addnode.cpp revision 1472:c18cbe5936b8
1/*
2 * Copyright (c) 1997, 2009, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25// Portions of code courtesy of Clifford Click
26
27#include "incls/_precompiled.incl"
28#include "incls/_addnode.cpp.incl"
29
30#define MAXFLOAT        ((float)3.40282346638528860e+38)
31
32// Classic Add functionality.  This covers all the usual 'add' behaviors for
33// an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
34// all inherited from this class.  The various identity values are supplied
35// by virtual functions.
36
37
38//=============================================================================
39//------------------------------hash-------------------------------------------
40// Hash function over AddNodes.  Needs to be commutative; i.e., I swap
41// (commute) inputs to AddNodes willy-nilly so the hash function must return
42// the same value in the presence of edge swapping.
43uint AddNode::hash() const {
44  return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
45}
46
47//------------------------------Identity---------------------------------------
48// If either input is a constant 0, return the other input.
49Node *AddNode::Identity( PhaseTransform *phase ) {
50  const Type *zero = add_id();  // The additive identity
51  if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
52  if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
53  return this;
54}
55
56//------------------------------commute----------------------------------------
57// Commute operands to move loads and constants to the right.
58static bool commute( Node *add, int con_left, int con_right ) {
59  Node *in1 = add->in(1);
60  Node *in2 = add->in(2);
61
62  // Convert "1+x" into "x+1".
63  // Right is a constant; leave it
64  if( con_right ) return false;
65  // Left is a constant; move it right.
66  if( con_left ) {
67    add->swap_edges(1, 2);
68    return true;
69  }
70
71  // Convert "Load+x" into "x+Load".
72  // Now check for loads
73  if (in2->is_Load()) {
74    if (!in1->is_Load()) {
75      // already x+Load to return
76      return false;
77    }
78    // both are loads, so fall through to sort inputs by idx
79  } else if( in1->is_Load() ) {
80    // Left is a Load and Right is not; move it right.
81    add->swap_edges(1, 2);
82    return true;
83  }
84
85  PhiNode *phi;
86  // Check for tight loop increments: Loop-phi of Add of loop-phi
87  if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
88    return false;
89  if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
90    add->swap_edges(1, 2);
91    return true;
92  }
93
94  // Otherwise, sort inputs (commutativity) to help value numbering.
95  if( in1->_idx > in2->_idx ) {
96    add->swap_edges(1, 2);
97    return true;
98  }
99  return false;
100}
101
102//------------------------------Idealize---------------------------------------
103// If we get here, we assume we are associative!
104Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
105  const Type *t1 = phase->type( in(1) );
106  const Type *t2 = phase->type( in(2) );
107  int con_left  = t1->singleton();
108  int con_right = t2->singleton();
109
110  // Check for commutative operation desired
111  if( commute(this,con_left,con_right) ) return this;
112
113  AddNode *progress = NULL;             // Progress flag
114
115  // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
116  // constant, and the left input is an add of a constant, flatten the
117  // expression tree.
118  Node *add1 = in(1);
119  Node *add2 = in(2);
120  int add1_op = add1->Opcode();
121  int this_op = Opcode();
122  if( con_right && t2 != Type::TOP && // Right input is a constant?
123      add1_op == this_op ) { // Left input is an Add?
124
125    // Type of left _in right input
126    const Type *t12 = phase->type( add1->in(2) );
127    if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
128      // Check for rare case of closed data cycle which can happen inside
129      // unreachable loops. In these cases the computation is undefined.
130#ifdef ASSERT
131      Node *add11    = add1->in(1);
132      int   add11_op = add11->Opcode();
133      if( (add1 == add1->in(1))
134         || (add11_op == this_op && add11->in(1) == add1) ) {
135        assert(false, "dead loop in AddNode::Ideal");
136      }
137#endif
138      // The Add of the flattened expression
139      Node *x1 = add1->in(1);
140      Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
141      PhaseIterGVN *igvn = phase->is_IterGVN();
142      if( igvn ) {
143        set_req_X(2,x2,igvn);
144        set_req_X(1,x1,igvn);
145      } else {
146        set_req(2,x2);
147        set_req(1,x1);
148      }
149      progress = this;            // Made progress
150      add1 = in(1);
151      add1_op = add1->Opcode();
152    }
153  }
154
155  // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
156  if( add1_op == this_op && !con_right ) {
157    Node *a12 = add1->in(2);
158    const Type *t12 = phase->type( a12 );
159    if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) &&
160       !(add1->in(1)->is_Phi() && add1->in(1)->as_Phi()->is_tripcount()) ) {
161      assert(add1->in(1) != this, "dead loop in AddNode::Ideal");
162      add2 = add1->clone();
163      add2->set_req(2, in(2));
164      add2 = phase->transform(add2);
165      set_req(1, add2);
166      set_req(2, a12);
167      progress = this;
168      add2 = a12;
169    }
170  }
171
172  // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
173  int add2_op = add2->Opcode();
174  if( add2_op == this_op && !con_left ) {
175    Node *a22 = add2->in(2);
176    const Type *t22 = phase->type( a22 );
177    if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) &&
178       !(add2->in(1)->is_Phi() && add2->in(1)->as_Phi()->is_tripcount()) ) {
179      assert(add2->in(1) != this, "dead loop in AddNode::Ideal");
180      Node *addx = add2->clone();
181      addx->set_req(1, in(1));
182      addx->set_req(2, add2->in(1));
183      addx = phase->transform(addx);
184      set_req(1, addx);
185      set_req(2, a22);
186      progress = this;
187    }
188  }
189
190  return progress;
191}
192
193//------------------------------Value-----------------------------------------
194// An add node sums it's two _in.  If one input is an RSD, we must mixin
195// the other input's symbols.
196const Type *AddNode::Value( PhaseTransform *phase ) const {
197  // Either input is TOP ==> the result is TOP
198  const Type *t1 = phase->type( in(1) );
199  const Type *t2 = phase->type( in(2) );
200  if( t1 == Type::TOP ) return Type::TOP;
201  if( t2 == Type::TOP ) return Type::TOP;
202
203  // Either input is BOTTOM ==> the result is the local BOTTOM
204  const Type *bot = bottom_type();
205  if( (t1 == bot) || (t2 == bot) ||
206      (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
207    return bot;
208
209  // Check for an addition involving the additive identity
210  const Type *tadd = add_of_identity( t1, t2 );
211  if( tadd ) return tadd;
212
213  return add_ring(t1,t2);               // Local flavor of type addition
214}
215
216//------------------------------add_identity-----------------------------------
217// Check for addition of the identity
218const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
219  const Type *zero = add_id();  // The additive identity
220  if( t1->higher_equal( zero ) ) return t2;
221  if( t2->higher_equal( zero ) ) return t1;
222
223  return NULL;
224}
225
226
227//=============================================================================
228//------------------------------Idealize---------------------------------------
229Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
230  Node* in1 = in(1);
231  Node* in2 = in(2);
232  int op1 = in1->Opcode();
233  int op2 = in2->Opcode();
234  // Fold (con1-x)+con2 into (con1+con2)-x
235  if ( op1 == Op_AddI && op2 == Op_SubI ) {
236    // Swap edges to try optimizations below
237    in1 = in2;
238    in2 = in(1);
239    op1 = op2;
240    op2 = in2->Opcode();
241  }
242  if( op1 == Op_SubI ) {
243    const Type *t_sub1 = phase->type( in1->in(1) );
244    const Type *t_2    = phase->type( in2        );
245    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
246      return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
247                              in1->in(2) );
248    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
249    if( op2 == Op_SubI ) {
250      // Check for dead cycle: d = (a-b)+(c-d)
251      assert( in1->in(2) != this && in2->in(2) != this,
252              "dead loop in AddINode::Ideal" );
253      Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
254      sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in1->in(1), in2->in(1) ) ));
255      sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in1->in(2), in2->in(2) ) ));
256      return sub;
257    }
258    // Convert "(a-b)+(b+c)" into "(a+c)"
259    if( op2 == Op_AddI && in1->in(2) == in2->in(1) ) {
260      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
261      return new (phase->C, 3) AddINode(in1->in(1), in2->in(2));
262    }
263    // Convert "(a-b)+(c+b)" into "(a+c)"
264    if( op2 == Op_AddI && in1->in(2) == in2->in(2) ) {
265      assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
266      return new (phase->C, 3) AddINode(in1->in(1), in2->in(1));
267    }
268    // Convert "(a-b)+(b-c)" into "(a-c)"
269    if( op2 == Op_SubI && in1->in(2) == in2->in(1) ) {
270      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddINode::Ideal");
271      return new (phase->C, 3) SubINode(in1->in(1), in2->in(2));
272    }
273    // Convert "(a-b)+(c-a)" into "(c-b)"
274    if( op2 == Op_SubI && in1->in(1) == in2->in(2) ) {
275      assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddINode::Ideal");
276      return new (phase->C, 3) SubINode(in2->in(1), in1->in(2));
277    }
278  }
279
280  // Convert "x+(0-y)" into "(x-y)"
281  if( op2 == Op_SubI && phase->type(in2->in(1)) == TypeInt::ZERO )
282    return new (phase->C, 3) SubINode(in1, in2->in(2) );
283
284  // Convert "(0-y)+x" into "(x-y)"
285  if( op1 == Op_SubI && phase->type(in1->in(1)) == TypeInt::ZERO )
286    return new (phase->C, 3) SubINode( in2, in1->in(2) );
287
288  // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
289  // Helps with array allocation math constant folding
290  // See 4790063:
291  // Unrestricted transformation is unsafe for some runtime values of 'x'
292  // ( x ==  0, z == 1, y == -1 ) fails
293  // ( x == -5, z == 1, y ==  1 ) fails
294  // Transform works for small z and small negative y when the addition
295  // (x + (y << z)) does not cross zero.
296  // Implement support for negative y and (x >= -(y << z))
297  // Have not observed cases where type information exists to support
298  // positive y and (x <= -(y << z))
299  if( op1 == Op_URShiftI && op2 == Op_ConI &&
300      in1->in(2)->Opcode() == Op_ConI ) {
301    jint z = phase->type( in1->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
302    jint y = phase->type( in2 )->is_int()->get_con();
303
304    if( z < 5 && -5 < y && y < 0 ) {
305      const Type *t_in11 = phase->type(in1->in(1));
306      if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
307        Node *a = phase->transform( new (phase->C, 3) AddINode( in1->in(1), phase->intcon(y<<z) ) );
308        return new (phase->C, 3) URShiftINode( a, in1->in(2) );
309      }
310    }
311  }
312
313  return AddNode::Ideal(phase, can_reshape);
314}
315
316
317//------------------------------Identity---------------------------------------
318// Fold (x-y)+y  OR  y+(x-y)  into  x
319Node *AddINode::Identity( PhaseTransform *phase ) {
320  if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
321    return in(1)->in(1);
322  }
323  else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
324    return in(2)->in(1);
325  }
326  return AddNode::Identity(phase);
327}
328
329
330//------------------------------add_ring---------------------------------------
331// Supplied function returns the sum of the inputs.  Guaranteed never
332// to be passed a TOP or BOTTOM type, these are filtered out by
333// pre-check.
334const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
335  const TypeInt *r0 = t0->is_int(); // Handy access
336  const TypeInt *r1 = t1->is_int();
337  int lo = r0->_lo + r1->_lo;
338  int hi = r0->_hi + r1->_hi;
339  if( !(r0->is_con() && r1->is_con()) ) {
340    // Not both constants, compute approximate result
341    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
342      lo = min_jint; hi = max_jint; // Underflow on the low side
343    }
344    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
345      lo = min_jint; hi = max_jint; // Overflow on the high side
346    }
347    if( lo > hi ) {               // Handle overflow
348      lo = min_jint; hi = max_jint;
349    }
350  } else {
351    // both constants, compute precise result using 'lo' and 'hi'
352    // Semantics define overflow and underflow for integer addition
353    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
354  }
355  return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
356}
357
358
359//=============================================================================
360//------------------------------Idealize---------------------------------------
361Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
362  Node* in1 = in(1);
363  Node* in2 = in(2);
364  int op1 = in1->Opcode();
365  int op2 = in2->Opcode();
366  // Fold (con1-x)+con2 into (con1+con2)-x
367  if ( op1 == Op_AddL && op2 == Op_SubL ) {
368    // Swap edges to try optimizations below
369    in1 = in2;
370    in2 = in(1);
371    op1 = op2;
372    op2 = in2->Opcode();
373  }
374  // Fold (con1-x)+con2 into (con1+con2)-x
375  if( op1 == Op_SubL ) {
376    const Type *t_sub1 = phase->type( in1->in(1) );
377    const Type *t_2    = phase->type( in2        );
378    if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
379      return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
380                              in1->in(2) );
381    // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
382    if( op2 == Op_SubL ) {
383      // Check for dead cycle: d = (a-b)+(c-d)
384      assert( in1->in(2) != this && in2->in(2) != this,
385              "dead loop in AddLNode::Ideal" );
386      Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
387      sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in1->in(1), in2->in(1) ) ));
388      sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in1->in(2), in2->in(2) ) ));
389      return sub;
390    }
391    // Convert "(a-b)+(b+c)" into "(a+c)"
392    if( op2 == Op_AddL && in1->in(2) == in2->in(1) ) {
393      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
394      return new (phase->C, 3) AddLNode(in1->in(1), in2->in(2));
395    }
396    // Convert "(a-b)+(c+b)" into "(a+c)"
397    if( op2 == Op_AddL && in1->in(2) == in2->in(2) ) {
398      assert(in1->in(1) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
399      return new (phase->C, 3) AddLNode(in1->in(1), in2->in(1));
400    }
401    // Convert "(a-b)+(b-c)" into "(a-c)"
402    if( op2 == Op_SubL && in1->in(2) == in2->in(1) ) {
403      assert(in1->in(1) != this && in2->in(2) != this,"dead loop in AddLNode::Ideal");
404      return new (phase->C, 3) SubLNode(in1->in(1), in2->in(2));
405    }
406    // Convert "(a-b)+(c-a)" into "(c-b)"
407    if( op2 == Op_SubL && in1->in(1) == in1->in(2) ) {
408      assert(in1->in(2) != this && in2->in(1) != this,"dead loop in AddLNode::Ideal");
409      return new (phase->C, 3) SubLNode(in2->in(1), in1->in(2));
410    }
411  }
412
413  // Convert "x+(0-y)" into "(x-y)"
414  if( op2 == Op_SubL && phase->type(in2->in(1)) == TypeLong::ZERO )
415    return new (phase->C, 3) SubLNode( in1, in2->in(2) );
416
417  // Convert "(0-y)+x" into "(x-y)"
418  if( op1 == Op_SubL && phase->type(in1->in(1)) == TypeInt::ZERO )
419    return new (phase->C, 3) SubLNode( in2, in1->in(2) );
420
421  // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
422  // into "(X<<1)+Y" and let shift-folding happen.
423  if( op2 == Op_AddL &&
424      in2->in(1) == in1 &&
425      op1 != Op_ConL &&
426      0 ) {
427    Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in1,phase->intcon(1)));
428    return new (phase->C, 3) AddLNode(shift,in2->in(2));
429  }
430
431  return AddNode::Ideal(phase, can_reshape);
432}
433
434
435//------------------------------Identity---------------------------------------
436// Fold (x-y)+y  OR  y+(x-y)  into  x
437Node *AddLNode::Identity( PhaseTransform *phase ) {
438  if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
439    return in(1)->in(1);
440  }
441  else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
442    return in(2)->in(1);
443  }
444  return AddNode::Identity(phase);
445}
446
447
448//------------------------------add_ring---------------------------------------
449// Supplied function returns the sum of the inputs.  Guaranteed never
450// to be passed a TOP or BOTTOM type, these are filtered out by
451// pre-check.
452const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
453  const TypeLong *r0 = t0->is_long(); // Handy access
454  const TypeLong *r1 = t1->is_long();
455  jlong lo = r0->_lo + r1->_lo;
456  jlong hi = r0->_hi + r1->_hi;
457  if( !(r0->is_con() && r1->is_con()) ) {
458    // Not both constants, compute approximate result
459    if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
460      lo =min_jlong; hi = max_jlong; // Underflow on the low side
461    }
462    if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
463      lo = min_jlong; hi = max_jlong; // Overflow on the high side
464    }
465    if( lo > hi ) {               // Handle overflow
466      lo = min_jlong; hi = max_jlong;
467    }
468  } else {
469    // both constants, compute precise result using 'lo' and 'hi'
470    // Semantics define overflow and underflow for integer addition
471    // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
472  }
473  return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
474}
475
476
477//=============================================================================
478//------------------------------add_of_identity--------------------------------
479// Check for addition of the identity
480const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
481  // x ADD 0  should return x unless 'x' is a -zero
482  //
483  // const Type *zero = add_id();     // The additive identity
484  // jfloat f1 = t1->getf();
485  // jfloat f2 = t2->getf();
486  //
487  // if( t1->higher_equal( zero ) ) return t2;
488  // if( t2->higher_equal( zero ) ) return t1;
489
490  return NULL;
491}
492
493//------------------------------add_ring---------------------------------------
494// Supplied function returns the sum of the inputs.
495// This also type-checks the inputs for sanity.  Guaranteed never to
496// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
497const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
498  // We must be adding 2 float constants.
499  return TypeF::make( t0->getf() + t1->getf() );
500}
501
502//------------------------------Ideal------------------------------------------
503Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
504  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
505    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
506  }
507
508  // Floating point additions are not associative because of boundary conditions (infinity)
509  return commute(this,
510                 phase->type( in(1) )->singleton(),
511                 phase->type( in(2) )->singleton() ) ? this : NULL;
512}
513
514
515//=============================================================================
516//------------------------------add_of_identity--------------------------------
517// Check for addition of the identity
518const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
519  // x ADD 0  should return x unless 'x' is a -zero
520  //
521  // const Type *zero = add_id();     // The additive identity
522  // jfloat f1 = t1->getf();
523  // jfloat f2 = t2->getf();
524  //
525  // if( t1->higher_equal( zero ) ) return t2;
526  // if( t2->higher_equal( zero ) ) return t1;
527
528  return NULL;
529}
530//------------------------------add_ring---------------------------------------
531// Supplied function returns the sum of the inputs.
532// This also type-checks the inputs for sanity.  Guaranteed never to
533// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
534const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
535  // We must be adding 2 double constants.
536  return TypeD::make( t0->getd() + t1->getd() );
537}
538
539//------------------------------Ideal------------------------------------------
540Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
541  if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
542    return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
543  }
544
545  // Floating point additions are not associative because of boundary conditions (infinity)
546  return commute(this,
547                 phase->type( in(1) )->singleton(),
548                 phase->type( in(2) )->singleton() ) ? this : NULL;
549}
550
551
552//=============================================================================
553//------------------------------Identity---------------------------------------
554// If one input is a constant 0, return the other input.
555Node *AddPNode::Identity( PhaseTransform *phase ) {
556  return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
557}
558
559//------------------------------Idealize---------------------------------------
560Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
561  // Bail out if dead inputs
562  if( phase->type( in(Address) ) == Type::TOP ) return NULL;
563
564  // If the left input is an add of a constant, flatten the expression tree.
565  const Node *n = in(Address);
566  if (n->is_AddP() && n->in(Base) == in(Base)) {
567    const AddPNode *addp = n->as_AddP(); // Left input is an AddP
568    assert( !addp->in(Address)->is_AddP() ||
569             addp->in(Address)->as_AddP() != addp,
570            "dead loop in AddPNode::Ideal" );
571    // Type of left input's right input
572    const Type *t = phase->type( addp->in(Offset) );
573    if( t == Type::TOP ) return NULL;
574    const TypeX *t12 = t->is_intptr_t();
575    if( t12->is_con() ) {       // Left input is an add of a constant?
576      // If the right input is a constant, combine constants
577      const Type *temp_t2 = phase->type( in(Offset) );
578      if( temp_t2 == Type::TOP ) return NULL;
579      const TypeX *t2 = temp_t2->is_intptr_t();
580      Node* address;
581      Node* offset;
582      if( t2->is_con() ) {
583        // The Add of the flattened expression
584        address = addp->in(Address);
585        offset  = phase->MakeConX(t2->get_con() + t12->get_con());
586      } else {
587        // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
588        address = phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset)));
589        offset  = addp->in(Offset);
590      }
591      PhaseIterGVN *igvn = phase->is_IterGVN();
592      if( igvn ) {
593        set_req_X(Address,address,igvn);
594        set_req_X(Offset,offset,igvn);
595      } else {
596        set_req(Address,address);
597        set_req(Offset,offset);
598      }
599      return this;
600    }
601  }
602
603  // Raw pointers?
604  if( in(Base)->bottom_type() == Type::TOP ) {
605    // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
606    if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
607      Node* offset = in(Offset);
608      return new (phase->C, 2) CastX2PNode(offset);
609    }
610  }
611
612  // If the right is an add of a constant, push the offset down.
613  // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
614  // The idea is to merge array_base+scaled_index groups together,
615  // and only have different constant offsets from the same base.
616  const Node *add = in(Offset);
617  if( add->Opcode() == Op_AddX && add->in(1) != add ) {
618    const Type *t22 = phase->type( add->in(2) );
619    if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
620      set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
621      set_req(Offset, add->in(2));
622      return this;              // Made progress
623    }
624  }
625
626  return NULL;                  // No progress
627}
628
629//------------------------------bottom_type------------------------------------
630// Bottom-type is the pointer-type with unknown offset.
631const Type *AddPNode::bottom_type() const {
632  if (in(Address) == NULL)  return TypePtr::BOTTOM;
633  const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
634  if( !tp ) return Type::TOP;   // TOP input means TOP output
635  assert( in(Offset)->Opcode() != Op_ConP, "" );
636  const Type *t = in(Offset)->bottom_type();
637  if( t == Type::TOP )
638    return tp->add_offset(Type::OffsetTop);
639  const TypeX *tx = t->is_intptr_t();
640  intptr_t txoffset = Type::OffsetBot;
641  if (tx->is_con()) {   // Left input is an add of a constant?
642    txoffset = tx->get_con();
643  }
644  return tp->add_offset(txoffset);
645}
646
647//------------------------------Value------------------------------------------
648const Type *AddPNode::Value( PhaseTransform *phase ) const {
649  // Either input is TOP ==> the result is TOP
650  const Type *t1 = phase->type( in(Address) );
651  const Type *t2 = phase->type( in(Offset) );
652  if( t1 == Type::TOP ) return Type::TOP;
653  if( t2 == Type::TOP ) return Type::TOP;
654
655  // Left input is a pointer
656  const TypePtr *p1 = t1->isa_ptr();
657  // Right input is an int
658  const TypeX *p2 = t2->is_intptr_t();
659  // Add 'em
660  intptr_t p2offset = Type::OffsetBot;
661  if (p2->is_con()) {   // Left input is an add of a constant?
662    p2offset = p2->get_con();
663  }
664  return p1->add_offset(p2offset);
665}
666
667//------------------------Ideal_base_and_offset--------------------------------
668// Split an oop pointer into a base and offset.
669// (The offset might be Type::OffsetBot in the case of an array.)
670// Return the base, or NULL if failure.
671Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
672                                      // second return value:
673                                      intptr_t& offset) {
674  if (ptr->is_AddP()) {
675    Node* base = ptr->in(AddPNode::Base);
676    Node* addr = ptr->in(AddPNode::Address);
677    Node* offs = ptr->in(AddPNode::Offset);
678    if (base == addr || base->is_top()) {
679      offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
680      if (offset != Type::OffsetBot) {
681        return addr;
682      }
683    }
684  }
685  offset = Type::OffsetBot;
686  return NULL;
687}
688
689//------------------------------unpack_offsets----------------------------------
690// Collect the AddP offset values into the elements array, giving up
691// if there are more than length.
692int AddPNode::unpack_offsets(Node* elements[], int length) {
693  int count = 0;
694  Node* addr = this;
695  Node* base = addr->in(AddPNode::Base);
696  while (addr->is_AddP()) {
697    if (addr->in(AddPNode::Base) != base) {
698      // give up
699      return -1;
700    }
701    elements[count++] = addr->in(AddPNode::Offset);
702    if (count == length) {
703      // give up
704      return -1;
705    }
706    addr = addr->in(AddPNode::Address);
707  }
708  return count;
709}
710
711//------------------------------match_edge-------------------------------------
712// Do we Match on this edge index or not?  Do not match base pointer edge
713uint AddPNode::match_edge(uint idx) const {
714  return idx > Base;
715}
716
717//=============================================================================
718//------------------------------Identity---------------------------------------
719Node *OrINode::Identity( PhaseTransform *phase ) {
720  // x | x => x
721  if (phase->eqv(in(1), in(2))) {
722    return in(1);
723  }
724
725  return AddNode::Identity(phase);
726}
727
728//------------------------------add_ring---------------------------------------
729// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
730// the logical operations the ring's ADD is really a logical OR function.
731// This also type-checks the inputs for sanity.  Guaranteed never to
732// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
733const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
734  const TypeInt *r0 = t0->is_int(); // Handy access
735  const TypeInt *r1 = t1->is_int();
736
737  // If both args are bool, can figure out better types
738  if ( r0 == TypeInt::BOOL ) {
739    if ( r1 == TypeInt::ONE) {
740      return TypeInt::ONE;
741    } else if ( r1 == TypeInt::BOOL ) {
742      return TypeInt::BOOL;
743    }
744  } else if ( r0 == TypeInt::ONE ) {
745    if ( r1 == TypeInt::BOOL ) {
746      return TypeInt::ONE;
747    }
748  }
749
750  // If either input is not a constant, just return all integers.
751  if( !r0->is_con() || !r1->is_con() )
752    return TypeInt::INT;        // Any integer, but still no symbols.
753
754  // Otherwise just OR them bits.
755  return TypeInt::make( r0->get_con() | r1->get_con() );
756}
757
758//=============================================================================
759//------------------------------Identity---------------------------------------
760Node *OrLNode::Identity( PhaseTransform *phase ) {
761  // x | x => x
762  if (phase->eqv(in(1), in(2))) {
763    return in(1);
764  }
765
766  return AddNode::Identity(phase);
767}
768
769//------------------------------add_ring---------------------------------------
770const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
771  const TypeLong *r0 = t0->is_long(); // Handy access
772  const TypeLong *r1 = t1->is_long();
773
774  // If either input is not a constant, just return all integers.
775  if( !r0->is_con() || !r1->is_con() )
776    return TypeLong::LONG;      // Any integer, but still no symbols.
777
778  // Otherwise just OR them bits.
779  return TypeLong::make( r0->get_con() | r1->get_con() );
780}
781
782//=============================================================================
783//------------------------------add_ring---------------------------------------
784// Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
785// the logical operations the ring's ADD is really a logical OR function.
786// This also type-checks the inputs for sanity.  Guaranteed never to
787// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
788const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
789  const TypeInt *r0 = t0->is_int(); // Handy access
790  const TypeInt *r1 = t1->is_int();
791
792  // Complementing a boolean?
793  if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
794                               || r1 == TypeInt::BOOL))
795    return TypeInt::BOOL;
796
797  if( !r0->is_con() || !r1->is_con() ) // Not constants
798    return TypeInt::INT;        // Any integer, but still no symbols.
799
800  // Otherwise just XOR them bits.
801  return TypeInt::make( r0->get_con() ^ r1->get_con() );
802}
803
804//=============================================================================
805//------------------------------add_ring---------------------------------------
806const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
807  const TypeLong *r0 = t0->is_long(); // Handy access
808  const TypeLong *r1 = t1->is_long();
809
810  // If either input is not a constant, just return all integers.
811  if( !r0->is_con() || !r1->is_con() )
812    return TypeLong::LONG;      // Any integer, but still no symbols.
813
814  // Otherwise just OR them bits.
815  return TypeLong::make( r0->get_con() ^ r1->get_con() );
816}
817
818//=============================================================================
819//------------------------------add_ring---------------------------------------
820// Supplied function returns the sum of the inputs.
821const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
822  const TypeInt *r0 = t0->is_int(); // Handy access
823  const TypeInt *r1 = t1->is_int();
824
825  // Otherwise just MAX them bits.
826  return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
827}
828
829//=============================================================================
830//------------------------------Idealize---------------------------------------
831// MINs show up in range-check loop limit calculations.  Look for
832// "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
833Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
834  Node *progress = NULL;
835  // Force a right-spline graph
836  Node *l = in(1);
837  Node *r = in(2);
838  // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
839  // to force a right-spline graph for the rest of MinINode::Ideal().
840  if( l->Opcode() == Op_MinI ) {
841    assert( l != l->in(1), "dead loop in MinINode::Ideal" );
842    r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
843    l = l->in(1);
844    set_req(1, l);
845    set_req(2, r);
846    return this;
847  }
848
849  // Get left input & constant
850  Node *x = l;
851  int x_off = 0;
852  if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
853      x->in(2)->is_Con() ) {
854    const Type *t = x->in(2)->bottom_type();
855    if( t == Type::TOP ) return NULL;  // No progress
856    x_off = t->is_int()->get_con();
857    x = x->in(1);
858  }
859
860  // Scan a right-spline-tree for MINs
861  Node *y = r;
862  int y_off = 0;
863  // Check final part of MIN tree
864  if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
865      y->in(2)->is_Con() ) {
866    const Type *t = y->in(2)->bottom_type();
867    if( t == Type::TOP ) return NULL;  // No progress
868    y_off = t->is_int()->get_con();
869    y = y->in(1);
870  }
871  if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
872    swap_edges(1, 2);
873    return this;
874  }
875
876
877  if( r->Opcode() == Op_MinI ) {
878    assert( r != r->in(2), "dead loop in MinINode::Ideal" );
879    y = r->in(1);
880    // Check final part of MIN tree
881    if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
882        y->in(2)->is_Con() ) {
883      const Type *t = y->in(2)->bottom_type();
884      if( t == Type::TOP ) return NULL;  // No progress
885      y_off = t->is_int()->get_con();
886      y = y->in(1);
887    }
888
889    if( x->_idx > y->_idx )
890      return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
891
892    // See if covers: MIN2(x+c0,MIN2(y+c1,z))
893    if( !phase->eqv(x,y) ) return NULL;
894    // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
895    // MIN2(x+c0 or x+c1 which less, z).
896    return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
897  } else {
898    // See if covers: MIN2(x+c0,y+c1)
899    if( !phase->eqv(x,y) ) return NULL;
900    // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
901    return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
902  }
903
904}
905
906//------------------------------add_ring---------------------------------------
907// Supplied function returns the sum of the inputs.
908const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
909  const TypeInt *r0 = t0->is_int(); // Handy access
910  const TypeInt *r1 = t1->is_int();
911
912  // Otherwise just MIN them bits.
913  return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
914}
915