1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
26#define SHARE_VM_OOPS_OOP_INLINE_HPP
27
28#include "gc/shared/ageTable.hpp"
29#include "gc/shared/barrierSet.inline.hpp"
30#include "gc/shared/cardTableModRefBS.hpp"
31#include "gc/shared/collectedHeap.inline.hpp"
32#include "gc/shared/genCollectedHeap.hpp"
33#include "gc/shared/generation.hpp"
34#include "oops/arrayKlass.hpp"
35#include "oops/arrayOop.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/markOop.inline.hpp"
38#include "oops/oop.hpp"
39#include "runtime/atomic.hpp"
40#include "runtime/orderAccess.inline.hpp"
41#include "runtime/os.hpp"
42#include "utilities/align.hpp"
43#include "utilities/macros.hpp"
44
45inline void update_barrier_set(void* p, oop v, bool release = false) {
46  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
47  oopDesc::bs()->write_ref_field(p, v, release);
48}
49
50template <class T> inline void update_barrier_set_pre(T* p, oop v) {
51  oopDesc::bs()->write_ref_field_pre(p, v);
52}
53
54template <class T> void oop_store(T* p, oop v) {
55  if (always_do_update_barrier) {
56    oop_store((volatile T*)p, v);
57  } else {
58    update_barrier_set_pre(p, v);
59    oopDesc::encode_store_heap_oop(p, v);
60    // always_do_update_barrier == false =>
61    // Either we are at a safepoint (in GC) or CMS is not used. In both
62    // cases it's unnecessary to mark the card as dirty with release sematics.
63    update_barrier_set((void*)p, v, false /* release */);  // cast away type
64  }
65}
66
67template <class T> void oop_store(volatile T* p, oop v) {
68  update_barrier_set_pre((T*)p, v);   // cast away volatile
69  // Used by release_obj_field_put, so use release_store_ptr.
70  oopDesc::release_encode_store_heap_oop(p, v);
71  // When using CMS we must mark the card corresponding to p as dirty
72  // with release sematics to prevent that CMS sees the dirty card but
73  // not the new value v at p due to reordering of the two
74  // stores. Note that CMS has a concurrent precleaning phase, where
75  // it reads the card table while the Java threads are running.
76  update_barrier_set((void*)p, v, true /* release */);    // cast away type
77}
78
79// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
80// (without having to remember the function name this calls).
81inline void oop_store_raw(HeapWord* addr, oop value) {
82  if (UseCompressedOops) {
83    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
84  } else {
85    oopDesc::encode_store_heap_oop((oop*)addr, value);
86  }
87}
88
89// Implementation of all inlined member functions defined in oop.hpp
90// We need a separate file to avoid circular references
91
92void oopDesc::release_set_mark(markOop m) {
93  OrderAccess::release_store_ptr(&_mark, m);
94}
95
96markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
97  return Atomic::cmpxchg(new_mark, &_mark, old_mark);
98}
99
100void oopDesc::init_mark() {
101  set_mark(markOopDesc::prototype_for_object(this));
102}
103
104Klass* oopDesc::klass() const {
105  if (UseCompressedClassPointers) {
106    return Klass::decode_klass_not_null(_metadata._compressed_klass);
107  } else {
108    return _metadata._klass;
109  }
110}
111
112Klass* oopDesc::klass_or_null() const volatile {
113  if (UseCompressedClassPointers) {
114    return Klass::decode_klass(_metadata._compressed_klass);
115  } else {
116    return _metadata._klass;
117  }
118}
119
120Klass* oopDesc::klass_or_null_acquire() const volatile {
121  if (UseCompressedClassPointers) {
122    // Workaround for non-const load_acquire parameter.
123    const volatile narrowKlass* addr = &_metadata._compressed_klass;
124    volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr);
125    return Klass::decode_klass(OrderAccess::load_acquire(xaddr));
126  } else {
127    return (Klass*)OrderAccess::load_ptr_acquire(&_metadata._klass);
128  }
129}
130
131Klass** oopDesc::klass_addr() {
132  // Only used internally and with CMS and will not work with
133  // UseCompressedOops
134  assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
135  return (Klass**) &_metadata._klass;
136}
137
138narrowKlass* oopDesc::compressed_klass_addr() {
139  assert(UseCompressedClassPointers, "only called by compressed klass pointers");
140  return &_metadata._compressed_klass;
141}
142
143#define CHECK_SET_KLASS(k)                                                \
144  do {                                                                    \
145    assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass");      \
146    assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \
147  } while (0)
148
149void oopDesc::set_klass(Klass* k) {
150  CHECK_SET_KLASS(k);
151  if (UseCompressedClassPointers) {
152    *compressed_klass_addr() = Klass::encode_klass_not_null(k);
153  } else {
154    *klass_addr() = k;
155  }
156}
157
158void oopDesc::release_set_klass(Klass* k) {
159  CHECK_SET_KLASS(k);
160  if (UseCompressedClassPointers) {
161    OrderAccess::release_store(compressed_klass_addr(),
162                               Klass::encode_klass_not_null(k));
163  } else {
164    OrderAccess::release_store_ptr(klass_addr(), k);
165  }
166}
167
168#undef CHECK_SET_KLASS
169
170int oopDesc::klass_gap() const {
171  return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
172}
173
174void oopDesc::set_klass_gap(int v) {
175  if (UseCompressedClassPointers) {
176    *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
177  }
178}
179
180void oopDesc::set_klass_to_list_ptr(oop k) {
181  // This is only to be used during GC, for from-space objects, so no
182  // barrier is needed.
183  if (UseCompressedClassPointers) {
184    _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
185  } else {
186    _metadata._klass = (Klass*)(address)k;
187  }
188}
189
190oop oopDesc::list_ptr_from_klass() {
191  // This is only to be used during GC, for from-space objects.
192  if (UseCompressedClassPointers) {
193    return decode_heap_oop((narrowOop)_metadata._compressed_klass);
194  } else {
195    // Special case for GC
196    return (oop)(address)_metadata._klass;
197  }
198}
199
200bool oopDesc::is_a(Klass* k) const {
201  return klass()->is_subtype_of(k);
202}
203
204int oopDesc::size()  {
205  return size_given_klass(klass());
206}
207
208int oopDesc::size_given_klass(Klass* klass)  {
209  int lh = klass->layout_helper();
210  int s;
211
212  // lh is now a value computed at class initialization that may hint
213  // at the size.  For instances, this is positive and equal to the
214  // size.  For arrays, this is negative and provides log2 of the
215  // array element size.  For other oops, it is zero and thus requires
216  // a virtual call.
217  //
218  // We go to all this trouble because the size computation is at the
219  // heart of phase 2 of mark-compaction, and called for every object,
220  // alive or dead.  So the speed here is equal in importance to the
221  // speed of allocation.
222
223  if (lh > Klass::_lh_neutral_value) {
224    if (!Klass::layout_helper_needs_slow_path(lh)) {
225      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
226    } else {
227      s = klass->oop_size(this);
228    }
229  } else if (lh <= Klass::_lh_neutral_value) {
230    // The most common case is instances; fall through if so.
231    if (lh < Klass::_lh_neutral_value) {
232      // Second most common case is arrays.  We have to fetch the
233      // length of the array, shift (multiply) it appropriately,
234      // up to wordSize, add the header, and align to object size.
235      size_t size_in_bytes;
236      size_t array_length = (size_t) ((arrayOop)this)->length();
237      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
238      size_in_bytes += Klass::layout_helper_header_size(lh);
239
240      // This code could be simplified, but by keeping array_header_in_bytes
241      // in units of bytes and doing it this way we can round up just once,
242      // skipping the intermediate round to HeapWordSize.
243      s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize);
244
245      // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
246      // of an "old copy" of an object array in the young gen so it indicates
247      // the grey portion of an already copied array. This will cause the first
248      // disjunct below to fail if the two comparands are computed across such
249      // a concurrent change.
250      // ParNew also runs with promotion labs (which look like int
251      // filler arrays) which are subject to changing their declared size
252      // when finally retiring a PLAB; this also can cause the first disjunct
253      // to fail for another worker thread that is concurrently walking the block
254      // offset table. Both these invariant failures are benign for their
255      // current uses; we relax the assertion checking to cover these two cases below:
256      //     is_objArray() && is_forwarded()   // covers first scenario above
257      //  || is_typeArray()                    // covers second scenario above
258      // If and when UseParallelGC uses the same obj array oop stealing/chunking
259      // technique, we will need to suitably modify the assertion.
260      assert((s == klass->oop_size(this)) ||
261             (Universe::heap()->is_gc_active() &&
262              ((is_typeArray() && UseConcMarkSweepGC) ||
263               (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
264             "wrong array object size");
265    } else {
266      // Must be zero, so bite the bullet and take the virtual call.
267      s = klass->oop_size(this);
268    }
269  }
270
271  assert(s > 0, "Oop size must be greater than zero, not %d", s);
272  assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s);
273  return s;
274}
275
276bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
277bool oopDesc::is_array()     const { return klass()->is_array_klass();     }
278bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
279bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
280
281void*      oopDesc::field_base(int offset)          const { return (void*)&((char*)this)[offset]; }
282
283jbyte*     oopDesc::byte_field_addr(int offset)     const { return (jbyte*)    field_base(offset); }
284jchar*     oopDesc::char_field_addr(int offset)     const { return (jchar*)    field_base(offset); }
285jboolean*  oopDesc::bool_field_addr(int offset)     const { return (jboolean*) field_base(offset); }
286jint*      oopDesc::int_field_addr(int offset)      const { return (jint*)     field_base(offset); }
287jshort*    oopDesc::short_field_addr(int offset)    const { return (jshort*)   field_base(offset); }
288jlong*     oopDesc::long_field_addr(int offset)     const { return (jlong*)    field_base(offset); }
289jfloat*    oopDesc::float_field_addr(int offset)    const { return (jfloat*)   field_base(offset); }
290jdouble*   oopDesc::double_field_addr(int offset)   const { return (jdouble*)  field_base(offset); }
291Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
292
293template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*)  field_base(offset); }
294address*   oopDesc::address_field_addr(int offset)  const { return (address*)  field_base(offset); }
295
296
297// Functions for getting and setting oops within instance objects.
298// If the oops are compressed, the type passed to these overloaded functions
299// is narrowOop.  All functions are overloaded so they can be called by
300// template functions without conditionals (the compiler instantiates via
301// the right type and inlines the appopriate code).
302
303// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
304// offset from the heap base.  Saving the check for null can save instructions
305// in inner GC loops so these are separated.
306
307inline bool check_obj_alignment(oop obj) {
308  return (cast_from_oop<intptr_t>(obj) & MinObjAlignmentInBytesMask) == 0;
309}
310
311oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
312  assert(!is_null(v), "narrow oop value can never be zero");
313  address base = Universe::narrow_oop_base();
314  int    shift = Universe::narrow_oop_shift();
315  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
316  assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
317  return result;
318}
319
320oop oopDesc::decode_heap_oop(narrowOop v) {
321  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
322}
323
324narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
325  assert(!is_null(v), "oop value can never be zero");
326  assert(check_obj_alignment(v), "Address not aligned");
327  assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
328  address base = Universe::narrow_oop_base();
329  int    shift = Universe::narrow_oop_shift();
330  uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
331  assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
332  uint64_t result = pd >> shift;
333  assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
334  assert(decode_heap_oop(result) == v, "reversibility");
335  return (narrowOop)result;
336}
337
338narrowOop oopDesc::encode_heap_oop(oop v) {
339  return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
340}
341
342// Load and decode an oop out of the Java heap into a wide oop.
343oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
344  return decode_heap_oop_not_null(*p);
345}
346
347// Load and decode an oop out of the heap accepting null
348oop oopDesc::load_decode_heap_oop(narrowOop* p) {
349  return decode_heap_oop(*p);
350}
351
352// Encode and store a heap oop.
353void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
354  *p = encode_heap_oop_not_null(v);
355}
356
357// Encode and store a heap oop allowing for null.
358void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
359  *p = encode_heap_oop(v);
360}
361
362// Store heap oop as is for volatile fields.
363void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
364  OrderAccess::release_store_ptr(p, v);
365}
366void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
367  OrderAccess::release_store(p, v);
368}
369
370void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
371  // heap oop is not pointer sized.
372  OrderAccess::release_store(p, encode_heap_oop_not_null(v));
373}
374void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
375  OrderAccess::release_store_ptr(p, v);
376}
377
378void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
379  OrderAccess::release_store_ptr(p, v);
380}
381void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
382  OrderAccess::release_store(p, encode_heap_oop(v));
383}
384
385// These functions are only used to exchange oop fields in instances,
386// not headers.
387oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
388  if (UseCompressedOops) {
389    // encode exchange value from oop to T
390    narrowOop val = encode_heap_oop(exchange_value);
391    narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
392    // decode old from T to oop
393    return decode_heap_oop(old);
394  } else {
395    return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
396  }
397}
398
399oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
400                                         volatile HeapWord *dest,
401                                         oop compare_value,
402                                         bool prebarrier) {
403  if (UseCompressedOops) {
404    if (prebarrier) {
405      update_barrier_set_pre((narrowOop*)dest, exchange_value);
406    }
407    // encode exchange and compare value from oop to T
408    narrowOop val = encode_heap_oop(exchange_value);
409    narrowOop cmp = encode_heap_oop(compare_value);
410
411    narrowOop old = Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
412    // decode old from T to oop
413    return decode_heap_oop(old);
414  } else {
415    if (prebarrier) {
416      update_barrier_set_pre((oop*)dest, exchange_value);
417    }
418    return Atomic::cmpxchg(exchange_value, (oop*)dest, compare_value);
419  }
420}
421
422// In order to put or get a field out of an instance, must first check
423// if the field has been compressed and uncompress it.
424oop oopDesc::obj_field(int offset) const {
425  return UseCompressedOops ?
426    load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
427    load_decode_heap_oop(obj_field_addr<oop>(offset));
428}
429
430void oopDesc::obj_field_put(int offset, oop value) {
431  UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
432                      oop_store(obj_field_addr<oop>(offset),       value);
433}
434
435void oopDesc::obj_field_put_raw(int offset, oop value) {
436  UseCompressedOops ?
437    encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
438    encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
439}
440void oopDesc::obj_field_put_volatile(int offset, oop value) {
441  OrderAccess::release();
442  obj_field_put(offset, value);
443  OrderAccess::fence();
444}
445
446Metadata* oopDesc::metadata_field(int offset) const           { return *metadata_field_addr(offset);   }
447void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value;  }
448
449Metadata* oopDesc::metadata_field_acquire(int offset) const   {
450  return (Metadata*)OrderAccess::load_ptr_acquire(metadata_field_addr(offset));
451}
452
453void oopDesc::release_metadata_field_put(int offset, Metadata* value) {
454  OrderAccess::release_store_ptr(metadata_field_addr(offset), value);
455}
456
457jbyte oopDesc::byte_field(int offset) const                   { return (jbyte) *byte_field_addr(offset);    }
458void oopDesc::byte_field_put(int offset, jbyte contents)      { *byte_field_addr(offset) = (jint) contents; }
459
460jchar oopDesc::char_field(int offset) const                   { return (jchar) *char_field_addr(offset);    }
461void oopDesc::char_field_put(int offset, jchar contents)      { *char_field_addr(offset) = (jint) contents; }
462
463jboolean oopDesc::bool_field(int offset) const                { return (jboolean) *bool_field_addr(offset); }
464void oopDesc::bool_field_put(int offset, jboolean contents)   { *bool_field_addr(offset) = (((jint) contents) & 1); }
465
466jint oopDesc::int_field(int offset) const                     { return *int_field_addr(offset);        }
467void oopDesc::int_field_put(int offset, jint contents)        { *int_field_addr(offset) = contents;    }
468
469jshort oopDesc::short_field(int offset) const                 { return (jshort) *short_field_addr(offset);  }
470void oopDesc::short_field_put(int offset, jshort contents)    { *short_field_addr(offset) = (jint) contents;}
471
472jlong oopDesc::long_field(int offset) const                   { return *long_field_addr(offset);       }
473void oopDesc::long_field_put(int offset, jlong contents)      { *long_field_addr(offset) = contents;   }
474
475jfloat oopDesc::float_field(int offset) const                 { return *float_field_addr(offset);      }
476void oopDesc::float_field_put(int offset, jfloat contents)    { *float_field_addr(offset) = contents;  }
477
478jdouble oopDesc::double_field(int offset) const               { return *double_field_addr(offset);     }
479void oopDesc::double_field_put(int offset, jdouble contents)  { *double_field_addr(offset) = contents; }
480
481address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
482void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
483
484oop oopDesc::obj_field_acquire(int offset) const {
485  return UseCompressedOops ?
486             decode_heap_oop((narrowOop)
487               OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
488           : decode_heap_oop((oop)
489               OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
490}
491void oopDesc::release_obj_field_put(int offset, oop value) {
492  UseCompressedOops ?
493    oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
494    oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
495}
496
497jbyte oopDesc::byte_field_acquire(int offset) const                   { return OrderAccess::load_acquire(byte_field_addr(offset));     }
498void oopDesc::release_byte_field_put(int offset, jbyte contents)      { OrderAccess::release_store(byte_field_addr(offset), contents); }
499
500jchar oopDesc::char_field_acquire(int offset) const                   { return OrderAccess::load_acquire(char_field_addr(offset));     }
501void oopDesc::release_char_field_put(int offset, jchar contents)      { OrderAccess::release_store(char_field_addr(offset), contents); }
502
503jboolean oopDesc::bool_field_acquire(int offset) const                { return OrderAccess::load_acquire(bool_field_addr(offset));     }
504void oopDesc::release_bool_field_put(int offset, jboolean contents)   { OrderAccess::release_store(bool_field_addr(offset), (contents & 1)); }
505
506jint oopDesc::int_field_acquire(int offset) const                     { return OrderAccess::load_acquire(int_field_addr(offset));      }
507void oopDesc::release_int_field_put(int offset, jint contents)        { OrderAccess::release_store(int_field_addr(offset), contents);  }
508
509jshort oopDesc::short_field_acquire(int offset) const                 { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
510void oopDesc::release_short_field_put(int offset, jshort contents)    { OrderAccess::release_store(short_field_addr(offset), contents);     }
511
512jlong oopDesc::long_field_acquire(int offset) const                   { return OrderAccess::load_acquire(long_field_addr(offset));       }
513void oopDesc::release_long_field_put(int offset, jlong contents)      { OrderAccess::release_store(long_field_addr(offset), contents);   }
514
515jfloat oopDesc::float_field_acquire(int offset) const                 { return OrderAccess::load_acquire(float_field_addr(offset));      }
516void oopDesc::release_float_field_put(int offset, jfloat contents)    { OrderAccess::release_store(float_field_addr(offset), contents);  }
517
518jdouble oopDesc::double_field_acquire(int offset) const               { return OrderAccess::load_acquire(double_field_addr(offset));     }
519void oopDesc::release_double_field_put(int offset, jdouble contents)  { OrderAccess::release_store(double_field_addr(offset), contents); }
520
521address oopDesc::address_field_acquire(int offset) const              { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
522void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
523
524bool oopDesc::is_locked() const {
525  return mark()->is_locked();
526}
527
528bool oopDesc::is_unlocked() const {
529  return mark()->is_unlocked();
530}
531
532bool oopDesc::has_bias_pattern() const {
533  return mark()->has_bias_pattern();
534}
535
536// Used only for markSweep, scavenging
537bool oopDesc::is_gc_marked() const {
538  return mark()->is_marked();
539}
540
541bool oopDesc::is_scavengable() const {
542  return Universe::heap()->is_scavengable(this);
543}
544
545// Used by scavengers
546bool oopDesc::is_forwarded() const {
547  // The extra heap check is needed since the obj might be locked, in which case the
548  // mark would point to a stack location and have the sentinel bit cleared
549  return mark()->is_marked();
550}
551
552// Used by scavengers
553void oopDesc::forward_to(oop p) {
554  assert(check_obj_alignment(p),
555         "forwarding to something not aligned");
556  assert(Universe::heap()->is_in_reserved(p),
557         "forwarding to something not in heap");
558  assert(!is_archive_object(oop(this)) &&
559         !is_archive_object(p),
560         "forwarding archive object");
561  markOop m = markOopDesc::encode_pointer_as_mark(p);
562  assert(m->decode_pointer() == p, "encoding must be reversable");
563  set_mark(m);
564}
565
566// Used by parallel scavengers
567bool oopDesc::cas_forward_to(oop p, markOop compare) {
568  assert(check_obj_alignment(p),
569         "forwarding to something not aligned");
570  assert(Universe::heap()->is_in_reserved(p),
571         "forwarding to something not in heap");
572  markOop m = markOopDesc::encode_pointer_as_mark(p);
573  assert(m->decode_pointer() == p, "encoding must be reversable");
574  return cas_set_mark(m, compare) == compare;
575}
576
577#if INCLUDE_ALL_GCS
578oop oopDesc::forward_to_atomic(oop p) {
579  markOop oldMark = mark();
580  markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
581  markOop curMark;
582
583  assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
584  assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
585
586  while (!oldMark->is_marked()) {
587    curMark = Atomic::cmpxchg(forwardPtrMark, &_mark, oldMark);
588    assert(is_forwarded(), "object should have been forwarded");
589    if (curMark == oldMark) {
590      return NULL;
591    }
592    // If the CAS was unsuccessful then curMark->is_marked()
593    // should return true as another thread has CAS'd in another
594    // forwarding pointer.
595    oldMark = curMark;
596  }
597  return forwardee();
598}
599#endif
600
601// Note that the forwardee is not the same thing as the displaced_mark.
602// The forwardee is used when copying during scavenge and mark-sweep.
603// It does need to clear the low two locking- and GC-related bits.
604oop oopDesc::forwardee() const {
605  return (oop) mark()->decode_pointer();
606}
607
608// The following method needs to be MT safe.
609uint oopDesc::age() const {
610  assert(!is_forwarded(), "Attempt to read age from forwarded mark");
611  if (has_displaced_mark()) {
612    return displaced_mark()->age();
613  } else {
614    return mark()->age();
615  }
616}
617
618void oopDesc::incr_age() {
619  assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
620  if (has_displaced_mark()) {
621    set_displaced_mark(displaced_mark()->incr_age());
622  } else {
623    set_mark(mark()->incr_age());
624  }
625}
626
627#if INCLUDE_ALL_GCS
628void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
629  klass()->oop_pc_follow_contents(this, cm);
630}
631
632void oopDesc::pc_update_contents(ParCompactionManager* cm) {
633  Klass* k = klass();
634  if (!k->is_typeArray_klass()) {
635    // It might contain oops beyond the header, so take the virtual call.
636    k->oop_pc_update_pointers(this, cm);
637  }
638  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
639}
640
641void oopDesc::ps_push_contents(PSPromotionManager* pm) {
642  Klass* k = klass();
643  if (!k->is_typeArray_klass()) {
644    // It might contain oops beyond the header, so take the virtual call.
645    k->oop_ps_push_contents(this, pm);
646  }
647  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
648}
649#endif // INCLUDE_ALL_GCS
650
651#define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                 \
652                                                                    \
653void oopDesc::oop_iterate(OopClosureType* blk) {                    \
654  klass()->oop_oop_iterate##nv_suffix(this, blk);                   \
655}                                                                   \
656                                                                    \
657void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {      \
658  klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);       \
659}
660
661#define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)            \
662                                                                    \
663int oopDesc::oop_iterate_size(OopClosureType* blk) {                \
664  Klass* k = klass();                                               \
665  int size = size_given_klass(k);                                   \
666  k->oop_oop_iterate##nv_suffix(this, blk);                         \
667  return size;                                                      \
668}                                                                   \
669                                                                    \
670int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) {  \
671  Klass* k = klass();                                               \
672  int size = size_given_klass(k);                                   \
673  k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);             \
674  return size;                                                      \
675}
676
677int oopDesc::oop_iterate_no_header(OopClosure* blk) {
678  // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
679  // the do_oop calls, but turns off all other features in ExtendedOopClosure.
680  NoHeaderExtendedOopClosure cl(blk);
681  return oop_iterate_size(&cl);
682}
683
684int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
685  NoHeaderExtendedOopClosure cl(blk);
686  return oop_iterate_size(&cl, mr);
687}
688
689#if INCLUDE_ALL_GCS
690#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
691                                                                    \
692inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
693  klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
694}
695#else
696#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
697#endif // INCLUDE_ALL_GCS
698
699#define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
700  OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
701  OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
702  OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
703
704ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
705ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
706
707intptr_t oopDesc::identity_hash() {
708  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
709  // Note: The mark must be read into local variable to avoid concurrent updates.
710  markOop mrk = mark();
711  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
712    return mrk->hash();
713  } else if (mrk->is_marked()) {
714    return mrk->hash();
715  } else {
716    return slow_identity_hash();
717  }
718}
719
720bool oopDesc::has_displaced_mark() const {
721  return mark()->has_displaced_mark_helper();
722}
723
724markOop oopDesc::displaced_mark() const {
725  return mark()->displaced_mark_helper();
726}
727
728void oopDesc::set_displaced_mark(markOop m) {
729  mark()->set_displaced_mark_helper(m);
730}
731
732#endif // SHARE_VM_OOPS_OOP_INLINE_HPP
733