metaspace.cpp revision 13243:7235bc30c0d7
1/*
2 * Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24#include "precompiled.hpp"
25#include "aot/aotLoader.hpp"
26#include "gc/shared/collectedHeap.hpp"
27#include "gc/shared/collectorPolicy.hpp"
28#include "gc/shared/gcLocker.hpp"
29#include "logging/log.hpp"
30#include "memory/allocation.hpp"
31#include "memory/binaryTreeDictionary.hpp"
32#include "memory/filemap.hpp"
33#include "memory/freeList.hpp"
34#include "memory/metachunk.hpp"
35#include "memory/metaspace.hpp"
36#include "memory/metaspaceGCThresholdUpdater.hpp"
37#include "memory/metaspaceShared.hpp"
38#include "memory/metaspaceTracer.hpp"
39#include "memory/resourceArea.hpp"
40#include "memory/universe.hpp"
41#include "runtime/atomic.hpp"
42#include "runtime/globals.hpp"
43#include "runtime/init.hpp"
44#include "runtime/java.hpp"
45#include "runtime/mutex.hpp"
46#include "runtime/orderAccess.inline.hpp"
47#include "services/memTracker.hpp"
48#include "services/memoryService.hpp"
49#include "utilities/copy.hpp"
50#include "utilities/debug.hpp"
51#include "utilities/macros.hpp"
52
53typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
54typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
55
56// Set this constant to enable slow integrity checking of the free chunk lists
57const bool metaspace_slow_verify = false;
58
59size_t const allocation_from_dictionary_limit = 4 * K;
60
61MetaWord* last_allocated = 0;
62
63size_t Metaspace::_compressed_class_space_size;
64const MetaspaceTracer* Metaspace::_tracer = NULL;
65
66// Used in declarations in SpaceManager and ChunkManager
67enum ChunkIndex {
68  ZeroIndex = 0,
69  SpecializedIndex = ZeroIndex,
70  SmallIndex = SpecializedIndex + 1,
71  MediumIndex = SmallIndex + 1,
72  HumongousIndex = MediumIndex + 1,
73  NumberOfFreeLists = 3,
74  NumberOfInUseLists = 4
75};
76
77// Helper, returns a descriptive name for the given index.
78static const char* chunk_size_name(ChunkIndex index) {
79  switch (index) {
80    case SpecializedIndex:
81      return "specialized";
82    case SmallIndex:
83      return "small";
84    case MediumIndex:
85      return "medium";
86    case HumongousIndex:
87      return "humongous";
88    default:
89      return "Invalid index";
90  }
91}
92
93enum ChunkSizes {    // in words.
94  ClassSpecializedChunk = 128,
95  SpecializedChunk = 128,
96  ClassSmallChunk = 256,
97  SmallChunk = 512,
98  ClassMediumChunk = 4 * K,
99  MediumChunk = 8 * K
100};
101
102static ChunkIndex next_chunk_index(ChunkIndex i) {
103  assert(i < NumberOfInUseLists, "Out of bound");
104  return (ChunkIndex) (i+1);
105}
106
107volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
108uint MetaspaceGC::_shrink_factor = 0;
109bool MetaspaceGC::_should_concurrent_collect = false;
110
111typedef class FreeList<Metachunk> ChunkList;
112
113// Manages the global free lists of chunks.
114class ChunkManager : public CHeapObj<mtInternal> {
115  friend class TestVirtualSpaceNodeTest;
116
117  // Free list of chunks of different sizes.
118  //   SpecializedChunk
119  //   SmallChunk
120  //   MediumChunk
121  ChunkList _free_chunks[NumberOfFreeLists];
122
123  // Return non-humongous chunk list by its index.
124  ChunkList* free_chunks(ChunkIndex index);
125
126  // Returns non-humongous chunk list for the given chunk word size.
127  ChunkList* find_free_chunks_list(size_t word_size);
128
129  //   HumongousChunk
130  ChunkTreeDictionary _humongous_dictionary;
131
132  // Returns the humongous chunk dictionary.
133  ChunkTreeDictionary* humongous_dictionary() {
134    return &_humongous_dictionary;
135  }
136
137  // Size, in metaspace words, of all chunks managed by this ChunkManager
138  size_t _free_chunks_total;
139  // Number of chunks in this ChunkManager
140  size_t _free_chunks_count;
141
142  // Update counters after a chunk was added or removed removed.
143  void account_for_added_chunk(const Metachunk* c);
144  void account_for_removed_chunk(const Metachunk* c);
145
146  // Debug support
147
148  size_t sum_free_chunks();
149  size_t sum_free_chunks_count();
150
151  void locked_verify_free_chunks_total();
152  void slow_locked_verify_free_chunks_total() {
153    if (metaspace_slow_verify) {
154      locked_verify_free_chunks_total();
155    }
156  }
157  void locked_verify_free_chunks_count();
158  void slow_locked_verify_free_chunks_count() {
159    if (metaspace_slow_verify) {
160      locked_verify_free_chunks_count();
161    }
162  }
163  void verify_free_chunks_count();
164
165 public:
166
167  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
168      : _free_chunks_total(0), _free_chunks_count(0) {
169    _free_chunks[SpecializedIndex].set_size(specialized_size);
170    _free_chunks[SmallIndex].set_size(small_size);
171    _free_chunks[MediumIndex].set_size(medium_size);
172  }
173
174  // add or delete (return) a chunk to the global freelist.
175  Metachunk* chunk_freelist_allocate(size_t word_size);
176
177  // Map a size to a list index assuming that there are lists
178  // for special, small, medium, and humongous chunks.
179  ChunkIndex list_index(size_t size);
180
181  // Map a given index to the chunk size.
182  size_t size_by_index(ChunkIndex index);
183
184  // Take a chunk from the ChunkManager. The chunk is expected to be in
185  // the chunk manager (the freelist if non-humongous, the dictionary if
186  // humongous).
187  void remove_chunk(Metachunk* chunk);
188
189  // Return a single chunk of type index to the ChunkManager.
190  void return_single_chunk(ChunkIndex index, Metachunk* chunk);
191
192  // Add the simple linked list of chunks to the freelist of chunks
193  // of type index.
194  void return_chunk_list(ChunkIndex index, Metachunk* chunk);
195
196  // Total of the space in the free chunks list
197  size_t free_chunks_total_words();
198  size_t free_chunks_total_bytes();
199
200  // Number of chunks in the free chunks list
201  size_t free_chunks_count();
202
203  // Remove from a list by size.  Selects list based on size of chunk.
204  Metachunk* free_chunks_get(size_t chunk_word_size);
205
206#define index_bounds_check(index)                                         \
207  assert(index == SpecializedIndex ||                                     \
208         index == SmallIndex ||                                           \
209         index == MediumIndex ||                                          \
210         index == HumongousIndex, "Bad index: %d", (int) index)
211
212  size_t num_free_chunks(ChunkIndex index) const {
213    index_bounds_check(index);
214
215    if (index == HumongousIndex) {
216      return _humongous_dictionary.total_free_blocks();
217    }
218
219    ssize_t count = _free_chunks[index].count();
220    return count == -1 ? 0 : (size_t) count;
221  }
222
223  size_t size_free_chunks_in_bytes(ChunkIndex index) const {
224    index_bounds_check(index);
225
226    size_t word_size = 0;
227    if (index == HumongousIndex) {
228      word_size = _humongous_dictionary.total_size();
229    } else {
230      const size_t size_per_chunk_in_words = _free_chunks[index].size();
231      word_size = size_per_chunk_in_words * num_free_chunks(index);
232    }
233
234    return word_size * BytesPerWord;
235  }
236
237  MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
238    return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
239                                         num_free_chunks(SmallIndex),
240                                         num_free_chunks(MediumIndex),
241                                         num_free_chunks(HumongousIndex),
242                                         size_free_chunks_in_bytes(SpecializedIndex),
243                                         size_free_chunks_in_bytes(SmallIndex),
244                                         size_free_chunks_in_bytes(MediumIndex),
245                                         size_free_chunks_in_bytes(HumongousIndex));
246  }
247
248  // Debug support
249  void verify();
250  void slow_verify() {
251    if (metaspace_slow_verify) {
252      verify();
253    }
254  }
255  void locked_verify();
256  void slow_locked_verify() {
257    if (metaspace_slow_verify) {
258      locked_verify();
259    }
260  }
261  void verify_free_chunks_total();
262
263  void locked_print_free_chunks(outputStream* st);
264  void locked_print_sum_free_chunks(outputStream* st);
265
266  void print_on(outputStream* st) const;
267};
268
269class SmallBlocks : public CHeapObj<mtClass> {
270  const static uint _small_block_max_size = sizeof(TreeChunk<Metablock,  FreeList<Metablock> >)/HeapWordSize;
271  const static uint _small_block_min_size = sizeof(Metablock)/HeapWordSize;
272
273 private:
274  FreeList<Metablock> _small_lists[_small_block_max_size - _small_block_min_size];
275
276  FreeList<Metablock>& list_at(size_t word_size) {
277    assert(word_size >= _small_block_min_size, "There are no metaspace objects less than %u words", _small_block_min_size);
278    return _small_lists[word_size - _small_block_min_size];
279  }
280
281 public:
282  SmallBlocks() {
283    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
284      uint k = i - _small_block_min_size;
285      _small_lists[k].set_size(i);
286    }
287  }
288
289  size_t total_size() const {
290    size_t result = 0;
291    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
292      uint k = i - _small_block_min_size;
293      result = result + _small_lists[k].count() * _small_lists[k].size();
294    }
295    return result;
296  }
297
298  static uint small_block_max_size() { return _small_block_max_size; }
299  static uint small_block_min_size() { return _small_block_min_size; }
300
301  MetaWord* get_block(size_t word_size) {
302    if (list_at(word_size).count() > 0) {
303      MetaWord* new_block = (MetaWord*) list_at(word_size).get_chunk_at_head();
304      return new_block;
305    } else {
306      return NULL;
307    }
308  }
309  void return_block(Metablock* free_chunk, size_t word_size) {
310    list_at(word_size).return_chunk_at_head(free_chunk, false);
311    assert(list_at(word_size).count() > 0, "Should have a chunk");
312  }
313
314  void print_on(outputStream* st) const {
315    st->print_cr("SmallBlocks:");
316    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
317      uint k = i - _small_block_min_size;
318      st->print_cr("small_lists size " SIZE_FORMAT " count " SIZE_FORMAT, _small_lists[k].size(), _small_lists[k].count());
319    }
320  }
321};
322
323// Used to manage the free list of Metablocks (a block corresponds
324// to the allocation of a quantum of metadata).
325class BlockFreelist : public CHeapObj<mtClass> {
326  BlockTreeDictionary* const _dictionary;
327  SmallBlocks* _small_blocks;
328
329  // Only allocate and split from freelist if the size of the allocation
330  // is at least 1/4th the size of the available block.
331  const static int WasteMultiplier = 4;
332
333  // Accessors
334  BlockTreeDictionary* dictionary() const { return _dictionary; }
335  SmallBlocks* small_blocks() {
336    if (_small_blocks == NULL) {
337      _small_blocks = new SmallBlocks();
338    }
339    return _small_blocks;
340  }
341
342 public:
343  BlockFreelist();
344  ~BlockFreelist();
345
346  // Get and return a block to the free list
347  MetaWord* get_block(size_t word_size);
348  void return_block(MetaWord* p, size_t word_size);
349
350  size_t total_size() const  {
351    size_t result = dictionary()->total_size();
352    if (_small_blocks != NULL) {
353      result = result + _small_blocks->total_size();
354    }
355    return result;
356  }
357
358  static size_t min_dictionary_size()   { return TreeChunk<Metablock, FreeList<Metablock> >::min_size(); }
359  void print_on(outputStream* st) const;
360};
361
362// A VirtualSpaceList node.
363class VirtualSpaceNode : public CHeapObj<mtClass> {
364  friend class VirtualSpaceList;
365
366  // Link to next VirtualSpaceNode
367  VirtualSpaceNode* _next;
368
369  // total in the VirtualSpace
370  MemRegion _reserved;
371  ReservedSpace _rs;
372  VirtualSpace _virtual_space;
373  MetaWord* _top;
374  // count of chunks contained in this VirtualSpace
375  uintx _container_count;
376
377  // Convenience functions to access the _virtual_space
378  char* low()  const { return virtual_space()->low(); }
379  char* high() const { return virtual_space()->high(); }
380
381  // The first Metachunk will be allocated at the bottom of the
382  // VirtualSpace
383  Metachunk* first_chunk() { return (Metachunk*) bottom(); }
384
385  // Committed but unused space in the virtual space
386  size_t free_words_in_vs() const;
387 public:
388
389  VirtualSpaceNode(size_t byte_size);
390  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
391  ~VirtualSpaceNode();
392
393  // Convenience functions for logical bottom and end
394  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
395  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
396
397  bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
398
399  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
400  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
401
402  bool is_pre_committed() const { return _virtual_space.special(); }
403
404  // address of next available space in _virtual_space;
405  // Accessors
406  VirtualSpaceNode* next() { return _next; }
407  void set_next(VirtualSpaceNode* v) { _next = v; }
408
409  void set_reserved(MemRegion const v) { _reserved = v; }
410  void set_top(MetaWord* v) { _top = v; }
411
412  // Accessors
413  MemRegion* reserved() { return &_reserved; }
414  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
415
416  // Returns true if "word_size" is available in the VirtualSpace
417  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
418
419  MetaWord* top() const { return _top; }
420  void inc_top(size_t word_size) { _top += word_size; }
421
422  uintx container_count() { return _container_count; }
423  void inc_container_count();
424  void dec_container_count();
425#ifdef ASSERT
426  uintx container_count_slow();
427  void verify_container_count();
428#endif
429
430  // used and capacity in this single entry in the list
431  size_t used_words_in_vs() const;
432  size_t capacity_words_in_vs() const;
433
434  bool initialize();
435
436  // get space from the virtual space
437  Metachunk* take_from_committed(size_t chunk_word_size);
438
439  // Allocate a chunk from the virtual space and return it.
440  Metachunk* get_chunk_vs(size_t chunk_word_size);
441
442  // Expands/shrinks the committed space in a virtual space.  Delegates
443  // to Virtualspace
444  bool expand_by(size_t min_words, size_t preferred_words);
445
446  // In preparation for deleting this node, remove all the chunks
447  // in the node from any freelist.
448  void purge(ChunkManager* chunk_manager);
449
450  // If an allocation doesn't fit in the current node a new node is created.
451  // Allocate chunks out of the remaining committed space in this node
452  // to avoid wasting that memory.
453  // This always adds up because all the chunk sizes are multiples of
454  // the smallest chunk size.
455  void retire(ChunkManager* chunk_manager);
456
457#ifdef ASSERT
458  // Debug support
459  void mangle();
460#endif
461
462  void print_on(outputStream* st) const;
463};
464
465#define assert_is_aligned(value, alignment)                  \
466  assert(is_aligned((value), (alignment)),                   \
467         SIZE_FORMAT_HEX " is not aligned to "               \
468         SIZE_FORMAT, (size_t)(uintptr_t)value, (alignment))
469
470// Decide if large pages should be committed when the memory is reserved.
471static bool should_commit_large_pages_when_reserving(size_t bytes) {
472  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
473    size_t words = bytes / BytesPerWord;
474    bool is_class = false; // We never reserve large pages for the class space.
475    if (MetaspaceGC::can_expand(words, is_class) &&
476        MetaspaceGC::allowed_expansion() >= words) {
477      return true;
478    }
479  }
480
481  return false;
482}
483
484  // byte_size is the size of the associated virtualspace.
485VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
486  assert_is_aligned(bytes, Metaspace::reserve_alignment());
487
488#if INCLUDE_CDS
489  // This allocates memory with mmap.  For DumpSharedspaces, try to reserve
490  // configurable address, generally at the top of the Java heap so other
491  // memory addresses don't conflict.
492  if (DumpSharedSpaces) {
493    bool large_pages = false; // No large pages when dumping the CDS archive.
494    char* shared_base = align_up((char*)SharedBaseAddress, Metaspace::reserve_alignment());
495
496    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages, shared_base);
497    if (_rs.is_reserved()) {
498      assert(shared_base == 0 || _rs.base() == shared_base, "should match");
499    } else {
500      // Get a mmap region anywhere if the SharedBaseAddress fails.
501      _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
502    }
503    if (!_rs.is_reserved()) {
504      vm_exit_during_initialization("Unable to allocate memory for shared space",
505        err_msg(SIZE_FORMAT " bytes.", bytes));
506    }
507    MetaspaceShared::initialize_shared_rs(&_rs);
508  } else
509#endif
510  {
511    bool large_pages = should_commit_large_pages_when_reserving(bytes);
512
513    _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
514  }
515
516  if (_rs.is_reserved()) {
517    assert(_rs.base() != NULL, "Catch if we get a NULL address");
518    assert(_rs.size() != 0, "Catch if we get a 0 size");
519    assert_is_aligned(_rs.base(), Metaspace::reserve_alignment());
520    assert_is_aligned(_rs.size(), Metaspace::reserve_alignment());
521
522    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
523  }
524}
525
526void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
527  Metachunk* chunk = first_chunk();
528  Metachunk* invalid_chunk = (Metachunk*) top();
529  while (chunk < invalid_chunk ) {
530    assert(chunk->is_tagged_free(), "Should be tagged free");
531    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
532    chunk_manager->remove_chunk(chunk);
533    assert(chunk->next() == NULL &&
534           chunk->prev() == NULL,
535           "Was not removed from its list");
536    chunk = (Metachunk*) next;
537  }
538}
539
540#ifdef ASSERT
541uintx VirtualSpaceNode::container_count_slow() {
542  uintx count = 0;
543  Metachunk* chunk = first_chunk();
544  Metachunk* invalid_chunk = (Metachunk*) top();
545  while (chunk < invalid_chunk ) {
546    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
547    // Don't count the chunks on the free lists.  Those are
548    // still part of the VirtualSpaceNode but not currently
549    // counted.
550    if (!chunk->is_tagged_free()) {
551      count++;
552    }
553    chunk = (Metachunk*) next;
554  }
555  return count;
556}
557#endif
558
559// List of VirtualSpaces for metadata allocation.
560class VirtualSpaceList : public CHeapObj<mtClass> {
561  friend class VirtualSpaceNode;
562
563  enum VirtualSpaceSizes {
564    VirtualSpaceSize = 256 * K
565  };
566
567  // Head of the list
568  VirtualSpaceNode* _virtual_space_list;
569  // virtual space currently being used for allocations
570  VirtualSpaceNode* _current_virtual_space;
571
572  // Is this VirtualSpaceList used for the compressed class space
573  bool _is_class;
574
575  // Sum of reserved and committed memory in the virtual spaces
576  size_t _reserved_words;
577  size_t _committed_words;
578
579  // Number of virtual spaces
580  size_t _virtual_space_count;
581
582  ~VirtualSpaceList();
583
584  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
585
586  void set_virtual_space_list(VirtualSpaceNode* v) {
587    _virtual_space_list = v;
588  }
589  void set_current_virtual_space(VirtualSpaceNode* v) {
590    _current_virtual_space = v;
591  }
592
593  void link_vs(VirtualSpaceNode* new_entry);
594
595  // Get another virtual space and add it to the list.  This
596  // is typically prompted by a failed attempt to allocate a chunk
597  // and is typically followed by the allocation of a chunk.
598  bool create_new_virtual_space(size_t vs_word_size);
599
600  // Chunk up the unused committed space in the current
601  // virtual space and add the chunks to the free list.
602  void retire_current_virtual_space();
603
604 public:
605  VirtualSpaceList(size_t word_size);
606  VirtualSpaceList(ReservedSpace rs);
607
608  size_t free_bytes();
609
610  Metachunk* get_new_chunk(size_t chunk_word_size,
611                           size_t suggested_commit_granularity);
612
613  bool expand_node_by(VirtualSpaceNode* node,
614                      size_t min_words,
615                      size_t preferred_words);
616
617  bool expand_by(size_t min_words,
618                 size_t preferred_words);
619
620  VirtualSpaceNode* current_virtual_space() {
621    return _current_virtual_space;
622  }
623
624  bool is_class() const { return _is_class; }
625
626  bool initialization_succeeded() { return _virtual_space_list != NULL; }
627
628  size_t reserved_words()  { return _reserved_words; }
629  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
630  size_t committed_words() { return _committed_words; }
631  size_t committed_bytes() { return committed_words() * BytesPerWord; }
632
633  void inc_reserved_words(size_t v);
634  void dec_reserved_words(size_t v);
635  void inc_committed_words(size_t v);
636  void dec_committed_words(size_t v);
637  void inc_virtual_space_count();
638  void dec_virtual_space_count();
639
640  bool contains(const void* ptr);
641
642  // Unlink empty VirtualSpaceNodes and free it.
643  void purge(ChunkManager* chunk_manager);
644
645  void print_on(outputStream* st) const;
646
647  class VirtualSpaceListIterator : public StackObj {
648    VirtualSpaceNode* _virtual_spaces;
649   public:
650    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
651      _virtual_spaces(virtual_spaces) {}
652
653    bool repeat() {
654      return _virtual_spaces != NULL;
655    }
656
657    VirtualSpaceNode* get_next() {
658      VirtualSpaceNode* result = _virtual_spaces;
659      if (_virtual_spaces != NULL) {
660        _virtual_spaces = _virtual_spaces->next();
661      }
662      return result;
663    }
664  };
665};
666
667class Metadebug : AllStatic {
668  // Debugging support for Metaspaces
669  static int _allocation_fail_alot_count;
670
671 public:
672
673  static void init_allocation_fail_alot_count();
674#ifdef ASSERT
675  static bool test_metadata_failure();
676#endif
677};
678
679int Metadebug::_allocation_fail_alot_count = 0;
680
681//  SpaceManager - used by Metaspace to handle allocations
682class SpaceManager : public CHeapObj<mtClass> {
683  friend class Metaspace;
684  friend class Metadebug;
685
686 private:
687
688  // protects allocations
689  Mutex* const _lock;
690
691  // Type of metadata allocated.
692  Metaspace::MetadataType _mdtype;
693
694  // List of chunks in use by this SpaceManager.  Allocations
695  // are done from the current chunk.  The list is used for deallocating
696  // chunks when the SpaceManager is freed.
697  Metachunk* _chunks_in_use[NumberOfInUseLists];
698  Metachunk* _current_chunk;
699
700  // Maximum number of small chunks to allocate to a SpaceManager
701  static uint const _small_chunk_limit;
702
703  // Sum of all space in allocated chunks
704  size_t _allocated_blocks_words;
705
706  // Sum of all allocated chunks
707  size_t _allocated_chunks_words;
708  size_t _allocated_chunks_count;
709
710  // Free lists of blocks are per SpaceManager since they
711  // are assumed to be in chunks in use by the SpaceManager
712  // and all chunks in use by a SpaceManager are freed when
713  // the class loader using the SpaceManager is collected.
714  BlockFreelist* _block_freelists;
715
716  // protects virtualspace and chunk expansions
717  static const char*  _expand_lock_name;
718  static const int    _expand_lock_rank;
719  static Mutex* const _expand_lock;
720
721 private:
722  // Accessors
723  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
724  void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
725    _chunks_in_use[index] = v;
726  }
727
728  BlockFreelist* block_freelists() const { return _block_freelists; }
729
730  Metaspace::MetadataType mdtype() { return _mdtype; }
731
732  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
733  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
734
735  Metachunk* current_chunk() const { return _current_chunk; }
736  void set_current_chunk(Metachunk* v) {
737    _current_chunk = v;
738  }
739
740  Metachunk* find_current_chunk(size_t word_size);
741
742  // Add chunk to the list of chunks in use
743  void add_chunk(Metachunk* v, bool make_current);
744  void retire_current_chunk();
745
746  Mutex* lock() const { return _lock; }
747
748 protected:
749  void initialize();
750
751 public:
752  SpaceManager(Metaspace::MetadataType mdtype,
753               Mutex* lock);
754  ~SpaceManager();
755
756  enum ChunkMultiples {
757    MediumChunkMultiple = 4
758  };
759
760  static size_t specialized_chunk_size(bool is_class) { return is_class ? ClassSpecializedChunk : SpecializedChunk; }
761  static size_t small_chunk_size(bool is_class)       { return is_class ? ClassSmallChunk : SmallChunk; }
762  static size_t medium_chunk_size(bool is_class)      { return is_class ? ClassMediumChunk : MediumChunk; }
763
764  static size_t smallest_chunk_size(bool is_class)    { return specialized_chunk_size(is_class); }
765
766  // Accessors
767  bool is_class() const { return _mdtype == Metaspace::ClassType; }
768
769  size_t specialized_chunk_size() const { return specialized_chunk_size(is_class()); }
770  size_t small_chunk_size()       const { return small_chunk_size(is_class()); }
771  size_t medium_chunk_size()      const { return medium_chunk_size(is_class()); }
772
773  size_t smallest_chunk_size()    const { return smallest_chunk_size(is_class()); }
774
775  size_t medium_chunk_bunch()     const { return medium_chunk_size() * MediumChunkMultiple; }
776
777  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
778  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
779  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
780  size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; }
781  size_t allocated_chunks_count() const { return _allocated_chunks_count; }
782
783  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
784
785  static Mutex* expand_lock() { return _expand_lock; }
786
787  // Increment the per Metaspace and global running sums for Metachunks
788  // by the given size.  This is used when a Metachunk to added to
789  // the in-use list.
790  void inc_size_metrics(size_t words);
791  // Increment the per Metaspace and global running sums Metablocks by the given
792  // size.  This is used when a Metablock is allocated.
793  void inc_used_metrics(size_t words);
794  // Delete the portion of the running sums for this SpaceManager. That is,
795  // the globals running sums for the Metachunks and Metablocks are
796  // decremented for all the Metachunks in-use by this SpaceManager.
797  void dec_total_from_size_metrics();
798
799  // Adjust the initial chunk size to match one of the fixed chunk list sizes,
800  // or return the unadjusted size if the requested size is humongous.
801  static size_t adjust_initial_chunk_size(size_t requested, bool is_class_space);
802  size_t adjust_initial_chunk_size(size_t requested) const;
803
804  // Get the initial chunks size for this metaspace type.
805  size_t get_initial_chunk_size(Metaspace::MetaspaceType type) const;
806
807  size_t sum_capacity_in_chunks_in_use() const;
808  size_t sum_used_in_chunks_in_use() const;
809  size_t sum_free_in_chunks_in_use() const;
810  size_t sum_waste_in_chunks_in_use() const;
811  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
812
813  size_t sum_count_in_chunks_in_use();
814  size_t sum_count_in_chunks_in_use(ChunkIndex i);
815
816  Metachunk* get_new_chunk(size_t chunk_word_size);
817
818  // Block allocation and deallocation.
819  // Allocates a block from the current chunk
820  MetaWord* allocate(size_t word_size);
821  // Allocates a block from a small chunk
822  MetaWord* get_small_chunk_and_allocate(size_t word_size);
823
824  // Helper for allocations
825  MetaWord* allocate_work(size_t word_size);
826
827  // Returns a block to the per manager freelist
828  void deallocate(MetaWord* p, size_t word_size);
829
830  // Based on the allocation size and a minimum chunk size,
831  // returned chunk size (for expanding space for chunk allocation).
832  size_t calc_chunk_size(size_t allocation_word_size);
833
834  // Called when an allocation from the current chunk fails.
835  // Gets a new chunk (may require getting a new virtual space),
836  // and allocates from that chunk.
837  MetaWord* grow_and_allocate(size_t word_size);
838
839  // Notify memory usage to MemoryService.
840  void track_metaspace_memory_usage();
841
842  // debugging support.
843
844  void dump(outputStream* const out) const;
845  void print_on(outputStream* st) const;
846  void locked_print_chunks_in_use_on(outputStream* st) const;
847
848  void verify();
849  void verify_chunk_size(Metachunk* chunk);
850#ifdef ASSERT
851  void verify_allocated_blocks_words();
852#endif
853
854  // This adjusts the size given to be greater than the minimum allocation size in
855  // words for data in metaspace.  Esentially the minimum size is currently 3 words.
856  size_t get_allocation_word_size(size_t word_size) {
857    size_t byte_size = word_size * BytesPerWord;
858
859    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
860    raw_bytes_size = align_up(raw_bytes_size, Metachunk::object_alignment());
861
862    size_t raw_word_size = raw_bytes_size / BytesPerWord;
863    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
864
865    return raw_word_size;
866  }
867};
868
869uint const SpaceManager::_small_chunk_limit = 4;
870
871const char* SpaceManager::_expand_lock_name =
872  "SpaceManager chunk allocation lock";
873const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
874Mutex* const SpaceManager::_expand_lock =
875  new Mutex(SpaceManager::_expand_lock_rank,
876            SpaceManager::_expand_lock_name,
877            Mutex::_allow_vm_block_flag,
878            Monitor::_safepoint_check_never);
879
880void VirtualSpaceNode::inc_container_count() {
881  assert_lock_strong(SpaceManager::expand_lock());
882  _container_count++;
883}
884
885void VirtualSpaceNode::dec_container_count() {
886  assert_lock_strong(SpaceManager::expand_lock());
887  _container_count--;
888}
889
890#ifdef ASSERT
891void VirtualSpaceNode::verify_container_count() {
892  assert(_container_count == container_count_slow(),
893         "Inconsistency in container_count _container_count " UINTX_FORMAT
894         " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow());
895}
896#endif
897
898// BlockFreelist methods
899
900BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()), _small_blocks(NULL) {}
901
902BlockFreelist::~BlockFreelist() {
903  delete _dictionary;
904  if (_small_blocks != NULL) {
905    delete _small_blocks;
906  }
907}
908
909void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
910  assert(word_size >= SmallBlocks::small_block_min_size(), "never return dark matter");
911
912  Metablock* free_chunk = ::new (p) Metablock(word_size);
913  if (word_size < SmallBlocks::small_block_max_size()) {
914    small_blocks()->return_block(free_chunk, word_size);
915  } else {
916  dictionary()->return_chunk(free_chunk);
917}
918  log_trace(gc, metaspace, freelist, blocks)("returning block at " INTPTR_FORMAT " size = "
919            SIZE_FORMAT, p2i(free_chunk), word_size);
920}
921
922MetaWord* BlockFreelist::get_block(size_t word_size) {
923  assert(word_size >= SmallBlocks::small_block_min_size(), "never get dark matter");
924
925  // Try small_blocks first.
926  if (word_size < SmallBlocks::small_block_max_size()) {
927    // Don't create small_blocks() until needed.  small_blocks() allocates the small block list for
928    // this space manager.
929    MetaWord* new_block = (MetaWord*) small_blocks()->get_block(word_size);
930    if (new_block != NULL) {
931      log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
932              p2i(new_block), word_size);
933      return new_block;
934    }
935  }
936
937  if (word_size < BlockFreelist::min_dictionary_size()) {
938    // If allocation in small blocks fails, this is Dark Matter.  Too small for dictionary.
939    return NULL;
940  }
941
942  Metablock* free_block =
943    dictionary()->get_chunk(word_size, FreeBlockDictionary<Metablock>::atLeast);
944  if (free_block == NULL) {
945    return NULL;
946  }
947
948  const size_t block_size = free_block->size();
949  if (block_size > WasteMultiplier * word_size) {
950    return_block((MetaWord*)free_block, block_size);
951    return NULL;
952  }
953
954  MetaWord* new_block = (MetaWord*)free_block;
955  assert(block_size >= word_size, "Incorrect size of block from freelist");
956  const size_t unused = block_size - word_size;
957  if (unused >= SmallBlocks::small_block_min_size()) {
958    return_block(new_block + word_size, unused);
959  }
960
961  log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
962            p2i(new_block), word_size);
963  return new_block;
964}
965
966void BlockFreelist::print_on(outputStream* st) const {
967  dictionary()->print_free_lists(st);
968  if (_small_blocks != NULL) {
969    _small_blocks->print_on(st);
970  }
971}
972
973// VirtualSpaceNode methods
974
975VirtualSpaceNode::~VirtualSpaceNode() {
976  _rs.release();
977#ifdef ASSERT
978  size_t word_size = sizeof(*this) / BytesPerWord;
979  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
980#endif
981}
982
983size_t VirtualSpaceNode::used_words_in_vs() const {
984  return pointer_delta(top(), bottom(), sizeof(MetaWord));
985}
986
987// Space committed in the VirtualSpace
988size_t VirtualSpaceNode::capacity_words_in_vs() const {
989  return pointer_delta(end(), bottom(), sizeof(MetaWord));
990}
991
992size_t VirtualSpaceNode::free_words_in_vs() const {
993  return pointer_delta(end(), top(), sizeof(MetaWord));
994}
995
996// Allocates the chunk from the virtual space only.
997// This interface is also used internally for debugging.  Not all
998// chunks removed here are necessarily used for allocation.
999Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
1000  // Bottom of the new chunk
1001  MetaWord* chunk_limit = top();
1002  assert(chunk_limit != NULL, "Not safe to call this method");
1003
1004  // The virtual spaces are always expanded by the
1005  // commit granularity to enforce the following condition.
1006  // Without this the is_available check will not work correctly.
1007  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
1008      "The committed memory doesn't match the expanded memory.");
1009
1010  if (!is_available(chunk_word_size)) {
1011    Log(gc, metaspace, freelist) log;
1012    log.debug("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size);
1013    // Dump some information about the virtual space that is nearly full
1014    ResourceMark rm;
1015    print_on(log.debug_stream());
1016    return NULL;
1017  }
1018
1019  // Take the space  (bump top on the current virtual space).
1020  inc_top(chunk_word_size);
1021
1022  // Initialize the chunk
1023  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
1024  return result;
1025}
1026
1027
1028// Expand the virtual space (commit more of the reserved space)
1029bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
1030  size_t min_bytes = min_words * BytesPerWord;
1031  size_t preferred_bytes = preferred_words * BytesPerWord;
1032
1033  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
1034
1035  if (uncommitted < min_bytes) {
1036    return false;
1037  }
1038
1039  size_t commit = MIN2(preferred_bytes, uncommitted);
1040  bool result = virtual_space()->expand_by(commit, false);
1041
1042  assert(result, "Failed to commit memory");
1043
1044  return result;
1045}
1046
1047Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
1048  assert_lock_strong(SpaceManager::expand_lock());
1049  Metachunk* result = take_from_committed(chunk_word_size);
1050  if (result != NULL) {
1051    inc_container_count();
1052  }
1053  return result;
1054}
1055
1056bool VirtualSpaceNode::initialize() {
1057
1058  if (!_rs.is_reserved()) {
1059    return false;
1060  }
1061
1062  // These are necessary restriction to make sure that the virtual space always
1063  // grows in steps of Metaspace::commit_alignment(). If both base and size are
1064  // aligned only the middle alignment of the VirtualSpace is used.
1065  assert_is_aligned(_rs.base(), Metaspace::commit_alignment());
1066  assert_is_aligned(_rs.size(), Metaspace::commit_alignment());
1067
1068  // ReservedSpaces marked as special will have the entire memory
1069  // pre-committed. Setting a committed size will make sure that
1070  // committed_size and actual_committed_size agrees.
1071  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
1072
1073  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
1074                                            Metaspace::commit_alignment());
1075  if (result) {
1076    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
1077        "Checking that the pre-committed memory was registered by the VirtualSpace");
1078
1079    set_top((MetaWord*)virtual_space()->low());
1080    set_reserved(MemRegion((HeapWord*)_rs.base(),
1081                 (HeapWord*)(_rs.base() + _rs.size())));
1082
1083    assert(reserved()->start() == (HeapWord*) _rs.base(),
1084           "Reserved start was not set properly " PTR_FORMAT
1085           " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base()));
1086    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
1087           "Reserved size was not set properly " SIZE_FORMAT
1088           " != " SIZE_FORMAT, reserved()->word_size(),
1089           _rs.size() / BytesPerWord);
1090  }
1091
1092  return result;
1093}
1094
1095void VirtualSpaceNode::print_on(outputStream* st) const {
1096  size_t used = used_words_in_vs();
1097  size_t capacity = capacity_words_in_vs();
1098  VirtualSpace* vs = virtual_space();
1099  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used "
1100           "[" PTR_FORMAT ", " PTR_FORMAT ", "
1101           PTR_FORMAT ", " PTR_FORMAT ")",
1102           p2i(vs), capacity / K,
1103           capacity == 0 ? 0 : used * 100 / capacity,
1104           p2i(bottom()), p2i(top()), p2i(end()),
1105           p2i(vs->high_boundary()));
1106}
1107
1108#ifdef ASSERT
1109void VirtualSpaceNode::mangle() {
1110  size_t word_size = capacity_words_in_vs();
1111  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1112}
1113#endif // ASSERT
1114
1115// VirtualSpaceList methods
1116// Space allocated from the VirtualSpace
1117
1118VirtualSpaceList::~VirtualSpaceList() {
1119  VirtualSpaceListIterator iter(virtual_space_list());
1120  while (iter.repeat()) {
1121    VirtualSpaceNode* vsl = iter.get_next();
1122    delete vsl;
1123  }
1124}
1125
1126void VirtualSpaceList::inc_reserved_words(size_t v) {
1127  assert_lock_strong(SpaceManager::expand_lock());
1128  _reserved_words = _reserved_words + v;
1129}
1130void VirtualSpaceList::dec_reserved_words(size_t v) {
1131  assert_lock_strong(SpaceManager::expand_lock());
1132  _reserved_words = _reserved_words - v;
1133}
1134
1135#define assert_committed_below_limit()                        \
1136  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1137         "Too much committed memory. Committed: " SIZE_FORMAT \
1138         " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
1139         MetaspaceAux::committed_bytes(), MaxMetaspaceSize);
1140
1141void VirtualSpaceList::inc_committed_words(size_t v) {
1142  assert_lock_strong(SpaceManager::expand_lock());
1143  _committed_words = _committed_words + v;
1144
1145  assert_committed_below_limit();
1146}
1147void VirtualSpaceList::dec_committed_words(size_t v) {
1148  assert_lock_strong(SpaceManager::expand_lock());
1149  _committed_words = _committed_words - v;
1150
1151  assert_committed_below_limit();
1152}
1153
1154void VirtualSpaceList::inc_virtual_space_count() {
1155  assert_lock_strong(SpaceManager::expand_lock());
1156  _virtual_space_count++;
1157}
1158void VirtualSpaceList::dec_virtual_space_count() {
1159  assert_lock_strong(SpaceManager::expand_lock());
1160  _virtual_space_count--;
1161}
1162
1163void ChunkManager::remove_chunk(Metachunk* chunk) {
1164  size_t word_size = chunk->word_size();
1165  ChunkIndex index = list_index(word_size);
1166  if (index != HumongousIndex) {
1167    free_chunks(index)->remove_chunk(chunk);
1168  } else {
1169    humongous_dictionary()->remove_chunk(chunk);
1170  }
1171
1172  // Chunk has been removed from the chunks free list, update counters.
1173  account_for_removed_chunk(chunk);
1174}
1175
1176// Walk the list of VirtualSpaceNodes and delete
1177// nodes with a 0 container_count.  Remove Metachunks in
1178// the node from their respective freelists.
1179void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1180  assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1181  assert_lock_strong(SpaceManager::expand_lock());
1182  // Don't use a VirtualSpaceListIterator because this
1183  // list is being changed and a straightforward use of an iterator is not safe.
1184  VirtualSpaceNode* purged_vsl = NULL;
1185  VirtualSpaceNode* prev_vsl = virtual_space_list();
1186  VirtualSpaceNode* next_vsl = prev_vsl;
1187  while (next_vsl != NULL) {
1188    VirtualSpaceNode* vsl = next_vsl;
1189    DEBUG_ONLY(vsl->verify_container_count();)
1190    next_vsl = vsl->next();
1191    // Don't free the current virtual space since it will likely
1192    // be needed soon.
1193    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1194      // Unlink it from the list
1195      if (prev_vsl == vsl) {
1196        // This is the case of the current node being the first node.
1197        assert(vsl == virtual_space_list(), "Expected to be the first node");
1198        set_virtual_space_list(vsl->next());
1199      } else {
1200        prev_vsl->set_next(vsl->next());
1201      }
1202
1203      vsl->purge(chunk_manager);
1204      dec_reserved_words(vsl->reserved_words());
1205      dec_committed_words(vsl->committed_words());
1206      dec_virtual_space_count();
1207      purged_vsl = vsl;
1208      delete vsl;
1209    } else {
1210      prev_vsl = vsl;
1211    }
1212  }
1213#ifdef ASSERT
1214  if (purged_vsl != NULL) {
1215    // List should be stable enough to use an iterator here.
1216    VirtualSpaceListIterator iter(virtual_space_list());
1217    while (iter.repeat()) {
1218      VirtualSpaceNode* vsl = iter.get_next();
1219      assert(vsl != purged_vsl, "Purge of vsl failed");
1220    }
1221  }
1222#endif
1223}
1224
1225
1226// This function looks at the mmap regions in the metaspace without locking.
1227// The chunks are added with store ordering and not deleted except for at
1228// unloading time during a safepoint.
1229bool VirtualSpaceList::contains(const void* ptr) {
1230  // List should be stable enough to use an iterator here because removing virtual
1231  // space nodes is only allowed at a safepoint.
1232  VirtualSpaceListIterator iter(virtual_space_list());
1233  while (iter.repeat()) {
1234    VirtualSpaceNode* vsn = iter.get_next();
1235    if (vsn->contains(ptr)) {
1236      return true;
1237    }
1238  }
1239  return false;
1240}
1241
1242void VirtualSpaceList::retire_current_virtual_space() {
1243  assert_lock_strong(SpaceManager::expand_lock());
1244
1245  VirtualSpaceNode* vsn = current_virtual_space();
1246
1247  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1248                                  Metaspace::chunk_manager_metadata();
1249
1250  vsn->retire(cm);
1251}
1252
1253void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1254  DEBUG_ONLY(verify_container_count();)
1255  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1256    ChunkIndex index = (ChunkIndex)i;
1257    size_t chunk_size = chunk_manager->size_by_index(index);
1258
1259    while (free_words_in_vs() >= chunk_size) {
1260      Metachunk* chunk = get_chunk_vs(chunk_size);
1261      assert(chunk != NULL, "allocation should have been successful");
1262
1263      chunk_manager->return_single_chunk(index, chunk);
1264    }
1265    DEBUG_ONLY(verify_container_count();)
1266  }
1267  assert(free_words_in_vs() == 0, "should be empty now");
1268}
1269
1270VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1271                                   _is_class(false),
1272                                   _virtual_space_list(NULL),
1273                                   _current_virtual_space(NULL),
1274                                   _reserved_words(0),
1275                                   _committed_words(0),
1276                                   _virtual_space_count(0) {
1277  MutexLockerEx cl(SpaceManager::expand_lock(),
1278                   Mutex::_no_safepoint_check_flag);
1279  create_new_virtual_space(word_size);
1280}
1281
1282VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1283                                   _is_class(true),
1284                                   _virtual_space_list(NULL),
1285                                   _current_virtual_space(NULL),
1286                                   _reserved_words(0),
1287                                   _committed_words(0),
1288                                   _virtual_space_count(0) {
1289  MutexLockerEx cl(SpaceManager::expand_lock(),
1290                   Mutex::_no_safepoint_check_flag);
1291  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1292  bool succeeded = class_entry->initialize();
1293  if (succeeded) {
1294    link_vs(class_entry);
1295  }
1296}
1297
1298size_t VirtualSpaceList::free_bytes() {
1299  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1300}
1301
1302// Allocate another meta virtual space and add it to the list.
1303bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1304  assert_lock_strong(SpaceManager::expand_lock());
1305
1306  if (is_class()) {
1307    assert(false, "We currently don't support more than one VirtualSpace for"
1308                  " the compressed class space. The initialization of the"
1309                  " CCS uses another code path and should not hit this path.");
1310    return false;
1311  }
1312
1313  if (vs_word_size == 0) {
1314    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1315    return false;
1316  }
1317
1318  // Reserve the space
1319  size_t vs_byte_size = vs_word_size * BytesPerWord;
1320  assert_is_aligned(vs_byte_size, Metaspace::reserve_alignment());
1321
1322  // Allocate the meta virtual space and initialize it.
1323  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1324  if (!new_entry->initialize()) {
1325    delete new_entry;
1326    return false;
1327  } else {
1328    assert(new_entry->reserved_words() == vs_word_size,
1329        "Reserved memory size differs from requested memory size");
1330    // ensure lock-free iteration sees fully initialized node
1331    OrderAccess::storestore();
1332    link_vs(new_entry);
1333    return true;
1334  }
1335}
1336
1337void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1338  if (virtual_space_list() == NULL) {
1339      set_virtual_space_list(new_entry);
1340  } else {
1341    current_virtual_space()->set_next(new_entry);
1342  }
1343  set_current_virtual_space(new_entry);
1344  inc_reserved_words(new_entry->reserved_words());
1345  inc_committed_words(new_entry->committed_words());
1346  inc_virtual_space_count();
1347#ifdef ASSERT
1348  new_entry->mangle();
1349#endif
1350  if (log_is_enabled(Trace, gc, metaspace)) {
1351    Log(gc, metaspace) log;
1352    VirtualSpaceNode* vsl = current_virtual_space();
1353    ResourceMark rm;
1354    vsl->print_on(log.trace_stream());
1355  }
1356}
1357
1358bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1359                                      size_t min_words,
1360                                      size_t preferred_words) {
1361  size_t before = node->committed_words();
1362
1363  bool result = node->expand_by(min_words, preferred_words);
1364
1365  size_t after = node->committed_words();
1366
1367  // after and before can be the same if the memory was pre-committed.
1368  assert(after >= before, "Inconsistency");
1369  inc_committed_words(after - before);
1370
1371  return result;
1372}
1373
1374bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1375  assert_is_aligned(min_words,       Metaspace::commit_alignment_words());
1376  assert_is_aligned(preferred_words, Metaspace::commit_alignment_words());
1377  assert(min_words <= preferred_words, "Invalid arguments");
1378
1379  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1380    return  false;
1381  }
1382
1383  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1384  if (allowed_expansion_words < min_words) {
1385    return false;
1386  }
1387
1388  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1389
1390  // Commit more memory from the the current virtual space.
1391  bool vs_expanded = expand_node_by(current_virtual_space(),
1392                                    min_words,
1393                                    max_expansion_words);
1394  if (vs_expanded) {
1395    return true;
1396  }
1397  retire_current_virtual_space();
1398
1399  // Get another virtual space.
1400  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1401  grow_vs_words = align_up(grow_vs_words, Metaspace::reserve_alignment_words());
1402
1403  if (create_new_virtual_space(grow_vs_words)) {
1404    if (current_virtual_space()->is_pre_committed()) {
1405      // The memory was pre-committed, so we are done here.
1406      assert(min_words <= current_virtual_space()->committed_words(),
1407          "The new VirtualSpace was pre-committed, so it"
1408          "should be large enough to fit the alloc request.");
1409      return true;
1410    }
1411
1412    return expand_node_by(current_virtual_space(),
1413                          min_words,
1414                          max_expansion_words);
1415  }
1416
1417  return false;
1418}
1419
1420Metachunk* VirtualSpaceList::get_new_chunk(size_t chunk_word_size, size_t suggested_commit_granularity) {
1421
1422  // Allocate a chunk out of the current virtual space.
1423  Metachunk* next = current_virtual_space()->get_chunk_vs(chunk_word_size);
1424
1425  if (next != NULL) {
1426    return next;
1427  }
1428
1429  // The expand amount is currently only determined by the requested sizes
1430  // and not how much committed memory is left in the current virtual space.
1431
1432  size_t min_word_size       = align_up(chunk_word_size,              Metaspace::commit_alignment_words());
1433  size_t preferred_word_size = align_up(suggested_commit_granularity, Metaspace::commit_alignment_words());
1434  if (min_word_size >= preferred_word_size) {
1435    // Can happen when humongous chunks are allocated.
1436    preferred_word_size = min_word_size;
1437  }
1438
1439  bool expanded = expand_by(min_word_size, preferred_word_size);
1440  if (expanded) {
1441    next = current_virtual_space()->get_chunk_vs(chunk_word_size);
1442    assert(next != NULL, "The allocation was expected to succeed after the expansion");
1443  }
1444
1445   return next;
1446}
1447
1448void VirtualSpaceList::print_on(outputStream* st) const {
1449  VirtualSpaceListIterator iter(virtual_space_list());
1450  while (iter.repeat()) {
1451    VirtualSpaceNode* node = iter.get_next();
1452    node->print_on(st);
1453  }
1454}
1455
1456// MetaspaceGC methods
1457
1458// VM_CollectForMetadataAllocation is the vm operation used to GC.
1459// Within the VM operation after the GC the attempt to allocate the metadata
1460// should succeed.  If the GC did not free enough space for the metaspace
1461// allocation, the HWM is increased so that another virtualspace will be
1462// allocated for the metadata.  With perm gen the increase in the perm
1463// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
1464// metaspace policy uses those as the small and large steps for the HWM.
1465//
1466// After the GC the compute_new_size() for MetaspaceGC is called to
1467// resize the capacity of the metaspaces.  The current implementation
1468// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1469// to resize the Java heap by some GC's.  New flags can be implemented
1470// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1471// free space is desirable in the metaspace capacity to decide how much
1472// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1473// free space is desirable in the metaspace capacity before decreasing
1474// the HWM.
1475
1476// Calculate the amount to increase the high water mark (HWM).
1477// Increase by a minimum amount (MinMetaspaceExpansion) so that
1478// another expansion is not requested too soon.  If that is not
1479// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1480// If that is still not enough, expand by the size of the allocation
1481// plus some.
1482size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1483  size_t min_delta = MinMetaspaceExpansion;
1484  size_t max_delta = MaxMetaspaceExpansion;
1485  size_t delta = align_up(bytes, Metaspace::commit_alignment());
1486
1487  if (delta <= min_delta) {
1488    delta = min_delta;
1489  } else if (delta <= max_delta) {
1490    // Don't want to hit the high water mark on the next
1491    // allocation so make the delta greater than just enough
1492    // for this allocation.
1493    delta = max_delta;
1494  } else {
1495    // This allocation is large but the next ones are probably not
1496    // so increase by the minimum.
1497    delta = delta + min_delta;
1498  }
1499
1500  assert_is_aligned(delta, Metaspace::commit_alignment());
1501
1502  return delta;
1503}
1504
1505size_t MetaspaceGC::capacity_until_GC() {
1506  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1507  assert(value >= MetaspaceSize, "Not initialized properly?");
1508  return value;
1509}
1510
1511bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
1512  assert_is_aligned(v, Metaspace::commit_alignment());
1513
1514  size_t capacity_until_GC = (size_t) _capacity_until_GC;
1515  size_t new_value = capacity_until_GC + v;
1516
1517  if (new_value < capacity_until_GC) {
1518    // The addition wrapped around, set new_value to aligned max value.
1519    new_value = align_down(max_uintx, Metaspace::commit_alignment());
1520  }
1521
1522  intptr_t expected = (intptr_t) capacity_until_GC;
1523  intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);
1524
1525  if (expected != actual) {
1526    return false;
1527  }
1528
1529  if (new_cap_until_GC != NULL) {
1530    *new_cap_until_GC = new_value;
1531  }
1532  if (old_cap_until_GC != NULL) {
1533    *old_cap_until_GC = capacity_until_GC;
1534  }
1535  return true;
1536}
1537
1538size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1539  assert_is_aligned(v, Metaspace::commit_alignment());
1540
1541  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1542}
1543
1544void MetaspaceGC::initialize() {
1545  // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1546  // we can't do a GC during initialization.
1547  _capacity_until_GC = MaxMetaspaceSize;
1548}
1549
1550void MetaspaceGC::post_initialize() {
1551  // Reset the high-water mark once the VM initialization is done.
1552  _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
1553}
1554
1555bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1556  // Check if the compressed class space is full.
1557  if (is_class && Metaspace::using_class_space()) {
1558    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1559    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1560      return false;
1561    }
1562  }
1563
1564  // Check if the user has imposed a limit on the metaspace memory.
1565  size_t committed_bytes = MetaspaceAux::committed_bytes();
1566  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1567    return false;
1568  }
1569
1570  return true;
1571}
1572
1573size_t MetaspaceGC::allowed_expansion() {
1574  size_t committed_bytes = MetaspaceAux::committed_bytes();
1575  size_t capacity_until_gc = capacity_until_GC();
1576
1577  assert(capacity_until_gc >= committed_bytes,
1578         "capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1579         capacity_until_gc, committed_bytes);
1580
1581  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1582  size_t left_until_GC = capacity_until_gc - committed_bytes;
1583  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1584
1585  return left_to_commit / BytesPerWord;
1586}
1587
1588void MetaspaceGC::compute_new_size() {
1589  assert(_shrink_factor <= 100, "invalid shrink factor");
1590  uint current_shrink_factor = _shrink_factor;
1591  _shrink_factor = 0;
1592
1593  // Using committed_bytes() for used_after_gc is an overestimation, since the
1594  // chunk free lists are included in committed_bytes() and the memory in an
1595  // un-fragmented chunk free list is available for future allocations.
1596  // However, if the chunk free lists becomes fragmented, then the memory may
1597  // not be available for future allocations and the memory is therefore "in use".
1598  // Including the chunk free lists in the definition of "in use" is therefore
1599  // necessary. Not including the chunk free lists can cause capacity_until_GC to
1600  // shrink below committed_bytes() and this has caused serious bugs in the past.
1601  const size_t used_after_gc = MetaspaceAux::committed_bytes();
1602  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1603
1604  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1605  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1606
1607  const double min_tmp = used_after_gc / maximum_used_percentage;
1608  size_t minimum_desired_capacity =
1609    (size_t)MIN2(min_tmp, double(max_uintx));
1610  // Don't shrink less than the initial generation size
1611  minimum_desired_capacity = MAX2(minimum_desired_capacity,
1612                                  MetaspaceSize);
1613
1614  log_trace(gc, metaspace)("MetaspaceGC::compute_new_size: ");
1615  log_trace(gc, metaspace)("    minimum_free_percentage: %6.2f  maximum_used_percentage: %6.2f",
1616                           minimum_free_percentage, maximum_used_percentage);
1617  log_trace(gc, metaspace)("     used_after_gc       : %6.1fKB", used_after_gc / (double) K);
1618
1619
1620  size_t shrink_bytes = 0;
1621  if (capacity_until_GC < minimum_desired_capacity) {
1622    // If we have less capacity below the metaspace HWM, then
1623    // increment the HWM.
1624    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1625    expand_bytes = align_up(expand_bytes, Metaspace::commit_alignment());
1626    // Don't expand unless it's significant
1627    if (expand_bytes >= MinMetaspaceExpansion) {
1628      size_t new_capacity_until_GC = 0;
1629      bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
1630      assert(succeeded, "Should always succesfully increment HWM when at safepoint");
1631
1632      Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1633                                               new_capacity_until_GC,
1634                                               MetaspaceGCThresholdUpdater::ComputeNewSize);
1635      log_trace(gc, metaspace)("    expanding:  minimum_desired_capacity: %6.1fKB  expand_bytes: %6.1fKB  MinMetaspaceExpansion: %6.1fKB  new metaspace HWM:  %6.1fKB",
1636                               minimum_desired_capacity / (double) K,
1637                               expand_bytes / (double) K,
1638                               MinMetaspaceExpansion / (double) K,
1639                               new_capacity_until_GC / (double) K);
1640    }
1641    return;
1642  }
1643
1644  // No expansion, now see if we want to shrink
1645  // We would never want to shrink more than this
1646  assert(capacity_until_GC >= minimum_desired_capacity,
1647         SIZE_FORMAT " >= " SIZE_FORMAT,
1648         capacity_until_GC, minimum_desired_capacity);
1649  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1650
1651  // Should shrinking be considered?
1652  if (MaxMetaspaceFreeRatio < 100) {
1653    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1654    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1655    const double max_tmp = used_after_gc / minimum_used_percentage;
1656    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1657    maximum_desired_capacity = MAX2(maximum_desired_capacity,
1658                                    MetaspaceSize);
1659    log_trace(gc, metaspace)("    maximum_free_percentage: %6.2f  minimum_used_percentage: %6.2f",
1660                             maximum_free_percentage, minimum_used_percentage);
1661    log_trace(gc, metaspace)("    minimum_desired_capacity: %6.1fKB  maximum_desired_capacity: %6.1fKB",
1662                             minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K);
1663
1664    assert(minimum_desired_capacity <= maximum_desired_capacity,
1665           "sanity check");
1666
1667    if (capacity_until_GC > maximum_desired_capacity) {
1668      // Capacity too large, compute shrinking size
1669      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1670      // We don't want shrink all the way back to initSize if people call
1671      // System.gc(), because some programs do that between "phases" and then
1672      // we'd just have to grow the heap up again for the next phase.  So we
1673      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1674      // on the third call, and 100% by the fourth call.  But if we recompute
1675      // size without shrinking, it goes back to 0%.
1676      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1677
1678      shrink_bytes = align_down(shrink_bytes, Metaspace::commit_alignment());
1679
1680      assert(shrink_bytes <= max_shrink_bytes,
1681             "invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1682             shrink_bytes, max_shrink_bytes);
1683      if (current_shrink_factor == 0) {
1684        _shrink_factor = 10;
1685      } else {
1686        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1687      }
1688      log_trace(gc, metaspace)("    shrinking:  initThreshold: %.1fK  maximum_desired_capacity: %.1fK",
1689                               MetaspaceSize / (double) K, maximum_desired_capacity / (double) K);
1690      log_trace(gc, metaspace)("    shrink_bytes: %.1fK  current_shrink_factor: %d  new shrink factor: %d  MinMetaspaceExpansion: %.1fK",
1691                               shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, MinMetaspaceExpansion / (double) K);
1692    }
1693  }
1694
1695  // Don't shrink unless it's significant
1696  if (shrink_bytes >= MinMetaspaceExpansion &&
1697      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1698    size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1699    Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1700                                             new_capacity_until_GC,
1701                                             MetaspaceGCThresholdUpdater::ComputeNewSize);
1702  }
1703}
1704
1705// Metadebug methods
1706
1707void Metadebug::init_allocation_fail_alot_count() {
1708  if (MetadataAllocationFailALot) {
1709    _allocation_fail_alot_count =
1710      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1711  }
1712}
1713
1714#ifdef ASSERT
1715bool Metadebug::test_metadata_failure() {
1716  if (MetadataAllocationFailALot &&
1717      Threads::is_vm_complete()) {
1718    if (_allocation_fail_alot_count > 0) {
1719      _allocation_fail_alot_count--;
1720    } else {
1721      log_trace(gc, metaspace, freelist)("Metadata allocation failing for MetadataAllocationFailALot");
1722      init_allocation_fail_alot_count();
1723      return true;
1724    }
1725  }
1726  return false;
1727}
1728#endif
1729
1730// ChunkManager methods
1731
1732size_t ChunkManager::free_chunks_total_words() {
1733  return _free_chunks_total;
1734}
1735
1736size_t ChunkManager::free_chunks_total_bytes() {
1737  return free_chunks_total_words() * BytesPerWord;
1738}
1739
1740// Update internal accounting after a chunk was added
1741void ChunkManager::account_for_added_chunk(const Metachunk* c) {
1742  assert_lock_strong(SpaceManager::expand_lock());
1743  _free_chunks_count ++;
1744  _free_chunks_total += c->word_size();
1745}
1746
1747// Update internal accounting after a chunk was removed
1748void ChunkManager::account_for_removed_chunk(const Metachunk* c) {
1749  assert_lock_strong(SpaceManager::expand_lock());
1750  assert(_free_chunks_count >= 1,
1751    "ChunkManager::_free_chunks_count: about to go negative (" SIZE_FORMAT ").", _free_chunks_count);
1752  assert(_free_chunks_total >= c->word_size(),
1753    "ChunkManager::_free_chunks_total: about to go negative"
1754     "(now: " SIZE_FORMAT ", decrement value: " SIZE_FORMAT ").", _free_chunks_total, c->word_size());
1755  _free_chunks_count --;
1756  _free_chunks_total -= c->word_size();
1757}
1758
1759size_t ChunkManager::free_chunks_count() {
1760#ifdef ASSERT
1761  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1762    MutexLockerEx cl(SpaceManager::expand_lock(),
1763                     Mutex::_no_safepoint_check_flag);
1764    // This lock is only needed in debug because the verification
1765    // of the _free_chunks_totals walks the list of free chunks
1766    slow_locked_verify_free_chunks_count();
1767  }
1768#endif
1769  return _free_chunks_count;
1770}
1771
1772ChunkIndex ChunkManager::list_index(size_t size) {
1773  if (size_by_index(SpecializedIndex) == size) {
1774    return SpecializedIndex;
1775  }
1776  if (size_by_index(SmallIndex) == size) {
1777    return SmallIndex;
1778  }
1779  const size_t med_size = size_by_index(MediumIndex);
1780  if (med_size == size) {
1781    return MediumIndex;
1782  }
1783
1784  assert(size > med_size, "Not a humongous chunk");
1785  return HumongousIndex;
1786}
1787
1788size_t ChunkManager::size_by_index(ChunkIndex index) {
1789  index_bounds_check(index);
1790  assert(index != HumongousIndex, "Do not call for humongous chunks.");
1791  return free_chunks(index)->size();
1792}
1793
1794void ChunkManager::locked_verify_free_chunks_total() {
1795  assert_lock_strong(SpaceManager::expand_lock());
1796  assert(sum_free_chunks() == _free_chunks_total,
1797         "_free_chunks_total " SIZE_FORMAT " is not the"
1798         " same as sum " SIZE_FORMAT, _free_chunks_total,
1799         sum_free_chunks());
1800}
1801
1802void ChunkManager::verify_free_chunks_total() {
1803  MutexLockerEx cl(SpaceManager::expand_lock(),
1804                     Mutex::_no_safepoint_check_flag);
1805  locked_verify_free_chunks_total();
1806}
1807
1808void ChunkManager::locked_verify_free_chunks_count() {
1809  assert_lock_strong(SpaceManager::expand_lock());
1810  assert(sum_free_chunks_count() == _free_chunks_count,
1811         "_free_chunks_count " SIZE_FORMAT " is not the"
1812         " same as sum " SIZE_FORMAT, _free_chunks_count,
1813         sum_free_chunks_count());
1814}
1815
1816void ChunkManager::verify_free_chunks_count() {
1817#ifdef ASSERT
1818  MutexLockerEx cl(SpaceManager::expand_lock(),
1819                     Mutex::_no_safepoint_check_flag);
1820  locked_verify_free_chunks_count();
1821#endif
1822}
1823
1824void ChunkManager::verify() {
1825  MutexLockerEx cl(SpaceManager::expand_lock(),
1826                     Mutex::_no_safepoint_check_flag);
1827  locked_verify();
1828}
1829
1830void ChunkManager::locked_verify() {
1831  locked_verify_free_chunks_count();
1832  locked_verify_free_chunks_total();
1833}
1834
1835void ChunkManager::locked_print_free_chunks(outputStream* st) {
1836  assert_lock_strong(SpaceManager::expand_lock());
1837  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1838                _free_chunks_total, _free_chunks_count);
1839}
1840
1841void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1842  assert_lock_strong(SpaceManager::expand_lock());
1843  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1844                sum_free_chunks(), sum_free_chunks_count());
1845}
1846
1847ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1848  assert(index == SpecializedIndex || index == SmallIndex || index == MediumIndex,
1849         "Bad index: %d", (int)index);
1850
1851  return &_free_chunks[index];
1852}
1853
1854// These methods that sum the free chunk lists are used in printing
1855// methods that are used in product builds.
1856size_t ChunkManager::sum_free_chunks() {
1857  assert_lock_strong(SpaceManager::expand_lock());
1858  size_t result = 0;
1859  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1860    ChunkList* list = free_chunks(i);
1861
1862    if (list == NULL) {
1863      continue;
1864    }
1865
1866    result = result + list->count() * list->size();
1867  }
1868  result = result + humongous_dictionary()->total_size();
1869  return result;
1870}
1871
1872size_t ChunkManager::sum_free_chunks_count() {
1873  assert_lock_strong(SpaceManager::expand_lock());
1874  size_t count = 0;
1875  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1876    ChunkList* list = free_chunks(i);
1877    if (list == NULL) {
1878      continue;
1879    }
1880    count = count + list->count();
1881  }
1882  count = count + humongous_dictionary()->total_free_blocks();
1883  return count;
1884}
1885
1886ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1887  ChunkIndex index = list_index(word_size);
1888  assert(index < HumongousIndex, "No humongous list");
1889  return free_chunks(index);
1890}
1891
1892Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1893  assert_lock_strong(SpaceManager::expand_lock());
1894
1895  slow_locked_verify();
1896
1897  Metachunk* chunk = NULL;
1898  if (list_index(word_size) != HumongousIndex) {
1899    ChunkList* free_list = find_free_chunks_list(word_size);
1900    assert(free_list != NULL, "Sanity check");
1901
1902    chunk = free_list->head();
1903
1904    if (chunk == NULL) {
1905      return NULL;
1906    }
1907
1908    // Remove the chunk as the head of the list.
1909    free_list->remove_chunk(chunk);
1910
1911    log_trace(gc, metaspace, freelist)("ChunkManager::free_chunks_get: free_list " PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1912                                       p2i(free_list), p2i(chunk), chunk->word_size());
1913  } else {
1914    chunk = humongous_dictionary()->get_chunk(
1915      word_size,
1916      FreeBlockDictionary<Metachunk>::atLeast);
1917
1918    if (chunk == NULL) {
1919      return NULL;
1920    }
1921
1922    log_debug(gc, metaspace, alloc)("Free list allocate humongous chunk size " SIZE_FORMAT " for requested size " SIZE_FORMAT " waste " SIZE_FORMAT,
1923                                    chunk->word_size(), word_size, chunk->word_size() - word_size);
1924  }
1925
1926  // Chunk has been removed from the chunk manager; update counters.
1927  account_for_removed_chunk(chunk);
1928
1929  // Remove it from the links to this freelist
1930  chunk->set_next(NULL);
1931  chunk->set_prev(NULL);
1932#ifdef ASSERT
1933  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1934  // work.
1935  chunk->set_is_tagged_free(false);
1936#endif
1937  chunk->container()->inc_container_count();
1938
1939  slow_locked_verify();
1940  return chunk;
1941}
1942
1943Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1944  assert_lock_strong(SpaceManager::expand_lock());
1945  slow_locked_verify();
1946
1947  // Take from the beginning of the list
1948  Metachunk* chunk = free_chunks_get(word_size);
1949  if (chunk == NULL) {
1950    return NULL;
1951  }
1952
1953  assert((word_size <= chunk->word_size()) ||
1954         (list_index(chunk->word_size()) == HumongousIndex),
1955         "Non-humongous variable sized chunk");
1956  Log(gc, metaspace, freelist) log;
1957  if (log.is_debug()) {
1958    size_t list_count;
1959    if (list_index(word_size) < HumongousIndex) {
1960      ChunkList* list = find_free_chunks_list(word_size);
1961      list_count = list->count();
1962    } else {
1963      list_count = humongous_dictionary()->total_count();
1964    }
1965    log.debug("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk " PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1966               p2i(this), p2i(chunk), chunk->word_size(), list_count);
1967    ResourceMark rm;
1968    locked_print_free_chunks(log.debug_stream());
1969  }
1970
1971  return chunk;
1972}
1973
1974void ChunkManager::return_single_chunk(ChunkIndex index, Metachunk* chunk) {
1975  assert_lock_strong(SpaceManager::expand_lock());
1976  assert(chunk != NULL, "Expected chunk.");
1977  assert(chunk->container() != NULL, "Container should have been set.");
1978  assert(chunk->is_tagged_free() == false, "Chunk should be in use.");
1979  index_bounds_check(index);
1980
1981  // Note: mangle *before* returning the chunk to the freelist or dictionary. It does not
1982  // matter for the freelist (non-humongous chunks), but the humongous chunk dictionary
1983  // keeps tree node pointers in the chunk payload area which mangle will overwrite.
1984  NOT_PRODUCT(chunk->mangle(badMetaWordVal);)
1985
1986  if (index != HumongousIndex) {
1987    // Return non-humongous chunk to freelist.
1988    ChunkList* list = free_chunks(index);
1989    assert(list->size() == chunk->word_size(), "Wrong chunk type.");
1990    list->return_chunk_at_head(chunk);
1991    log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " to freelist.",
1992        chunk_size_name(index), p2i(chunk));
1993  } else {
1994    // Return humongous chunk to dictionary.
1995    assert(chunk->word_size() > free_chunks(MediumIndex)->size(), "Wrong chunk type.");
1996    assert(chunk->word_size() % free_chunks(SpecializedIndex)->size() == 0,
1997           "Humongous chunk has wrong alignment.");
1998    _humongous_dictionary.return_chunk(chunk);
1999    log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " (word size " SIZE_FORMAT ") to freelist.",
2000        chunk_size_name(index), p2i(chunk), chunk->word_size());
2001  }
2002  chunk->container()->dec_container_count();
2003  DEBUG_ONLY(chunk->set_is_tagged_free(true);)
2004
2005  // Chunk has been added; update counters.
2006  account_for_added_chunk(chunk);
2007
2008}
2009
2010void ChunkManager::return_chunk_list(ChunkIndex index, Metachunk* chunks) {
2011  index_bounds_check(index);
2012  if (chunks == NULL) {
2013    return;
2014  }
2015  LogTarget(Trace, gc, metaspace, freelist) log;
2016  if (log.is_enabled()) { // tracing
2017    log.print("returning list of %s chunks...", chunk_size_name(index));
2018  }
2019  unsigned num_chunks_returned = 0;
2020  size_t size_chunks_returned = 0;
2021  Metachunk* cur = chunks;
2022  while (cur != NULL) {
2023    // Capture the next link before it is changed
2024    // by the call to return_chunk_at_head();
2025    Metachunk* next = cur->next();
2026    if (log.is_enabled()) { // tracing
2027      num_chunks_returned ++;
2028      size_chunks_returned += cur->word_size();
2029    }
2030    return_single_chunk(index, cur);
2031    cur = next;
2032  }
2033  if (log.is_enabled()) { // tracing
2034    log.print("returned %u %s chunks to freelist, total word size " SIZE_FORMAT ".",
2035        num_chunks_returned, chunk_size_name(index), size_chunks_returned);
2036    if (index != HumongousIndex) {
2037      log.print("updated freelist count: " SIZE_FORMAT ".", free_chunks(index)->size());
2038    } else {
2039      log.print("updated dictionary count " SIZE_FORMAT ".", _humongous_dictionary.total_count());
2040    }
2041  }
2042}
2043
2044void ChunkManager::print_on(outputStream* out) const {
2045  const_cast<ChunkManager *>(this)->humongous_dictionary()->report_statistics(out);
2046}
2047
2048// SpaceManager methods
2049
2050size_t SpaceManager::adjust_initial_chunk_size(size_t requested, bool is_class_space) {
2051  size_t chunk_sizes[] = {
2052      specialized_chunk_size(is_class_space),
2053      small_chunk_size(is_class_space),
2054      medium_chunk_size(is_class_space)
2055  };
2056
2057  // Adjust up to one of the fixed chunk sizes ...
2058  for (size_t i = 0; i < ARRAY_SIZE(chunk_sizes); i++) {
2059    if (requested <= chunk_sizes[i]) {
2060      return chunk_sizes[i];
2061    }
2062  }
2063
2064  // ... or return the size as a humongous chunk.
2065  return requested;
2066}
2067
2068size_t SpaceManager::adjust_initial_chunk_size(size_t requested) const {
2069  return adjust_initial_chunk_size(requested, is_class());
2070}
2071
2072size_t SpaceManager::get_initial_chunk_size(Metaspace::MetaspaceType type) const {
2073  size_t requested;
2074
2075  if (is_class()) {
2076    switch (type) {
2077    case Metaspace::BootMetaspaceType:       requested = Metaspace::first_class_chunk_word_size(); break;
2078    case Metaspace::ROMetaspaceType:         requested = ClassSpecializedChunk; break;
2079    case Metaspace::ReadWriteMetaspaceType:  requested = ClassSpecializedChunk; break;
2080    case Metaspace::AnonymousMetaspaceType:  requested = ClassSpecializedChunk; break;
2081    case Metaspace::ReflectionMetaspaceType: requested = ClassSpecializedChunk; break;
2082    default:                                 requested = ClassSmallChunk; break;
2083    }
2084  } else {
2085    switch (type) {
2086    case Metaspace::BootMetaspaceType:       requested = Metaspace::first_chunk_word_size(); break;
2087    case Metaspace::ROMetaspaceType:         requested = SharedReadOnlySize / wordSize; break;
2088    case Metaspace::ReadWriteMetaspaceType:  requested = SharedReadWriteSize / wordSize; break;
2089    case Metaspace::AnonymousMetaspaceType:  requested = SpecializedChunk; break;
2090    case Metaspace::ReflectionMetaspaceType: requested = SpecializedChunk; break;
2091    default:                                 requested = SmallChunk; break;
2092    }
2093  }
2094
2095  // Adjust to one of the fixed chunk sizes (unless humongous)
2096  const size_t adjusted = adjust_initial_chunk_size(requested);
2097
2098  assert(adjusted != 0, "Incorrect initial chunk size. Requested: "
2099         SIZE_FORMAT " adjusted: " SIZE_FORMAT, requested, adjusted);
2100
2101  return adjusted;
2102}
2103
2104size_t SpaceManager::sum_free_in_chunks_in_use() const {
2105  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2106  size_t free = 0;
2107  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2108    Metachunk* chunk = chunks_in_use(i);
2109    while (chunk != NULL) {
2110      free += chunk->free_word_size();
2111      chunk = chunk->next();
2112    }
2113  }
2114  return free;
2115}
2116
2117size_t SpaceManager::sum_waste_in_chunks_in_use() const {
2118  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2119  size_t result = 0;
2120  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2121   result += sum_waste_in_chunks_in_use(i);
2122  }
2123
2124  return result;
2125}
2126
2127size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
2128  size_t result = 0;
2129  Metachunk* chunk = chunks_in_use(index);
2130  // Count the free space in all the chunk but not the
2131  // current chunk from which allocations are still being done.
2132  while (chunk != NULL) {
2133    if (chunk != current_chunk()) {
2134      result += chunk->free_word_size();
2135    }
2136    chunk = chunk->next();
2137  }
2138  return result;
2139}
2140
2141size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
2142  // For CMS use "allocated_chunks_words()" which does not need the
2143  // Metaspace lock.  For the other collectors sum over the
2144  // lists.  Use both methods as a check that "allocated_chunks_words()"
2145  // is correct.  That is, sum_capacity_in_chunks() is too expensive
2146  // to use in the product and allocated_chunks_words() should be used
2147  // but allow for  checking that allocated_chunks_words() returns the same
2148  // value as sum_capacity_in_chunks_in_use() which is the definitive
2149  // answer.
2150  if (UseConcMarkSweepGC) {
2151    return allocated_chunks_words();
2152  } else {
2153    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2154    size_t sum = 0;
2155    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2156      Metachunk* chunk = chunks_in_use(i);
2157      while (chunk != NULL) {
2158        sum += chunk->word_size();
2159        chunk = chunk->next();
2160      }
2161    }
2162  return sum;
2163  }
2164}
2165
2166size_t SpaceManager::sum_count_in_chunks_in_use() {
2167  size_t count = 0;
2168  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2169    count = count + sum_count_in_chunks_in_use(i);
2170  }
2171
2172  return count;
2173}
2174
2175size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
2176  size_t count = 0;
2177  Metachunk* chunk = chunks_in_use(i);
2178  while (chunk != NULL) {
2179    count++;
2180    chunk = chunk->next();
2181  }
2182  return count;
2183}
2184
2185
2186size_t SpaceManager::sum_used_in_chunks_in_use() const {
2187  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2188  size_t used = 0;
2189  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2190    Metachunk* chunk = chunks_in_use(i);
2191    while (chunk != NULL) {
2192      used += chunk->used_word_size();
2193      chunk = chunk->next();
2194    }
2195  }
2196  return used;
2197}
2198
2199void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
2200
2201  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2202    Metachunk* chunk = chunks_in_use(i);
2203    st->print("SpaceManager: %s " PTR_FORMAT,
2204                 chunk_size_name(i), p2i(chunk));
2205    if (chunk != NULL) {
2206      st->print_cr(" free " SIZE_FORMAT,
2207                   chunk->free_word_size());
2208    } else {
2209      st->cr();
2210    }
2211  }
2212
2213  chunk_manager()->locked_print_free_chunks(st);
2214  chunk_manager()->locked_print_sum_free_chunks(st);
2215}
2216
2217size_t SpaceManager::calc_chunk_size(size_t word_size) {
2218
2219  // Decide between a small chunk and a medium chunk.  Up to
2220  // _small_chunk_limit small chunks can be allocated.
2221  // After that a medium chunk is preferred.
2222  size_t chunk_word_size;
2223  if (chunks_in_use(MediumIndex) == NULL &&
2224      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2225    chunk_word_size = (size_t) small_chunk_size();
2226    if (word_size + Metachunk::overhead() > small_chunk_size()) {
2227      chunk_word_size = medium_chunk_size();
2228    }
2229  } else {
2230    chunk_word_size = medium_chunk_size();
2231  }
2232
2233  // Might still need a humongous chunk.  Enforce
2234  // humongous allocations sizes to be aligned up to
2235  // the smallest chunk size.
2236  size_t if_humongous_sized_chunk =
2237    align_up(word_size + Metachunk::overhead(),
2238                  smallest_chunk_size());
2239  chunk_word_size =
2240    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2241
2242  assert(!SpaceManager::is_humongous(word_size) ||
2243         chunk_word_size == if_humongous_sized_chunk,
2244         "Size calculation is wrong, word_size " SIZE_FORMAT
2245         " chunk_word_size " SIZE_FORMAT,
2246         word_size, chunk_word_size);
2247  Log(gc, metaspace, alloc) log;
2248  if (log.is_debug() && SpaceManager::is_humongous(word_size)) {
2249    log.debug("Metadata humongous allocation:");
2250    log.debug("  word_size " PTR_FORMAT, word_size);
2251    log.debug("  chunk_word_size " PTR_FORMAT, chunk_word_size);
2252    log.debug("    chunk overhead " PTR_FORMAT, Metachunk::overhead());
2253  }
2254  return chunk_word_size;
2255}
2256
2257void SpaceManager::track_metaspace_memory_usage() {
2258  if (is_init_completed()) {
2259    if (is_class()) {
2260      MemoryService::track_compressed_class_memory_usage();
2261    }
2262    MemoryService::track_metaspace_memory_usage();
2263  }
2264}
2265
2266MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2267  assert(vs_list()->current_virtual_space() != NULL,
2268         "Should have been set");
2269  assert(current_chunk() == NULL ||
2270         current_chunk()->allocate(word_size) == NULL,
2271         "Don't need to expand");
2272  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2273
2274  if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2275    size_t words_left = 0;
2276    size_t words_used = 0;
2277    if (current_chunk() != NULL) {
2278      words_left = current_chunk()->free_word_size();
2279      words_used = current_chunk()->used_word_size();
2280    }
2281    log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left",
2282                                       word_size, words_used, words_left);
2283  }
2284
2285  // Get another chunk
2286  size_t chunk_word_size = calc_chunk_size(word_size);
2287  Metachunk* next = get_new_chunk(chunk_word_size);
2288
2289  MetaWord* mem = NULL;
2290
2291  // If a chunk was available, add it to the in-use chunk list
2292  // and do an allocation from it.
2293  if (next != NULL) {
2294    // Add to this manager's list of chunks in use.
2295    add_chunk(next, false);
2296    mem = next->allocate(word_size);
2297  }
2298
2299  // Track metaspace memory usage statistic.
2300  track_metaspace_memory_usage();
2301
2302  return mem;
2303}
2304
2305void SpaceManager::print_on(outputStream* st) const {
2306
2307  for (ChunkIndex i = ZeroIndex;
2308       i < NumberOfInUseLists ;
2309       i = next_chunk_index(i) ) {
2310    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT,
2311                 p2i(chunks_in_use(i)),
2312                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2313  }
2314  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2315               " Humongous " SIZE_FORMAT,
2316               sum_waste_in_chunks_in_use(SmallIndex),
2317               sum_waste_in_chunks_in_use(MediumIndex),
2318               sum_waste_in_chunks_in_use(HumongousIndex));
2319  // block free lists
2320  if (block_freelists() != NULL) {
2321    st->print_cr("total in block free lists " SIZE_FORMAT,
2322      block_freelists()->total_size());
2323  }
2324}
2325
2326SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2327                           Mutex* lock) :
2328  _mdtype(mdtype),
2329  _allocated_blocks_words(0),
2330  _allocated_chunks_words(0),
2331  _allocated_chunks_count(0),
2332  _block_freelists(NULL),
2333  _lock(lock)
2334{
2335  initialize();
2336}
2337
2338void SpaceManager::inc_size_metrics(size_t words) {
2339  assert_lock_strong(SpaceManager::expand_lock());
2340  // Total of allocated Metachunks and allocated Metachunks count
2341  // for each SpaceManager
2342  _allocated_chunks_words = _allocated_chunks_words + words;
2343  _allocated_chunks_count++;
2344  // Global total of capacity in allocated Metachunks
2345  MetaspaceAux::inc_capacity(mdtype(), words);
2346  // Global total of allocated Metablocks.
2347  // used_words_slow() includes the overhead in each
2348  // Metachunk so include it in the used when the
2349  // Metachunk is first added (so only added once per
2350  // Metachunk).
2351  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2352}
2353
2354void SpaceManager::inc_used_metrics(size_t words) {
2355  // Add to the per SpaceManager total
2356  Atomic::add_ptr(words, &_allocated_blocks_words);
2357  // Add to the global total
2358  MetaspaceAux::inc_used(mdtype(), words);
2359}
2360
2361void SpaceManager::dec_total_from_size_metrics() {
2362  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2363  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2364  // Also deduct the overhead per Metachunk
2365  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2366}
2367
2368void SpaceManager::initialize() {
2369  Metadebug::init_allocation_fail_alot_count();
2370  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2371    _chunks_in_use[i] = NULL;
2372  }
2373  _current_chunk = NULL;
2374  log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this));
2375}
2376
2377SpaceManager::~SpaceManager() {
2378  // This call this->_lock which can't be done while holding expand_lock()
2379  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2380         "sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2381         " allocated_chunks_words() " SIZE_FORMAT,
2382         sum_capacity_in_chunks_in_use(), allocated_chunks_words());
2383
2384  MutexLockerEx fcl(SpaceManager::expand_lock(),
2385                    Mutex::_no_safepoint_check_flag);
2386
2387  chunk_manager()->slow_locked_verify();
2388
2389  dec_total_from_size_metrics();
2390
2391  Log(gc, metaspace, freelist) log;
2392  if (log.is_trace()) {
2393    log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this));
2394    ResourceMark rm;
2395    locked_print_chunks_in_use_on(log.trace_stream());
2396    if (block_freelists() != NULL) {
2397    block_freelists()->print_on(log.trace_stream());
2398  }
2399  }
2400
2401  // Add all the chunks in use by this space manager
2402  // to the global list of free chunks.
2403
2404  // Follow each list of chunks-in-use and add them to the
2405  // free lists.  Each list is NULL terminated.
2406
2407  for (ChunkIndex i = ZeroIndex; i <= HumongousIndex; i = next_chunk_index(i)) {
2408    Metachunk* chunks = chunks_in_use(i);
2409    chunk_manager()->return_chunk_list(i, chunks);
2410    set_chunks_in_use(i, NULL);
2411  }
2412
2413  chunk_manager()->slow_locked_verify();
2414
2415  if (_block_freelists != NULL) {
2416    delete _block_freelists;
2417  }
2418}
2419
2420void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2421  assert_lock_strong(_lock);
2422  // Allocations and deallocations are in raw_word_size
2423  size_t raw_word_size = get_allocation_word_size(word_size);
2424  // Lazily create a block_freelist
2425  if (block_freelists() == NULL) {
2426    _block_freelists = new BlockFreelist();
2427  }
2428  block_freelists()->return_block(p, raw_word_size);
2429}
2430
2431// Adds a chunk to the list of chunks in use.
2432void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2433
2434  assert(new_chunk != NULL, "Should not be NULL");
2435  assert(new_chunk->next() == NULL, "Should not be on a list");
2436
2437  new_chunk->reset_empty();
2438
2439  // Find the correct list and and set the current
2440  // chunk for that list.
2441  ChunkIndex index = chunk_manager()->list_index(new_chunk->word_size());
2442
2443  if (index != HumongousIndex) {
2444    retire_current_chunk();
2445    set_current_chunk(new_chunk);
2446    new_chunk->set_next(chunks_in_use(index));
2447    set_chunks_in_use(index, new_chunk);
2448  } else {
2449    // For null class loader data and DumpSharedSpaces, the first chunk isn't
2450    // small, so small will be null.  Link this first chunk as the current
2451    // chunk.
2452    if (make_current) {
2453      // Set as the current chunk but otherwise treat as a humongous chunk.
2454      set_current_chunk(new_chunk);
2455    }
2456    // Link at head.  The _current_chunk only points to a humongous chunk for
2457    // the null class loader metaspace (class and data virtual space managers)
2458    // any humongous chunks so will not point to the tail
2459    // of the humongous chunks list.
2460    new_chunk->set_next(chunks_in_use(HumongousIndex));
2461    set_chunks_in_use(HumongousIndex, new_chunk);
2462
2463    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2464  }
2465
2466  // Add to the running sum of capacity
2467  inc_size_metrics(new_chunk->word_size());
2468
2469  assert(new_chunk->is_empty(), "Not ready for reuse");
2470  Log(gc, metaspace, freelist) log;
2471  if (log.is_trace()) {
2472    log.trace("SpaceManager::add_chunk: " SIZE_FORMAT ") ", sum_count_in_chunks_in_use());
2473    ResourceMark rm;
2474    outputStream* out = log.trace_stream();
2475    new_chunk->print_on(out);
2476    chunk_manager()->locked_print_free_chunks(out);
2477  }
2478}
2479
2480void SpaceManager::retire_current_chunk() {
2481  if (current_chunk() != NULL) {
2482    size_t remaining_words = current_chunk()->free_word_size();
2483    if (remaining_words >= BlockFreelist::min_dictionary_size()) {
2484      MetaWord* ptr = current_chunk()->allocate(remaining_words);
2485      deallocate(ptr, remaining_words);
2486      inc_used_metrics(remaining_words);
2487    }
2488  }
2489}
2490
2491Metachunk* SpaceManager::get_new_chunk(size_t chunk_word_size) {
2492  // Get a chunk from the chunk freelist
2493  Metachunk* next = chunk_manager()->chunk_freelist_allocate(chunk_word_size);
2494
2495  if (next == NULL) {
2496    next = vs_list()->get_new_chunk(chunk_word_size,
2497                                    medium_chunk_bunch());
2498  }
2499
2500  Log(gc, metaspace, alloc) log;
2501  if (log.is_debug() && next != NULL &&
2502      SpaceManager::is_humongous(next->word_size())) {
2503    log.debug("  new humongous chunk word size " PTR_FORMAT, next->word_size());
2504  }
2505
2506  return next;
2507}
2508
2509/*
2510 * The policy is to allocate up to _small_chunk_limit small chunks
2511 * after which only medium chunks are allocated.  This is done to
2512 * reduce fragmentation.  In some cases, this can result in a lot
2513 * of small chunks being allocated to the point where it's not
2514 * possible to expand.  If this happens, there may be no medium chunks
2515 * available and OOME would be thrown.  Instead of doing that,
2516 * if the allocation request size fits in a small chunk, an attempt
2517 * will be made to allocate a small chunk.
2518 */
2519MetaWord* SpaceManager::get_small_chunk_and_allocate(size_t word_size) {
2520  size_t raw_word_size = get_allocation_word_size(word_size);
2521
2522  if (raw_word_size + Metachunk::overhead() > small_chunk_size()) {
2523    return NULL;
2524  }
2525
2526  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2527  MutexLockerEx cl1(expand_lock(), Mutex::_no_safepoint_check_flag);
2528
2529  Metachunk* chunk = chunk_manager()->chunk_freelist_allocate(small_chunk_size());
2530
2531  MetaWord* mem = NULL;
2532
2533  if (chunk != NULL) {
2534    // Add chunk to the in-use chunk list and do an allocation from it.
2535    // Add to this manager's list of chunks in use.
2536    add_chunk(chunk, false);
2537    mem = chunk->allocate(raw_word_size);
2538
2539    inc_used_metrics(raw_word_size);
2540
2541    // Track metaspace memory usage statistic.
2542    track_metaspace_memory_usage();
2543  }
2544
2545  return mem;
2546}
2547
2548MetaWord* SpaceManager::allocate(size_t word_size) {
2549  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2550  size_t raw_word_size = get_allocation_word_size(word_size);
2551  BlockFreelist* fl =  block_freelists();
2552  MetaWord* p = NULL;
2553  // Allocation from the dictionary is expensive in the sense that
2554  // the dictionary has to be searched for a size.  Don't allocate
2555  // from the dictionary until it starts to get fat.  Is this
2556  // a reasonable policy?  Maybe an skinny dictionary is fast enough
2557  // for allocations.  Do some profiling.  JJJ
2558  if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
2559    p = fl->get_block(raw_word_size);
2560  }
2561  if (p == NULL) {
2562    p = allocate_work(raw_word_size);
2563  }
2564
2565  return p;
2566}
2567
2568// Returns the address of spaced allocated for "word_size".
2569// This methods does not know about blocks (Metablocks)
2570MetaWord* SpaceManager::allocate_work(size_t word_size) {
2571  assert_lock_strong(_lock);
2572#ifdef ASSERT
2573  if (Metadebug::test_metadata_failure()) {
2574    return NULL;
2575  }
2576#endif
2577  // Is there space in the current chunk?
2578  MetaWord* result = NULL;
2579
2580  // For DumpSharedSpaces, only allocate out of the current chunk which is
2581  // never null because we gave it the size we wanted.   Caller reports out
2582  // of memory if this returns null.
2583  if (DumpSharedSpaces) {
2584    assert(current_chunk() != NULL, "should never happen");
2585    inc_used_metrics(word_size);
2586    return current_chunk()->allocate(word_size); // caller handles null result
2587  }
2588
2589  if (current_chunk() != NULL) {
2590    result = current_chunk()->allocate(word_size);
2591  }
2592
2593  if (result == NULL) {
2594    result = grow_and_allocate(word_size);
2595  }
2596
2597  if (result != NULL) {
2598    inc_used_metrics(word_size);
2599    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2600           "Head of the list is being allocated");
2601  }
2602
2603  return result;
2604}
2605
2606void SpaceManager::verify() {
2607  // If there are blocks in the dictionary, then
2608  // verification of chunks does not work since
2609  // being in the dictionary alters a chunk.
2610  if (block_freelists() != NULL && block_freelists()->total_size() == 0) {
2611    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2612      Metachunk* curr = chunks_in_use(i);
2613      while (curr != NULL) {
2614        curr->verify();
2615        verify_chunk_size(curr);
2616        curr = curr->next();
2617      }
2618    }
2619  }
2620}
2621
2622void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2623  assert(is_humongous(chunk->word_size()) ||
2624         chunk->word_size() == medium_chunk_size() ||
2625         chunk->word_size() == small_chunk_size() ||
2626         chunk->word_size() == specialized_chunk_size(),
2627         "Chunk size is wrong");
2628  return;
2629}
2630
2631#ifdef ASSERT
2632void SpaceManager::verify_allocated_blocks_words() {
2633  // Verification is only guaranteed at a safepoint.
2634  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2635    "Verification can fail if the applications is running");
2636  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2637         "allocation total is not consistent " SIZE_FORMAT
2638         " vs " SIZE_FORMAT,
2639         allocated_blocks_words(), sum_used_in_chunks_in_use());
2640}
2641
2642#endif
2643
2644void SpaceManager::dump(outputStream* const out) const {
2645  size_t curr_total = 0;
2646  size_t waste = 0;
2647  uint i = 0;
2648  size_t used = 0;
2649  size_t capacity = 0;
2650
2651  // Add up statistics for all chunks in this SpaceManager.
2652  for (ChunkIndex index = ZeroIndex;
2653       index < NumberOfInUseLists;
2654       index = next_chunk_index(index)) {
2655    for (Metachunk* curr = chunks_in_use(index);
2656         curr != NULL;
2657         curr = curr->next()) {
2658      out->print("%d) ", i++);
2659      curr->print_on(out);
2660      curr_total += curr->word_size();
2661      used += curr->used_word_size();
2662      capacity += curr->word_size();
2663      waste += curr->free_word_size() + curr->overhead();;
2664    }
2665  }
2666
2667  if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2668    if (block_freelists() != NULL) block_freelists()->print_on(out);
2669  }
2670
2671  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2672  // Free space isn't wasted.
2673  waste -= free;
2674
2675  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
2676                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2677                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2678}
2679
2680// MetaspaceAux
2681
2682
2683size_t MetaspaceAux::_capacity_words[] = {0, 0};
2684size_t MetaspaceAux::_used_words[] = {0, 0};
2685
2686size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2687  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2688  return list == NULL ? 0 : list->free_bytes();
2689}
2690
2691size_t MetaspaceAux::free_bytes() {
2692  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2693}
2694
2695void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2696  assert_lock_strong(SpaceManager::expand_lock());
2697  assert(words <= capacity_words(mdtype),
2698         "About to decrement below 0: words " SIZE_FORMAT
2699         " is greater than _capacity_words[%u] " SIZE_FORMAT,
2700         words, mdtype, capacity_words(mdtype));
2701  _capacity_words[mdtype] -= words;
2702}
2703
2704void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2705  assert_lock_strong(SpaceManager::expand_lock());
2706  // Needs to be atomic
2707  _capacity_words[mdtype] += words;
2708}
2709
2710void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2711  assert(words <= used_words(mdtype),
2712         "About to decrement below 0: words " SIZE_FORMAT
2713         " is greater than _used_words[%u] " SIZE_FORMAT,
2714         words, mdtype, used_words(mdtype));
2715  // For CMS deallocation of the Metaspaces occurs during the
2716  // sweep which is a concurrent phase.  Protection by the expand_lock()
2717  // is not enough since allocation is on a per Metaspace basis
2718  // and protected by the Metaspace lock.
2719  jlong minus_words = (jlong) - (jlong) words;
2720  Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2721}
2722
2723void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2724  // _used_words tracks allocations for
2725  // each piece of metadata.  Those allocations are
2726  // generally done concurrently by different application
2727  // threads so must be done atomically.
2728  Atomic::add_ptr(words, &_used_words[mdtype]);
2729}
2730
2731size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2732  size_t used = 0;
2733  ClassLoaderDataGraphMetaspaceIterator iter;
2734  while (iter.repeat()) {
2735    Metaspace* msp = iter.get_next();
2736    // Sum allocated_blocks_words for each metaspace
2737    if (msp != NULL) {
2738      used += msp->used_words_slow(mdtype);
2739    }
2740  }
2741  return used * BytesPerWord;
2742}
2743
2744size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2745  size_t free = 0;
2746  ClassLoaderDataGraphMetaspaceIterator iter;
2747  while (iter.repeat()) {
2748    Metaspace* msp = iter.get_next();
2749    if (msp != NULL) {
2750      free += msp->free_words_slow(mdtype);
2751    }
2752  }
2753  return free * BytesPerWord;
2754}
2755
2756size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2757  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2758    return 0;
2759  }
2760  // Don't count the space in the freelists.  That space will be
2761  // added to the capacity calculation as needed.
2762  size_t capacity = 0;
2763  ClassLoaderDataGraphMetaspaceIterator iter;
2764  while (iter.repeat()) {
2765    Metaspace* msp = iter.get_next();
2766    if (msp != NULL) {
2767      capacity += msp->capacity_words_slow(mdtype);
2768    }
2769  }
2770  return capacity * BytesPerWord;
2771}
2772
2773size_t MetaspaceAux::capacity_bytes_slow() {
2774#ifdef PRODUCT
2775  // Use capacity_bytes() in PRODUCT instead of this function.
2776  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2777#endif
2778  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2779  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2780  assert(capacity_bytes() == class_capacity + non_class_capacity,
2781         "bad accounting: capacity_bytes() " SIZE_FORMAT
2782         " class_capacity + non_class_capacity " SIZE_FORMAT
2783         " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2784         capacity_bytes(), class_capacity + non_class_capacity,
2785         class_capacity, non_class_capacity);
2786
2787  return class_capacity + non_class_capacity;
2788}
2789
2790size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2791  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2792  return list == NULL ? 0 : list->reserved_bytes();
2793}
2794
2795size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2796  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2797  return list == NULL ? 0 : list->committed_bytes();
2798}
2799
2800size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2801
2802size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2803  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2804  if (chunk_manager == NULL) {
2805    return 0;
2806  }
2807  chunk_manager->slow_verify();
2808  return chunk_manager->free_chunks_total_words();
2809}
2810
2811size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2812  return free_chunks_total_words(mdtype) * BytesPerWord;
2813}
2814
2815size_t MetaspaceAux::free_chunks_total_words() {
2816  return free_chunks_total_words(Metaspace::ClassType) +
2817         free_chunks_total_words(Metaspace::NonClassType);
2818}
2819
2820size_t MetaspaceAux::free_chunks_total_bytes() {
2821  return free_chunks_total_words() * BytesPerWord;
2822}
2823
2824bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2825  return Metaspace::get_chunk_manager(mdtype) != NULL;
2826}
2827
2828MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2829  if (!has_chunk_free_list(mdtype)) {
2830    return MetaspaceChunkFreeListSummary();
2831  }
2832
2833  const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2834  return cm->chunk_free_list_summary();
2835}
2836
2837void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2838  log_info(gc, metaspace)("Metaspace: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
2839                          prev_metadata_used/K, used_bytes()/K, reserved_bytes()/K);
2840}
2841
2842void MetaspaceAux::print_on(outputStream* out) {
2843  Metaspace::MetadataType nct = Metaspace::NonClassType;
2844
2845  out->print_cr(" Metaspace       "
2846                "used "      SIZE_FORMAT "K, "
2847                "capacity "  SIZE_FORMAT "K, "
2848                "committed " SIZE_FORMAT "K, "
2849                "reserved "  SIZE_FORMAT "K",
2850                used_bytes()/K,
2851                capacity_bytes()/K,
2852                committed_bytes()/K,
2853                reserved_bytes()/K);
2854
2855  if (Metaspace::using_class_space()) {
2856    Metaspace::MetadataType ct = Metaspace::ClassType;
2857    out->print_cr("  class space    "
2858                  "used "      SIZE_FORMAT "K, "
2859                  "capacity "  SIZE_FORMAT "K, "
2860                  "committed " SIZE_FORMAT "K, "
2861                  "reserved "  SIZE_FORMAT "K",
2862                  used_bytes(ct)/K,
2863                  capacity_bytes(ct)/K,
2864                  committed_bytes(ct)/K,
2865                  reserved_bytes(ct)/K);
2866  }
2867}
2868
2869// Print information for class space and data space separately.
2870// This is almost the same as above.
2871void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2872  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2873  size_t capacity_bytes = capacity_bytes_slow(mdtype);
2874  size_t used_bytes = used_bytes_slow(mdtype);
2875  size_t free_bytes = free_bytes_slow(mdtype);
2876  size_t used_and_free = used_bytes + free_bytes +
2877                           free_chunks_capacity_bytes;
2878  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
2879             "K + unused in chunks " SIZE_FORMAT "K  + "
2880             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2881             "K  capacity in allocated chunks " SIZE_FORMAT "K",
2882             used_bytes / K,
2883             free_bytes / K,
2884             free_chunks_capacity_bytes / K,
2885             used_and_free / K,
2886             capacity_bytes / K);
2887  // Accounting can only be correct if we got the values during a safepoint
2888  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2889}
2890
2891// Print total fragmentation for class metaspaces
2892void MetaspaceAux::print_class_waste(outputStream* out) {
2893  assert(Metaspace::using_class_space(), "class metaspace not used");
2894  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2895  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2896  ClassLoaderDataGraphMetaspaceIterator iter;
2897  while (iter.repeat()) {
2898    Metaspace* msp = iter.get_next();
2899    if (msp != NULL) {
2900      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2901      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2902      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2903      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2904      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2905      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2906      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2907    }
2908  }
2909  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2910                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2911                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2912                "large count " SIZE_FORMAT,
2913                cls_specialized_count, cls_specialized_waste,
2914                cls_small_count, cls_small_waste,
2915                cls_medium_count, cls_medium_waste, cls_humongous_count);
2916}
2917
2918// Print total fragmentation for data and class metaspaces separately
2919void MetaspaceAux::print_waste(outputStream* out) {
2920  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2921  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2922
2923  ClassLoaderDataGraphMetaspaceIterator iter;
2924  while (iter.repeat()) {
2925    Metaspace* msp = iter.get_next();
2926    if (msp != NULL) {
2927      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2928      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2929      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2930      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2931      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2932      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2933      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2934    }
2935  }
2936  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2937  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2938                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2939                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2940                        "large count " SIZE_FORMAT,
2941             specialized_count, specialized_waste, small_count,
2942             small_waste, medium_count, medium_waste, humongous_count);
2943  if (Metaspace::using_class_space()) {
2944    print_class_waste(out);
2945  }
2946}
2947
2948// Dump global metaspace things from the end of ClassLoaderDataGraph
2949void MetaspaceAux::dump(outputStream* out) {
2950  out->print_cr("All Metaspace:");
2951  out->print("data space: "); print_on(out, Metaspace::NonClassType);
2952  out->print("class space: "); print_on(out, Metaspace::ClassType);
2953  print_waste(out);
2954}
2955
2956void MetaspaceAux::verify_free_chunks() {
2957  Metaspace::chunk_manager_metadata()->verify();
2958  if (Metaspace::using_class_space()) {
2959    Metaspace::chunk_manager_class()->verify();
2960  }
2961}
2962
2963void MetaspaceAux::verify_capacity() {
2964#ifdef ASSERT
2965  size_t running_sum_capacity_bytes = capacity_bytes();
2966  // For purposes of the running sum of capacity, verify against capacity
2967  size_t capacity_in_use_bytes = capacity_bytes_slow();
2968  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
2969         "capacity_words() * BytesPerWord " SIZE_FORMAT
2970         " capacity_bytes_slow()" SIZE_FORMAT,
2971         running_sum_capacity_bytes, capacity_in_use_bytes);
2972  for (Metaspace::MetadataType i = Metaspace::ClassType;
2973       i < Metaspace:: MetadataTypeCount;
2974       i = (Metaspace::MetadataType)(i + 1)) {
2975    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
2976    assert(capacity_bytes(i) == capacity_in_use_bytes,
2977           "capacity_bytes(%u) " SIZE_FORMAT
2978           " capacity_bytes_slow(%u)" SIZE_FORMAT,
2979           i, capacity_bytes(i), i, capacity_in_use_bytes);
2980  }
2981#endif
2982}
2983
2984void MetaspaceAux::verify_used() {
2985#ifdef ASSERT
2986  size_t running_sum_used_bytes = used_bytes();
2987  // For purposes of the running sum of used, verify against used
2988  size_t used_in_use_bytes = used_bytes_slow();
2989  assert(used_bytes() == used_in_use_bytes,
2990         "used_bytes() " SIZE_FORMAT
2991         " used_bytes_slow()" SIZE_FORMAT,
2992         used_bytes(), used_in_use_bytes);
2993  for (Metaspace::MetadataType i = Metaspace::ClassType;
2994       i < Metaspace:: MetadataTypeCount;
2995       i = (Metaspace::MetadataType)(i + 1)) {
2996    size_t used_in_use_bytes = used_bytes_slow(i);
2997    assert(used_bytes(i) == used_in_use_bytes,
2998           "used_bytes(%u) " SIZE_FORMAT
2999           " used_bytes_slow(%u)" SIZE_FORMAT,
3000           i, used_bytes(i), i, used_in_use_bytes);
3001  }
3002#endif
3003}
3004
3005void MetaspaceAux::verify_metrics() {
3006  verify_capacity();
3007  verify_used();
3008}
3009
3010
3011// Metaspace methods
3012
3013size_t Metaspace::_first_chunk_word_size = 0;
3014size_t Metaspace::_first_class_chunk_word_size = 0;
3015
3016size_t Metaspace::_commit_alignment = 0;
3017size_t Metaspace::_reserve_alignment = 0;
3018
3019Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
3020  initialize(lock, type);
3021}
3022
3023Metaspace::~Metaspace() {
3024  delete _vsm;
3025  if (using_class_space()) {
3026    delete _class_vsm;
3027  }
3028}
3029
3030VirtualSpaceList* Metaspace::_space_list = NULL;
3031VirtualSpaceList* Metaspace::_class_space_list = NULL;
3032
3033ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
3034ChunkManager* Metaspace::_chunk_manager_class = NULL;
3035
3036#define VIRTUALSPACEMULTIPLIER 2
3037
3038#ifdef _LP64
3039static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
3040
3041void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
3042  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
3043  // narrow_klass_base is the lower of the metaspace base and the cds base
3044  // (if cds is enabled).  The narrow_klass_shift depends on the distance
3045  // between the lower base and higher address.
3046  address lower_base;
3047  address higher_address;
3048#if INCLUDE_CDS
3049  if (UseSharedSpaces) {
3050    higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3051                          (address)(metaspace_base + compressed_class_space_size()));
3052    lower_base = MIN2(metaspace_base, cds_base);
3053  } else
3054#endif
3055  {
3056    higher_address = metaspace_base + compressed_class_space_size();
3057    lower_base = metaspace_base;
3058
3059    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
3060    // If compressed class space fits in lower 32G, we don't need a base.
3061    if (higher_address <= (address)klass_encoding_max) {
3062      lower_base = 0; // Effectively lower base is zero.
3063    }
3064  }
3065
3066  Universe::set_narrow_klass_base(lower_base);
3067
3068  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
3069    Universe::set_narrow_klass_shift(0);
3070  } else {
3071    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
3072    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
3073  }
3074  AOTLoader::set_narrow_klass_shift();
3075}
3076
3077#if INCLUDE_CDS
3078// Return TRUE if the specified metaspace_base and cds_base are close enough
3079// to work with compressed klass pointers.
3080bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
3081  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
3082  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3083  address lower_base = MIN2((address)metaspace_base, cds_base);
3084  address higher_address = MAX2((address)(cds_base + FileMapInfo::shared_spaces_size()),
3085                                (address)(metaspace_base + compressed_class_space_size()));
3086  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
3087}
3088#endif
3089
3090// Try to allocate the metaspace at the requested addr.
3091void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
3092  assert(using_class_space(), "called improperly");
3093  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3094  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
3095         "Metaspace size is too big");
3096  assert_is_aligned(requested_addr, _reserve_alignment);
3097  assert_is_aligned(cds_base, _reserve_alignment);
3098  assert_is_aligned(compressed_class_space_size(), _reserve_alignment);
3099
3100  // Don't use large pages for the class space.
3101  bool large_pages = false;
3102
3103#if !(defined(AARCH64) || defined(AIX))
3104  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
3105                                             _reserve_alignment,
3106                                             large_pages,
3107                                             requested_addr);
3108#else // AARCH64
3109  ReservedSpace metaspace_rs;
3110
3111  // Our compressed klass pointers may fit nicely into the lower 32
3112  // bits.
3113  if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) {
3114    metaspace_rs = ReservedSpace(compressed_class_space_size(),
3115                                 _reserve_alignment,
3116                                 large_pages,
3117                                 requested_addr);
3118  }
3119
3120  if (! metaspace_rs.is_reserved()) {
3121    // Aarch64: Try to align metaspace so that we can decode a compressed
3122    // klass with a single MOVK instruction.  We can do this iff the
3123    // compressed class base is a multiple of 4G.
3124    // Aix: Search for a place where we can find memory. If we need to load
3125    // the base, 4G alignment is helpful, too.
3126    size_t increment = AARCH64_ONLY(4*)G;
3127    for (char *a = align_up(requested_addr, increment);
3128         a < (char*)(1024*G);
3129         a += increment) {
3130      if (a == (char *)(32*G)) {
3131        // Go faster from here on. Zero-based is no longer possible.
3132        increment = 4*G;
3133      }
3134
3135#if INCLUDE_CDS
3136      if (UseSharedSpaces
3137          && ! can_use_cds_with_metaspace_addr(a, cds_base)) {
3138        // We failed to find an aligned base that will reach.  Fall
3139        // back to using our requested addr.
3140        metaspace_rs = ReservedSpace(compressed_class_space_size(),
3141                                     _reserve_alignment,
3142                                     large_pages,
3143                                     requested_addr);
3144        break;
3145      }
3146#endif
3147
3148      metaspace_rs = ReservedSpace(compressed_class_space_size(),
3149                                   _reserve_alignment,
3150                                   large_pages,
3151                                   a);
3152      if (metaspace_rs.is_reserved())
3153        break;
3154    }
3155  }
3156
3157#endif // AARCH64
3158
3159  if (!metaspace_rs.is_reserved()) {
3160#if INCLUDE_CDS
3161    if (UseSharedSpaces) {
3162      size_t increment = align_up(1*G, _reserve_alignment);
3163
3164      // Keep trying to allocate the metaspace, increasing the requested_addr
3165      // by 1GB each time, until we reach an address that will no longer allow
3166      // use of CDS with compressed klass pointers.
3167      char *addr = requested_addr;
3168      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3169             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3170        addr = addr + increment;
3171        metaspace_rs = ReservedSpace(compressed_class_space_size(),
3172                                     _reserve_alignment, large_pages, addr);
3173      }
3174    }
3175#endif
3176    // If no successful allocation then try to allocate the space anywhere.  If
3177    // that fails then OOM doom.  At this point we cannot try allocating the
3178    // metaspace as if UseCompressedClassPointers is off because too much
3179    // initialization has happened that depends on UseCompressedClassPointers.
3180    // So, UseCompressedClassPointers cannot be turned off at this point.
3181    if (!metaspace_rs.is_reserved()) {
3182      metaspace_rs = ReservedSpace(compressed_class_space_size(),
3183                                   _reserve_alignment, large_pages);
3184      if (!metaspace_rs.is_reserved()) {
3185        vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes",
3186                                              compressed_class_space_size()));
3187      }
3188    }
3189  }
3190
3191  // If we got here then the metaspace got allocated.
3192  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3193
3194#if INCLUDE_CDS
3195  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
3196  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3197    FileMapInfo::stop_sharing_and_unmap(
3198        "Could not allocate metaspace at a compatible address");
3199  }
3200#endif
3201  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3202                                  UseSharedSpaces ? (address)cds_base : 0);
3203
3204  initialize_class_space(metaspace_rs);
3205
3206  if (log_is_enabled(Trace, gc, metaspace)) {
3207    Log(gc, metaspace) log;
3208    ResourceMark rm;
3209    print_compressed_class_space(log.trace_stream(), requested_addr);
3210  }
3211}
3212
3213void Metaspace::print_compressed_class_space(outputStream* st, const char* requested_addr) {
3214  st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d",
3215               p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift());
3216  if (_class_space_list != NULL) {
3217    address base = (address)_class_space_list->current_virtual_space()->bottom();
3218    st->print("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT,
3219                 compressed_class_space_size(), p2i(base));
3220    if (requested_addr != 0) {
3221      st->print(" Req Addr: " PTR_FORMAT, p2i(requested_addr));
3222    }
3223    st->cr();
3224  }
3225}
3226
3227// For UseCompressedClassPointers the class space is reserved above the top of
3228// the Java heap.  The argument passed in is at the base of the compressed space.
3229void Metaspace::initialize_class_space(ReservedSpace rs) {
3230  // The reserved space size may be bigger because of alignment, esp with UseLargePages
3231  assert(rs.size() >= CompressedClassSpaceSize,
3232         SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize);
3233  assert(using_class_space(), "Must be using class space");
3234  _class_space_list = new VirtualSpaceList(rs);
3235  _chunk_manager_class = new ChunkManager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3236
3237  if (!_class_space_list->initialization_succeeded()) {
3238    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3239  }
3240}
3241
3242#endif
3243
3244void Metaspace::ergo_initialize() {
3245  if (DumpSharedSpaces) {
3246    // Using large pages when dumping the shared archive is currently not implemented.
3247    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3248  }
3249
3250  size_t page_size = os::vm_page_size();
3251  if (UseLargePages && UseLargePagesInMetaspace) {
3252    page_size = os::large_page_size();
3253  }
3254
3255  _commit_alignment  = page_size;
3256  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3257
3258  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3259  // override if MaxMetaspaceSize was set on the command line or not.
3260  // This information is needed later to conform to the specification of the
3261  // java.lang.management.MemoryUsage API.
3262  //
3263  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3264  // globals.hpp to the aligned value, but this is not possible, since the
3265  // alignment depends on other flags being parsed.
3266  MaxMetaspaceSize = align_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3267
3268  if (MetaspaceSize > MaxMetaspaceSize) {
3269    MetaspaceSize = MaxMetaspaceSize;
3270  }
3271
3272  MetaspaceSize = align_down_bounded(MetaspaceSize, _commit_alignment);
3273
3274  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3275
3276  MinMetaspaceExpansion = align_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3277  MaxMetaspaceExpansion = align_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3278
3279  CompressedClassSpaceSize = align_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3280  set_compressed_class_space_size(CompressedClassSpaceSize);
3281}
3282
3283void Metaspace::global_initialize() {
3284  MetaspaceGC::initialize();
3285
3286  // Initialize the alignment for shared spaces.
3287  int max_alignment = os::vm_allocation_granularity();
3288  size_t cds_total = 0;
3289
3290  MetaspaceShared::set_max_alignment(max_alignment);
3291
3292  if (DumpSharedSpaces) {
3293#if INCLUDE_CDS
3294    MetaspaceShared::estimate_regions_size();
3295
3296    SharedReadOnlySize  = align_up(SharedReadOnlySize,  max_alignment);
3297    SharedReadWriteSize = align_up(SharedReadWriteSize, max_alignment);
3298    SharedMiscDataSize  = align_up(SharedMiscDataSize,  max_alignment);
3299    SharedMiscCodeSize  = align_up(SharedMiscCodeSize,  max_alignment);
3300
3301    // Initialize with the sum of the shared space sizes.  The read-only
3302    // and read write metaspace chunks will be allocated out of this and the
3303    // remainder is the misc code and data chunks.
3304    cds_total = FileMapInfo::shared_spaces_size();
3305    cds_total = align_up(cds_total, _reserve_alignment);
3306    _space_list = new VirtualSpaceList(cds_total/wordSize);
3307    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3308
3309    if (!_space_list->initialization_succeeded()) {
3310      vm_exit_during_initialization("Unable to dump shared archive.", NULL);
3311    }
3312
3313#ifdef _LP64
3314    if (cds_total + compressed_class_space_size() > UnscaledClassSpaceMax) {
3315      vm_exit_during_initialization("Unable to dump shared archive.",
3316          err_msg("Size of archive (" SIZE_FORMAT ") + compressed class space ("
3317                  SIZE_FORMAT ") == total (" SIZE_FORMAT ") is larger than compressed "
3318                  "klass limit: " UINT64_FORMAT, cds_total, compressed_class_space_size(),
3319                  cds_total + compressed_class_space_size(), UnscaledClassSpaceMax));
3320    }
3321
3322    // Set the compressed klass pointer base so that decoding of these pointers works
3323    // properly when creating the shared archive.
3324    assert(UseCompressedOops && UseCompressedClassPointers,
3325      "UseCompressedOops and UseCompressedClassPointers must be set");
3326    Universe::set_narrow_klass_base((address)_space_list->current_virtual_space()->bottom());
3327    log_develop_trace(gc, metaspace)("Setting_narrow_klass_base to Address: " PTR_FORMAT,
3328                                     p2i(_space_list->current_virtual_space()->bottom()));
3329
3330    Universe::set_narrow_klass_shift(0);
3331#endif // _LP64
3332#endif // INCLUDE_CDS
3333  } else {
3334#if INCLUDE_CDS
3335    if (UseSharedSpaces) {
3336      // If using shared space, open the file that contains the shared space
3337      // and map in the memory before initializing the rest of metaspace (so
3338      // the addresses don't conflict)
3339      address cds_address = NULL;
3340      FileMapInfo* mapinfo = new FileMapInfo();
3341
3342      // Open the shared archive file, read and validate the header. If
3343      // initialization fails, shared spaces [UseSharedSpaces] are
3344      // disabled and the file is closed.
3345      // Map in spaces now also
3346      if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3347        cds_total = FileMapInfo::shared_spaces_size();
3348        cds_address = (address)mapinfo->header()->region_addr(0);
3349#ifdef _LP64
3350        if (using_class_space()) {
3351          char* cds_end = (char*)(cds_address + cds_total);
3352          cds_end = align_up(cds_end, _reserve_alignment);
3353          // If UseCompressedClassPointers is set then allocate the metaspace area
3354          // above the heap and above the CDS area (if it exists).
3355          allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3356          // Map the shared string space after compressed pointers
3357          // because it relies on compressed class pointers setting to work
3358          mapinfo->map_string_regions();
3359        }
3360#endif // _LP64
3361      } else {
3362        assert(!mapinfo->is_open() && !UseSharedSpaces,
3363               "archive file not closed or shared spaces not disabled.");
3364      }
3365    }
3366#endif // INCLUDE_CDS
3367
3368#ifdef _LP64
3369    if (!UseSharedSpaces && using_class_space()) {
3370      char* base = (char*)align_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3371      allocate_metaspace_compressed_klass_ptrs(base, 0);
3372    }
3373#endif // _LP64
3374
3375    // Initialize these before initializing the VirtualSpaceList
3376    _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3377    _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3378    // Make the first class chunk bigger than a medium chunk so it's not put
3379    // on the medium chunk list.   The next chunk will be small and progress
3380    // from there.  This size calculated by -version.
3381    _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3382                                       (CompressedClassSpaceSize/BytesPerWord)*2);
3383    _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3384    // Arbitrarily set the initial virtual space to a multiple
3385    // of the boot class loader size.
3386    size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3387    word_size = align_up(word_size, Metaspace::reserve_alignment_words());
3388
3389    // Initialize the list of virtual spaces.
3390    _space_list = new VirtualSpaceList(word_size);
3391    _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3392
3393    if (!_space_list->initialization_succeeded()) {
3394      vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3395    }
3396  }
3397
3398  _tracer = new MetaspaceTracer();
3399}
3400
3401void Metaspace::post_initialize() {
3402  MetaspaceGC::post_initialize();
3403}
3404
3405void Metaspace::initialize_first_chunk(MetaspaceType type, MetadataType mdtype) {
3406  Metachunk* chunk = get_initialization_chunk(type, mdtype);
3407  if (chunk != NULL) {
3408    // Add to this manager's list of chunks in use and current_chunk().
3409    get_space_manager(mdtype)->add_chunk(chunk, true);
3410  }
3411}
3412
3413Metachunk* Metaspace::get_initialization_chunk(MetaspaceType type, MetadataType mdtype) {
3414  size_t chunk_word_size = get_space_manager(mdtype)->get_initial_chunk_size(type);
3415
3416  // Get a chunk from the chunk freelist
3417  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3418
3419  if (chunk == NULL) {
3420    chunk = get_space_list(mdtype)->get_new_chunk(chunk_word_size,
3421                                                  get_space_manager(mdtype)->medium_chunk_bunch());
3422  }
3423
3424  // For dumping shared archive, report error if allocation has failed.
3425  if (DumpSharedSpaces && chunk == NULL) {
3426    report_insufficient_metaspace(MetaspaceAux::committed_bytes() + chunk_word_size * BytesPerWord);
3427  }
3428
3429  return chunk;
3430}
3431
3432void Metaspace::verify_global_initialization() {
3433  assert(space_list() != NULL, "Metadata VirtualSpaceList has not been initialized");
3434  assert(chunk_manager_metadata() != NULL, "Metadata ChunkManager has not been initialized");
3435
3436  if (using_class_space()) {
3437    assert(class_space_list() != NULL, "Class VirtualSpaceList has not been initialized");
3438    assert(chunk_manager_class() != NULL, "Class ChunkManager has not been initialized");
3439  }
3440}
3441
3442void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3443  verify_global_initialization();
3444
3445  // Allocate SpaceManager for metadata objects.
3446  _vsm = new SpaceManager(NonClassType, lock);
3447
3448  if (using_class_space()) {
3449    // Allocate SpaceManager for classes.
3450    _class_vsm = new SpaceManager(ClassType, lock);
3451  }
3452
3453  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3454
3455  // Allocate chunk for metadata objects
3456  initialize_first_chunk(type, NonClassType);
3457
3458  // Allocate chunk for class metadata objects
3459  if (using_class_space()) {
3460    initialize_first_chunk(type, ClassType);
3461  }
3462
3463  _alloc_record_head = NULL;
3464  _alloc_record_tail = NULL;
3465}
3466
3467size_t Metaspace::align_word_size_up(size_t word_size) {
3468  size_t byte_size = word_size * wordSize;
3469  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3470}
3471
3472MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3473  // DumpSharedSpaces doesn't use class metadata area (yet)
3474  // Also, don't use class_vsm() unless UseCompressedClassPointers is true.
3475  if (is_class_space_allocation(mdtype)) {
3476    return  class_vsm()->allocate(word_size);
3477  } else {
3478    return  vsm()->allocate(word_size);
3479  }
3480}
3481
3482MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3483  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3484  assert(delta_bytes > 0, "Must be");
3485
3486  size_t before = 0;
3487  size_t after = 0;
3488  MetaWord* res;
3489  bool incremented;
3490
3491  // Each thread increments the HWM at most once. Even if the thread fails to increment
3492  // the HWM, an allocation is still attempted. This is because another thread must then
3493  // have incremented the HWM and therefore the allocation might still succeed.
3494  do {
3495    incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
3496    res = allocate(word_size, mdtype);
3497  } while (!incremented && res == NULL);
3498
3499  if (incremented) {
3500    tracer()->report_gc_threshold(before, after,
3501                                  MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3502    log_trace(gc, metaspace)("Increase capacity to GC from " SIZE_FORMAT " to " SIZE_FORMAT, before, after);
3503  }
3504
3505  return res;
3506}
3507
3508// Space allocated in the Metaspace.  This may
3509// be across several metadata virtual spaces.
3510char* Metaspace::bottom() const {
3511  assert(DumpSharedSpaces, "only useful and valid for dumping shared spaces");
3512  return (char*)vsm()->current_chunk()->bottom();
3513}
3514
3515size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3516  if (mdtype == ClassType) {
3517    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3518  } else {
3519    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
3520  }
3521}
3522
3523size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3524  if (mdtype == ClassType) {
3525    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3526  } else {
3527    return vsm()->sum_free_in_chunks_in_use();
3528  }
3529}
3530
3531// Space capacity in the Metaspace.  It includes
3532// space in the list of chunks from which allocations
3533// have been made. Don't include space in the global freelist and
3534// in the space available in the dictionary which
3535// is already counted in some chunk.
3536size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3537  if (mdtype == ClassType) {
3538    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3539  } else {
3540    return vsm()->sum_capacity_in_chunks_in_use();
3541  }
3542}
3543
3544size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3545  return used_words_slow(mdtype) * BytesPerWord;
3546}
3547
3548size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3549  return capacity_words_slow(mdtype) * BytesPerWord;
3550}
3551
3552size_t Metaspace::allocated_blocks_bytes() const {
3553  return vsm()->allocated_blocks_bytes() +
3554      (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0);
3555}
3556
3557size_t Metaspace::allocated_chunks_bytes() const {
3558  return vsm()->allocated_chunks_bytes() +
3559      (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0);
3560}
3561
3562void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3563  assert(!SafepointSynchronize::is_at_safepoint()
3564         || Thread::current()->is_VM_thread(), "should be the VM thread");
3565
3566  if (DumpSharedSpaces && log_is_enabled(Info, cds)) {
3567    record_deallocation(ptr, vsm()->get_allocation_word_size(word_size));
3568  }
3569
3570  MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3571
3572  if (is_class && using_class_space()) {
3573    class_vsm()->deallocate(ptr, word_size);
3574  } else {
3575    vsm()->deallocate(ptr, word_size);
3576  }
3577}
3578
3579
3580MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3581                              bool read_only, MetaspaceObj::Type type, TRAPS) {
3582  if (HAS_PENDING_EXCEPTION) {
3583    assert(false, "Should not allocate with exception pending");
3584    return NULL;  // caller does a CHECK_NULL too
3585  }
3586
3587  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3588        "ClassLoaderData::the_null_class_loader_data() should have been used.");
3589
3590  // Allocate in metaspaces without taking out a lock, because it deadlocks
3591  // with the SymbolTable_lock.  Dumping is single threaded for now.  We'll have
3592  // to revisit this for application class data sharing.
3593  if (DumpSharedSpaces) {
3594    assert(type > MetaspaceObj::UnknownType && type < MetaspaceObj::_number_of_types, "sanity");
3595    Metaspace* space = read_only ? loader_data->ro_metaspace() : loader_data->rw_metaspace();
3596    MetaWord* result = space->allocate(word_size, NonClassType);
3597    if (result == NULL) {
3598      report_out_of_shared_space(read_only ? SharedReadOnly : SharedReadWrite);
3599    }
3600    if (log_is_enabled(Info, cds)) {
3601      space->record_allocation(result, type, space->vsm()->get_allocation_word_size(word_size));
3602    }
3603
3604    // Zero initialize.
3605    Copy::fill_to_words((HeapWord*)result, word_size, 0);
3606
3607    return result;
3608  }
3609
3610  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3611
3612  // Try to allocate metadata.
3613  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3614
3615  if (result == NULL) {
3616    tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3617
3618    // Allocation failed.
3619    if (is_init_completed()) {
3620      // Only start a GC if the bootstrapping has completed.
3621
3622      // Try to clean out some memory and retry.
3623      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3624          loader_data, word_size, mdtype);
3625    }
3626  }
3627
3628  if (result == NULL) {
3629    SpaceManager* sm;
3630    if (is_class_space_allocation(mdtype)) {
3631      sm = loader_data->metaspace_non_null()->class_vsm();
3632    } else {
3633      sm = loader_data->metaspace_non_null()->vsm();
3634    }
3635
3636    result = sm->get_small_chunk_and_allocate(word_size);
3637
3638    if (result == NULL) {
3639      report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3640    }
3641  }
3642
3643  // Zero initialize.
3644  Copy::fill_to_words((HeapWord*)result, word_size, 0);
3645
3646  return result;
3647}
3648
3649size_t Metaspace::class_chunk_size(size_t word_size) {
3650  assert(using_class_space(), "Has to use class space");
3651  return class_vsm()->calc_chunk_size(word_size);
3652}
3653
3654void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3655  tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3656
3657  // If result is still null, we are out of memory.
3658  Log(gc, metaspace, freelist) log;
3659  if (log.is_info()) {
3660    log.info("Metaspace (%s) allocation failed for size " SIZE_FORMAT,
3661             is_class_space_allocation(mdtype) ? "class" : "data", word_size);
3662    ResourceMark rm;
3663    outputStream* out = log.info_stream();
3664    if (loader_data->metaspace_or_null() != NULL) {
3665      loader_data->dump(out);
3666    }
3667    MetaspaceAux::dump(out);
3668  }
3669
3670  bool out_of_compressed_class_space = false;
3671  if (is_class_space_allocation(mdtype)) {
3672    Metaspace* metaspace = loader_data->metaspace_non_null();
3673    out_of_compressed_class_space =
3674      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3675      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3676      CompressedClassSpaceSize;
3677  }
3678
3679  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3680  const char* space_string = out_of_compressed_class_space ?
3681    "Compressed class space" : "Metaspace";
3682
3683  report_java_out_of_memory(space_string);
3684
3685  if (JvmtiExport::should_post_resource_exhausted()) {
3686    JvmtiExport::post_resource_exhausted(
3687        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3688        space_string);
3689  }
3690
3691  if (!is_init_completed()) {
3692    vm_exit_during_initialization("OutOfMemoryError", space_string);
3693  }
3694
3695  if (out_of_compressed_class_space) {
3696    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3697  } else {
3698    THROW_OOP(Universe::out_of_memory_error_metaspace());
3699  }
3700}
3701
3702const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3703  switch (mdtype) {
3704    case Metaspace::ClassType: return "Class";
3705    case Metaspace::NonClassType: return "Metadata";
3706    default:
3707      assert(false, "Got bad mdtype: %d", (int) mdtype);
3708      return NULL;
3709  }
3710}
3711
3712void Metaspace::record_allocation(void* ptr, MetaspaceObj::Type type, size_t word_size) {
3713  assert(DumpSharedSpaces, "sanity");
3714
3715  int byte_size = (int)word_size * wordSize;
3716  AllocRecord *rec = new AllocRecord((address)ptr, type, byte_size);
3717
3718  if (_alloc_record_head == NULL) {
3719    _alloc_record_head = _alloc_record_tail = rec;
3720  } else if (_alloc_record_tail->_ptr + _alloc_record_tail->_byte_size == (address)ptr) {
3721    _alloc_record_tail->_next = rec;
3722    _alloc_record_tail = rec;
3723  } else {
3724    // slow linear search, but this doesn't happen that often, and only when dumping
3725    for (AllocRecord *old = _alloc_record_head; old; old = old->_next) {
3726      if (old->_ptr == ptr) {
3727        assert(old->_type == MetaspaceObj::DeallocatedType, "sanity");
3728        int remain_bytes = old->_byte_size - byte_size;
3729        assert(remain_bytes >= 0, "sanity");
3730        old->_type = type;
3731
3732        if (remain_bytes == 0) {
3733          delete(rec);
3734        } else {
3735          address remain_ptr = address(ptr) + byte_size;
3736          rec->_ptr = remain_ptr;
3737          rec->_byte_size = remain_bytes;
3738          rec->_type = MetaspaceObj::DeallocatedType;
3739          rec->_next = old->_next;
3740          old->_byte_size = byte_size;
3741          old->_next = rec;
3742        }
3743        return;
3744      }
3745    }
3746    assert(0, "reallocating a freed pointer that was not recorded");
3747  }
3748}
3749
3750void Metaspace::record_deallocation(void* ptr, size_t word_size) {
3751  assert(DumpSharedSpaces, "sanity");
3752
3753  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3754    if (rec->_ptr == ptr) {
3755      assert(rec->_byte_size == (int)word_size * wordSize, "sanity");
3756      rec->_type = MetaspaceObj::DeallocatedType;
3757      return;
3758    }
3759  }
3760
3761  assert(0, "deallocating a pointer that was not recorded");
3762}
3763
3764void Metaspace::iterate(Metaspace::AllocRecordClosure *closure) {
3765  assert(DumpSharedSpaces, "unimplemented for !DumpSharedSpaces");
3766
3767  address last_addr = (address)bottom();
3768
3769  for (AllocRecord *rec = _alloc_record_head; rec; rec = rec->_next) {
3770    address ptr = rec->_ptr;
3771    if (last_addr < ptr) {
3772      closure->doit(last_addr, MetaspaceObj::UnknownType, ptr - last_addr);
3773    }
3774    closure->doit(ptr, rec->_type, rec->_byte_size);
3775    last_addr = ptr + rec->_byte_size;
3776  }
3777
3778  address top = ((address)bottom()) + used_bytes_slow(Metaspace::NonClassType);
3779  if (last_addr < top) {
3780    closure->doit(last_addr, MetaspaceObj::UnknownType, top - last_addr);
3781  }
3782}
3783
3784void Metaspace::purge(MetadataType mdtype) {
3785  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3786}
3787
3788void Metaspace::purge() {
3789  MutexLockerEx cl(SpaceManager::expand_lock(),
3790                   Mutex::_no_safepoint_check_flag);
3791  purge(NonClassType);
3792  if (using_class_space()) {
3793    purge(ClassType);
3794  }
3795}
3796
3797void Metaspace::print_on(outputStream* out) const {
3798  // Print both class virtual space counts and metaspace.
3799  if (Verbose) {
3800    vsm()->print_on(out);
3801    if (using_class_space()) {
3802      class_vsm()->print_on(out);
3803    }
3804  }
3805}
3806
3807bool Metaspace::contains(const void* ptr) {
3808  if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3809    return true;
3810  }
3811  return contains_non_shared(ptr);
3812}
3813
3814bool Metaspace::contains_non_shared(const void* ptr) {
3815  if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3816     return true;
3817  }
3818
3819  return get_space_list(NonClassType)->contains(ptr);
3820}
3821
3822void Metaspace::verify() {
3823  vsm()->verify();
3824  if (using_class_space()) {
3825    class_vsm()->verify();
3826  }
3827}
3828
3829void Metaspace::dump(outputStream* const out) const {
3830  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm()));
3831  vsm()->dump(out);
3832  if (using_class_space()) {
3833    out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm()));
3834    class_vsm()->dump(out);
3835  }
3836}
3837
3838/////////////// Unit tests ///////////////
3839
3840#ifndef PRODUCT
3841
3842class TestMetaspaceAuxTest : AllStatic {
3843 public:
3844  static void test_reserved() {
3845    size_t reserved = MetaspaceAux::reserved_bytes();
3846
3847    assert(reserved > 0, "assert");
3848
3849    size_t committed  = MetaspaceAux::committed_bytes();
3850    assert(committed <= reserved, "assert");
3851
3852    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3853    assert(reserved_metadata > 0, "assert");
3854    assert(reserved_metadata <= reserved, "assert");
3855
3856    if (UseCompressedClassPointers) {
3857      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3858      assert(reserved_class > 0, "assert");
3859      assert(reserved_class < reserved, "assert");
3860    }
3861  }
3862
3863  static void test_committed() {
3864    size_t committed = MetaspaceAux::committed_bytes();
3865
3866    assert(committed > 0, "assert");
3867
3868    size_t reserved  = MetaspaceAux::reserved_bytes();
3869    assert(committed <= reserved, "assert");
3870
3871    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3872    assert(committed_metadata > 0, "assert");
3873    assert(committed_metadata <= committed, "assert");
3874
3875    if (UseCompressedClassPointers) {
3876      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3877      assert(committed_class > 0, "assert");
3878      assert(committed_class < committed, "assert");
3879    }
3880  }
3881
3882  static void test_virtual_space_list_large_chunk() {
3883    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3884    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3885    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3886    // vm_allocation_granularity aligned on Windows.
3887    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3888    large_size += (os::vm_page_size()/BytesPerWord);
3889    vs_list->get_new_chunk(large_size, 0);
3890  }
3891
3892  static void test() {
3893    test_reserved();
3894    test_committed();
3895    test_virtual_space_list_large_chunk();
3896  }
3897};
3898
3899void TestMetaspaceAux_test() {
3900  TestMetaspaceAuxTest::test();
3901}
3902
3903class TestVirtualSpaceNodeTest {
3904  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3905                                          size_t& num_small_chunks,
3906                                          size_t& num_specialized_chunks) {
3907    num_medium_chunks = words_left / MediumChunk;
3908    words_left = words_left % MediumChunk;
3909
3910    num_small_chunks = words_left / SmallChunk;
3911    words_left = words_left % SmallChunk;
3912    // how many specialized chunks can we get?
3913    num_specialized_chunks = words_left / SpecializedChunk;
3914    assert(words_left % SpecializedChunk == 0, "should be nothing left");
3915  }
3916
3917 public:
3918  static void test() {
3919    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3920    const size_t vsn_test_size_words = MediumChunk  * 4;
3921    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3922
3923    // The chunk sizes must be multiples of eachother, or this will fail
3924    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3925    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3926
3927    { // No committed memory in VSN
3928      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3929      VirtualSpaceNode vsn(vsn_test_size_bytes);
3930      vsn.initialize();
3931      vsn.retire(&cm);
3932      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3933    }
3934
3935    { // All of VSN is committed, half is used by chunks
3936      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3937      VirtualSpaceNode vsn(vsn_test_size_bytes);
3938      vsn.initialize();
3939      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3940      vsn.get_chunk_vs(MediumChunk);
3941      vsn.get_chunk_vs(MediumChunk);
3942      vsn.retire(&cm);
3943      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3944      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3945    }
3946
3947    const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3948    // This doesn't work for systems with vm_page_size >= 16K.
3949    if (page_chunks < MediumChunk) {
3950      // 4 pages of VSN is committed, some is used by chunks
3951      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3952      VirtualSpaceNode vsn(vsn_test_size_bytes);
3953
3954      vsn.initialize();
3955      vsn.expand_by(page_chunks, page_chunks);
3956      vsn.get_chunk_vs(SmallChunk);
3957      vsn.get_chunk_vs(SpecializedChunk);
3958      vsn.retire(&cm);
3959
3960      // committed - used = words left to retire
3961      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3962
3963      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3964      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3965
3966      assert(num_medium_chunks == 0, "should not get any medium chunks");
3967      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3968      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3969    }
3970
3971    { // Half of VSN is committed, a humongous chunk is used
3972      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3973      VirtualSpaceNode vsn(vsn_test_size_bytes);
3974      vsn.initialize();
3975      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3976      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3977      vsn.retire(&cm);
3978
3979      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3980      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3981      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3982
3983      assert(num_medium_chunks == 0, "should not get any medium chunks");
3984      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3985      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3986    }
3987
3988  }
3989
3990#define assert_is_available_positive(word_size) \
3991  assert(vsn.is_available(word_size), \
3992         #word_size ": " PTR_FORMAT " bytes were not available in " \
3993         "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3994         (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3995
3996#define assert_is_available_negative(word_size) \
3997  assert(!vsn.is_available(word_size), \
3998         #word_size ": " PTR_FORMAT " bytes should not be available in " \
3999         "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
4000         (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
4001
4002  static void test_is_available_positive() {
4003    // Reserve some memory.
4004    VirtualSpaceNode vsn(os::vm_allocation_granularity());
4005    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
4006
4007    // Commit some memory.
4008    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
4009    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
4010    assert(expanded, "Failed to commit");
4011
4012    // Check that is_available accepts the committed size.
4013    assert_is_available_positive(commit_word_size);
4014
4015    // Check that is_available accepts half the committed size.
4016    size_t expand_word_size = commit_word_size / 2;
4017    assert_is_available_positive(expand_word_size);
4018  }
4019
4020  static void test_is_available_negative() {
4021    // Reserve some memory.
4022    VirtualSpaceNode vsn(os::vm_allocation_granularity());
4023    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
4024
4025    // Commit some memory.
4026    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
4027    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
4028    assert(expanded, "Failed to commit");
4029
4030    // Check that is_available doesn't accept a too large size.
4031    size_t two_times_commit_word_size = commit_word_size * 2;
4032    assert_is_available_negative(two_times_commit_word_size);
4033  }
4034
4035  static void test_is_available_overflow() {
4036    // Reserve some memory.
4037    VirtualSpaceNode vsn(os::vm_allocation_granularity());
4038    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
4039
4040    // Commit some memory.
4041    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
4042    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
4043    assert(expanded, "Failed to commit");
4044
4045    // Calculate a size that will overflow the virtual space size.
4046    void* virtual_space_max = (void*)(uintptr_t)-1;
4047    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
4048    size_t overflow_size = bottom_to_max + BytesPerWord;
4049    size_t overflow_word_size = overflow_size / BytesPerWord;
4050
4051    // Check that is_available can handle the overflow.
4052    assert_is_available_negative(overflow_word_size);
4053  }
4054
4055  static void test_is_available() {
4056    TestVirtualSpaceNodeTest::test_is_available_positive();
4057    TestVirtualSpaceNodeTest::test_is_available_negative();
4058    TestVirtualSpaceNodeTest::test_is_available_overflow();
4059  }
4060};
4061
4062void TestVirtualSpaceNode_test() {
4063  TestVirtualSpaceNodeTest::test();
4064  TestVirtualSpaceNodeTest::test_is_available();
4065}
4066
4067// The following test is placed here instead of a gtest / unittest file
4068// because the ChunkManager class is only available in this file.
4069void ChunkManager_test_list_index() {
4070  ChunkManager manager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
4071
4072  // Test previous bug where a query for a humongous class metachunk,
4073  // incorrectly matched the non-class medium metachunk size.
4074  {
4075    assert(MediumChunk > ClassMediumChunk, "Precondition for test");
4076
4077    ChunkIndex index = manager.list_index(MediumChunk);
4078
4079    assert(index == HumongousIndex,
4080           "Requested size is larger than ClassMediumChunk,"
4081           " so should return HumongousIndex. Got index: %d", (int)index);
4082  }
4083
4084  // Check the specified sizes as well.
4085  {
4086    ChunkIndex index = manager.list_index(ClassSpecializedChunk);
4087    assert(index == SpecializedIndex, "Wrong index returned. Got index: %d", (int)index);
4088  }
4089  {
4090    ChunkIndex index = manager.list_index(ClassSmallChunk);
4091    assert(index == SmallIndex, "Wrong index returned. Got index: %d", (int)index);
4092  }
4093  {
4094    ChunkIndex index = manager.list_index(ClassMediumChunk);
4095    assert(index == MediumIndex, "Wrong index returned. Got index: %d", (int)index);
4096  }
4097  {
4098    ChunkIndex index = manager.list_index(ClassMediumChunk + 1);
4099    assert(index == HumongousIndex, "Wrong index returned. Got index: %d", (int)index);
4100  }
4101}
4102
4103#endif // !PRODUCT
4104
4105#ifdef ASSERT
4106
4107// ChunkManagerReturnTest stresses taking/returning chunks from the ChunkManager. It takes and
4108// returns chunks from/to the ChunkManager while keeping track of the expected ChunkManager
4109// content.
4110class ChunkManagerReturnTestImpl {
4111
4112  VirtualSpaceNode _vsn;
4113  ChunkManager _cm;
4114
4115  // The expected content of the chunk manager.
4116  unsigned _chunks_in_chunkmanager;
4117  size_t _words_in_chunkmanager;
4118
4119  // A fixed size pool of chunks. Chunks may be in the chunk manager (free) or not (in use).
4120  static const int num_chunks = 256;
4121  Metachunk* _pool[num_chunks];
4122
4123  // Helper, return a random position into the chunk pool.
4124  static int get_random_position() {
4125    return os::random() % num_chunks;
4126  }
4127
4128  // Asserts that ChunkManager counters match expectations.
4129  void assert_counters() {
4130    assert(_vsn.container_count() == num_chunks - _chunks_in_chunkmanager, "vsn counter mismatch.");
4131    assert(_cm.free_chunks_count() == _chunks_in_chunkmanager, "cm counter mismatch.");
4132    assert(_cm.free_chunks_total_words() == _words_in_chunkmanager, "cm counter mismatch.");
4133  }
4134
4135  // Get a random chunk size. Equal chance to get spec/med/small chunk size or
4136  // a humongous chunk size. The latter itself is random in the range of [med+spec..4*med).
4137  size_t get_random_chunk_size() {
4138    const size_t sizes [] = { SpecializedChunk, SmallChunk, MediumChunk };
4139    const int rand = os::random() % 4;
4140    if (rand < 3) {
4141      return sizes[rand];
4142    } else {
4143      // Note: this affects the max. size of space (see _vsn initialization in ctor).
4144      return align_up(MediumChunk + 1 + (os::random() % (MediumChunk * 4)), SpecializedChunk);
4145    }
4146  }
4147
4148  // Starting at pool index <start>+1, find the next chunk tagged as either free or in use, depending
4149  // on <is_free>. Search wraps. Returns its position, or -1 if no matching chunk was found.
4150  int next_matching_chunk(int start, bool is_free) const {
4151    assert(start >= 0 && start < num_chunks, "invalid parameter");
4152    int pos = start;
4153    do {
4154      if (++pos == num_chunks) {
4155        pos = 0;
4156      }
4157      if (_pool[pos]->is_tagged_free() == is_free) {
4158        return pos;
4159      }
4160    } while (pos != start);
4161    return -1;
4162  }
4163
4164  // A structure to keep information about a chunk list including which
4165  // chunks are part of this list. This is needed to keep information about a chunk list
4166  // we will to return to the ChunkManager, because the original list will be destroyed.
4167  struct AChunkList {
4168    Metachunk* head;
4169    Metachunk* all[num_chunks];
4170    size_t size;
4171    int num;
4172    ChunkIndex index;
4173  };
4174
4175  // Assemble, from the in-use chunks (not in the chunk manager) in the pool,
4176  // a random chunk list of max. length <list_size> of chunks with the same
4177  // ChunkIndex (chunk size).
4178  // Returns false if list cannot be assembled. List is returned in the <out>
4179  // structure. Returned list may be smaller than <list_size>.
4180  bool assemble_random_chunklist(AChunkList* out, int list_size) {
4181    // Choose a random in-use chunk from the pool...
4182    const int headpos = next_matching_chunk(get_random_position(), false);
4183    if (headpos == -1) {
4184      return false;
4185    }
4186    Metachunk* const head = _pool[headpos];
4187    out->all[0] = head;
4188    assert(head->is_tagged_free() == false, "Chunk state mismatch");
4189    // ..then go from there, chain it up with up to list_size - 1 number of other
4190    // in-use chunks of the same index.
4191    const ChunkIndex index = _cm.list_index(head->word_size());
4192    int num_added = 1;
4193    size_t size_added = head->word_size();
4194    int pos = headpos;
4195    Metachunk* tail = head;
4196    do {
4197      pos = next_matching_chunk(pos, false);
4198      if (pos != headpos) {
4199        Metachunk* c = _pool[pos];
4200        assert(c->is_tagged_free() == false, "Chunk state mismatch");
4201        if (index == _cm.list_index(c->word_size())) {
4202          tail->set_next(c);
4203          c->set_prev(tail);
4204          tail = c;
4205          out->all[num_added] = c;
4206          num_added ++;
4207          size_added += c->word_size();
4208        }
4209      }
4210    } while (num_added < list_size && pos != headpos);
4211    out->head = head;
4212    out->index = index;
4213    out->size = size_added;
4214    out->num = num_added;
4215    return true;
4216  }
4217
4218  // Take a single random chunk from the ChunkManager.
4219  bool take_single_random_chunk_from_chunkmanager() {
4220    assert_counters();
4221    _cm.locked_verify();
4222    int pos = next_matching_chunk(get_random_position(), true);
4223    if (pos == -1) {
4224      return false;
4225    }
4226    Metachunk* c = _pool[pos];
4227    assert(c->is_tagged_free(), "Chunk state mismatch");
4228    // Note: instead of using ChunkManager::remove_chunk on this one chunk, we call
4229    // ChunkManager::free_chunks_get() with this chunk's word size. We really want
4230    // to exercise ChunkManager::free_chunks_get() because that one gets called for
4231    // normal chunk allocation.
4232    Metachunk* c2 = _cm.free_chunks_get(c->word_size());
4233    assert(c2 != NULL, "Unexpected.");
4234    assert(!c2->is_tagged_free(), "Chunk state mismatch");
4235    assert(c2->next() == NULL && c2->prev() == NULL, "Chunk should be outside of a list.");
4236    _chunks_in_chunkmanager --;
4237    _words_in_chunkmanager -= c->word_size();
4238    assert_counters();
4239    _cm.locked_verify();
4240    return true;
4241  }
4242
4243  // Returns a single random chunk to the chunk manager. Returns false if that
4244  // was not possible (all chunks are already in the chunk manager).
4245  bool return_single_random_chunk_to_chunkmanager() {
4246    assert_counters();
4247    _cm.locked_verify();
4248    int pos = next_matching_chunk(get_random_position(), false);
4249    if (pos == -1) {
4250      return false;
4251    }
4252    Metachunk* c = _pool[pos];
4253    assert(c->is_tagged_free() == false, "wrong chunk information");
4254    _cm.return_single_chunk(_cm.list_index(c->word_size()), c);
4255    _chunks_in_chunkmanager ++;
4256    _words_in_chunkmanager += c->word_size();
4257    assert(c->is_tagged_free() == true, "wrong chunk information");
4258    assert_counters();
4259    _cm.locked_verify();
4260    return true;
4261  }
4262
4263  // Return a random chunk list to the chunk manager. Returns the length of the
4264  // returned list.
4265  int return_random_chunk_list_to_chunkmanager(int list_size) {
4266    assert_counters();
4267    _cm.locked_verify();
4268    AChunkList aChunkList;
4269    if (!assemble_random_chunklist(&aChunkList, list_size)) {
4270      return 0;
4271    }
4272    // Before returning chunks are returned, they should be tagged in use.
4273    for (int i = 0; i < aChunkList.num; i ++) {
4274      assert(!aChunkList.all[i]->is_tagged_free(), "chunk state mismatch.");
4275    }
4276    _cm.return_chunk_list(aChunkList.index, aChunkList.head);
4277    _chunks_in_chunkmanager += aChunkList.num;
4278    _words_in_chunkmanager += aChunkList.size;
4279    // After all chunks are returned, check that they are now tagged free.
4280    for (int i = 0; i < aChunkList.num; i ++) {
4281      assert(aChunkList.all[i]->is_tagged_free(), "chunk state mismatch.");
4282    }
4283    assert_counters();
4284    _cm.locked_verify();
4285    return aChunkList.num;
4286  }
4287
4288public:
4289
4290  ChunkManagerReturnTestImpl()
4291    : _vsn(align_up(MediumChunk * num_chunks * 5 * sizeof(MetaWord), Metaspace::reserve_alignment()))
4292    , _cm(SpecializedChunk, SmallChunk, MediumChunk)
4293    , _chunks_in_chunkmanager(0)
4294    , _words_in_chunkmanager(0)
4295  {
4296    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
4297    // Allocate virtual space and allocate random chunks. Keep these chunks in the _pool. These chunks are
4298    // "in use", because not yet added to any chunk manager.
4299    _vsn.initialize();
4300    _vsn.expand_by(_vsn.reserved_words(), _vsn.reserved_words());
4301    for (int i = 0; i < num_chunks; i ++) {
4302      const size_t size = get_random_chunk_size();
4303      _pool[i] = _vsn.get_chunk_vs(size);
4304      assert(_pool[i] != NULL, "allocation failed");
4305    }
4306    assert_counters();
4307    _cm.locked_verify();
4308  }
4309
4310  // Test entry point.
4311  // Return some chunks to the chunk manager (return phase). Take some chunks out (take phase). Repeat.
4312  // Chunks are choosen randomly. Number of chunks to return or taken are choosen randomly, but affected
4313  // by the <phase_length_factor> argument: a factor of 0.0 will cause the test to quickly alternate between
4314  // returning and taking, whereas a factor of 1.0 will take/return all chunks from/to the
4315  // chunks manager, thereby emptying or filling it completely.
4316  void do_test(float phase_length_factor) {
4317    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
4318    assert_counters();
4319    // Execute n operations, and operation being the move of a single chunk to/from the chunk manager.
4320    const int num_max_ops = num_chunks * 100;
4321    int num_ops = num_max_ops;
4322    const int average_phase_length = (int)(phase_length_factor * num_chunks);
4323    int num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4));
4324    bool return_phase = true;
4325    while (num_ops > 0) {
4326      int chunks_moved = 0;
4327      if (return_phase) {
4328        // Randomly switch between returning a single chunk or a random length chunk list.
4329        if (os::random() % 2 == 0) {
4330          if (return_single_random_chunk_to_chunkmanager()) {
4331            chunks_moved = 1;
4332          }
4333        } else {
4334          const int list_length = MAX2(1, (os::random() % num_ops_until_switch));
4335          chunks_moved = return_random_chunk_list_to_chunkmanager(list_length);
4336        }
4337      } else {
4338        // Breath out.
4339        if (take_single_random_chunk_from_chunkmanager()) {
4340          chunks_moved = 1;
4341        }
4342      }
4343      num_ops -= chunks_moved;
4344      num_ops_until_switch -= chunks_moved;
4345      if (chunks_moved == 0 || num_ops_until_switch <= 0) {
4346        return_phase = !return_phase;
4347        num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4));
4348      }
4349    }
4350  }
4351};
4352
4353void* setup_chunkmanager_returntests() {
4354  ChunkManagerReturnTestImpl* p = new ChunkManagerReturnTestImpl();
4355  return p;
4356}
4357
4358void teardown_chunkmanager_returntests(void* p) {
4359  delete (ChunkManagerReturnTestImpl*) p;
4360}
4361
4362void run_chunkmanager_returntests(void* p, float phase_length) {
4363  ChunkManagerReturnTestImpl* test = (ChunkManagerReturnTestImpl*) p;
4364  test->do_test(phase_length);
4365}
4366
4367// The following test is placed here instead of a gtest / unittest file
4368// because the ChunkManager class is only available in this file.
4369class SpaceManagerTest : AllStatic {
4370  friend void SpaceManager_test_adjust_initial_chunk_size();
4371
4372  static void test_adjust_initial_chunk_size(bool is_class) {
4373    const size_t smallest = SpaceManager::smallest_chunk_size(is_class);
4374    const size_t normal   = SpaceManager::small_chunk_size(is_class);
4375    const size_t medium   = SpaceManager::medium_chunk_size(is_class);
4376
4377#define test_adjust_initial_chunk_size(value, expected, is_class_value)          \
4378    do {                                                                         \
4379      size_t v = value;                                                          \
4380      size_t e = expected;                                                       \
4381      assert(SpaceManager::adjust_initial_chunk_size(v, (is_class_value)) == e,  \
4382             "Expected: " SIZE_FORMAT " got: " SIZE_FORMAT, e, v);               \
4383    } while (0)
4384
4385    // Smallest (specialized)
4386    test_adjust_initial_chunk_size(1,            smallest, is_class);
4387    test_adjust_initial_chunk_size(smallest - 1, smallest, is_class);
4388    test_adjust_initial_chunk_size(smallest,     smallest, is_class);
4389
4390    // Small
4391    test_adjust_initial_chunk_size(smallest + 1, normal, is_class);
4392    test_adjust_initial_chunk_size(normal - 1,   normal, is_class);
4393    test_adjust_initial_chunk_size(normal,       normal, is_class);
4394
4395    // Medium
4396    test_adjust_initial_chunk_size(normal + 1, medium, is_class);
4397    test_adjust_initial_chunk_size(medium - 1, medium, is_class);
4398    test_adjust_initial_chunk_size(medium,     medium, is_class);
4399
4400    // Humongous
4401    test_adjust_initial_chunk_size(medium + 1, medium + 1, is_class);
4402
4403#undef test_adjust_initial_chunk_size
4404  }
4405
4406  static void test_adjust_initial_chunk_size() {
4407    test_adjust_initial_chunk_size(false);
4408    test_adjust_initial_chunk_size(true);
4409  }
4410};
4411
4412void SpaceManager_test_adjust_initial_chunk_size() {
4413  SpaceManagerTest::test_adjust_initial_chunk_size();
4414}
4415
4416#endif // ASSERT
4417