oop.inline.hpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
26#define SHARE_VM_OOPS_OOP_INLINE_HPP
27
28#include "gc/shared/ageTable.hpp"
29#include "gc/shared/barrierSet.inline.hpp"
30#include "gc/shared/cardTableModRefBS.hpp"
31#include "gc/shared/collectedHeap.inline.hpp"
32#include "gc/shared/genCollectedHeap.hpp"
33#include "gc/shared/generation.hpp"
34#include "oops/arrayKlass.hpp"
35#include "oops/arrayOop.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/markOop.inline.hpp"
38#include "oops/oop.hpp"
39#include "runtime/atomic.inline.hpp"
40#include "runtime/orderAccess.inline.hpp"
41#include "runtime/os.hpp"
42#include "utilities/macros.hpp"
43
44// Implementation of all inlined member functions defined in oop.hpp
45// We need a separate file to avoid circular references
46
47inline void oopDesc::release_set_mark(markOop m) {
48  OrderAccess::release_store_ptr(&_mark, m);
49}
50
51inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
52  return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
53}
54
55inline Klass* oopDesc::klass() const {
56  if (UseCompressedClassPointers) {
57    return Klass::decode_klass_not_null(_metadata._compressed_klass);
58  } else {
59    return _metadata._klass;
60  }
61}
62
63inline Klass* oopDesc::klass_or_null() const volatile {
64  // can be NULL in CMS
65  if (UseCompressedClassPointers) {
66    return Klass::decode_klass(_metadata._compressed_klass);
67  } else {
68    return _metadata._klass;
69  }
70}
71
72inline Klass** oopDesc::klass_addr() {
73  // Only used internally and with CMS and will not work with
74  // UseCompressedOops
75  assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
76  return (Klass**) &_metadata._klass;
77}
78
79inline narrowKlass* oopDesc::compressed_klass_addr() {
80  assert(UseCompressedClassPointers, "only called by compressed klass pointers");
81  return &_metadata._compressed_klass;
82}
83
84inline void oopDesc::set_klass(Klass* k) {
85  // since klasses are promoted no store check is needed
86  assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
87  assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
88  if (UseCompressedClassPointers) {
89    *compressed_klass_addr() = Klass::encode_klass_not_null(k);
90  } else {
91    *klass_addr() = k;
92  }
93}
94
95inline int oopDesc::klass_gap() const {
96  return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
97}
98
99inline void oopDesc::set_klass_gap(int v) {
100  if (UseCompressedClassPointers) {
101    *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
102  }
103}
104
105inline void oopDesc::set_klass_to_list_ptr(oop k) {
106  // This is only to be used during GC, for from-space objects, so no
107  // barrier is needed.
108  if (UseCompressedClassPointers) {
109    _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
110  } else {
111    _metadata._klass = (Klass*)(address)k;
112  }
113}
114
115inline oop oopDesc::list_ptr_from_klass() {
116  // This is only to be used during GC, for from-space objects.
117  if (UseCompressedClassPointers) {
118    return decode_heap_oop((narrowOop)_metadata._compressed_klass);
119  } else {
120    // Special case for GC
121    return (oop)(address)_metadata._klass;
122  }
123}
124
125inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
126
127inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
128
129inline bool oopDesc::is_instance()            const { return klass()->oop_is_instance(); }
130inline bool oopDesc::is_instanceClassLoader() const { return klass()->oop_is_instanceClassLoader(); }
131inline bool oopDesc::is_instanceMirror()      const { return klass()->oop_is_instanceMirror(); }
132inline bool oopDesc::is_instanceRef()         const { return klass()->oop_is_instanceRef(); }
133inline bool oopDesc::is_array()               const { return klass()->oop_is_array(); }
134inline bool oopDesc::is_objArray()            const { return klass()->oop_is_objArray(); }
135inline bool oopDesc::is_typeArray()           const { return klass()->oop_is_typeArray(); }
136
137inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
138
139template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
140inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
141inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
142inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
143inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
144inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
145inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
146inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
147inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
148inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
149inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
150
151
152// Functions for getting and setting oops within instance objects.
153// If the oops are compressed, the type passed to these overloaded functions
154// is narrowOop.  All functions are overloaded so they can be called by
155// template functions without conditionals (the compiler instantiates via
156// the right type and inlines the appopriate code).
157
158inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
159inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
160
161// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
162// offset from the heap base.  Saving the check for null can save instructions
163// in inner GC loops so these are separated.
164
165inline bool check_obj_alignment(oop obj) {
166  return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
167}
168
169inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
170  assert(!is_null(v), "oop value can never be zero");
171  assert(check_obj_alignment(v), "Address not aligned");
172  assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
173  address base = Universe::narrow_oop_base();
174  int    shift = Universe::narrow_oop_shift();
175  uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
176  assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
177  uint64_t result = pd >> shift;
178  assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
179  assert(decode_heap_oop(result) == v, "reversibility");
180  return (narrowOop)result;
181}
182
183inline narrowOop oopDesc::encode_heap_oop(oop v) {
184  return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
185}
186
187inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
188  assert(!is_null(v), "narrow oop value can never be zero");
189  address base = Universe::narrow_oop_base();
190  int    shift = Universe::narrow_oop_shift();
191  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
192  assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
193  return result;
194}
195
196inline oop oopDesc::decode_heap_oop(narrowOop v) {
197  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
198}
199
200inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
201inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
202
203// Load an oop out of the Java heap as is without decoding.
204// Called by GC to check for null before decoding.
205inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
206inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
207
208// Load and decode an oop out of the Java heap into a wide oop.
209inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
210inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
211  return decode_heap_oop_not_null(*p);
212}
213
214// Load and decode an oop out of the heap accepting null
215inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
216inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
217  return decode_heap_oop(*p);
218}
219
220// Store already encoded heap oop into the heap.
221inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
222inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
223
224// Encode and store a heap oop.
225inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
226  *p = encode_heap_oop_not_null(v);
227}
228inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
229
230// Encode and store a heap oop allowing for null.
231inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
232  *p = encode_heap_oop(v);
233}
234inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
235
236// Store heap oop as is for volatile fields.
237inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
238  OrderAccess::release_store_ptr(p, v);
239}
240inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
241                                            narrowOop v) {
242  OrderAccess::release_store(p, v);
243}
244
245inline void oopDesc::release_encode_store_heap_oop_not_null(
246                                                volatile narrowOop* p, oop v) {
247  // heap oop is not pointer sized.
248  OrderAccess::release_store(p, encode_heap_oop_not_null(v));
249}
250
251inline void oopDesc::release_encode_store_heap_oop_not_null(
252                                                      volatile oop* p, oop v) {
253  OrderAccess::release_store_ptr(p, v);
254}
255
256inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
257                                                           oop v) {
258  OrderAccess::release_store_ptr(p, v);
259}
260inline void oopDesc::release_encode_store_heap_oop(
261                                                volatile narrowOop* p, oop v) {
262  OrderAccess::release_store(p, encode_heap_oop(v));
263}
264
265
266// These functions are only used to exchange oop fields in instances,
267// not headers.
268inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
269  if (UseCompressedOops) {
270    // encode exchange value from oop to T
271    narrowOop val = encode_heap_oop(exchange_value);
272    narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
273    // decode old from T to oop
274    return decode_heap_oop(old);
275  } else {
276    return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
277  }
278}
279
280// In order to put or get a field out of an instance, must first check
281// if the field has been compressed and uncompress it.
282inline oop oopDesc::obj_field(int offset) const {
283  return UseCompressedOops ?
284    load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
285    load_decode_heap_oop(obj_field_addr<oop>(offset));
286}
287
288inline void oopDesc::obj_field_put(int offset, oop value) {
289  UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
290                      oop_store(obj_field_addr<oop>(offset),       value);
291}
292
293inline Metadata* oopDesc::metadata_field(int offset) const {
294  return *metadata_field_addr(offset);
295}
296
297inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
298  *metadata_field_addr(offset) = value;
299}
300
301inline void oopDesc::obj_field_put_raw(int offset, oop value) {
302  UseCompressedOops ?
303    encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
304    encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
305}
306inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
307  OrderAccess::release();
308  obj_field_put(offset, value);
309  OrderAccess::fence();
310}
311
312inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
313inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
314
315inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
316inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
317
318inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
319inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
320
321inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
322inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
323
324inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
325inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
326
327inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
328inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
329
330inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
331inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
332
333inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
334inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
335
336inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
337inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
338
339inline oop oopDesc::obj_field_acquire(int offset) const {
340  return UseCompressedOops ?
341             decode_heap_oop((narrowOop)
342               OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
343           : decode_heap_oop((oop)
344               OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
345}
346inline void oopDesc::release_obj_field_put(int offset, oop value) {
347  UseCompressedOops ?
348    oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
349    oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
350}
351
352inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
353inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
354
355inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
356inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
357
358inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
359inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
360
361inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
362inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
363
364inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
365inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
366
367inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
368inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
369
370inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
371inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
372
373inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
374inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
375
376inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
377inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
378
379inline int oopDesc::size_given_klass(Klass* klass)  {
380  int lh = klass->layout_helper();
381  int s;
382
383  // lh is now a value computed at class initialization that may hint
384  // at the size.  For instances, this is positive and equal to the
385  // size.  For arrays, this is negative and provides log2 of the
386  // array element size.  For other oops, it is zero and thus requires
387  // a virtual call.
388  //
389  // We go to all this trouble because the size computation is at the
390  // heart of phase 2 of mark-compaction, and called for every object,
391  // alive or dead.  So the speed here is equal in importance to the
392  // speed of allocation.
393
394  if (lh > Klass::_lh_neutral_value) {
395    if (!Klass::layout_helper_needs_slow_path(lh)) {
396      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
397    } else {
398      s = klass->oop_size(this);
399    }
400  } else if (lh <= Klass::_lh_neutral_value) {
401    // The most common case is instances; fall through if so.
402    if (lh < Klass::_lh_neutral_value) {
403      // Second most common case is arrays.  We have to fetch the
404      // length of the array, shift (multiply) it appropriately,
405      // up to wordSize, add the header, and align to object size.
406      size_t size_in_bytes;
407#ifdef _M_IA64
408      // The Windows Itanium Aug 2002 SDK hoists this load above
409      // the check for s < 0.  An oop at the end of the heap will
410      // cause an access violation if this load is performed on a non
411      // array oop.  Making the reference volatile prohibits this.
412      // (%%% please explain by what magic the length is actually fetched!)
413      volatile int *array_length;
414      array_length = (volatile int *)( (intptr_t)this +
415                          arrayOopDesc::length_offset_in_bytes() );
416      assert(array_length > 0, "Integer arithmetic problem somewhere");
417      // Put into size_t to avoid overflow.
418      size_in_bytes = (size_t) array_length;
419      size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
420#else
421      size_t array_length = (size_t) ((arrayOop)this)->length();
422      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
423#endif
424      size_in_bytes += Klass::layout_helper_header_size(lh);
425
426      // This code could be simplified, but by keeping array_header_in_bytes
427      // in units of bytes and doing it this way we can round up just once,
428      // skipping the intermediate round to HeapWordSize.  Cast the result
429      // of round_to to size_t to guarantee unsigned division == right shift.
430      s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
431        HeapWordSize);
432
433      // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
434      // of an "old copy" of an object array in the young gen so it indicates
435      // the grey portion of an already copied array. This will cause the first
436      // disjunct below to fail if the two comparands are computed across such
437      // a concurrent change.
438      // ParNew also runs with promotion labs (which look like int
439      // filler arrays) which are subject to changing their declared size
440      // when finally retiring a PLAB; this also can cause the first disjunct
441      // to fail for another worker thread that is concurrently walking the block
442      // offset table. Both these invariant failures are benign for their
443      // current uses; we relax the assertion checking to cover these two cases below:
444      //     is_objArray() && is_forwarded()   // covers first scenario above
445      //  || is_typeArray()                    // covers second scenario above
446      // If and when UseParallelGC uses the same obj array oop stealing/chunking
447      // technique, we will need to suitably modify the assertion.
448      assert((s == klass->oop_size(this)) ||
449             (Universe::heap()->is_gc_active() &&
450              ((is_typeArray() && UseConcMarkSweepGC) ||
451               (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
452             "wrong array object size");
453    } else {
454      // Must be zero, so bite the bullet and take the virtual call.
455      s = klass->oop_size(this);
456    }
457  }
458
459  assert(s % MinObjAlignment == 0, "alignment check");
460  assert(s > 0, "Bad size calculated");
461  return s;
462}
463
464
465inline int oopDesc::size()  {
466  return size_given_klass(klass());
467}
468
469inline void update_barrier_set(void* p, oop v, bool release = false) {
470  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
471  oopDesc::bs()->write_ref_field(p, v, release);
472}
473
474template <class T> inline void update_barrier_set_pre(T* p, oop v) {
475  oopDesc::bs()->write_ref_field_pre(p, v);
476}
477
478template <class T> inline void oop_store(T* p, oop v) {
479  if (always_do_update_barrier) {
480    oop_store((volatile T*)p, v);
481  } else {
482    update_barrier_set_pre(p, v);
483    oopDesc::encode_store_heap_oop(p, v);
484    // always_do_update_barrier == false =>
485    // Either we are at a safepoint (in GC) or CMS is not used. In both
486    // cases it's unnecessary to mark the card as dirty with release sematics.
487    update_barrier_set((void*)p, v, false /* release */);  // cast away type
488  }
489}
490
491template <class T> inline void oop_store(volatile T* p, oop v) {
492  update_barrier_set_pre((T*)p, v);   // cast away volatile
493  // Used by release_obj_field_put, so use release_store_ptr.
494  oopDesc::release_encode_store_heap_oop(p, v);
495  // When using CMS we must mark the card corresponding to p as dirty
496  // with release sematics to prevent that CMS sees the dirty card but
497  // not the new value v at p due to reordering of the two
498  // stores. Note that CMS has a concurrent precleaning phase, where
499  // it reads the card table while the Java threads are running.
500  update_barrier_set((void*)p, v, true /* release */);    // cast away type
501}
502
503// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
504// (without having to remember the function name this calls).
505inline void oop_store_raw(HeapWord* addr, oop value) {
506  if (UseCompressedOops) {
507    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
508  } else {
509    oopDesc::encode_store_heap_oop((oop*)addr, value);
510  }
511}
512
513inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
514                                                volatile HeapWord *dest,
515                                                oop compare_value,
516                                                bool prebarrier) {
517  if (UseCompressedOops) {
518    if (prebarrier) {
519      update_barrier_set_pre((narrowOop*)dest, exchange_value);
520    }
521    // encode exchange and compare value from oop to T
522    narrowOop val = encode_heap_oop(exchange_value);
523    narrowOop cmp = encode_heap_oop(compare_value);
524
525    narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
526    // decode old from T to oop
527    return decode_heap_oop(old);
528  } else {
529    if (prebarrier) {
530      update_barrier_set_pre((oop*)dest, exchange_value);
531    }
532    return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
533  }
534}
535
536// Used only for markSweep, scavenging
537inline bool oopDesc::is_gc_marked() const {
538  return mark()->is_marked();
539}
540
541inline bool oopDesc::is_locked() const {
542  return mark()->is_locked();
543}
544
545inline bool oopDesc::is_unlocked() const {
546  return mark()->is_unlocked();
547}
548
549inline bool oopDesc::has_bias_pattern() const {
550  return mark()->has_bias_pattern();
551}
552
553
554// used only for asserts
555inline bool oopDesc::is_oop(bool ignore_mark_word) const {
556  oop obj = (oop) this;
557  if (!check_obj_alignment(obj)) return false;
558  if (!Universe::heap()->is_in_reserved(obj)) return false;
559  // obj is aligned and accessible in heap
560  if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
561
562  // Header verification: the mark is typically non-NULL. If we're
563  // at a safepoint, it must not be null.
564  // Outside of a safepoint, the header could be changing (for example,
565  // another thread could be inflating a lock on this object).
566  if (ignore_mark_word) {
567    return true;
568  }
569  if (mark() != NULL) {
570    return true;
571  }
572  return !SafepointSynchronize::is_at_safepoint();
573}
574
575
576// used only for asserts
577inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
578  return this == NULL ? true : is_oop(ignore_mark_word);
579}
580
581#ifndef PRODUCT
582// used only for asserts
583inline bool oopDesc::is_unlocked_oop() const {
584  if (!Universe::heap()->is_in_reserved(this)) return false;
585  return mark()->is_unlocked();
586}
587#endif // PRODUCT
588
589inline bool oopDesc::is_scavengable() const {
590  return Universe::heap()->is_scavengable(this);
591}
592
593// Used by scavengers
594inline bool oopDesc::is_forwarded() const {
595  // The extra heap check is needed since the obj might be locked, in which case the
596  // mark would point to a stack location and have the sentinel bit cleared
597  return mark()->is_marked();
598}
599
600// Used by scavengers
601inline void oopDesc::forward_to(oop p) {
602  assert(check_obj_alignment(p),
603         "forwarding to something not aligned");
604  assert(Universe::heap()->is_in_reserved(p),
605         "forwarding to something not in heap");
606  markOop m = markOopDesc::encode_pointer_as_mark(p);
607  assert(m->decode_pointer() == p, "encoding must be reversable");
608  set_mark(m);
609}
610
611// Used by parallel scavengers
612inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
613  assert(check_obj_alignment(p),
614         "forwarding to something not aligned");
615  assert(Universe::heap()->is_in_reserved(p),
616         "forwarding to something not in heap");
617  markOop m = markOopDesc::encode_pointer_as_mark(p);
618  assert(m->decode_pointer() == p, "encoding must be reversable");
619  return cas_set_mark(m, compare) == compare;
620}
621
622#if INCLUDE_ALL_GCS
623inline oop oopDesc::forward_to_atomic(oop p) {
624  markOop oldMark = mark();
625  markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
626  markOop curMark;
627
628  assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
629  assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
630
631  while (!oldMark->is_marked()) {
632    curMark = (markOop)Atomic::cmpxchg_ptr(forwardPtrMark, &_mark, oldMark);
633    assert(is_forwarded(), "object should have been forwarded");
634    if (curMark == oldMark) {
635      return NULL;
636    }
637    // If the CAS was unsuccessful then curMark->is_marked()
638    // should return true as another thread has CAS'd in another
639    // forwarding pointer.
640    oldMark = curMark;
641  }
642  return forwardee();
643}
644#endif
645
646// Note that the forwardee is not the same thing as the displaced_mark.
647// The forwardee is used when copying during scavenge and mark-sweep.
648// It does need to clear the low two locking- and GC-related bits.
649inline oop oopDesc::forwardee() const {
650  return (oop) mark()->decode_pointer();
651}
652
653inline bool oopDesc::has_displaced_mark() const {
654  return mark()->has_displaced_mark_helper();
655}
656
657inline markOop oopDesc::displaced_mark() const {
658  return mark()->displaced_mark_helper();
659}
660
661inline void oopDesc::set_displaced_mark(markOop m) {
662  mark()->set_displaced_mark_helper(m);
663}
664
665// The following method needs to be MT safe.
666inline uint oopDesc::age() const {
667  assert(!is_forwarded(), "Attempt to read age from forwarded mark");
668  if (has_displaced_mark()) {
669    return displaced_mark()->age();
670  } else {
671    return mark()->age();
672  }
673}
674
675inline void oopDesc::incr_age() {
676  assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
677  if (has_displaced_mark()) {
678    set_displaced_mark(displaced_mark()->incr_age());
679  } else {
680    set_mark(mark()->incr_age());
681  }
682}
683
684
685inline intptr_t oopDesc::identity_hash() {
686  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
687  // Note: The mark must be read into local variable to avoid concurrent updates.
688  markOop mrk = mark();
689  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
690    return mrk->hash();
691  } else if (mrk->is_marked()) {
692    return mrk->hash();
693  } else {
694    return slow_identity_hash();
695  }
696}
697
698inline int oopDesc::ms_adjust_pointers() {
699  debug_only(int check_size = size());
700  int s = klass()->oop_ms_adjust_pointers(this);
701  assert(s == check_size, "should be the same");
702  return s;
703}
704
705#if INCLUDE_ALL_GCS
706inline void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
707  klass()->oop_pc_follow_contents(this, cm);
708}
709
710inline void oopDesc::pc_update_contents() {
711  Klass* k = klass();
712  if (!k->oop_is_typeArray()) {
713    // It might contain oops beyond the header, so take the virtual call.
714    k->oop_pc_update_pointers(this);
715  }
716  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
717}
718
719inline void oopDesc::ps_push_contents(PSPromotionManager* pm) {
720  Klass* k = klass();
721  if (!k->oop_is_typeArray()) {
722    // It might contain oops beyond the header, so take the virtual call.
723    k->oop_ps_push_contents(this, pm);
724  }
725  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
726}
727#endif
728
729#define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                    \
730                                                                       \
731inline void oopDesc::oop_iterate(OopClosureType* blk) {                \
732  klass()->oop_oop_iterate##nv_suffix(this, blk);                      \
733}                                                                      \
734                                                                       \
735inline void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {  \
736  klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);          \
737}
738
739#define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)               \
740                                                                       \
741inline int oopDesc::oop_iterate_size(OopClosureType* blk) {            \
742  Klass* k = klass();                                                  \
743  int size = size_given_klass(k);                                      \
744  k->oop_oop_iterate##nv_suffix(this, blk);                            \
745  return size;                                                         \
746}                                                                      \
747                                                                       \
748inline int oopDesc::oop_iterate_size(OopClosureType* blk,              \
749                                     MemRegion mr) {                   \
750  Klass* k = klass();                                                  \
751  int size = size_given_klass(k);                                      \
752  k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);                \
753  return size;                                                         \
754}
755
756inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
757  // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
758  // the do_oop calls, but turns off all other features in ExtendedOopClosure.
759  NoHeaderExtendedOopClosure cl(blk);
760  return oop_iterate_size(&cl);
761}
762
763inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
764  NoHeaderExtendedOopClosure cl(blk);
765  return oop_iterate_size(&cl, mr);
766}
767
768#if INCLUDE_ALL_GCS
769#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
770                                                                    \
771inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
772  klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
773}
774#else
775#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
776#endif
777
778#define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
779  OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
780  OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
781  OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
782
783ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
784ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
785
786#endif // SHARE_VM_OOPS_OOP_INLINE_HPP
787