  // and only have different constant offsets from the same base.
625  const Node *add = in(Offset);
626  if( add->Opcode() == Op_AddX && add->in(1) != add ) {
627    const Type *t22 = phase->type( add->in(2) );
628    if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
629      set_req(Address, phase->transform(new AddPNode(in(Base),in(Address),add->in(1))));
630      set_req(Offset, add->in(2));
631      PhaseIterGVN *igvn = phase->is_IterGVN();
632      if (add->outcnt() == 0 && igvn) {
633        // add disconnected.
634        igvn->_worklist.push((Node*)add);
635      }
636      return this;              // Made progress
637    }
638  }
639
640  return NULL;                  // No progress
641}
642
643//------------------------------bottom_type------------------------------------
644// Bottom-type is the pointer-type with unknown offset.
645const Type *AddPNode::bottom_type() const {
646  if (in(Address) == NULL)  return TypePtr::BOTTOM;
647  const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
648  if( !tp ) return Type::TOP;   // TOP input means TOP output
649  assert( in(Offset)->Opcode() != Op_ConP, "" );
650  const Type *t = in(Offset)->bottom_type();
651  if( t == Type::TOP )
652    return tp->add_offset(Type::OffsetTop);
653  const TypeX *tx = t->is_intptr_t();
654  intptr_t txoffset = Type::OffsetBot;
655  if (tx->is_con()) {   // Left input is an add of a constant?
656    txoffset = tx->get_con();
657  }
658  return tp->add_offset(txoffset);
659}
660
661//------------------------------Value------------------------------------------
662const Type* AddPNode::Value(PhaseGVN* phase) const {
663  // Either input is TOP ==> the result is TOP
664  const Type *t1 = phase->type( in(Address) );
665  const Type *t2 = phase->type( in(Offset) );
666  if( t1 == Type::TOP ) return Type::TOP;
667  if( t2 == Type::TOP ) return Type::TOP;
668
669  // Left input is a pointer
670  const TypePtr *p1 = t1->isa_ptr();
671  // Right input is an int
672  const TypeX *p2 = t2->is_intptr_t();
673  // Add 'em
674  intptr_t p2offset = Type::OffsetBot;
675  if (p2->is_con()) {   // Left input is an add of a constant?
676    p2offset = p2->get_con();
677  }
678  return p1->add_offset(p2offset);
679}
680
681//------------------------Ideal_base_and_offset--------------------------------
682// Split an oop pointer into a base and offset.
683// (The offset might be Type::OffsetBot in the case of an array.)
684// Return the base, or NULL if failure.
685Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
686                                      // second return value:
687                                      intptr_t& offset) {
688  if (ptr->is_AddP()) {
689    Node* base = ptr->in(AddPNode::Base);
690    Node* addr = ptr->in(AddPNode::Address);
691    Node* offs = ptr->in(AddPNode::Offset);
692    if (base == addr || base->is_top()) {
693      offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
694      if (offset != Type::OffsetBot) {
695        return addr;
696      }
697    }
698  }
699  offset = Type::OffsetBot;
700  return NULL;
701}
702
703//------------------------------unpack_offsets----------------------------------
704// Collect the AddP offset values into the elements array, giving up
705// if there are more than length.
706int AddPNode::unpack_offsets(Node* elements[], int length) {
707  int count = 0;
708  Node* addr = this;
709  Node* base = addr->in(AddPNode::Base);
710  while (addr->is_AddP()) {
711    if (addr->in(AddPNode::Base) != base) {
712      // give up
713      return -1;
714    }
715    elements[count++] = addr->in(AddPNode::Offset);
716    if (count == length) {
717      // give up
718      return -1;
719    }
720    addr = addr->in(AddPNode::Address);
721  }
722  if (addr != base) {
723    return -1;
724  }
725  return count;
726}
727
728//------------------------------match_edge-------------------------------------
729// Do we Match on this edge index or not?  Do not match base pointer edge
730uint AddPNode::match_edge(uint idx) const {
731  return idx > Base;
732}
733
734//=============================================================================
735//------------------------------Identity---------------------------------------
736Node* OrINode::Identity(PhaseGVN* phase) {
737  // x | x => x
738  if (phase->eqv(in(1), in(2))) {
739    return in(1);
740  }
741
742  return AddNode::Identity(phase);
743}
744
745//------------------------------add_ring---------------------------------------
746// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
747// the logical operations the ring's ADD is really a logical OR function.
748// This also type-checks the inputs for sanity.  Guaranteed never to
749// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
750const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
751  const TypeInt *r0 = t0->is_int(); // Handy access
752  const TypeInt *r1 = t1->is_int();
753
754  // If both args are bool, can figure out better types
755  if ( r0 == TypeInt::BOOL ) {
756    if ( r1 == TypeInt::ONE) {
757      return TypeInt::ONE;
758    } else if ( r1 == TypeInt::BOOL ) {
759      return TypeInt::BOOL;
760    }
761  } else if ( r0 == TypeInt::ONE ) {
762    if ( r1 == TypeInt::BOOL ) {
763      return TypeInt::ONE;
764    }
765  }
766
767  // If either input is not a constant, just return all integers.
768  if( !r0->is_con() || !r1->is_con() )
769    return TypeInt::INT;        // Any integer, but still no symbols.
770
771  // Otherwise just OR them bits.
772  return TypeInt::make( r0->get_con() | r1->get_con() );
773}
774
775//=============================================================================
776//------------------------------Identity---------------------------------------
777Node* OrLNode::Identity(PhaseGVN* phase) {
778  // x | x => x
779  if (phase->eqv(in(1), in(2))) {
780    return in(1);
781  }
782
783  return AddNode::Identity(phase);
784}
785
786//------------------------------add_ring---------------------------------------
787const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
788  const TypeLong *r0 = t0->is_long(); // Handy access
789  const TypeLong *r1 = t1->is_long();
790
791  // If either input is not a constant, just return all integers.
792  if( !r0->is_con() || !r1->is_con() )
793    return TypeLong::LONG;      // Any integer, but still no symbols.
794
795  // Otherwise just OR them bits.
796  return TypeLong::make( r0->get_con() | r1->get_con() );
797}
798
799//=============================================================================
800//------------------------------add_ring---------------------------------------
801// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
802// the logical operations the ring's ADD is really a logical OR function.
803// This also type-checks the inputs for sanity.  Guaranteed never to
804// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
805const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
806  const TypeInt *r0 = t0->is_int(); // Handy access
807  const TypeInt *r1 = t1->is_int();
808
809  // Complementing a boolean?
810  if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
811                               || r1 == TypeInt::BOOL))
812    return TypeInt::BOOL;
813
814  if( !r0->is_con() || !r1->is_con() ) // Not constants
815    return TypeInt::INT;        // Any integer, but still no symbols.
816
817  // Otherwise just XOR them bits.
818  return TypeInt::make( r0->get_con() ^ r1->get_con() );
819}
820
821//=============================================================================
822//------------------------------add_ring---------------------------------------
823const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
824  const TypeLong *r0 = t0->is_long(); // Handy access
825  const TypeLong *r1 = t1->is_long();
826
827  // If either input is not a constant, just return all integers.
828  if( !r0->is_con() || !r1->is_con() )
829    return TypeLong::LONG;      // Any integer, but still no symbols.
830
831  // Otherwise just OR them bits.
832  return TypeLong::make( r0->get_con() ^ r1->get_con() );
833}
834
835//=============================================================================
836//------------------------------add_ring---------------------------------------
837// Supplied function returns the sum of the inputs.
838const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
839  const TypeInt *r0 = t0->is_int(); // Handy access
840  const TypeInt *r1 = t1->is_int();
841
842  // Otherwise just MAX them bits.
843  return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
844}
845
846//=============================================================================
847//------------------------------Idealize---------------------------------------
848// MINs show up in range-check loop limit calculations.  Look for
849// "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
850Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
851  Node *progress = NULL;
852  // Force a right-spline graph
853  Node *l = in(1);
854  Node *r = in(2);
855  // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
856  // to force a right-spline graph for the rest of MinINode::Ideal().
857  if( l->Opcode() == Op_MinI ) {
858    assert( l != l->in(1), "dead loop in MinINode::Ideal" );
859    r = phase->transform(new MinINode(l->in(2),r));
860    l = l->in(1);
861    set_req(1, l);
862    set_req(2, r);
863    return this;
864  }
865
866  // Get left input & constant
867  Node *x = l;
868  int x_off = 0;
869  if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
870      x->in(2)->is_Con() ) {
871    const Type *t = x->in(2)->bottom_type();
872    if( t == Type::TOP ) return NULL;  // No progress
873    x_off = t->is_int()->get_con();
874    x = x->in(1);
875  }
876
877  // Scan a right-spline-tree for MINs
878  Node *y = r;
879  int y_off = 0;
880  // Check final part of MIN tree
881  if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
882      y->in(2)->is_Con() ) {
883    const Type *t = y->in(2)->bottom_type();
884    if( t == Type::TOP ) return NULL;  // No progress
885    y_off = t->is_int()->get_con();
886    y = y->in(1);
887  }
888  if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
889    swap_edges(1, 2);
890    return this;
891  }
892
893
894  if( r->Opcode() == Op_MinI ) {
895    assert( r != r->in(2), "dead loop in MinINode::Ideal" );
896    y = r->in(1);
897    // Check final part of MIN tree
898    if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
899        y->in(2)->is_Con() ) {
900      const Type *t = y->in(2)->bottom_type();
901      if( t == Type::TOP ) return NULL;  // No progress
902      y_off = t->is_int()->get_con();
903      y = y->in(1);
904    }
905
906    if( x->_idx > y->_idx )
907      return new MinINode(r->in(1),phase->transform(new MinINode(l,r->in(2))));
908
909    // See if covers: MIN2(x+c0,MIN2(y+c1,z))
910    if( !phase->eqv(x,y) ) return NULL;
911    // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
912    // MIN2(x+c0 or x+c1 which less, z).
913    return new MinINode(phase->transform(new AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
914  } else {
915    // See if covers: MIN2(x+c0,y+c1)
916    if( !phase->eqv(x,y) ) return NULL;
917    // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
918    return new AddINode(x,phase->intcon(MIN2(x_off,y_off)));
919  }
920
921}
922
923//------------------------------add_ring---------------------------------------
924// Supplied function returns the sum of the inputs.
925const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
926  const TypeInt *r0 = t0->is_int(); // Handy access
927  const TypeInt *r1 = t1->is_int();
928
929  // Otherwise just MIN them bits.
930  return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
931}
932