oop.inline.hpp revision 11857:d0fbf661cc16
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
26#define SHARE_VM_OOPS_OOP_INLINE_HPP
27
28#include "gc/shared/ageTable.hpp"
29#include "gc/shared/barrierSet.inline.hpp"
30#include "gc/shared/cardTableModRefBS.hpp"
31#include "gc/shared/collectedHeap.inline.hpp"
32#include "gc/shared/genCollectedHeap.hpp"
33#include "gc/shared/generation.hpp"
34#include "oops/arrayKlass.hpp"
35#include "oops/arrayOop.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/markOop.inline.hpp"
38#include "oops/oop.hpp"
39#include "runtime/atomic.hpp"
40#include "runtime/orderAccess.inline.hpp"
41#include "runtime/os.hpp"
42#include "utilities/macros.hpp"
43
44inline void update_barrier_set(void* p, oop v, bool release = false) {
45  assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
46  oopDesc::bs()->write_ref_field(p, v, release);
47}
48
49template <class T> inline void update_barrier_set_pre(T* p, oop v) {
50  oopDesc::bs()->write_ref_field_pre(p, v);
51}
52
53template <class T> void oop_store(T* p, oop v) {
54  if (always_do_update_barrier) {
55    oop_store((volatile T*)p, v);
56  } else {
57    update_barrier_set_pre(p, v);
58    oopDesc::encode_store_heap_oop(p, v);
59    // always_do_update_barrier == false =>
60    // Either we are at a safepoint (in GC) or CMS is not used. In both
61    // cases it's unnecessary to mark the card as dirty with release sematics.
62    update_barrier_set((void*)p, v, false /* release */);  // cast away type
63  }
64}
65
66template <class T> void oop_store(volatile T* p, oop v) {
67  update_barrier_set_pre((T*)p, v);   // cast away volatile
68  // Used by release_obj_field_put, so use release_store_ptr.
69  oopDesc::release_encode_store_heap_oop(p, v);
70  // When using CMS we must mark the card corresponding to p as dirty
71  // with release sematics to prevent that CMS sees the dirty card but
72  // not the new value v at p due to reordering of the two
73  // stores. Note that CMS has a concurrent precleaning phase, where
74  // it reads the card table while the Java threads are running.
75  update_barrier_set((void*)p, v, true /* release */);    // cast away type
76}
77
78// Should replace *addr = oop assignments where addr type depends on UseCompressedOops
79// (without having to remember the function name this calls).
80inline void oop_store_raw(HeapWord* addr, oop value) {
81  if (UseCompressedOops) {
82    oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
83  } else {
84    oopDesc::encode_store_heap_oop((oop*)addr, value);
85  }
86}
87
88// Implementation of all inlined member functions defined in oop.hpp
89// We need a separate file to avoid circular references
90
91void oopDesc::release_set_mark(markOop m) {
92  OrderAccess::release_store_ptr(&_mark, m);
93}
94
95markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
96  return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
97}
98
99void oopDesc::init_mark() {
100  set_mark(markOopDesc::prototype_for_object(this));
101}
102
103Klass* oopDesc::klass() const {
104  if (UseCompressedClassPointers) {
105    return Klass::decode_klass_not_null(_metadata._compressed_klass);
106  } else {
107    return _metadata._klass;
108  }
109}
110
111Klass* oopDesc::klass_or_null() const volatile {
112  // can be NULL in CMS
113  if (UseCompressedClassPointers) {
114    return Klass::decode_klass(_metadata._compressed_klass);
115  } else {
116    return _metadata._klass;
117  }
118}
119
120Klass** oopDesc::klass_addr() {
121  // Only used internally and with CMS and will not work with
122  // UseCompressedOops
123  assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
124  return (Klass**) &_metadata._klass;
125}
126
127narrowKlass* oopDesc::compressed_klass_addr() {
128  assert(UseCompressedClassPointers, "only called by compressed klass pointers");
129  return &_metadata._compressed_klass;
130}
131
132void oopDesc::set_klass(Klass* k) {
133  // since klasses are promoted no store check is needed
134  assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
135  assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
136  if (UseCompressedClassPointers) {
137    *compressed_klass_addr() = Klass::encode_klass_not_null(k);
138  } else {
139    *klass_addr() = k;
140  }
141}
142
143int oopDesc::klass_gap() const {
144  return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
145}
146
147void oopDesc::set_klass_gap(int v) {
148  if (UseCompressedClassPointers) {
149    *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
150  }
151}
152
153void oopDesc::set_klass_to_list_ptr(oop k) {
154  // This is only to be used during GC, for from-space objects, so no
155  // barrier is needed.
156  if (UseCompressedClassPointers) {
157    _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
158  } else {
159    _metadata._klass = (Klass*)(address)k;
160  }
161}
162
163oop oopDesc::list_ptr_from_klass() {
164  // This is only to be used during GC, for from-space objects.
165  if (UseCompressedClassPointers) {
166    return decode_heap_oop((narrowOop)_metadata._compressed_klass);
167  } else {
168    // Special case for GC
169    return (oop)(address)_metadata._klass;
170  }
171}
172
173bool oopDesc::is_a(Klass* k) const {
174  return klass()->is_subtype_of(k);
175}
176
177int oopDesc::size()  {
178  return size_given_klass(klass());
179}
180
181int oopDesc::size_given_klass(Klass* klass)  {
182  int lh = klass->layout_helper();
183  int s;
184
185  // lh is now a value computed at class initialization that may hint
186  // at the size.  For instances, this is positive and equal to the
187  // size.  For arrays, this is negative and provides log2 of the
188  // array element size.  For other oops, it is zero and thus requires
189  // a virtual call.
190  //
191  // We go to all this trouble because the size computation is at the
192  // heart of phase 2 of mark-compaction, and called for every object,
193  // alive or dead.  So the speed here is equal in importance to the
194  // speed of allocation.
195
196  if (lh > Klass::_lh_neutral_value) {
197    if (!Klass::layout_helper_needs_slow_path(lh)) {
198      s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
199    } else {
200      s = klass->oop_size(this);
201    }
202  } else if (lh <= Klass::_lh_neutral_value) {
203    // The most common case is instances; fall through if so.
204    if (lh < Klass::_lh_neutral_value) {
205      // Second most common case is arrays.  We have to fetch the
206      // length of the array, shift (multiply) it appropriately,
207      // up to wordSize, add the header, and align to object size.
208      size_t size_in_bytes;
209#ifdef _M_IA64
210      // The Windows Itanium Aug 2002 SDK hoists this load above
211      // the check for s < 0.  An oop at the end of the heap will
212      // cause an access violation if this load is performed on a non
213      // array oop.  Making the reference volatile prohibits this.
214      // (%%% please explain by what magic the length is actually fetched!)
215      volatile int *array_length;
216      array_length = (volatile int *)( (intptr_t)this +
217                          arrayOopDesc::length_offset_in_bytes() );
218      assert(array_length > 0, "Integer arithmetic problem somewhere");
219      // Put into size_t to avoid overflow.
220      size_in_bytes = (size_t) array_length;
221      size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
222#else
223      size_t array_length = (size_t) ((arrayOop)this)->length();
224      size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
225#endif
226      size_in_bytes += Klass::layout_helper_header_size(lh);
227
228      // This code could be simplified, but by keeping array_header_in_bytes
229      // in units of bytes and doing it this way we can round up just once,
230      // skipping the intermediate round to HeapWordSize.  Cast the result
231      // of round_to to size_t to guarantee unsigned division == right shift.
232      s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
233        HeapWordSize);
234
235      // ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
236      // of an "old copy" of an object array in the young gen so it indicates
237      // the grey portion of an already copied array. This will cause the first
238      // disjunct below to fail if the two comparands are computed across such
239      // a concurrent change.
240      // ParNew also runs with promotion labs (which look like int
241      // filler arrays) which are subject to changing their declared size
242      // when finally retiring a PLAB; this also can cause the first disjunct
243      // to fail for another worker thread that is concurrently walking the block
244      // offset table. Both these invariant failures are benign for their
245      // current uses; we relax the assertion checking to cover these two cases below:
246      //     is_objArray() && is_forwarded()   // covers first scenario above
247      //  || is_typeArray()                    // covers second scenario above
248      // If and when UseParallelGC uses the same obj array oop stealing/chunking
249      // technique, we will need to suitably modify the assertion.
250      assert((s == klass->oop_size(this)) ||
251             (Universe::heap()->is_gc_active() &&
252              ((is_typeArray() && UseConcMarkSweepGC) ||
253               (is_objArray()  && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
254             "wrong array object size");
255    } else {
256      // Must be zero, so bite the bullet and take the virtual call.
257      s = klass->oop_size(this);
258    }
259  }
260
261  assert(s % MinObjAlignment == 0, "Oop size is not properly aligned: %d", s);
262  assert(s > 0, "Oop size must be greater than zero, not %d", s);
263  return s;
264}
265
266bool oopDesc::is_instance()  const { return klass()->is_instance_klass();  }
267bool oopDesc::is_array()     const { return klass()->is_array_klass();     }
268bool oopDesc::is_objArray()  const { return klass()->is_objArray_klass();  }
269bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
270
271void*      oopDesc::field_base(int offset)          const { return (void*)&((char*)this)[offset]; }
272
273jbyte*     oopDesc::byte_field_addr(int offset)     const { return (jbyte*)    field_base(offset); }
274jchar*     oopDesc::char_field_addr(int offset)     const { return (jchar*)    field_base(offset); }
275jboolean*  oopDesc::bool_field_addr(int offset)     const { return (jboolean*) field_base(offset); }
276jint*      oopDesc::int_field_addr(int offset)      const { return (jint*)     field_base(offset); }
277jshort*    oopDesc::short_field_addr(int offset)    const { return (jshort*)   field_base(offset); }
278jlong*     oopDesc::long_field_addr(int offset)     const { return (jlong*)    field_base(offset); }
279jfloat*    oopDesc::float_field_addr(int offset)    const { return (jfloat*)   field_base(offset); }
280jdouble*   oopDesc::double_field_addr(int offset)   const { return (jdouble*)  field_base(offset); }
281Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
282
283template <class T> T* oopDesc::obj_field_addr(int offset) const { return (T*)  field_base(offset); }
284address*   oopDesc::address_field_addr(int offset)  const { return (address*)  field_base(offset); }
285
286
287// Functions for getting and setting oops within instance objects.
288// If the oops are compressed, the type passed to these overloaded functions
289// is narrowOop.  All functions are overloaded so they can be called by
290// template functions without conditionals (the compiler instantiates via
291// the right type and inlines the appopriate code).
292
293// Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
294// offset from the heap base.  Saving the check for null can save instructions
295// in inner GC loops so these are separated.
296
297inline bool check_obj_alignment(oop obj) {
298  return (cast_from_oop<intptr_t>(obj) & MinObjAlignmentInBytesMask) == 0;
299}
300
301oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
302  assert(!is_null(v), "narrow oop value can never be zero");
303  address base = Universe::narrow_oop_base();
304  int    shift = Universe::narrow_oop_shift();
305  oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
306  assert(check_obj_alignment(result), "address not aligned: " INTPTR_FORMAT, p2i((void*) result));
307  return result;
308}
309
310oop oopDesc::decode_heap_oop(narrowOop v) {
311  return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
312}
313
314narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
315  assert(!is_null(v), "oop value can never be zero");
316  assert(check_obj_alignment(v), "Address not aligned");
317  assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
318  address base = Universe::narrow_oop_base();
319  int    shift = Universe::narrow_oop_shift();
320  uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
321  assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
322  uint64_t result = pd >> shift;
323  assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
324  assert(decode_heap_oop(result) == v, "reversibility");
325  return (narrowOop)result;
326}
327
328narrowOop oopDesc::encode_heap_oop(oop v) {
329  return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
330}
331
332// Load and decode an oop out of the Java heap into a wide oop.
333oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
334  return decode_heap_oop_not_null(*p);
335}
336
337// Load and decode an oop out of the heap accepting null
338oop oopDesc::load_decode_heap_oop(narrowOop* p) {
339  return decode_heap_oop(*p);
340}
341
342// Encode and store a heap oop.
343void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
344  *p = encode_heap_oop_not_null(v);
345}
346
347// Encode and store a heap oop allowing for null.
348void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
349  *p = encode_heap_oop(v);
350}
351
352// Store heap oop as is for volatile fields.
353void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
354  OrderAccess::release_store_ptr(p, v);
355}
356void oopDesc::release_store_heap_oop(volatile narrowOop* p, narrowOop v) {
357  OrderAccess::release_store(p, v);
358}
359
360void oopDesc::release_encode_store_heap_oop_not_null(volatile narrowOop* p, oop v) {
361  // heap oop is not pointer sized.
362  OrderAccess::release_store(p, encode_heap_oop_not_null(v));
363}
364void oopDesc::release_encode_store_heap_oop_not_null(volatile oop* p, oop v) {
365  OrderAccess::release_store_ptr(p, v);
366}
367
368void oopDesc::release_encode_store_heap_oop(volatile oop* p, oop v) {
369  OrderAccess::release_store_ptr(p, v);
370}
371void oopDesc::release_encode_store_heap_oop(volatile narrowOop* p, oop v) {
372  OrderAccess::release_store(p, encode_heap_oop(v));
373}
374
375// These functions are only used to exchange oop fields in instances,
376// not headers.
377oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
378  if (UseCompressedOops) {
379    // encode exchange value from oop to T
380    narrowOop val = encode_heap_oop(exchange_value);
381    narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
382    // decode old from T to oop
383    return decode_heap_oop(old);
384  } else {
385    return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
386  }
387}
388
389oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
390                                         volatile HeapWord *dest,
391                                         oop compare_value,
392                                         bool prebarrier) {
393  if (UseCompressedOops) {
394    if (prebarrier) {
395      update_barrier_set_pre((narrowOop*)dest, exchange_value);
396    }
397    // encode exchange and compare value from oop to T
398    narrowOop val = encode_heap_oop(exchange_value);
399    narrowOop cmp = encode_heap_oop(compare_value);
400
401    narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
402    // decode old from T to oop
403    return decode_heap_oop(old);
404  } else {
405    if (prebarrier) {
406      update_barrier_set_pre((oop*)dest, exchange_value);
407    }
408    return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
409  }
410}
411
412// In order to put or get a field out of an instance, must first check
413// if the field has been compressed and uncompress it.
414oop oopDesc::obj_field(int offset) const {
415  return UseCompressedOops ?
416    load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
417    load_decode_heap_oop(obj_field_addr<oop>(offset));
418}
419
420void oopDesc::obj_field_put(int offset, oop value) {
421  UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
422                      oop_store(obj_field_addr<oop>(offset),       value);
423}
424
425void oopDesc::obj_field_put_raw(int offset, oop value) {
426  UseCompressedOops ?
427    encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
428    encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
429}
430void oopDesc::obj_field_put_volatile(int offset, oop value) {
431  OrderAccess::release();
432  obj_field_put(offset, value);
433  OrderAccess::fence();
434}
435
436Metadata* oopDesc::metadata_field(int offset) const           { return *metadata_field_addr(offset);   }
437void oopDesc::metadata_field_put(int offset, Metadata* value) { *metadata_field_addr(offset) = value;  }
438
439jbyte oopDesc::byte_field(int offset) const                   { return (jbyte) *byte_field_addr(offset);    }
440void oopDesc::byte_field_put(int offset, jbyte contents)      { *byte_field_addr(offset) = (jint) contents; }
441
442jchar oopDesc::char_field(int offset) const                   { return (jchar) *char_field_addr(offset);    }
443void oopDesc::char_field_put(int offset, jchar contents)      { *char_field_addr(offset) = (jint) contents; }
444
445jboolean oopDesc::bool_field(int offset) const                { return (jboolean) *bool_field_addr(offset); }
446void oopDesc::bool_field_put(int offset, jboolean contents)   { *bool_field_addr(offset) = (((jint) contents) & 1); }
447
448jint oopDesc::int_field(int offset) const                     { return *int_field_addr(offset);        }
449void oopDesc::int_field_put(int offset, jint contents)        { *int_field_addr(offset) = contents;    }
450
451jshort oopDesc::short_field(int offset) const                 { return (jshort) *short_field_addr(offset);  }
452void oopDesc::short_field_put(int offset, jshort contents)    { *short_field_addr(offset) = (jint) contents;}
453
454jlong oopDesc::long_field(int offset) const                   { return *long_field_addr(offset);       }
455void oopDesc::long_field_put(int offset, jlong contents)      { *long_field_addr(offset) = contents;   }
456
457jfloat oopDesc::float_field(int offset) const                 { return *float_field_addr(offset);      }
458void oopDesc::float_field_put(int offset, jfloat contents)    { *float_field_addr(offset) = contents;  }
459
460jdouble oopDesc::double_field(int offset) const               { return *double_field_addr(offset);     }
461void oopDesc::double_field_put(int offset, jdouble contents)  { *double_field_addr(offset) = contents; }
462
463address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
464void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
465
466oop oopDesc::obj_field_acquire(int offset) const {
467  return UseCompressedOops ?
468             decode_heap_oop((narrowOop)
469               OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
470           : decode_heap_oop((oop)
471               OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
472}
473void oopDesc::release_obj_field_put(int offset, oop value) {
474  UseCompressedOops ?
475    oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
476    oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
477}
478
479jbyte oopDesc::byte_field_acquire(int offset) const                   { return OrderAccess::load_acquire(byte_field_addr(offset));     }
480void oopDesc::release_byte_field_put(int offset, jbyte contents)      { OrderAccess::release_store(byte_field_addr(offset), contents); }
481
482jchar oopDesc::char_field_acquire(int offset) const                   { return OrderAccess::load_acquire(char_field_addr(offset));     }
483void oopDesc::release_char_field_put(int offset, jchar contents)      { OrderAccess::release_store(char_field_addr(offset), contents); }
484
485jboolean oopDesc::bool_field_acquire(int offset) const                { return OrderAccess::load_acquire(bool_field_addr(offset));     }
486void oopDesc::release_bool_field_put(int offset, jboolean contents)   { OrderAccess::release_store(bool_field_addr(offset), (contents & 1)); }
487
488jint oopDesc::int_field_acquire(int offset) const                     { return OrderAccess::load_acquire(int_field_addr(offset));      }
489void oopDesc::release_int_field_put(int offset, jint contents)        { OrderAccess::release_store(int_field_addr(offset), contents);  }
490
491jshort oopDesc::short_field_acquire(int offset) const                 { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
492void oopDesc::release_short_field_put(int offset, jshort contents)    { OrderAccess::release_store(short_field_addr(offset), contents);     }
493
494jlong oopDesc::long_field_acquire(int offset) const                   { return OrderAccess::load_acquire(long_field_addr(offset));       }
495void oopDesc::release_long_field_put(int offset, jlong contents)      { OrderAccess::release_store(long_field_addr(offset), contents);   }
496
497jfloat oopDesc::float_field_acquire(int offset) const                 { return OrderAccess::load_acquire(float_field_addr(offset));      }
498void oopDesc::release_float_field_put(int offset, jfloat contents)    { OrderAccess::release_store(float_field_addr(offset), contents);  }
499
500jdouble oopDesc::double_field_acquire(int offset) const               { return OrderAccess::load_acquire(double_field_addr(offset));     }
501void oopDesc::release_double_field_put(int offset, jdouble contents)  { OrderAccess::release_store(double_field_addr(offset), contents); }
502
503address oopDesc::address_field_acquire(int offset) const              { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
504void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
505
506bool oopDesc::is_locked() const {
507  return mark()->is_locked();
508}
509
510bool oopDesc::is_unlocked() const {
511  return mark()->is_unlocked();
512}
513
514bool oopDesc::has_bias_pattern() const {
515  return mark()->has_bias_pattern();
516}
517
518// used only for asserts
519bool oopDesc::is_oop(bool ignore_mark_word) const {
520  oop obj = (oop) this;
521  if (!check_obj_alignment(obj)) return false;
522  if (!Universe::heap()->is_in_reserved(obj)) return false;
523  // obj is aligned and accessible in heap
524  if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
525
526  // Header verification: the mark is typically non-NULL. If we're
527  // at a safepoint, it must not be null.
528  // Outside of a safepoint, the header could be changing (for example,
529  // another thread could be inflating a lock on this object).
530  if (ignore_mark_word) {
531    return true;
532  }
533  if (mark() != NULL) {
534    return true;
535  }
536  return !SafepointSynchronize::is_at_safepoint();
537}
538
539
540// used only for asserts
541bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
542  return this == NULL ? true : is_oop(ignore_mark_word);
543}
544
545#ifndef PRODUCT
546// used only for asserts
547bool oopDesc::is_unlocked_oop() const {
548  if (!Universe::heap()->is_in_reserved(this)) return false;
549  return mark()->is_unlocked();
550}
551#endif // PRODUCT
552
553// Used only for markSweep, scavenging
554bool oopDesc::is_gc_marked() const {
555  return mark()->is_marked();
556}
557
558bool oopDesc::is_scavengable() const {
559  return Universe::heap()->is_scavengable(this);
560}
561
562// Used by scavengers
563bool oopDesc::is_forwarded() const {
564  // The extra heap check is needed since the obj might be locked, in which case the
565  // mark would point to a stack location and have the sentinel bit cleared
566  return mark()->is_marked();
567}
568
569// Used by scavengers
570void oopDesc::forward_to(oop p) {
571  assert(check_obj_alignment(p),
572         "forwarding to something not aligned");
573  assert(Universe::heap()->is_in_reserved(p),
574         "forwarding to something not in heap");
575  markOop m = markOopDesc::encode_pointer_as_mark(p);
576  assert(m->decode_pointer() == p, "encoding must be reversable");
577  set_mark(m);
578}
579
580// Used by parallel scavengers
581bool oopDesc::cas_forward_to(oop p, markOop compare) {
582  assert(check_obj_alignment(p),
583         "forwarding to something not aligned");
584  assert(Universe::heap()->is_in_reserved(p),
585         "forwarding to something not in heap");
586  markOop m = markOopDesc::encode_pointer_as_mark(p);
587  assert(m->decode_pointer() == p, "encoding must be reversable");
588  return cas_set_mark(m, compare) == compare;
589}
590
591#if INCLUDE_ALL_GCS
592oop oopDesc::forward_to_atomic(oop p) {
593  markOop oldMark = mark();
594  markOop forwardPtrMark = markOopDesc::encode_pointer_as_mark(p);
595  markOop curMark;
596
597  assert(forwardPtrMark->decode_pointer() == p, "encoding must be reversable");
598  assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
599
600  while (!oldMark->is_marked()) {
601    curMark = (markOop)Atomic::cmpxchg_ptr(forwardPtrMark, &_mark, oldMark);
602    assert(is_forwarded(), "object should have been forwarded");
603    if (curMark == oldMark) {
604      return NULL;
605    }
606    // If the CAS was unsuccessful then curMark->is_marked()
607    // should return true as another thread has CAS'd in another
608    // forwarding pointer.
609    oldMark = curMark;
610  }
611  return forwardee();
612}
613#endif
614
615// Note that the forwardee is not the same thing as the displaced_mark.
616// The forwardee is used when copying during scavenge and mark-sweep.
617// It does need to clear the low two locking- and GC-related bits.
618oop oopDesc::forwardee() const {
619  return (oop) mark()->decode_pointer();
620}
621
622// The following method needs to be MT safe.
623uint oopDesc::age() const {
624  assert(!is_forwarded(), "Attempt to read age from forwarded mark");
625  if (has_displaced_mark()) {
626    return displaced_mark()->age();
627  } else {
628    return mark()->age();
629  }
630}
631
632void oopDesc::incr_age() {
633  assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
634  if (has_displaced_mark()) {
635    set_displaced_mark(displaced_mark()->incr_age());
636  } else {
637    set_mark(mark()->incr_age());
638  }
639}
640
641int oopDesc::ms_adjust_pointers() {
642  debug_only(int check_size = size());
643  int s = klass()->oop_ms_adjust_pointers(this);
644  assert(s == check_size, "should be the same");
645  return s;
646}
647
648#if INCLUDE_ALL_GCS
649void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
650  klass()->oop_pc_follow_contents(this, cm);
651}
652
653void oopDesc::pc_update_contents(ParCompactionManager* cm) {
654  Klass* k = klass();
655  if (!k->is_typeArray_klass()) {
656    // It might contain oops beyond the header, so take the virtual call.
657    k->oop_pc_update_pointers(this, cm);
658  }
659  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
660}
661
662void oopDesc::ps_push_contents(PSPromotionManager* pm) {
663  Klass* k = klass();
664  if (!k->is_typeArray_klass()) {
665    // It might contain oops beyond the header, so take the virtual call.
666    k->oop_ps_push_contents(this, pm);
667  }
668  // Else skip it.  The TypeArrayKlass in the header never needs scavenging.
669}
670#endif // INCLUDE_ALL_GCS
671
672#define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                 \
673                                                                    \
674void oopDesc::oop_iterate(OopClosureType* blk) {                    \
675  klass()->oop_oop_iterate##nv_suffix(this, blk);                   \
676}                                                                   \
677                                                                    \
678void oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {      \
679  klass()->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);       \
680}
681
682#define OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)            \
683                                                                    \
684int oopDesc::oop_iterate_size(OopClosureType* blk) {                \
685  Klass* k = klass();                                               \
686  int size = size_given_klass(k);                                   \
687  k->oop_oop_iterate##nv_suffix(this, blk);                         \
688  return size;                                                      \
689}                                                                   \
690                                                                    \
691int oopDesc::oop_iterate_size(OopClosureType* blk, MemRegion mr) {  \
692  Klass* k = klass();                                               \
693  int size = size_given_klass(k);                                   \
694  k->oop_oop_iterate_bounded##nv_suffix(this, blk, mr);             \
695  return size;                                                      \
696}
697
698int oopDesc::oop_iterate_no_header(OopClosure* blk) {
699  // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
700  // the do_oop calls, but turns off all other features in ExtendedOopClosure.
701  NoHeaderExtendedOopClosure cl(blk);
702  return oop_iterate_size(&cl);
703}
704
705int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
706  NoHeaderExtendedOopClosure cl(blk);
707  return oop_iterate_size(&cl, mr);
708}
709
710#if INCLUDE_ALL_GCS
711#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)       \
712                                                                    \
713inline void oopDesc::oop_iterate_backwards(OopClosureType* blk) {   \
714  klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);         \
715}
716#else
717#define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
718#endif // INCLUDE_ALL_GCS
719
720#define ALL_OOPDESC_OOP_ITERATE(OopClosureType, nv_suffix)  \
721  OOP_ITERATE_DEFN(OopClosureType, nv_suffix)               \
722  OOP_ITERATE_SIZE_DEFN(OopClosureType, nv_suffix)          \
723  OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)
724
725ALL_OOP_OOP_ITERATE_CLOSURES_1(ALL_OOPDESC_OOP_ITERATE)
726ALL_OOP_OOP_ITERATE_CLOSURES_2(ALL_OOPDESC_OOP_ITERATE)
727
728intptr_t oopDesc::identity_hash() {
729  // Fast case; if the object is unlocked and the hash value is set, no locking is needed
730  // Note: The mark must be read into local variable to avoid concurrent updates.
731  markOop mrk = mark();
732  if (mrk->is_unlocked() && !mrk->has_no_hash()) {
733    return mrk->hash();
734  } else if (mrk->is_marked()) {
735    return mrk->hash();
736  } else {
737    return slow_identity_hash();
738  }
739}
740
741bool oopDesc::has_displaced_mark() const {
742  return mark()->has_displaced_mark_helper();
743}
744
745markOop oopDesc::displaced_mark() const {
746  return mark()->displaced_mark_helper();
747}
748
749void oopDesc::set_displaced_mark(markOop m) {
750  mark()->set_displaced_mark_helper(m);
751}
752
753#endif // SHARE_VM_OOPS_OOP_INLINE_HPP
754