1/*
2 * Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24#include "precompiled.hpp"
25#include "aot/aotLoader.hpp"
26#include "gc/shared/collectedHeap.hpp"
27#include "gc/shared/collectorPolicy.hpp"
28#include "gc/shared/gcLocker.hpp"
29#include "logging/log.hpp"
30#include "logging/logStream.hpp"
31#include "memory/allocation.hpp"
32#include "memory/binaryTreeDictionary.hpp"
33#include "memory/filemap.hpp"
34#include "memory/freeList.hpp"
35#include "memory/metachunk.hpp"
36#include "memory/metaspace.hpp"
37#include "memory/metaspaceGCThresholdUpdater.hpp"
38#include "memory/metaspaceShared.hpp"
39#include "memory/metaspaceTracer.hpp"
40#include "memory/resourceArea.hpp"
41#include "memory/universe.hpp"
42#include "runtime/atomic.hpp"
43#include "runtime/globals.hpp"
44#include "runtime/init.hpp"
45#include "runtime/java.hpp"
46#include "runtime/mutex.hpp"
47#include "runtime/orderAccess.inline.hpp"
48#include "services/memTracker.hpp"
49#include "services/memoryService.hpp"
50#include "utilities/align.hpp"
51#include "utilities/copy.hpp"
52#include "utilities/debug.hpp"
53#include "utilities/macros.hpp"
54
55typedef BinaryTreeDictionary<Metablock, FreeList<Metablock> > BlockTreeDictionary;
56typedef BinaryTreeDictionary<Metachunk, FreeList<Metachunk> > ChunkTreeDictionary;
57
58// Set this constant to enable slow integrity checking of the free chunk lists
59const bool metaspace_slow_verify = false;
60
61size_t const allocation_from_dictionary_limit = 4 * K;
62
63MetaWord* last_allocated = 0;
64
65size_t Metaspace::_compressed_class_space_size;
66const MetaspaceTracer* Metaspace::_tracer = NULL;
67
68DEBUG_ONLY(bool Metaspace::_frozen = false;)
69
70// Used in declarations in SpaceManager and ChunkManager
71enum ChunkIndex {
72  ZeroIndex = 0,
73  SpecializedIndex = ZeroIndex,
74  SmallIndex = SpecializedIndex + 1,
75  MediumIndex = SmallIndex + 1,
76  HumongousIndex = MediumIndex + 1,
77  NumberOfFreeLists = 3,
78  NumberOfInUseLists = 4
79};
80
81// Helper, returns a descriptive name for the given index.
82static const char* chunk_size_name(ChunkIndex index) {
83  switch (index) {
84    case SpecializedIndex:
85      return "specialized";
86    case SmallIndex:
87      return "small";
88    case MediumIndex:
89      return "medium";
90    case HumongousIndex:
91      return "humongous";
92    default:
93      return "Invalid index";
94  }
95}
96
97enum ChunkSizes {    // in words.
98  ClassSpecializedChunk = 128,
99  SpecializedChunk = 128,
100  ClassSmallChunk = 256,
101  SmallChunk = 512,
102  ClassMediumChunk = 4 * K,
103  MediumChunk = 8 * K
104};
105
106static ChunkIndex next_chunk_index(ChunkIndex i) {
107  assert(i < NumberOfInUseLists, "Out of bound");
108  return (ChunkIndex) (i+1);
109}
110
111volatile intptr_t MetaspaceGC::_capacity_until_GC = 0;
112uint MetaspaceGC::_shrink_factor = 0;
113bool MetaspaceGC::_should_concurrent_collect = false;
114
115typedef class FreeList<Metachunk> ChunkList;
116
117// Manages the global free lists of chunks.
118class ChunkManager : public CHeapObj<mtInternal> {
119  friend class TestVirtualSpaceNodeTest;
120
121  // Free list of chunks of different sizes.
122  //   SpecializedChunk
123  //   SmallChunk
124  //   MediumChunk
125  ChunkList _free_chunks[NumberOfFreeLists];
126
127  // Return non-humongous chunk list by its index.
128  ChunkList* free_chunks(ChunkIndex index);
129
130  // Returns non-humongous chunk list for the given chunk word size.
131  ChunkList* find_free_chunks_list(size_t word_size);
132
133  //   HumongousChunk
134  ChunkTreeDictionary _humongous_dictionary;
135
136  // Returns the humongous chunk dictionary.
137  ChunkTreeDictionary* humongous_dictionary() {
138    return &_humongous_dictionary;
139  }
140
141  // Size, in metaspace words, of all chunks managed by this ChunkManager
142  size_t _free_chunks_total;
143  // Number of chunks in this ChunkManager
144  size_t _free_chunks_count;
145
146  // Update counters after a chunk was added or removed removed.
147  void account_for_added_chunk(const Metachunk* c);
148  void account_for_removed_chunk(const Metachunk* c);
149
150  // Debug support
151
152  size_t sum_free_chunks();
153  size_t sum_free_chunks_count();
154
155  void locked_verify_free_chunks_total();
156  void slow_locked_verify_free_chunks_total() {
157    if (metaspace_slow_verify) {
158      locked_verify_free_chunks_total();
159    }
160  }
161  void locked_verify_free_chunks_count();
162  void slow_locked_verify_free_chunks_count() {
163    if (metaspace_slow_verify) {
164      locked_verify_free_chunks_count();
165    }
166  }
167  void verify_free_chunks_count();
168
169  struct ChunkManagerStatistics {
170    size_t num_by_type[NumberOfFreeLists];
171    size_t single_size_by_type[NumberOfFreeLists];
172    size_t total_size_by_type[NumberOfFreeLists];
173    size_t num_humongous_chunks;
174    size_t total_size_humongous_chunks;
175  };
176
177  void locked_get_statistics(ChunkManagerStatistics* stat) const;
178  void get_statistics(ChunkManagerStatistics* stat) const;
179  static void print_statistics(const ChunkManagerStatistics* stat, outputStream* out);
180
181 public:
182
183  ChunkManager(size_t specialized_size, size_t small_size, size_t medium_size)
184      : _free_chunks_total(0), _free_chunks_count(0) {
185    _free_chunks[SpecializedIndex].set_size(specialized_size);
186    _free_chunks[SmallIndex].set_size(small_size);
187    _free_chunks[MediumIndex].set_size(medium_size);
188  }
189
190  // add or delete (return) a chunk to the global freelist.
191  Metachunk* chunk_freelist_allocate(size_t word_size);
192
193  // Map a size to a list index assuming that there are lists
194  // for special, small, medium, and humongous chunks.
195  ChunkIndex list_index(size_t size);
196
197  // Map a given index to the chunk size.
198  size_t size_by_index(ChunkIndex index) const;
199
200  // Take a chunk from the ChunkManager. The chunk is expected to be in
201  // the chunk manager (the freelist if non-humongous, the dictionary if
202  // humongous).
203  void remove_chunk(Metachunk* chunk);
204
205  // Return a single chunk of type index to the ChunkManager.
206  void return_single_chunk(ChunkIndex index, Metachunk* chunk);
207
208  // Add the simple linked list of chunks to the freelist of chunks
209  // of type index.
210  void return_chunk_list(ChunkIndex index, Metachunk* chunk);
211
212  // Total of the space in the free chunks list
213  size_t free_chunks_total_words();
214  size_t free_chunks_total_bytes();
215
216  // Number of chunks in the free chunks list
217  size_t free_chunks_count();
218
219  // Remove from a list by size.  Selects list based on size of chunk.
220  Metachunk* free_chunks_get(size_t chunk_word_size);
221
222#define index_bounds_check(index)                                         \
223  assert(index == SpecializedIndex ||                                     \
224         index == SmallIndex ||                                           \
225         index == MediumIndex ||                                          \
226         index == HumongousIndex, "Bad index: %d", (int) index)
227
228  size_t num_free_chunks(ChunkIndex index) const {
229    index_bounds_check(index);
230
231    if (index == HumongousIndex) {
232      return _humongous_dictionary.total_free_blocks();
233    }
234
235    ssize_t count = _free_chunks[index].count();
236    return count == -1 ? 0 : (size_t) count;
237  }
238
239  size_t size_free_chunks_in_bytes(ChunkIndex index) const {
240    index_bounds_check(index);
241
242    size_t word_size = 0;
243    if (index == HumongousIndex) {
244      word_size = _humongous_dictionary.total_size();
245    } else {
246      const size_t size_per_chunk_in_words = _free_chunks[index].size();
247      word_size = size_per_chunk_in_words * num_free_chunks(index);
248    }
249
250    return word_size * BytesPerWord;
251  }
252
253  MetaspaceChunkFreeListSummary chunk_free_list_summary() const {
254    return MetaspaceChunkFreeListSummary(num_free_chunks(SpecializedIndex),
255                                         num_free_chunks(SmallIndex),
256                                         num_free_chunks(MediumIndex),
257                                         num_free_chunks(HumongousIndex),
258                                         size_free_chunks_in_bytes(SpecializedIndex),
259                                         size_free_chunks_in_bytes(SmallIndex),
260                                         size_free_chunks_in_bytes(MediumIndex),
261                                         size_free_chunks_in_bytes(HumongousIndex));
262  }
263
264  // Debug support
265  void verify();
266  void slow_verify() {
267    if (metaspace_slow_verify) {
268      verify();
269    }
270  }
271  void locked_verify();
272  void slow_locked_verify() {
273    if (metaspace_slow_verify) {
274      locked_verify();
275    }
276  }
277  void verify_free_chunks_total();
278
279  void locked_print_free_chunks(outputStream* st);
280  void locked_print_sum_free_chunks(outputStream* st);
281
282  void print_on(outputStream* st) const;
283
284  // Prints composition for both non-class and (if available)
285  // class chunk manager.
286  static void print_all_chunkmanagers(outputStream* out);
287};
288
289class SmallBlocks : public CHeapObj<mtClass> {
290  const static uint _small_block_max_size = sizeof(TreeChunk<Metablock,  FreeList<Metablock> >)/HeapWordSize;
291  const static uint _small_block_min_size = sizeof(Metablock)/HeapWordSize;
292
293 private:
294  FreeList<Metablock> _small_lists[_small_block_max_size - _small_block_min_size];
295
296  FreeList<Metablock>& list_at(size_t word_size) {
297    assert(word_size >= _small_block_min_size, "There are no metaspace objects less than %u words", _small_block_min_size);
298    return _small_lists[word_size - _small_block_min_size];
299  }
300
301 public:
302  SmallBlocks() {
303    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
304      uint k = i - _small_block_min_size;
305      _small_lists[k].set_size(i);
306    }
307  }
308
309  size_t total_size() const {
310    size_t result = 0;
311    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
312      uint k = i - _small_block_min_size;
313      result = result + _small_lists[k].count() * _small_lists[k].size();
314    }
315    return result;
316  }
317
318  static uint small_block_max_size() { return _small_block_max_size; }
319  static uint small_block_min_size() { return _small_block_min_size; }
320
321  MetaWord* get_block(size_t word_size) {
322    if (list_at(word_size).count() > 0) {
323      MetaWord* new_block = (MetaWord*) list_at(word_size).get_chunk_at_head();
324      return new_block;
325    } else {
326      return NULL;
327    }
328  }
329  void return_block(Metablock* free_chunk, size_t word_size) {
330    list_at(word_size).return_chunk_at_head(free_chunk, false);
331    assert(list_at(word_size).count() > 0, "Should have a chunk");
332  }
333
334  void print_on(outputStream* st) const {
335    st->print_cr("SmallBlocks:");
336    for (uint i = _small_block_min_size; i < _small_block_max_size; i++) {
337      uint k = i - _small_block_min_size;
338      st->print_cr("small_lists size " SIZE_FORMAT " count " SIZE_FORMAT, _small_lists[k].size(), _small_lists[k].count());
339    }
340  }
341};
342
343// Used to manage the free list of Metablocks (a block corresponds
344// to the allocation of a quantum of metadata).
345class BlockFreelist : public CHeapObj<mtClass> {
346  BlockTreeDictionary* const _dictionary;
347  SmallBlocks* _small_blocks;
348
349  // Only allocate and split from freelist if the size of the allocation
350  // is at least 1/4th the size of the available block.
351  const static int WasteMultiplier = 4;
352
353  // Accessors
354  BlockTreeDictionary* dictionary() const { return _dictionary; }
355  SmallBlocks* small_blocks() {
356    if (_small_blocks == NULL) {
357      _small_blocks = new SmallBlocks();
358    }
359    return _small_blocks;
360  }
361
362 public:
363  BlockFreelist();
364  ~BlockFreelist();
365
366  // Get and return a block to the free list
367  MetaWord* get_block(size_t word_size);
368  void return_block(MetaWord* p, size_t word_size);
369
370  size_t total_size() const  {
371    size_t result = dictionary()->total_size();
372    if (_small_blocks != NULL) {
373      result = result + _small_blocks->total_size();
374    }
375    return result;
376  }
377
378  static size_t min_dictionary_size()   { return TreeChunk<Metablock, FreeList<Metablock> >::min_size(); }
379  void print_on(outputStream* st) const;
380};
381
382// A VirtualSpaceList node.
383class VirtualSpaceNode : public CHeapObj<mtClass> {
384  friend class VirtualSpaceList;
385
386  // Link to next VirtualSpaceNode
387  VirtualSpaceNode* _next;
388
389  // total in the VirtualSpace
390  MemRegion _reserved;
391  ReservedSpace _rs;
392  VirtualSpace _virtual_space;
393  MetaWord* _top;
394  // count of chunks contained in this VirtualSpace
395  uintx _container_count;
396
397  // Convenience functions to access the _virtual_space
398  char* low()  const { return virtual_space()->low(); }
399  char* high() const { return virtual_space()->high(); }
400
401  // The first Metachunk will be allocated at the bottom of the
402  // VirtualSpace
403  Metachunk* first_chunk() { return (Metachunk*) bottom(); }
404
405  // Committed but unused space in the virtual space
406  size_t free_words_in_vs() const;
407 public:
408
409  VirtualSpaceNode(size_t byte_size);
410  VirtualSpaceNode(ReservedSpace rs) : _top(NULL), _next(NULL), _rs(rs), _container_count(0) {}
411  ~VirtualSpaceNode();
412
413  // Convenience functions for logical bottom and end
414  MetaWord* bottom() const { return (MetaWord*) _virtual_space.low(); }
415  MetaWord* end() const { return (MetaWord*) _virtual_space.high(); }
416
417  bool contains(const void* ptr) { return ptr >= low() && ptr < high(); }
418
419  size_t reserved_words() const  { return _virtual_space.reserved_size() / BytesPerWord; }
420  size_t committed_words() const { return _virtual_space.actual_committed_size() / BytesPerWord; }
421
422  bool is_pre_committed() const { return _virtual_space.special(); }
423
424  // address of next available space in _virtual_space;
425  // Accessors
426  VirtualSpaceNode* next() { return _next; }
427  void set_next(VirtualSpaceNode* v) { _next = v; }
428
429  void set_reserved(MemRegion const v) { _reserved = v; }
430  void set_top(MetaWord* v) { _top = v; }
431
432  // Accessors
433  MemRegion* reserved() { return &_reserved; }
434  VirtualSpace* virtual_space() const { return (VirtualSpace*) &_virtual_space; }
435
436  // Returns true if "word_size" is available in the VirtualSpace
437  bool is_available(size_t word_size) { return word_size <= pointer_delta(end(), _top, sizeof(MetaWord)); }
438
439  MetaWord* top() const { return _top; }
440  void inc_top(size_t word_size) { _top += word_size; }
441
442  uintx container_count() { return _container_count; }
443  void inc_container_count();
444  void dec_container_count();
445#ifdef ASSERT
446  uintx container_count_slow();
447  void verify_container_count();
448#endif
449
450  // used and capacity in this single entry in the list
451  size_t used_words_in_vs() const;
452  size_t capacity_words_in_vs() const;
453
454  bool initialize();
455
456  // get space from the virtual space
457  Metachunk* take_from_committed(size_t chunk_word_size);
458
459  // Allocate a chunk from the virtual space and return it.
460  Metachunk* get_chunk_vs(size_t chunk_word_size);
461
462  // Expands/shrinks the committed space in a virtual space.  Delegates
463  // to Virtualspace
464  bool expand_by(size_t min_words, size_t preferred_words);
465
466  // In preparation for deleting this node, remove all the chunks
467  // in the node from any freelist.
468  void purge(ChunkManager* chunk_manager);
469
470  // If an allocation doesn't fit in the current node a new node is created.
471  // Allocate chunks out of the remaining committed space in this node
472  // to avoid wasting that memory.
473  // This always adds up because all the chunk sizes are multiples of
474  // the smallest chunk size.
475  void retire(ChunkManager* chunk_manager);
476
477#ifdef ASSERT
478  // Debug support
479  void mangle();
480#endif
481
482  void print_on(outputStream* st) const;
483};
484
485#define assert_is_aligned(value, alignment)                  \
486  assert(is_aligned((value), (alignment)),                   \
487         SIZE_FORMAT_HEX " is not aligned to "               \
488         SIZE_FORMAT, (size_t)(uintptr_t)value, (alignment))
489
490// Decide if large pages should be committed when the memory is reserved.
491static bool should_commit_large_pages_when_reserving(size_t bytes) {
492  if (UseLargePages && UseLargePagesInMetaspace && !os::can_commit_large_page_memory()) {
493    size_t words = bytes / BytesPerWord;
494    bool is_class = false; // We never reserve large pages for the class space.
495    if (MetaspaceGC::can_expand(words, is_class) &&
496        MetaspaceGC::allowed_expansion() >= words) {
497      return true;
498    }
499  }
500
501  return false;
502}
503
504  // byte_size is the size of the associated virtualspace.
505VirtualSpaceNode::VirtualSpaceNode(size_t bytes) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
506  assert_is_aligned(bytes, Metaspace::reserve_alignment());
507  bool large_pages = should_commit_large_pages_when_reserving(bytes);
508  _rs = ReservedSpace(bytes, Metaspace::reserve_alignment(), large_pages);
509
510  if (_rs.is_reserved()) {
511    assert(_rs.base() != NULL, "Catch if we get a NULL address");
512    assert(_rs.size() != 0, "Catch if we get a 0 size");
513    assert_is_aligned(_rs.base(), Metaspace::reserve_alignment());
514    assert_is_aligned(_rs.size(), Metaspace::reserve_alignment());
515
516    MemTracker::record_virtual_memory_type((address)_rs.base(), mtClass);
517  }
518}
519
520void VirtualSpaceNode::purge(ChunkManager* chunk_manager) {
521  Metachunk* chunk = first_chunk();
522  Metachunk* invalid_chunk = (Metachunk*) top();
523  while (chunk < invalid_chunk ) {
524    assert(chunk->is_tagged_free(), "Should be tagged free");
525    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
526    chunk_manager->remove_chunk(chunk);
527    assert(chunk->next() == NULL &&
528           chunk->prev() == NULL,
529           "Was not removed from its list");
530    chunk = (Metachunk*) next;
531  }
532}
533
534#ifdef ASSERT
535uintx VirtualSpaceNode::container_count_slow() {
536  uintx count = 0;
537  Metachunk* chunk = first_chunk();
538  Metachunk* invalid_chunk = (Metachunk*) top();
539  while (chunk < invalid_chunk ) {
540    MetaWord* next = ((MetaWord*)chunk) + chunk->word_size();
541    // Don't count the chunks on the free lists.  Those are
542    // still part of the VirtualSpaceNode but not currently
543    // counted.
544    if (!chunk->is_tagged_free()) {
545      count++;
546    }
547    chunk = (Metachunk*) next;
548  }
549  return count;
550}
551#endif
552
553// List of VirtualSpaces for metadata allocation.
554class VirtualSpaceList : public CHeapObj<mtClass> {
555  friend class VirtualSpaceNode;
556
557  enum VirtualSpaceSizes {
558    VirtualSpaceSize = 256 * K
559  };
560
561  // Head of the list
562  VirtualSpaceNode* _virtual_space_list;
563  // virtual space currently being used for allocations
564  VirtualSpaceNode* _current_virtual_space;
565
566  // Is this VirtualSpaceList used for the compressed class space
567  bool _is_class;
568
569  // Sum of reserved and committed memory in the virtual spaces
570  size_t _reserved_words;
571  size_t _committed_words;
572
573  // Number of virtual spaces
574  size_t _virtual_space_count;
575
576  ~VirtualSpaceList();
577
578  VirtualSpaceNode* virtual_space_list() const { return _virtual_space_list; }
579
580  void set_virtual_space_list(VirtualSpaceNode* v) {
581    _virtual_space_list = v;
582  }
583  void set_current_virtual_space(VirtualSpaceNode* v) {
584    _current_virtual_space = v;
585  }
586
587  void link_vs(VirtualSpaceNode* new_entry);
588
589  // Get another virtual space and add it to the list.  This
590  // is typically prompted by a failed attempt to allocate a chunk
591  // and is typically followed by the allocation of a chunk.
592  bool create_new_virtual_space(size_t vs_word_size);
593
594  // Chunk up the unused committed space in the current
595  // virtual space and add the chunks to the free list.
596  void retire_current_virtual_space();
597
598 public:
599  VirtualSpaceList(size_t word_size);
600  VirtualSpaceList(ReservedSpace rs);
601
602  size_t free_bytes();
603
604  Metachunk* get_new_chunk(size_t chunk_word_size,
605                           size_t suggested_commit_granularity);
606
607  bool expand_node_by(VirtualSpaceNode* node,
608                      size_t min_words,
609                      size_t preferred_words);
610
611  bool expand_by(size_t min_words,
612                 size_t preferred_words);
613
614  VirtualSpaceNode* current_virtual_space() {
615    return _current_virtual_space;
616  }
617
618  bool is_class() const { return _is_class; }
619
620  bool initialization_succeeded() { return _virtual_space_list != NULL; }
621
622  size_t reserved_words()  { return _reserved_words; }
623  size_t reserved_bytes()  { return reserved_words() * BytesPerWord; }
624  size_t committed_words() { return _committed_words; }
625  size_t committed_bytes() { return committed_words() * BytesPerWord; }
626
627  void inc_reserved_words(size_t v);
628  void dec_reserved_words(size_t v);
629  void inc_committed_words(size_t v);
630  void dec_committed_words(size_t v);
631  void inc_virtual_space_count();
632  void dec_virtual_space_count();
633
634  bool contains(const void* ptr);
635
636  // Unlink empty VirtualSpaceNodes and free it.
637  void purge(ChunkManager* chunk_manager);
638
639  void print_on(outputStream* st) const;
640
641  class VirtualSpaceListIterator : public StackObj {
642    VirtualSpaceNode* _virtual_spaces;
643   public:
644    VirtualSpaceListIterator(VirtualSpaceNode* virtual_spaces) :
645      _virtual_spaces(virtual_spaces) {}
646
647    bool repeat() {
648      return _virtual_spaces != NULL;
649    }
650
651    VirtualSpaceNode* get_next() {
652      VirtualSpaceNode* result = _virtual_spaces;
653      if (_virtual_spaces != NULL) {
654        _virtual_spaces = _virtual_spaces->next();
655      }
656      return result;
657    }
658  };
659};
660
661class Metadebug : AllStatic {
662  // Debugging support for Metaspaces
663  static int _allocation_fail_alot_count;
664
665 public:
666
667  static void init_allocation_fail_alot_count();
668#ifdef ASSERT
669  static bool test_metadata_failure();
670#endif
671};
672
673int Metadebug::_allocation_fail_alot_count = 0;
674
675//  SpaceManager - used by Metaspace to handle allocations
676class SpaceManager : public CHeapObj<mtClass> {
677  friend class Metaspace;
678  friend class Metadebug;
679
680 private:
681
682  // protects allocations
683  Mutex* const _lock;
684
685  // Type of metadata allocated.
686  Metaspace::MetadataType _mdtype;
687
688  // List of chunks in use by this SpaceManager.  Allocations
689  // are done from the current chunk.  The list is used for deallocating
690  // chunks when the SpaceManager is freed.
691  Metachunk* _chunks_in_use[NumberOfInUseLists];
692  Metachunk* _current_chunk;
693
694  // Maximum number of small chunks to allocate to a SpaceManager
695  static uint const _small_chunk_limit;
696
697  // Sum of all space in allocated chunks
698  size_t _allocated_blocks_words;
699
700  // Sum of all allocated chunks
701  size_t _allocated_chunks_words;
702  size_t _allocated_chunks_count;
703
704  // Free lists of blocks are per SpaceManager since they
705  // are assumed to be in chunks in use by the SpaceManager
706  // and all chunks in use by a SpaceManager are freed when
707  // the class loader using the SpaceManager is collected.
708  BlockFreelist* _block_freelists;
709
710  // protects virtualspace and chunk expansions
711  static const char*  _expand_lock_name;
712  static const int    _expand_lock_rank;
713  static Mutex* const _expand_lock;
714
715 private:
716  // Accessors
717  Metachunk* chunks_in_use(ChunkIndex index) const { return _chunks_in_use[index]; }
718  void set_chunks_in_use(ChunkIndex index, Metachunk* v) {
719    _chunks_in_use[index] = v;
720  }
721
722  BlockFreelist* block_freelists() const { return _block_freelists; }
723
724  Metaspace::MetadataType mdtype() { return _mdtype; }
725
726  VirtualSpaceList* vs_list()   const { return Metaspace::get_space_list(_mdtype); }
727  ChunkManager* chunk_manager() const { return Metaspace::get_chunk_manager(_mdtype); }
728
729  Metachunk* current_chunk() const { return _current_chunk; }
730  void set_current_chunk(Metachunk* v) {
731    _current_chunk = v;
732  }
733
734  Metachunk* find_current_chunk(size_t word_size);
735
736  // Add chunk to the list of chunks in use
737  void add_chunk(Metachunk* v, bool make_current);
738  void retire_current_chunk();
739
740  Mutex* lock() const { return _lock; }
741
742 protected:
743  void initialize();
744
745 public:
746  SpaceManager(Metaspace::MetadataType mdtype,
747               Mutex* lock);
748  ~SpaceManager();
749
750  enum ChunkMultiples {
751    MediumChunkMultiple = 4
752  };
753
754  static size_t specialized_chunk_size(bool is_class) { return is_class ? ClassSpecializedChunk : SpecializedChunk; }
755  static size_t small_chunk_size(bool is_class)       { return is_class ? ClassSmallChunk : SmallChunk; }
756  static size_t medium_chunk_size(bool is_class)      { return is_class ? ClassMediumChunk : MediumChunk; }
757
758  static size_t smallest_chunk_size(bool is_class)    { return specialized_chunk_size(is_class); }
759
760  // Accessors
761  bool is_class() const { return _mdtype == Metaspace::ClassType; }
762
763  size_t specialized_chunk_size() const { return specialized_chunk_size(is_class()); }
764  size_t small_chunk_size()       const { return small_chunk_size(is_class()); }
765  size_t medium_chunk_size()      const { return medium_chunk_size(is_class()); }
766
767  size_t smallest_chunk_size()    const { return smallest_chunk_size(is_class()); }
768
769  size_t medium_chunk_bunch()     const { return medium_chunk_size() * MediumChunkMultiple; }
770
771  size_t allocated_blocks_words() const { return _allocated_blocks_words; }
772  size_t allocated_blocks_bytes() const { return _allocated_blocks_words * BytesPerWord; }
773  size_t allocated_chunks_words() const { return _allocated_chunks_words; }
774  size_t allocated_chunks_bytes() const { return _allocated_chunks_words * BytesPerWord; }
775  size_t allocated_chunks_count() const { return _allocated_chunks_count; }
776
777  bool is_humongous(size_t word_size) { return word_size > medium_chunk_size(); }
778
779  static Mutex* expand_lock() { return _expand_lock; }
780
781  // Increment the per Metaspace and global running sums for Metachunks
782  // by the given size.  This is used when a Metachunk to added to
783  // the in-use list.
784  void inc_size_metrics(size_t words);
785  // Increment the per Metaspace and global running sums Metablocks by the given
786  // size.  This is used when a Metablock is allocated.
787  void inc_used_metrics(size_t words);
788  // Delete the portion of the running sums for this SpaceManager. That is,
789  // the globals running sums for the Metachunks and Metablocks are
790  // decremented for all the Metachunks in-use by this SpaceManager.
791  void dec_total_from_size_metrics();
792
793  // Adjust the initial chunk size to match one of the fixed chunk list sizes,
794  // or return the unadjusted size if the requested size is humongous.
795  static size_t adjust_initial_chunk_size(size_t requested, bool is_class_space);
796  size_t adjust_initial_chunk_size(size_t requested) const;
797
798  // Get the initial chunks size for this metaspace type.
799  size_t get_initial_chunk_size(Metaspace::MetaspaceType type) const;
800
801  size_t sum_capacity_in_chunks_in_use() const;
802  size_t sum_used_in_chunks_in_use() const;
803  size_t sum_free_in_chunks_in_use() const;
804  size_t sum_waste_in_chunks_in_use() const;
805  size_t sum_waste_in_chunks_in_use(ChunkIndex index ) const;
806
807  size_t sum_count_in_chunks_in_use();
808  size_t sum_count_in_chunks_in_use(ChunkIndex i);
809
810  Metachunk* get_new_chunk(size_t chunk_word_size);
811
812  // Block allocation and deallocation.
813  // Allocates a block from the current chunk
814  MetaWord* allocate(size_t word_size);
815  // Allocates a block from a small chunk
816  MetaWord* get_small_chunk_and_allocate(size_t word_size);
817
818  // Helper for allocations
819  MetaWord* allocate_work(size_t word_size);
820
821  // Returns a block to the per manager freelist
822  void deallocate(MetaWord* p, size_t word_size);
823
824  // Based on the allocation size and a minimum chunk size,
825  // returned chunk size (for expanding space for chunk allocation).
826  size_t calc_chunk_size(size_t allocation_word_size);
827
828  // Called when an allocation from the current chunk fails.
829  // Gets a new chunk (may require getting a new virtual space),
830  // and allocates from that chunk.
831  MetaWord* grow_and_allocate(size_t word_size);
832
833  // Notify memory usage to MemoryService.
834  void track_metaspace_memory_usage();
835
836  // debugging support.
837
838  void dump(outputStream* const out) const;
839  void print_on(outputStream* st) const;
840  void locked_print_chunks_in_use_on(outputStream* st) const;
841
842  void verify();
843  void verify_chunk_size(Metachunk* chunk);
844#ifdef ASSERT
845  void verify_allocated_blocks_words();
846#endif
847
848  // This adjusts the size given to be greater than the minimum allocation size in
849  // words for data in metaspace.  Esentially the minimum size is currently 3 words.
850  size_t get_allocation_word_size(size_t word_size) {
851    size_t byte_size = word_size * BytesPerWord;
852
853    size_t raw_bytes_size = MAX2(byte_size, sizeof(Metablock));
854    raw_bytes_size = align_up(raw_bytes_size, Metachunk::object_alignment());
855
856    size_t raw_word_size = raw_bytes_size / BytesPerWord;
857    assert(raw_word_size * BytesPerWord == raw_bytes_size, "Size problem");
858
859    return raw_word_size;
860  }
861};
862
863uint const SpaceManager::_small_chunk_limit = 4;
864
865const char* SpaceManager::_expand_lock_name =
866  "SpaceManager chunk allocation lock";
867const int SpaceManager::_expand_lock_rank = Monitor::leaf - 1;
868Mutex* const SpaceManager::_expand_lock =
869  new Mutex(SpaceManager::_expand_lock_rank,
870            SpaceManager::_expand_lock_name,
871            Mutex::_allow_vm_block_flag,
872            Monitor::_safepoint_check_never);
873
874void VirtualSpaceNode::inc_container_count() {
875  assert_lock_strong(SpaceManager::expand_lock());
876  _container_count++;
877}
878
879void VirtualSpaceNode::dec_container_count() {
880  assert_lock_strong(SpaceManager::expand_lock());
881  _container_count--;
882}
883
884#ifdef ASSERT
885void VirtualSpaceNode::verify_container_count() {
886  assert(_container_count == container_count_slow(),
887         "Inconsistency in container_count _container_count " UINTX_FORMAT
888         " container_count_slow() " UINTX_FORMAT, _container_count, container_count_slow());
889}
890#endif
891
892// BlockFreelist methods
893
894BlockFreelist::BlockFreelist() : _dictionary(new BlockTreeDictionary()), _small_blocks(NULL) {}
895
896BlockFreelist::~BlockFreelist() {
897  delete _dictionary;
898  if (_small_blocks != NULL) {
899    delete _small_blocks;
900  }
901}
902
903void BlockFreelist::return_block(MetaWord* p, size_t word_size) {
904  assert(word_size >= SmallBlocks::small_block_min_size(), "never return dark matter");
905
906  Metablock* free_chunk = ::new (p) Metablock(word_size);
907  if (word_size < SmallBlocks::small_block_max_size()) {
908    small_blocks()->return_block(free_chunk, word_size);
909  } else {
910  dictionary()->return_chunk(free_chunk);
911}
912  log_trace(gc, metaspace, freelist, blocks)("returning block at " INTPTR_FORMAT " size = "
913            SIZE_FORMAT, p2i(free_chunk), word_size);
914}
915
916MetaWord* BlockFreelist::get_block(size_t word_size) {
917  assert(word_size >= SmallBlocks::small_block_min_size(), "never get dark matter");
918
919  // Try small_blocks first.
920  if (word_size < SmallBlocks::small_block_max_size()) {
921    // Don't create small_blocks() until needed.  small_blocks() allocates the small block list for
922    // this space manager.
923    MetaWord* new_block = (MetaWord*) small_blocks()->get_block(word_size);
924    if (new_block != NULL) {
925      log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
926              p2i(new_block), word_size);
927      return new_block;
928    }
929  }
930
931  if (word_size < BlockFreelist::min_dictionary_size()) {
932    // If allocation in small blocks fails, this is Dark Matter.  Too small for dictionary.
933    return NULL;
934  }
935
936  Metablock* free_block = dictionary()->get_chunk(word_size);
937  if (free_block == NULL) {
938    return NULL;
939  }
940
941  const size_t block_size = free_block->size();
942  if (block_size > WasteMultiplier * word_size) {
943    return_block((MetaWord*)free_block, block_size);
944    return NULL;
945  }
946
947  MetaWord* new_block = (MetaWord*)free_block;
948  assert(block_size >= word_size, "Incorrect size of block from freelist");
949  const size_t unused = block_size - word_size;
950  if (unused >= SmallBlocks::small_block_min_size()) {
951    return_block(new_block + word_size, unused);
952  }
953
954  log_trace(gc, metaspace, freelist, blocks)("getting block at " INTPTR_FORMAT " size = " SIZE_FORMAT,
955            p2i(new_block), word_size);
956  return new_block;
957}
958
959void BlockFreelist::print_on(outputStream* st) const {
960  dictionary()->print_free_lists(st);
961  if (_small_blocks != NULL) {
962    _small_blocks->print_on(st);
963  }
964}
965
966// VirtualSpaceNode methods
967
968VirtualSpaceNode::~VirtualSpaceNode() {
969  _rs.release();
970#ifdef ASSERT
971  size_t word_size = sizeof(*this) / BytesPerWord;
972  Copy::fill_to_words((HeapWord*) this, word_size, 0xf1f1f1f1);
973#endif
974}
975
976size_t VirtualSpaceNode::used_words_in_vs() const {
977  return pointer_delta(top(), bottom(), sizeof(MetaWord));
978}
979
980// Space committed in the VirtualSpace
981size_t VirtualSpaceNode::capacity_words_in_vs() const {
982  return pointer_delta(end(), bottom(), sizeof(MetaWord));
983}
984
985size_t VirtualSpaceNode::free_words_in_vs() const {
986  return pointer_delta(end(), top(), sizeof(MetaWord));
987}
988
989// Allocates the chunk from the virtual space only.
990// This interface is also used internally for debugging.  Not all
991// chunks removed here are necessarily used for allocation.
992Metachunk* VirtualSpaceNode::take_from_committed(size_t chunk_word_size) {
993  // Bottom of the new chunk
994  MetaWord* chunk_limit = top();
995  assert(chunk_limit != NULL, "Not safe to call this method");
996
997  // The virtual spaces are always expanded by the
998  // commit granularity to enforce the following condition.
999  // Without this the is_available check will not work correctly.
1000  assert(_virtual_space.committed_size() == _virtual_space.actual_committed_size(),
1001      "The committed memory doesn't match the expanded memory.");
1002
1003  if (!is_available(chunk_word_size)) {
1004    LogTarget(Debug, gc, metaspace, freelist) lt;
1005    if (lt.is_enabled()) {
1006      LogStream ls(lt);
1007      ls.print("VirtualSpaceNode::take_from_committed() not available " SIZE_FORMAT " words ", chunk_word_size);
1008      // Dump some information about the virtual space that is nearly full
1009      print_on(&ls);
1010    }
1011    return NULL;
1012  }
1013
1014  // Take the space  (bump top on the current virtual space).
1015  inc_top(chunk_word_size);
1016
1017  // Initialize the chunk
1018  Metachunk* result = ::new (chunk_limit) Metachunk(chunk_word_size, this);
1019  return result;
1020}
1021
1022
1023// Expand the virtual space (commit more of the reserved space)
1024bool VirtualSpaceNode::expand_by(size_t min_words, size_t preferred_words) {
1025  size_t min_bytes = min_words * BytesPerWord;
1026  size_t preferred_bytes = preferred_words * BytesPerWord;
1027
1028  size_t uncommitted = virtual_space()->reserved_size() - virtual_space()->actual_committed_size();
1029
1030  if (uncommitted < min_bytes) {
1031    return false;
1032  }
1033
1034  size_t commit = MIN2(preferred_bytes, uncommitted);
1035  bool result = virtual_space()->expand_by(commit, false);
1036
1037  assert(result, "Failed to commit memory");
1038
1039  return result;
1040}
1041
1042Metachunk* VirtualSpaceNode::get_chunk_vs(size_t chunk_word_size) {
1043  assert_lock_strong(SpaceManager::expand_lock());
1044  Metachunk* result = take_from_committed(chunk_word_size);
1045  if (result != NULL) {
1046    inc_container_count();
1047  }
1048  return result;
1049}
1050
1051bool VirtualSpaceNode::initialize() {
1052
1053  if (!_rs.is_reserved()) {
1054    return false;
1055  }
1056
1057  // These are necessary restriction to make sure that the virtual space always
1058  // grows in steps of Metaspace::commit_alignment(). If both base and size are
1059  // aligned only the middle alignment of the VirtualSpace is used.
1060  assert_is_aligned(_rs.base(), Metaspace::commit_alignment());
1061  assert_is_aligned(_rs.size(), Metaspace::commit_alignment());
1062
1063  // ReservedSpaces marked as special will have the entire memory
1064  // pre-committed. Setting a committed size will make sure that
1065  // committed_size and actual_committed_size agrees.
1066  size_t pre_committed_size = _rs.special() ? _rs.size() : 0;
1067
1068  bool result = virtual_space()->initialize_with_granularity(_rs, pre_committed_size,
1069                                            Metaspace::commit_alignment());
1070  if (result) {
1071    assert(virtual_space()->committed_size() == virtual_space()->actual_committed_size(),
1072        "Checking that the pre-committed memory was registered by the VirtualSpace");
1073
1074    set_top((MetaWord*)virtual_space()->low());
1075    set_reserved(MemRegion((HeapWord*)_rs.base(),
1076                 (HeapWord*)(_rs.base() + _rs.size())));
1077
1078    assert(reserved()->start() == (HeapWord*) _rs.base(),
1079           "Reserved start was not set properly " PTR_FORMAT
1080           " != " PTR_FORMAT, p2i(reserved()->start()), p2i(_rs.base()));
1081    assert(reserved()->word_size() == _rs.size() / BytesPerWord,
1082           "Reserved size was not set properly " SIZE_FORMAT
1083           " != " SIZE_FORMAT, reserved()->word_size(),
1084           _rs.size() / BytesPerWord);
1085  }
1086
1087  return result;
1088}
1089
1090void VirtualSpaceNode::print_on(outputStream* st) const {
1091  size_t used = used_words_in_vs();
1092  size_t capacity = capacity_words_in_vs();
1093  VirtualSpace* vs = virtual_space();
1094  st->print_cr("   space @ " PTR_FORMAT " " SIZE_FORMAT "K, " SIZE_FORMAT_W(3) "%% used "
1095           "[" PTR_FORMAT ", " PTR_FORMAT ", "
1096           PTR_FORMAT ", " PTR_FORMAT ")",
1097           p2i(vs), capacity / K,
1098           capacity == 0 ? 0 : used * 100 / capacity,
1099           p2i(bottom()), p2i(top()), p2i(end()),
1100           p2i(vs->high_boundary()));
1101}
1102
1103#ifdef ASSERT
1104void VirtualSpaceNode::mangle() {
1105  size_t word_size = capacity_words_in_vs();
1106  Copy::fill_to_words((HeapWord*) low(), word_size, 0xf1f1f1f1);
1107}
1108#endif // ASSERT
1109
1110// VirtualSpaceList methods
1111// Space allocated from the VirtualSpace
1112
1113VirtualSpaceList::~VirtualSpaceList() {
1114  VirtualSpaceListIterator iter(virtual_space_list());
1115  while (iter.repeat()) {
1116    VirtualSpaceNode* vsl = iter.get_next();
1117    delete vsl;
1118  }
1119}
1120
1121void VirtualSpaceList::inc_reserved_words(size_t v) {
1122  assert_lock_strong(SpaceManager::expand_lock());
1123  _reserved_words = _reserved_words + v;
1124}
1125void VirtualSpaceList::dec_reserved_words(size_t v) {
1126  assert_lock_strong(SpaceManager::expand_lock());
1127  _reserved_words = _reserved_words - v;
1128}
1129
1130#define assert_committed_below_limit()                        \
1131  assert(MetaspaceAux::committed_bytes() <= MaxMetaspaceSize, \
1132         "Too much committed memory. Committed: " SIZE_FORMAT \
1133         " limit (MaxMetaspaceSize): " SIZE_FORMAT,           \
1134         MetaspaceAux::committed_bytes(), MaxMetaspaceSize);
1135
1136void VirtualSpaceList::inc_committed_words(size_t v) {
1137  assert_lock_strong(SpaceManager::expand_lock());
1138  _committed_words = _committed_words + v;
1139
1140  assert_committed_below_limit();
1141}
1142void VirtualSpaceList::dec_committed_words(size_t v) {
1143  assert_lock_strong(SpaceManager::expand_lock());
1144  _committed_words = _committed_words - v;
1145
1146  assert_committed_below_limit();
1147}
1148
1149void VirtualSpaceList::inc_virtual_space_count() {
1150  assert_lock_strong(SpaceManager::expand_lock());
1151  _virtual_space_count++;
1152}
1153void VirtualSpaceList::dec_virtual_space_count() {
1154  assert_lock_strong(SpaceManager::expand_lock());
1155  _virtual_space_count--;
1156}
1157
1158void ChunkManager::remove_chunk(Metachunk* chunk) {
1159  size_t word_size = chunk->word_size();
1160  ChunkIndex index = list_index(word_size);
1161  if (index != HumongousIndex) {
1162    free_chunks(index)->remove_chunk(chunk);
1163  } else {
1164    humongous_dictionary()->remove_chunk(chunk);
1165  }
1166
1167  // Chunk has been removed from the chunks free list, update counters.
1168  account_for_removed_chunk(chunk);
1169}
1170
1171// Walk the list of VirtualSpaceNodes and delete
1172// nodes with a 0 container_count.  Remove Metachunks in
1173// the node from their respective freelists.
1174void VirtualSpaceList::purge(ChunkManager* chunk_manager) {
1175  assert(SafepointSynchronize::is_at_safepoint(), "must be called at safepoint for contains to work");
1176  assert_lock_strong(SpaceManager::expand_lock());
1177  // Don't use a VirtualSpaceListIterator because this
1178  // list is being changed and a straightforward use of an iterator is not safe.
1179  VirtualSpaceNode* purged_vsl = NULL;
1180  VirtualSpaceNode* prev_vsl = virtual_space_list();
1181  VirtualSpaceNode* next_vsl = prev_vsl;
1182  while (next_vsl != NULL) {
1183    VirtualSpaceNode* vsl = next_vsl;
1184    DEBUG_ONLY(vsl->verify_container_count();)
1185    next_vsl = vsl->next();
1186    // Don't free the current virtual space since it will likely
1187    // be needed soon.
1188    if (vsl->container_count() == 0 && vsl != current_virtual_space()) {
1189      // Unlink it from the list
1190      if (prev_vsl == vsl) {
1191        // This is the case of the current node being the first node.
1192        assert(vsl == virtual_space_list(), "Expected to be the first node");
1193        set_virtual_space_list(vsl->next());
1194      } else {
1195        prev_vsl->set_next(vsl->next());
1196      }
1197
1198      vsl->purge(chunk_manager);
1199      dec_reserved_words(vsl->reserved_words());
1200      dec_committed_words(vsl->committed_words());
1201      dec_virtual_space_count();
1202      purged_vsl = vsl;
1203      delete vsl;
1204    } else {
1205      prev_vsl = vsl;
1206    }
1207  }
1208#ifdef ASSERT
1209  if (purged_vsl != NULL) {
1210    // List should be stable enough to use an iterator here.
1211    VirtualSpaceListIterator iter(virtual_space_list());
1212    while (iter.repeat()) {
1213      VirtualSpaceNode* vsl = iter.get_next();
1214      assert(vsl != purged_vsl, "Purge of vsl failed");
1215    }
1216  }
1217#endif
1218}
1219
1220
1221// This function looks at the mmap regions in the metaspace without locking.
1222// The chunks are added with store ordering and not deleted except for at
1223// unloading time during a safepoint.
1224bool VirtualSpaceList::contains(const void* ptr) {
1225  // List should be stable enough to use an iterator here because removing virtual
1226  // space nodes is only allowed at a safepoint.
1227  VirtualSpaceListIterator iter(virtual_space_list());
1228  while (iter.repeat()) {
1229    VirtualSpaceNode* vsn = iter.get_next();
1230    if (vsn->contains(ptr)) {
1231      return true;
1232    }
1233  }
1234  return false;
1235}
1236
1237void VirtualSpaceList::retire_current_virtual_space() {
1238  assert_lock_strong(SpaceManager::expand_lock());
1239
1240  VirtualSpaceNode* vsn = current_virtual_space();
1241
1242  ChunkManager* cm = is_class() ? Metaspace::chunk_manager_class() :
1243                                  Metaspace::chunk_manager_metadata();
1244
1245  vsn->retire(cm);
1246}
1247
1248void VirtualSpaceNode::retire(ChunkManager* chunk_manager) {
1249  DEBUG_ONLY(verify_container_count();)
1250  for (int i = (int)MediumIndex; i >= (int)ZeroIndex; --i) {
1251    ChunkIndex index = (ChunkIndex)i;
1252    size_t chunk_size = chunk_manager->size_by_index(index);
1253
1254    while (free_words_in_vs() >= chunk_size) {
1255      Metachunk* chunk = get_chunk_vs(chunk_size);
1256      assert(chunk != NULL, "allocation should have been successful");
1257
1258      chunk_manager->return_single_chunk(index, chunk);
1259    }
1260    DEBUG_ONLY(verify_container_count();)
1261  }
1262  assert(free_words_in_vs() == 0, "should be empty now");
1263}
1264
1265VirtualSpaceList::VirtualSpaceList(size_t word_size) :
1266                                   _is_class(false),
1267                                   _virtual_space_list(NULL),
1268                                   _current_virtual_space(NULL),
1269                                   _reserved_words(0),
1270                                   _committed_words(0),
1271                                   _virtual_space_count(0) {
1272  MutexLockerEx cl(SpaceManager::expand_lock(),
1273                   Mutex::_no_safepoint_check_flag);
1274  create_new_virtual_space(word_size);
1275}
1276
1277VirtualSpaceList::VirtualSpaceList(ReservedSpace rs) :
1278                                   _is_class(true),
1279                                   _virtual_space_list(NULL),
1280                                   _current_virtual_space(NULL),
1281                                   _reserved_words(0),
1282                                   _committed_words(0),
1283                                   _virtual_space_count(0) {
1284  MutexLockerEx cl(SpaceManager::expand_lock(),
1285                   Mutex::_no_safepoint_check_flag);
1286  VirtualSpaceNode* class_entry = new VirtualSpaceNode(rs);
1287  bool succeeded = class_entry->initialize();
1288  if (succeeded) {
1289    link_vs(class_entry);
1290  }
1291}
1292
1293size_t VirtualSpaceList::free_bytes() {
1294  return virtual_space_list()->free_words_in_vs() * BytesPerWord;
1295}
1296
1297// Allocate another meta virtual space and add it to the list.
1298bool VirtualSpaceList::create_new_virtual_space(size_t vs_word_size) {
1299  assert_lock_strong(SpaceManager::expand_lock());
1300
1301  if (is_class()) {
1302    assert(false, "We currently don't support more than one VirtualSpace for"
1303                  " the compressed class space. The initialization of the"
1304                  " CCS uses another code path and should not hit this path.");
1305    return false;
1306  }
1307
1308  if (vs_word_size == 0) {
1309    assert(false, "vs_word_size should always be at least _reserve_alignment large.");
1310    return false;
1311  }
1312
1313  // Reserve the space
1314  size_t vs_byte_size = vs_word_size * BytesPerWord;
1315  assert_is_aligned(vs_byte_size, Metaspace::reserve_alignment());
1316
1317  // Allocate the meta virtual space and initialize it.
1318  VirtualSpaceNode* new_entry = new VirtualSpaceNode(vs_byte_size);
1319  if (!new_entry->initialize()) {
1320    delete new_entry;
1321    return false;
1322  } else {
1323    assert(new_entry->reserved_words() == vs_word_size,
1324        "Reserved memory size differs from requested memory size");
1325    // ensure lock-free iteration sees fully initialized node
1326    OrderAccess::storestore();
1327    link_vs(new_entry);
1328    return true;
1329  }
1330}
1331
1332void VirtualSpaceList::link_vs(VirtualSpaceNode* new_entry) {
1333  if (virtual_space_list() == NULL) {
1334      set_virtual_space_list(new_entry);
1335  } else {
1336    current_virtual_space()->set_next(new_entry);
1337  }
1338  set_current_virtual_space(new_entry);
1339  inc_reserved_words(new_entry->reserved_words());
1340  inc_committed_words(new_entry->committed_words());
1341  inc_virtual_space_count();
1342#ifdef ASSERT
1343  new_entry->mangle();
1344#endif
1345  LogTarget(Trace, gc, metaspace) lt;
1346  if (lt.is_enabled()) {
1347    LogStream ls(lt);
1348    VirtualSpaceNode* vsl = current_virtual_space();
1349    ResourceMark rm;
1350    vsl->print_on(&ls);
1351  }
1352}
1353
1354bool VirtualSpaceList::expand_node_by(VirtualSpaceNode* node,
1355                                      size_t min_words,
1356                                      size_t preferred_words) {
1357  size_t before = node->committed_words();
1358
1359  bool result = node->expand_by(min_words, preferred_words);
1360
1361  size_t after = node->committed_words();
1362
1363  // after and before can be the same if the memory was pre-committed.
1364  assert(after >= before, "Inconsistency");
1365  inc_committed_words(after - before);
1366
1367  return result;
1368}
1369
1370bool VirtualSpaceList::expand_by(size_t min_words, size_t preferred_words) {
1371  assert_is_aligned(min_words,       Metaspace::commit_alignment_words());
1372  assert_is_aligned(preferred_words, Metaspace::commit_alignment_words());
1373  assert(min_words <= preferred_words, "Invalid arguments");
1374
1375  if (!MetaspaceGC::can_expand(min_words, this->is_class())) {
1376    return  false;
1377  }
1378
1379  size_t allowed_expansion_words = MetaspaceGC::allowed_expansion();
1380  if (allowed_expansion_words < min_words) {
1381    return false;
1382  }
1383
1384  size_t max_expansion_words = MIN2(preferred_words, allowed_expansion_words);
1385
1386  // Commit more memory from the the current virtual space.
1387  bool vs_expanded = expand_node_by(current_virtual_space(),
1388                                    min_words,
1389                                    max_expansion_words);
1390  if (vs_expanded) {
1391    return true;
1392  }
1393  retire_current_virtual_space();
1394
1395  // Get another virtual space.
1396  size_t grow_vs_words = MAX2((size_t)VirtualSpaceSize, preferred_words);
1397  grow_vs_words = align_up(grow_vs_words, Metaspace::reserve_alignment_words());
1398
1399  if (create_new_virtual_space(grow_vs_words)) {
1400    if (current_virtual_space()->is_pre_committed()) {
1401      // The memory was pre-committed, so we are done here.
1402      assert(min_words <= current_virtual_space()->committed_words(),
1403          "The new VirtualSpace was pre-committed, so it"
1404          "should be large enough to fit the alloc request.");
1405      return true;
1406    }
1407
1408    return expand_node_by(current_virtual_space(),
1409                          min_words,
1410                          max_expansion_words);
1411  }
1412
1413  return false;
1414}
1415
1416Metachunk* VirtualSpaceList::get_new_chunk(size_t chunk_word_size, size_t suggested_commit_granularity) {
1417
1418  // Allocate a chunk out of the current virtual space.
1419  Metachunk* next = current_virtual_space()->get_chunk_vs(chunk_word_size);
1420
1421  if (next != NULL) {
1422    return next;
1423  }
1424
1425  // The expand amount is currently only determined by the requested sizes
1426  // and not how much committed memory is left in the current virtual space.
1427
1428  size_t min_word_size       = align_up(chunk_word_size,              Metaspace::commit_alignment_words());
1429  size_t preferred_word_size = align_up(suggested_commit_granularity, Metaspace::commit_alignment_words());
1430  if (min_word_size >= preferred_word_size) {
1431    // Can happen when humongous chunks are allocated.
1432    preferred_word_size = min_word_size;
1433  }
1434
1435  bool expanded = expand_by(min_word_size, preferred_word_size);
1436  if (expanded) {
1437    next = current_virtual_space()->get_chunk_vs(chunk_word_size);
1438    assert(next != NULL, "The allocation was expected to succeed after the expansion");
1439  }
1440
1441   return next;
1442}
1443
1444void VirtualSpaceList::print_on(outputStream* st) const {
1445  VirtualSpaceListIterator iter(virtual_space_list());
1446  while (iter.repeat()) {
1447    VirtualSpaceNode* node = iter.get_next();
1448    node->print_on(st);
1449  }
1450}
1451
1452// MetaspaceGC methods
1453
1454// VM_CollectForMetadataAllocation is the vm operation used to GC.
1455// Within the VM operation after the GC the attempt to allocate the metadata
1456// should succeed.  If the GC did not free enough space for the metaspace
1457// allocation, the HWM is increased so that another virtualspace will be
1458// allocated for the metadata.  With perm gen the increase in the perm
1459// gen had bounds, MinMetaspaceExpansion and MaxMetaspaceExpansion.  The
1460// metaspace policy uses those as the small and large steps for the HWM.
1461//
1462// After the GC the compute_new_size() for MetaspaceGC is called to
1463// resize the capacity of the metaspaces.  The current implementation
1464// is based on the flags MinMetaspaceFreeRatio and MaxMetaspaceFreeRatio used
1465// to resize the Java heap by some GC's.  New flags can be implemented
1466// if really needed.  MinMetaspaceFreeRatio is used to calculate how much
1467// free space is desirable in the metaspace capacity to decide how much
1468// to increase the HWM.  MaxMetaspaceFreeRatio is used to decide how much
1469// free space is desirable in the metaspace capacity before decreasing
1470// the HWM.
1471
1472// Calculate the amount to increase the high water mark (HWM).
1473// Increase by a minimum amount (MinMetaspaceExpansion) so that
1474// another expansion is not requested too soon.  If that is not
1475// enough to satisfy the allocation, increase by MaxMetaspaceExpansion.
1476// If that is still not enough, expand by the size of the allocation
1477// plus some.
1478size_t MetaspaceGC::delta_capacity_until_GC(size_t bytes) {
1479  size_t min_delta = MinMetaspaceExpansion;
1480  size_t max_delta = MaxMetaspaceExpansion;
1481  size_t delta = align_up(bytes, Metaspace::commit_alignment());
1482
1483  if (delta <= min_delta) {
1484    delta = min_delta;
1485  } else if (delta <= max_delta) {
1486    // Don't want to hit the high water mark on the next
1487    // allocation so make the delta greater than just enough
1488    // for this allocation.
1489    delta = max_delta;
1490  } else {
1491    // This allocation is large but the next ones are probably not
1492    // so increase by the minimum.
1493    delta = delta + min_delta;
1494  }
1495
1496  assert_is_aligned(delta, Metaspace::commit_alignment());
1497
1498  return delta;
1499}
1500
1501size_t MetaspaceGC::capacity_until_GC() {
1502  size_t value = (size_t)OrderAccess::load_ptr_acquire(&_capacity_until_GC);
1503  assert(value >= MetaspaceSize, "Not initialized properly?");
1504  return value;
1505}
1506
1507bool MetaspaceGC::inc_capacity_until_GC(size_t v, size_t* new_cap_until_GC, size_t* old_cap_until_GC) {
1508  assert_is_aligned(v, Metaspace::commit_alignment());
1509
1510  size_t capacity_until_GC = (size_t) _capacity_until_GC;
1511  size_t new_value = capacity_until_GC + v;
1512
1513  if (new_value < capacity_until_GC) {
1514    // The addition wrapped around, set new_value to aligned max value.
1515    new_value = align_down(max_uintx, Metaspace::commit_alignment());
1516  }
1517
1518  intptr_t expected = (intptr_t) capacity_until_GC;
1519  intptr_t actual = Atomic::cmpxchg_ptr((intptr_t) new_value, &_capacity_until_GC, expected);
1520
1521  if (expected != actual) {
1522    return false;
1523  }
1524
1525  if (new_cap_until_GC != NULL) {
1526    *new_cap_until_GC = new_value;
1527  }
1528  if (old_cap_until_GC != NULL) {
1529    *old_cap_until_GC = capacity_until_GC;
1530  }
1531  return true;
1532}
1533
1534size_t MetaspaceGC::dec_capacity_until_GC(size_t v) {
1535  assert_is_aligned(v, Metaspace::commit_alignment());
1536
1537  return (size_t)Atomic::add_ptr(-(intptr_t)v, &_capacity_until_GC);
1538}
1539
1540void MetaspaceGC::initialize() {
1541  // Set the high-water mark to MaxMetapaceSize during VM initializaton since
1542  // we can't do a GC during initialization.
1543  _capacity_until_GC = MaxMetaspaceSize;
1544}
1545
1546void MetaspaceGC::post_initialize() {
1547  // Reset the high-water mark once the VM initialization is done.
1548  _capacity_until_GC = MAX2(MetaspaceAux::committed_bytes(), MetaspaceSize);
1549}
1550
1551bool MetaspaceGC::can_expand(size_t word_size, bool is_class) {
1552  // Check if the compressed class space is full.
1553  if (is_class && Metaspace::using_class_space()) {
1554    size_t class_committed = MetaspaceAux::committed_bytes(Metaspace::ClassType);
1555    if (class_committed + word_size * BytesPerWord > CompressedClassSpaceSize) {
1556      return false;
1557    }
1558  }
1559
1560  // Check if the user has imposed a limit on the metaspace memory.
1561  size_t committed_bytes = MetaspaceAux::committed_bytes();
1562  if (committed_bytes + word_size * BytesPerWord > MaxMetaspaceSize) {
1563    return false;
1564  }
1565
1566  return true;
1567}
1568
1569size_t MetaspaceGC::allowed_expansion() {
1570  size_t committed_bytes = MetaspaceAux::committed_bytes();
1571  size_t capacity_until_gc = capacity_until_GC();
1572
1573  assert(capacity_until_gc >= committed_bytes,
1574         "capacity_until_gc: " SIZE_FORMAT " < committed_bytes: " SIZE_FORMAT,
1575         capacity_until_gc, committed_bytes);
1576
1577  size_t left_until_max  = MaxMetaspaceSize - committed_bytes;
1578  size_t left_until_GC = capacity_until_gc - committed_bytes;
1579  size_t left_to_commit = MIN2(left_until_GC, left_until_max);
1580
1581  return left_to_commit / BytesPerWord;
1582}
1583
1584void MetaspaceGC::compute_new_size() {
1585  assert(_shrink_factor <= 100, "invalid shrink factor");
1586  uint current_shrink_factor = _shrink_factor;
1587  _shrink_factor = 0;
1588
1589  // Using committed_bytes() for used_after_gc is an overestimation, since the
1590  // chunk free lists are included in committed_bytes() and the memory in an
1591  // un-fragmented chunk free list is available for future allocations.
1592  // However, if the chunk free lists becomes fragmented, then the memory may
1593  // not be available for future allocations and the memory is therefore "in use".
1594  // Including the chunk free lists in the definition of "in use" is therefore
1595  // necessary. Not including the chunk free lists can cause capacity_until_GC to
1596  // shrink below committed_bytes() and this has caused serious bugs in the past.
1597  const size_t used_after_gc = MetaspaceAux::committed_bytes();
1598  const size_t capacity_until_GC = MetaspaceGC::capacity_until_GC();
1599
1600  const double minimum_free_percentage = MinMetaspaceFreeRatio / 100.0;
1601  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1602
1603  const double min_tmp = used_after_gc / maximum_used_percentage;
1604  size_t minimum_desired_capacity =
1605    (size_t)MIN2(min_tmp, double(max_uintx));
1606  // Don't shrink less than the initial generation size
1607  minimum_desired_capacity = MAX2(minimum_desired_capacity,
1608                                  MetaspaceSize);
1609
1610  log_trace(gc, metaspace)("MetaspaceGC::compute_new_size: ");
1611  log_trace(gc, metaspace)("    minimum_free_percentage: %6.2f  maximum_used_percentage: %6.2f",
1612                           minimum_free_percentage, maximum_used_percentage);
1613  log_trace(gc, metaspace)("     used_after_gc       : %6.1fKB", used_after_gc / (double) K);
1614
1615
1616  size_t shrink_bytes = 0;
1617  if (capacity_until_GC < minimum_desired_capacity) {
1618    // If we have less capacity below the metaspace HWM, then
1619    // increment the HWM.
1620    size_t expand_bytes = minimum_desired_capacity - capacity_until_GC;
1621    expand_bytes = align_up(expand_bytes, Metaspace::commit_alignment());
1622    // Don't expand unless it's significant
1623    if (expand_bytes >= MinMetaspaceExpansion) {
1624      size_t new_capacity_until_GC = 0;
1625      bool succeeded = MetaspaceGC::inc_capacity_until_GC(expand_bytes, &new_capacity_until_GC);
1626      assert(succeeded, "Should always succesfully increment HWM when at safepoint");
1627
1628      Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1629                                               new_capacity_until_GC,
1630                                               MetaspaceGCThresholdUpdater::ComputeNewSize);
1631      log_trace(gc, metaspace)("    expanding:  minimum_desired_capacity: %6.1fKB  expand_bytes: %6.1fKB  MinMetaspaceExpansion: %6.1fKB  new metaspace HWM:  %6.1fKB",
1632                               minimum_desired_capacity / (double) K,
1633                               expand_bytes / (double) K,
1634                               MinMetaspaceExpansion / (double) K,
1635                               new_capacity_until_GC / (double) K);
1636    }
1637    return;
1638  }
1639
1640  // No expansion, now see if we want to shrink
1641  // We would never want to shrink more than this
1642  assert(capacity_until_GC >= minimum_desired_capacity,
1643         SIZE_FORMAT " >= " SIZE_FORMAT,
1644         capacity_until_GC, minimum_desired_capacity);
1645  size_t max_shrink_bytes = capacity_until_GC - minimum_desired_capacity;
1646
1647  // Should shrinking be considered?
1648  if (MaxMetaspaceFreeRatio < 100) {
1649    const double maximum_free_percentage = MaxMetaspaceFreeRatio / 100.0;
1650    const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1651    const double max_tmp = used_after_gc / minimum_used_percentage;
1652    size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
1653    maximum_desired_capacity = MAX2(maximum_desired_capacity,
1654                                    MetaspaceSize);
1655    log_trace(gc, metaspace)("    maximum_free_percentage: %6.2f  minimum_used_percentage: %6.2f",
1656                             maximum_free_percentage, minimum_used_percentage);
1657    log_trace(gc, metaspace)("    minimum_desired_capacity: %6.1fKB  maximum_desired_capacity: %6.1fKB",
1658                             minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K);
1659
1660    assert(minimum_desired_capacity <= maximum_desired_capacity,
1661           "sanity check");
1662
1663    if (capacity_until_GC > maximum_desired_capacity) {
1664      // Capacity too large, compute shrinking size
1665      shrink_bytes = capacity_until_GC - maximum_desired_capacity;
1666      // We don't want shrink all the way back to initSize if people call
1667      // System.gc(), because some programs do that between "phases" and then
1668      // we'd just have to grow the heap up again for the next phase.  So we
1669      // damp the shrinking: 0% on the first call, 10% on the second call, 40%
1670      // on the third call, and 100% by the fourth call.  But if we recompute
1671      // size without shrinking, it goes back to 0%.
1672      shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
1673
1674      shrink_bytes = align_down(shrink_bytes, Metaspace::commit_alignment());
1675
1676      assert(shrink_bytes <= max_shrink_bytes,
1677             "invalid shrink size " SIZE_FORMAT " not <= " SIZE_FORMAT,
1678             shrink_bytes, max_shrink_bytes);
1679      if (current_shrink_factor == 0) {
1680        _shrink_factor = 10;
1681      } else {
1682        _shrink_factor = MIN2(current_shrink_factor * 4, (uint) 100);
1683      }
1684      log_trace(gc, metaspace)("    shrinking:  initThreshold: %.1fK  maximum_desired_capacity: %.1fK",
1685                               MetaspaceSize / (double) K, maximum_desired_capacity / (double) K);
1686      log_trace(gc, metaspace)("    shrink_bytes: %.1fK  current_shrink_factor: %d  new shrink factor: %d  MinMetaspaceExpansion: %.1fK",
1687                               shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, MinMetaspaceExpansion / (double) K);
1688    }
1689  }
1690
1691  // Don't shrink unless it's significant
1692  if (shrink_bytes >= MinMetaspaceExpansion &&
1693      ((capacity_until_GC - shrink_bytes) >= MetaspaceSize)) {
1694    size_t new_capacity_until_GC = MetaspaceGC::dec_capacity_until_GC(shrink_bytes);
1695    Metaspace::tracer()->report_gc_threshold(capacity_until_GC,
1696                                             new_capacity_until_GC,
1697                                             MetaspaceGCThresholdUpdater::ComputeNewSize);
1698  }
1699}
1700
1701// Metadebug methods
1702
1703void Metadebug::init_allocation_fail_alot_count() {
1704  if (MetadataAllocationFailALot) {
1705    _allocation_fail_alot_count =
1706      1+(long)((double)MetadataAllocationFailALotInterval*os::random()/(max_jint+1.0));
1707  }
1708}
1709
1710#ifdef ASSERT
1711bool Metadebug::test_metadata_failure() {
1712  if (MetadataAllocationFailALot &&
1713      Threads::is_vm_complete()) {
1714    if (_allocation_fail_alot_count > 0) {
1715      _allocation_fail_alot_count--;
1716    } else {
1717      log_trace(gc, metaspace, freelist)("Metadata allocation failing for MetadataAllocationFailALot");
1718      init_allocation_fail_alot_count();
1719      return true;
1720    }
1721  }
1722  return false;
1723}
1724#endif
1725
1726// ChunkManager methods
1727
1728size_t ChunkManager::free_chunks_total_words() {
1729  return _free_chunks_total;
1730}
1731
1732size_t ChunkManager::free_chunks_total_bytes() {
1733  return free_chunks_total_words() * BytesPerWord;
1734}
1735
1736// Update internal accounting after a chunk was added
1737void ChunkManager::account_for_added_chunk(const Metachunk* c) {
1738  assert_lock_strong(SpaceManager::expand_lock());
1739  _free_chunks_count ++;
1740  _free_chunks_total += c->word_size();
1741}
1742
1743// Update internal accounting after a chunk was removed
1744void ChunkManager::account_for_removed_chunk(const Metachunk* c) {
1745  assert_lock_strong(SpaceManager::expand_lock());
1746  assert(_free_chunks_count >= 1,
1747    "ChunkManager::_free_chunks_count: about to go negative (" SIZE_FORMAT ").", _free_chunks_count);
1748  assert(_free_chunks_total >= c->word_size(),
1749    "ChunkManager::_free_chunks_total: about to go negative"
1750     "(now: " SIZE_FORMAT ", decrement value: " SIZE_FORMAT ").", _free_chunks_total, c->word_size());
1751  _free_chunks_count --;
1752  _free_chunks_total -= c->word_size();
1753}
1754
1755size_t ChunkManager::free_chunks_count() {
1756#ifdef ASSERT
1757  if (!UseConcMarkSweepGC && !SpaceManager::expand_lock()->is_locked()) {
1758    MutexLockerEx cl(SpaceManager::expand_lock(),
1759                     Mutex::_no_safepoint_check_flag);
1760    // This lock is only needed in debug because the verification
1761    // of the _free_chunks_totals walks the list of free chunks
1762    slow_locked_verify_free_chunks_count();
1763  }
1764#endif
1765  return _free_chunks_count;
1766}
1767
1768ChunkIndex ChunkManager::list_index(size_t size) {
1769  if (size_by_index(SpecializedIndex) == size) {
1770    return SpecializedIndex;
1771  }
1772  if (size_by_index(SmallIndex) == size) {
1773    return SmallIndex;
1774  }
1775  const size_t med_size = size_by_index(MediumIndex);
1776  if (med_size == size) {
1777    return MediumIndex;
1778  }
1779
1780  assert(size > med_size, "Not a humongous chunk");
1781  return HumongousIndex;
1782}
1783
1784size_t ChunkManager::size_by_index(ChunkIndex index) const {
1785  index_bounds_check(index);
1786  assert(index != HumongousIndex, "Do not call for humongous chunks.");
1787  return _free_chunks[index].size();
1788}
1789
1790void ChunkManager::locked_verify_free_chunks_total() {
1791  assert_lock_strong(SpaceManager::expand_lock());
1792  assert(sum_free_chunks() == _free_chunks_total,
1793         "_free_chunks_total " SIZE_FORMAT " is not the"
1794         " same as sum " SIZE_FORMAT, _free_chunks_total,
1795         sum_free_chunks());
1796}
1797
1798void ChunkManager::verify_free_chunks_total() {
1799  MutexLockerEx cl(SpaceManager::expand_lock(),
1800                     Mutex::_no_safepoint_check_flag);
1801  locked_verify_free_chunks_total();
1802}
1803
1804void ChunkManager::locked_verify_free_chunks_count() {
1805  assert_lock_strong(SpaceManager::expand_lock());
1806  assert(sum_free_chunks_count() == _free_chunks_count,
1807         "_free_chunks_count " SIZE_FORMAT " is not the"
1808         " same as sum " SIZE_FORMAT, _free_chunks_count,
1809         sum_free_chunks_count());
1810}
1811
1812void ChunkManager::verify_free_chunks_count() {
1813#ifdef ASSERT
1814  MutexLockerEx cl(SpaceManager::expand_lock(),
1815                     Mutex::_no_safepoint_check_flag);
1816  locked_verify_free_chunks_count();
1817#endif
1818}
1819
1820void ChunkManager::verify() {
1821  MutexLockerEx cl(SpaceManager::expand_lock(),
1822                     Mutex::_no_safepoint_check_flag);
1823  locked_verify();
1824}
1825
1826void ChunkManager::locked_verify() {
1827  locked_verify_free_chunks_count();
1828  locked_verify_free_chunks_total();
1829}
1830
1831void ChunkManager::locked_print_free_chunks(outputStream* st) {
1832  assert_lock_strong(SpaceManager::expand_lock());
1833  st->print_cr("Free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1834                _free_chunks_total, _free_chunks_count);
1835}
1836
1837void ChunkManager::locked_print_sum_free_chunks(outputStream* st) {
1838  assert_lock_strong(SpaceManager::expand_lock());
1839  st->print_cr("Sum free chunk total " SIZE_FORMAT "  count " SIZE_FORMAT,
1840                sum_free_chunks(), sum_free_chunks_count());
1841}
1842
1843ChunkList* ChunkManager::free_chunks(ChunkIndex index) {
1844  assert(index == SpecializedIndex || index == SmallIndex || index == MediumIndex,
1845         "Bad index: %d", (int)index);
1846
1847  return &_free_chunks[index];
1848}
1849
1850// These methods that sum the free chunk lists are used in printing
1851// methods that are used in product builds.
1852size_t ChunkManager::sum_free_chunks() {
1853  assert_lock_strong(SpaceManager::expand_lock());
1854  size_t result = 0;
1855  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1856    ChunkList* list = free_chunks(i);
1857
1858    if (list == NULL) {
1859      continue;
1860    }
1861
1862    result = result + list->count() * list->size();
1863  }
1864  result = result + humongous_dictionary()->total_size();
1865  return result;
1866}
1867
1868size_t ChunkManager::sum_free_chunks_count() {
1869  assert_lock_strong(SpaceManager::expand_lock());
1870  size_t count = 0;
1871  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
1872    ChunkList* list = free_chunks(i);
1873    if (list == NULL) {
1874      continue;
1875    }
1876    count = count + list->count();
1877  }
1878  count = count + humongous_dictionary()->total_free_blocks();
1879  return count;
1880}
1881
1882ChunkList* ChunkManager::find_free_chunks_list(size_t word_size) {
1883  ChunkIndex index = list_index(word_size);
1884  assert(index < HumongousIndex, "No humongous list");
1885  return free_chunks(index);
1886}
1887
1888Metachunk* ChunkManager::free_chunks_get(size_t word_size) {
1889  assert_lock_strong(SpaceManager::expand_lock());
1890
1891  slow_locked_verify();
1892
1893  Metachunk* chunk = NULL;
1894  if (list_index(word_size) != HumongousIndex) {
1895    ChunkList* free_list = find_free_chunks_list(word_size);
1896    assert(free_list != NULL, "Sanity check");
1897
1898    chunk = free_list->head();
1899
1900    if (chunk == NULL) {
1901      return NULL;
1902    }
1903
1904    // Remove the chunk as the head of the list.
1905    free_list->remove_chunk(chunk);
1906
1907    log_trace(gc, metaspace, freelist)("ChunkManager::free_chunks_get: free_list " PTR_FORMAT " head " PTR_FORMAT " size " SIZE_FORMAT,
1908                                       p2i(free_list), p2i(chunk), chunk->word_size());
1909  } else {
1910    chunk = humongous_dictionary()->get_chunk(word_size);
1911
1912    if (chunk == NULL) {
1913      return NULL;
1914    }
1915
1916    log_debug(gc, metaspace, alloc)("Free list allocate humongous chunk size " SIZE_FORMAT " for requested size " SIZE_FORMAT " waste " SIZE_FORMAT,
1917                                    chunk->word_size(), word_size, chunk->word_size() - word_size);
1918  }
1919
1920  // Chunk has been removed from the chunk manager; update counters.
1921  account_for_removed_chunk(chunk);
1922
1923  // Remove it from the links to this freelist
1924  chunk->set_next(NULL);
1925  chunk->set_prev(NULL);
1926#ifdef ASSERT
1927  // Chunk is no longer on any freelist. Setting to false make container_count_slow()
1928  // work.
1929  chunk->set_is_tagged_free(false);
1930#endif
1931  chunk->container()->inc_container_count();
1932
1933  slow_locked_verify();
1934  return chunk;
1935}
1936
1937Metachunk* ChunkManager::chunk_freelist_allocate(size_t word_size) {
1938  assert_lock_strong(SpaceManager::expand_lock());
1939  slow_locked_verify();
1940
1941  // Take from the beginning of the list
1942  Metachunk* chunk = free_chunks_get(word_size);
1943  if (chunk == NULL) {
1944    return NULL;
1945  }
1946
1947  assert((word_size <= chunk->word_size()) ||
1948         (list_index(chunk->word_size()) == HumongousIndex),
1949         "Non-humongous variable sized chunk");
1950  LogTarget(Debug, gc, metaspace, freelist) lt;
1951  if (lt.is_enabled()) {
1952    size_t list_count;
1953    if (list_index(word_size) < HumongousIndex) {
1954      ChunkList* list = find_free_chunks_list(word_size);
1955      list_count = list->count();
1956    } else {
1957      list_count = humongous_dictionary()->total_count();
1958    }
1959    LogStream ls(lt);
1960    ls.print("ChunkManager::chunk_freelist_allocate: " PTR_FORMAT " chunk " PTR_FORMAT "  size " SIZE_FORMAT " count " SIZE_FORMAT " ",
1961             p2i(this), p2i(chunk), chunk->word_size(), list_count);
1962    ResourceMark rm;
1963    locked_print_free_chunks(&ls);
1964  }
1965
1966  return chunk;
1967}
1968
1969void ChunkManager::return_single_chunk(ChunkIndex index, Metachunk* chunk) {
1970  assert_lock_strong(SpaceManager::expand_lock());
1971  assert(chunk != NULL, "Expected chunk.");
1972  assert(chunk->container() != NULL, "Container should have been set.");
1973  assert(chunk->is_tagged_free() == false, "Chunk should be in use.");
1974  index_bounds_check(index);
1975
1976  // Note: mangle *before* returning the chunk to the freelist or dictionary. It does not
1977  // matter for the freelist (non-humongous chunks), but the humongous chunk dictionary
1978  // keeps tree node pointers in the chunk payload area which mangle will overwrite.
1979  NOT_PRODUCT(chunk->mangle(badMetaWordVal);)
1980
1981  if (index != HumongousIndex) {
1982    // Return non-humongous chunk to freelist.
1983    ChunkList* list = free_chunks(index);
1984    assert(list->size() == chunk->word_size(), "Wrong chunk type.");
1985    list->return_chunk_at_head(chunk);
1986    log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " to freelist.",
1987        chunk_size_name(index), p2i(chunk));
1988  } else {
1989    // Return humongous chunk to dictionary.
1990    assert(chunk->word_size() > free_chunks(MediumIndex)->size(), "Wrong chunk type.");
1991    assert(chunk->word_size() % free_chunks(SpecializedIndex)->size() == 0,
1992           "Humongous chunk has wrong alignment.");
1993    _humongous_dictionary.return_chunk(chunk);
1994    log_trace(gc, metaspace, freelist)("returned one %s chunk at " PTR_FORMAT " (word size " SIZE_FORMAT ") to freelist.",
1995        chunk_size_name(index), p2i(chunk), chunk->word_size());
1996  }
1997  chunk->container()->dec_container_count();
1998  DEBUG_ONLY(chunk->set_is_tagged_free(true);)
1999
2000  // Chunk has been added; update counters.
2001  account_for_added_chunk(chunk);
2002
2003}
2004
2005void ChunkManager::return_chunk_list(ChunkIndex index, Metachunk* chunks) {
2006  index_bounds_check(index);
2007  if (chunks == NULL) {
2008    return;
2009  }
2010  LogTarget(Trace, gc, metaspace, freelist) log;
2011  if (log.is_enabled()) { // tracing
2012    log.print("returning list of %s chunks...", chunk_size_name(index));
2013  }
2014  unsigned num_chunks_returned = 0;
2015  size_t size_chunks_returned = 0;
2016  Metachunk* cur = chunks;
2017  while (cur != NULL) {
2018    // Capture the next link before it is changed
2019    // by the call to return_chunk_at_head();
2020    Metachunk* next = cur->next();
2021    if (log.is_enabled()) { // tracing
2022      num_chunks_returned ++;
2023      size_chunks_returned += cur->word_size();
2024    }
2025    return_single_chunk(index, cur);
2026    cur = next;
2027  }
2028  if (log.is_enabled()) { // tracing
2029    log.print("returned %u %s chunks to freelist, total word size " SIZE_FORMAT ".",
2030        num_chunks_returned, chunk_size_name(index), size_chunks_returned);
2031    if (index != HumongousIndex) {
2032      log.print("updated freelist count: " SIZE_FORMAT ".", free_chunks(index)->size());
2033    } else {
2034      log.print("updated dictionary count " SIZE_FORMAT ".", _humongous_dictionary.total_count());
2035    }
2036  }
2037}
2038
2039void ChunkManager::print_on(outputStream* out) const {
2040  _humongous_dictionary.report_statistics(out);
2041}
2042
2043void ChunkManager::locked_get_statistics(ChunkManagerStatistics* stat) const {
2044  assert_lock_strong(SpaceManager::expand_lock());
2045  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
2046    stat->num_by_type[i] = num_free_chunks(i);
2047    stat->single_size_by_type[i] = size_by_index(i);
2048    stat->total_size_by_type[i] = size_free_chunks_in_bytes(i);
2049  }
2050  stat->num_humongous_chunks = num_free_chunks(HumongousIndex);
2051  stat->total_size_humongous_chunks = size_free_chunks_in_bytes(HumongousIndex);
2052}
2053
2054void ChunkManager::get_statistics(ChunkManagerStatistics* stat) const {
2055  MutexLockerEx cl(SpaceManager::expand_lock(),
2056                   Mutex::_no_safepoint_check_flag);
2057  locked_get_statistics(stat);
2058}
2059
2060void ChunkManager::print_statistics(const ChunkManagerStatistics* stat, outputStream* out) {
2061  size_t total = 0;
2062  for (ChunkIndex i = ZeroIndex; i < NumberOfFreeLists; i = next_chunk_index(i)) {
2063    out->print_cr("  " SIZE_FORMAT " %s (" SIZE_FORMAT " bytes) chunks, total " SIZE_FORMAT " bytes",
2064                 stat->num_by_type[i], chunk_size_name(i),
2065                 stat->single_size_by_type[i],
2066                 stat->total_size_by_type[i]);
2067    total += stat->total_size_by_type[i];
2068  }
2069  out->print_cr("  " SIZE_FORMAT " humongous chunks, total " SIZE_FORMAT " bytes",
2070               stat->num_humongous_chunks, stat->total_size_humongous_chunks);
2071  total += stat->total_size_humongous_chunks;
2072  out->print_cr("  total size: " SIZE_FORMAT ".", total);
2073}
2074
2075void ChunkManager::print_all_chunkmanagers(outputStream* out) {
2076  // Note: keep lock protection only to retrieving statistics; keep printing
2077  // out of lock protection
2078  ChunkManagerStatistics stat;
2079  out->print_cr("Chunkmanager (non-class):");
2080  const ChunkManager* const non_class_cm = Metaspace::chunk_manager_metadata();
2081  if (non_class_cm != NULL) {
2082    non_class_cm->get_statistics(&stat);
2083    ChunkManager::print_statistics(&stat, out);
2084  } else {
2085    out->print_cr("unavailable.");
2086  }
2087  out->print_cr("Chunkmanager (class):");
2088  const ChunkManager* const class_cm = Metaspace::chunk_manager_class();
2089  if (class_cm != NULL) {
2090    class_cm->get_statistics(&stat);
2091    ChunkManager::print_statistics(&stat, out);
2092  } else {
2093    out->print_cr("unavailable.");
2094  }
2095}
2096
2097// SpaceManager methods
2098
2099size_t SpaceManager::adjust_initial_chunk_size(size_t requested, bool is_class_space) {
2100  size_t chunk_sizes[] = {
2101      specialized_chunk_size(is_class_space),
2102      small_chunk_size(is_class_space),
2103      medium_chunk_size(is_class_space)
2104  };
2105
2106  // Adjust up to one of the fixed chunk sizes ...
2107  for (size_t i = 0; i < ARRAY_SIZE(chunk_sizes); i++) {
2108    if (requested <= chunk_sizes[i]) {
2109      return chunk_sizes[i];
2110    }
2111  }
2112
2113  // ... or return the size as a humongous chunk.
2114  return requested;
2115}
2116
2117size_t SpaceManager::adjust_initial_chunk_size(size_t requested) const {
2118  return adjust_initial_chunk_size(requested, is_class());
2119}
2120
2121size_t SpaceManager::get_initial_chunk_size(Metaspace::MetaspaceType type) const {
2122  size_t requested;
2123
2124  if (is_class()) {
2125    switch (type) {
2126    case Metaspace::BootMetaspaceType:       requested = Metaspace::first_class_chunk_word_size(); break;
2127    case Metaspace::AnonymousMetaspaceType:  requested = ClassSpecializedChunk; break;
2128    case Metaspace::ReflectionMetaspaceType: requested = ClassSpecializedChunk; break;
2129    default:                                 requested = ClassSmallChunk; break;
2130    }
2131  } else {
2132    switch (type) {
2133    case Metaspace::BootMetaspaceType:       requested = Metaspace::first_chunk_word_size(); break;
2134    case Metaspace::AnonymousMetaspaceType:  requested = SpecializedChunk; break;
2135    case Metaspace::ReflectionMetaspaceType: requested = SpecializedChunk; break;
2136    default:                                 requested = SmallChunk; break;
2137    }
2138  }
2139
2140  // Adjust to one of the fixed chunk sizes (unless humongous)
2141  const size_t adjusted = adjust_initial_chunk_size(requested);
2142
2143  assert(adjusted != 0, "Incorrect initial chunk size. Requested: "
2144         SIZE_FORMAT " adjusted: " SIZE_FORMAT, requested, adjusted);
2145
2146  return adjusted;
2147}
2148
2149size_t SpaceManager::sum_free_in_chunks_in_use() const {
2150  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2151  size_t free = 0;
2152  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2153    Metachunk* chunk = chunks_in_use(i);
2154    while (chunk != NULL) {
2155      free += chunk->free_word_size();
2156      chunk = chunk->next();
2157    }
2158  }
2159  return free;
2160}
2161
2162size_t SpaceManager::sum_waste_in_chunks_in_use() const {
2163  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2164  size_t result = 0;
2165  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2166   result += sum_waste_in_chunks_in_use(i);
2167  }
2168
2169  return result;
2170}
2171
2172size_t SpaceManager::sum_waste_in_chunks_in_use(ChunkIndex index) const {
2173  size_t result = 0;
2174  Metachunk* chunk = chunks_in_use(index);
2175  // Count the free space in all the chunk but not the
2176  // current chunk from which allocations are still being done.
2177  while (chunk != NULL) {
2178    if (chunk != current_chunk()) {
2179      result += chunk->free_word_size();
2180    }
2181    chunk = chunk->next();
2182  }
2183  return result;
2184}
2185
2186size_t SpaceManager::sum_capacity_in_chunks_in_use() const {
2187  // For CMS use "allocated_chunks_words()" which does not need the
2188  // Metaspace lock.  For the other collectors sum over the
2189  // lists.  Use both methods as a check that "allocated_chunks_words()"
2190  // is correct.  That is, sum_capacity_in_chunks() is too expensive
2191  // to use in the product and allocated_chunks_words() should be used
2192  // but allow for  checking that allocated_chunks_words() returns the same
2193  // value as sum_capacity_in_chunks_in_use() which is the definitive
2194  // answer.
2195  if (UseConcMarkSweepGC) {
2196    return allocated_chunks_words();
2197  } else {
2198    MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2199    size_t sum = 0;
2200    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2201      Metachunk* chunk = chunks_in_use(i);
2202      while (chunk != NULL) {
2203        sum += chunk->word_size();
2204        chunk = chunk->next();
2205      }
2206    }
2207  return sum;
2208  }
2209}
2210
2211size_t SpaceManager::sum_count_in_chunks_in_use() {
2212  size_t count = 0;
2213  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2214    count = count + sum_count_in_chunks_in_use(i);
2215  }
2216
2217  return count;
2218}
2219
2220size_t SpaceManager::sum_count_in_chunks_in_use(ChunkIndex i) {
2221  size_t count = 0;
2222  Metachunk* chunk = chunks_in_use(i);
2223  while (chunk != NULL) {
2224    count++;
2225    chunk = chunk->next();
2226  }
2227  return count;
2228}
2229
2230
2231size_t SpaceManager::sum_used_in_chunks_in_use() const {
2232  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2233  size_t used = 0;
2234  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2235    Metachunk* chunk = chunks_in_use(i);
2236    while (chunk != NULL) {
2237      used += chunk->used_word_size();
2238      chunk = chunk->next();
2239    }
2240  }
2241  return used;
2242}
2243
2244void SpaceManager::locked_print_chunks_in_use_on(outputStream* st) const {
2245
2246  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2247    Metachunk* chunk = chunks_in_use(i);
2248    st->print("SpaceManager: %s " PTR_FORMAT,
2249                 chunk_size_name(i), p2i(chunk));
2250    if (chunk != NULL) {
2251      st->print_cr(" free " SIZE_FORMAT,
2252                   chunk->free_word_size());
2253    } else {
2254      st->cr();
2255    }
2256  }
2257
2258  chunk_manager()->locked_print_free_chunks(st);
2259  chunk_manager()->locked_print_sum_free_chunks(st);
2260}
2261
2262size_t SpaceManager::calc_chunk_size(size_t word_size) {
2263
2264  // Decide between a small chunk and a medium chunk.  Up to
2265  // _small_chunk_limit small chunks can be allocated.
2266  // After that a medium chunk is preferred.
2267  size_t chunk_word_size;
2268  if (chunks_in_use(MediumIndex) == NULL &&
2269      sum_count_in_chunks_in_use(SmallIndex) < _small_chunk_limit) {
2270    chunk_word_size = (size_t) small_chunk_size();
2271    if (word_size + Metachunk::overhead() > small_chunk_size()) {
2272      chunk_word_size = medium_chunk_size();
2273    }
2274  } else {
2275    chunk_word_size = medium_chunk_size();
2276  }
2277
2278  // Might still need a humongous chunk.  Enforce
2279  // humongous allocations sizes to be aligned up to
2280  // the smallest chunk size.
2281  size_t if_humongous_sized_chunk =
2282    align_up(word_size + Metachunk::overhead(),
2283                  smallest_chunk_size());
2284  chunk_word_size =
2285    MAX2((size_t) chunk_word_size, if_humongous_sized_chunk);
2286
2287  assert(!SpaceManager::is_humongous(word_size) ||
2288         chunk_word_size == if_humongous_sized_chunk,
2289         "Size calculation is wrong, word_size " SIZE_FORMAT
2290         " chunk_word_size " SIZE_FORMAT,
2291         word_size, chunk_word_size);
2292  Log(gc, metaspace, alloc) log;
2293  if (log.is_debug() && SpaceManager::is_humongous(word_size)) {
2294    log.debug("Metadata humongous allocation:");
2295    log.debug("  word_size " PTR_FORMAT, word_size);
2296    log.debug("  chunk_word_size " PTR_FORMAT, chunk_word_size);
2297    log.debug("    chunk overhead " PTR_FORMAT, Metachunk::overhead());
2298  }
2299  return chunk_word_size;
2300}
2301
2302void SpaceManager::track_metaspace_memory_usage() {
2303  if (is_init_completed()) {
2304    if (is_class()) {
2305      MemoryService::track_compressed_class_memory_usage();
2306    }
2307    MemoryService::track_metaspace_memory_usage();
2308  }
2309}
2310
2311MetaWord* SpaceManager::grow_and_allocate(size_t word_size) {
2312  assert(vs_list()->current_virtual_space() != NULL,
2313         "Should have been set");
2314  assert(current_chunk() == NULL ||
2315         current_chunk()->allocate(word_size) == NULL,
2316         "Don't need to expand");
2317  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
2318
2319  if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2320    size_t words_left = 0;
2321    size_t words_used = 0;
2322    if (current_chunk() != NULL) {
2323      words_left = current_chunk()->free_word_size();
2324      words_used = current_chunk()->used_word_size();
2325    }
2326    log_trace(gc, metaspace, freelist)("SpaceManager::grow_and_allocate for " SIZE_FORMAT " words " SIZE_FORMAT " words used " SIZE_FORMAT " words left",
2327                                       word_size, words_used, words_left);
2328  }
2329
2330  // Get another chunk
2331  size_t chunk_word_size = calc_chunk_size(word_size);
2332  Metachunk* next = get_new_chunk(chunk_word_size);
2333
2334  MetaWord* mem = NULL;
2335
2336  // If a chunk was available, add it to the in-use chunk list
2337  // and do an allocation from it.
2338  if (next != NULL) {
2339    // Add to this manager's list of chunks in use.
2340    add_chunk(next, false);
2341    mem = next->allocate(word_size);
2342  }
2343
2344  // Track metaspace memory usage statistic.
2345  track_metaspace_memory_usage();
2346
2347  return mem;
2348}
2349
2350void SpaceManager::print_on(outputStream* st) const {
2351
2352  for (ChunkIndex i = ZeroIndex;
2353       i < NumberOfInUseLists ;
2354       i = next_chunk_index(i) ) {
2355    st->print_cr("  chunks_in_use " PTR_FORMAT " chunk size " SIZE_FORMAT,
2356                 p2i(chunks_in_use(i)),
2357                 chunks_in_use(i) == NULL ? 0 : chunks_in_use(i)->word_size());
2358  }
2359  st->print_cr("    waste:  Small " SIZE_FORMAT " Medium " SIZE_FORMAT
2360               " Humongous " SIZE_FORMAT,
2361               sum_waste_in_chunks_in_use(SmallIndex),
2362               sum_waste_in_chunks_in_use(MediumIndex),
2363               sum_waste_in_chunks_in_use(HumongousIndex));
2364  // block free lists
2365  if (block_freelists() != NULL) {
2366    st->print_cr("total in block free lists " SIZE_FORMAT,
2367      block_freelists()->total_size());
2368  }
2369}
2370
2371SpaceManager::SpaceManager(Metaspace::MetadataType mdtype,
2372                           Mutex* lock) :
2373  _mdtype(mdtype),
2374  _allocated_blocks_words(0),
2375  _allocated_chunks_words(0),
2376  _allocated_chunks_count(0),
2377  _block_freelists(NULL),
2378  _lock(lock)
2379{
2380  initialize();
2381}
2382
2383void SpaceManager::inc_size_metrics(size_t words) {
2384  assert_lock_strong(SpaceManager::expand_lock());
2385  // Total of allocated Metachunks and allocated Metachunks count
2386  // for each SpaceManager
2387  _allocated_chunks_words = _allocated_chunks_words + words;
2388  _allocated_chunks_count++;
2389  // Global total of capacity in allocated Metachunks
2390  MetaspaceAux::inc_capacity(mdtype(), words);
2391  // Global total of allocated Metablocks.
2392  // used_words_slow() includes the overhead in each
2393  // Metachunk so include it in the used when the
2394  // Metachunk is first added (so only added once per
2395  // Metachunk).
2396  MetaspaceAux::inc_used(mdtype(), Metachunk::overhead());
2397}
2398
2399void SpaceManager::inc_used_metrics(size_t words) {
2400  // Add to the per SpaceManager total
2401  Atomic::add_ptr(words, &_allocated_blocks_words);
2402  // Add to the global total
2403  MetaspaceAux::inc_used(mdtype(), words);
2404}
2405
2406void SpaceManager::dec_total_from_size_metrics() {
2407  MetaspaceAux::dec_capacity(mdtype(), allocated_chunks_words());
2408  MetaspaceAux::dec_used(mdtype(), allocated_blocks_words());
2409  // Also deduct the overhead per Metachunk
2410  MetaspaceAux::dec_used(mdtype(), allocated_chunks_count() * Metachunk::overhead());
2411}
2412
2413void SpaceManager::initialize() {
2414  Metadebug::init_allocation_fail_alot_count();
2415  for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2416    _chunks_in_use[i] = NULL;
2417  }
2418  _current_chunk = NULL;
2419  log_trace(gc, metaspace, freelist)("SpaceManager(): " PTR_FORMAT, p2i(this));
2420}
2421
2422SpaceManager::~SpaceManager() {
2423  // This call this->_lock which can't be done while holding expand_lock()
2424  assert(sum_capacity_in_chunks_in_use() == allocated_chunks_words(),
2425         "sum_capacity_in_chunks_in_use() " SIZE_FORMAT
2426         " allocated_chunks_words() " SIZE_FORMAT,
2427         sum_capacity_in_chunks_in_use(), allocated_chunks_words());
2428
2429  MutexLockerEx fcl(SpaceManager::expand_lock(),
2430                    Mutex::_no_safepoint_check_flag);
2431
2432  chunk_manager()->slow_locked_verify();
2433
2434  dec_total_from_size_metrics();
2435
2436  Log(gc, metaspace, freelist) log;
2437  if (log.is_trace()) {
2438    log.trace("~SpaceManager(): " PTR_FORMAT, p2i(this));
2439    ResourceMark rm;
2440    LogStream ls(log.trace());
2441    locked_print_chunks_in_use_on(&ls);
2442    if (block_freelists() != NULL) {
2443      block_freelists()->print_on(&ls);
2444    }
2445  }
2446
2447  // Add all the chunks in use by this space manager
2448  // to the global list of free chunks.
2449
2450  // Follow each list of chunks-in-use and add them to the
2451  // free lists.  Each list is NULL terminated.
2452
2453  for (ChunkIndex i = ZeroIndex; i <= HumongousIndex; i = next_chunk_index(i)) {
2454    Metachunk* chunks = chunks_in_use(i);
2455    chunk_manager()->return_chunk_list(i, chunks);
2456    set_chunks_in_use(i, NULL);
2457  }
2458
2459  chunk_manager()->slow_locked_verify();
2460
2461  if (_block_freelists != NULL) {
2462    delete _block_freelists;
2463  }
2464}
2465
2466void SpaceManager::deallocate(MetaWord* p, size_t word_size) {
2467  assert_lock_strong(_lock);
2468  // Allocations and deallocations are in raw_word_size
2469  size_t raw_word_size = get_allocation_word_size(word_size);
2470  // Lazily create a block_freelist
2471  if (block_freelists() == NULL) {
2472    _block_freelists = new BlockFreelist();
2473  }
2474  block_freelists()->return_block(p, raw_word_size);
2475}
2476
2477// Adds a chunk to the list of chunks in use.
2478void SpaceManager::add_chunk(Metachunk* new_chunk, bool make_current) {
2479
2480  assert(new_chunk != NULL, "Should not be NULL");
2481  assert(new_chunk->next() == NULL, "Should not be on a list");
2482
2483  new_chunk->reset_empty();
2484
2485  // Find the correct list and and set the current
2486  // chunk for that list.
2487  ChunkIndex index = chunk_manager()->list_index(new_chunk->word_size());
2488
2489  if (index != HumongousIndex) {
2490    retire_current_chunk();
2491    set_current_chunk(new_chunk);
2492    new_chunk->set_next(chunks_in_use(index));
2493    set_chunks_in_use(index, new_chunk);
2494  } else {
2495    // For null class loader data and DumpSharedSpaces, the first chunk isn't
2496    // small, so small will be null.  Link this first chunk as the current
2497    // chunk.
2498    if (make_current) {
2499      // Set as the current chunk but otherwise treat as a humongous chunk.
2500      set_current_chunk(new_chunk);
2501    }
2502    // Link at head.  The _current_chunk only points to a humongous chunk for
2503    // the null class loader metaspace (class and data virtual space managers)
2504    // any humongous chunks so will not point to the tail
2505    // of the humongous chunks list.
2506    new_chunk->set_next(chunks_in_use(HumongousIndex));
2507    set_chunks_in_use(HumongousIndex, new_chunk);
2508
2509    assert(new_chunk->word_size() > medium_chunk_size(), "List inconsistency");
2510  }
2511
2512  // Add to the running sum of capacity
2513  inc_size_metrics(new_chunk->word_size());
2514
2515  assert(new_chunk->is_empty(), "Not ready for reuse");
2516  Log(gc, metaspace, freelist) log;
2517  if (log.is_trace()) {
2518    log.trace("SpaceManager::add_chunk: " SIZE_FORMAT ") ", sum_count_in_chunks_in_use());
2519    ResourceMark rm;
2520    LogStream ls(log.trace());
2521    new_chunk->print_on(&ls);
2522    chunk_manager()->locked_print_free_chunks(&ls);
2523  }
2524}
2525
2526void SpaceManager::retire_current_chunk() {
2527  if (current_chunk() != NULL) {
2528    size_t remaining_words = current_chunk()->free_word_size();
2529    if (remaining_words >= BlockFreelist::min_dictionary_size()) {
2530      MetaWord* ptr = current_chunk()->allocate(remaining_words);
2531      deallocate(ptr, remaining_words);
2532      inc_used_metrics(remaining_words);
2533    }
2534  }
2535}
2536
2537Metachunk* SpaceManager::get_new_chunk(size_t chunk_word_size) {
2538  // Get a chunk from the chunk freelist
2539  Metachunk* next = chunk_manager()->chunk_freelist_allocate(chunk_word_size);
2540
2541  if (next == NULL) {
2542    next = vs_list()->get_new_chunk(chunk_word_size,
2543                                    medium_chunk_bunch());
2544  }
2545
2546  Log(gc, metaspace, alloc) log;
2547  if (log.is_debug() && next != NULL &&
2548      SpaceManager::is_humongous(next->word_size())) {
2549    log.debug("  new humongous chunk word size " PTR_FORMAT, next->word_size());
2550  }
2551
2552  return next;
2553}
2554
2555/*
2556 * The policy is to allocate up to _small_chunk_limit small chunks
2557 * after which only medium chunks are allocated.  This is done to
2558 * reduce fragmentation.  In some cases, this can result in a lot
2559 * of small chunks being allocated to the point where it's not
2560 * possible to expand.  If this happens, there may be no medium chunks
2561 * available and OOME would be thrown.  Instead of doing that,
2562 * if the allocation request size fits in a small chunk, an attempt
2563 * will be made to allocate a small chunk.
2564 */
2565MetaWord* SpaceManager::get_small_chunk_and_allocate(size_t word_size) {
2566  size_t raw_word_size = get_allocation_word_size(word_size);
2567
2568  if (raw_word_size + Metachunk::overhead() > small_chunk_size()) {
2569    return NULL;
2570  }
2571
2572  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2573  MutexLockerEx cl1(expand_lock(), Mutex::_no_safepoint_check_flag);
2574
2575  Metachunk* chunk = chunk_manager()->chunk_freelist_allocate(small_chunk_size());
2576
2577  MetaWord* mem = NULL;
2578
2579  if (chunk != NULL) {
2580    // Add chunk to the in-use chunk list and do an allocation from it.
2581    // Add to this manager's list of chunks in use.
2582    add_chunk(chunk, false);
2583    mem = chunk->allocate(raw_word_size);
2584
2585    inc_used_metrics(raw_word_size);
2586
2587    // Track metaspace memory usage statistic.
2588    track_metaspace_memory_usage();
2589  }
2590
2591  return mem;
2592}
2593
2594MetaWord* SpaceManager::allocate(size_t word_size) {
2595  MutexLockerEx cl(lock(), Mutex::_no_safepoint_check_flag);
2596  size_t raw_word_size = get_allocation_word_size(word_size);
2597  BlockFreelist* fl =  block_freelists();
2598  MetaWord* p = NULL;
2599  // Allocation from the dictionary is expensive in the sense that
2600  // the dictionary has to be searched for a size.  Don't allocate
2601  // from the dictionary until it starts to get fat.  Is this
2602  // a reasonable policy?  Maybe an skinny dictionary is fast enough
2603  // for allocations.  Do some profiling.  JJJ
2604  if (fl != NULL && fl->total_size() > allocation_from_dictionary_limit) {
2605    p = fl->get_block(raw_word_size);
2606  }
2607  if (p == NULL) {
2608    p = allocate_work(raw_word_size);
2609  }
2610
2611  return p;
2612}
2613
2614// Returns the address of spaced allocated for "word_size".
2615// This methods does not know about blocks (Metablocks)
2616MetaWord* SpaceManager::allocate_work(size_t word_size) {
2617  assert_lock_strong(_lock);
2618#ifdef ASSERT
2619  if (Metadebug::test_metadata_failure()) {
2620    return NULL;
2621  }
2622#endif
2623  // Is there space in the current chunk?
2624  MetaWord* result = NULL;
2625
2626  if (current_chunk() != NULL) {
2627    result = current_chunk()->allocate(word_size);
2628  }
2629
2630  if (result == NULL) {
2631    result = grow_and_allocate(word_size);
2632  }
2633
2634  if (result != NULL) {
2635    inc_used_metrics(word_size);
2636    assert(result != (MetaWord*) chunks_in_use(MediumIndex),
2637           "Head of the list is being allocated");
2638  }
2639
2640  return result;
2641}
2642
2643void SpaceManager::verify() {
2644  // If there are blocks in the dictionary, then
2645  // verification of chunks does not work since
2646  // being in the dictionary alters a chunk.
2647  if (block_freelists() != NULL && block_freelists()->total_size() == 0) {
2648    for (ChunkIndex i = ZeroIndex; i < NumberOfInUseLists; i = next_chunk_index(i)) {
2649      Metachunk* curr = chunks_in_use(i);
2650      while (curr != NULL) {
2651        curr->verify();
2652        verify_chunk_size(curr);
2653        curr = curr->next();
2654      }
2655    }
2656  }
2657}
2658
2659void SpaceManager::verify_chunk_size(Metachunk* chunk) {
2660  assert(is_humongous(chunk->word_size()) ||
2661         chunk->word_size() == medium_chunk_size() ||
2662         chunk->word_size() == small_chunk_size() ||
2663         chunk->word_size() == specialized_chunk_size(),
2664         "Chunk size is wrong");
2665  return;
2666}
2667
2668#ifdef ASSERT
2669void SpaceManager::verify_allocated_blocks_words() {
2670  // Verification is only guaranteed at a safepoint.
2671  assert(SafepointSynchronize::is_at_safepoint() || !Universe::is_fully_initialized(),
2672    "Verification can fail if the applications is running");
2673  assert(allocated_blocks_words() == sum_used_in_chunks_in_use(),
2674         "allocation total is not consistent " SIZE_FORMAT
2675         " vs " SIZE_FORMAT,
2676         allocated_blocks_words(), sum_used_in_chunks_in_use());
2677}
2678
2679#endif
2680
2681void SpaceManager::dump(outputStream* const out) const {
2682  size_t curr_total = 0;
2683  size_t waste = 0;
2684  uint i = 0;
2685  size_t used = 0;
2686  size_t capacity = 0;
2687
2688  // Add up statistics for all chunks in this SpaceManager.
2689  for (ChunkIndex index = ZeroIndex;
2690       index < NumberOfInUseLists;
2691       index = next_chunk_index(index)) {
2692    for (Metachunk* curr = chunks_in_use(index);
2693         curr != NULL;
2694         curr = curr->next()) {
2695      out->print("%d) ", i++);
2696      curr->print_on(out);
2697      curr_total += curr->word_size();
2698      used += curr->used_word_size();
2699      capacity += curr->word_size();
2700      waste += curr->free_word_size() + curr->overhead();;
2701    }
2702  }
2703
2704  if (log_is_enabled(Trace, gc, metaspace, freelist)) {
2705    if (block_freelists() != NULL) block_freelists()->print_on(out);
2706  }
2707
2708  size_t free = current_chunk() == NULL ? 0 : current_chunk()->free_word_size();
2709  // Free space isn't wasted.
2710  waste -= free;
2711
2712  out->print_cr("total of all chunks "  SIZE_FORMAT " used " SIZE_FORMAT
2713                " free " SIZE_FORMAT " capacity " SIZE_FORMAT
2714                " waste " SIZE_FORMAT, curr_total, used, free, capacity, waste);
2715}
2716
2717// MetaspaceAux
2718
2719
2720size_t MetaspaceAux::_capacity_words[] = {0, 0};
2721size_t MetaspaceAux::_used_words[] = {0, 0};
2722
2723size_t MetaspaceAux::free_bytes(Metaspace::MetadataType mdtype) {
2724  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2725  return list == NULL ? 0 : list->free_bytes();
2726}
2727
2728size_t MetaspaceAux::free_bytes() {
2729  return free_bytes(Metaspace::ClassType) + free_bytes(Metaspace::NonClassType);
2730}
2731
2732void MetaspaceAux::dec_capacity(Metaspace::MetadataType mdtype, size_t words) {
2733  assert_lock_strong(SpaceManager::expand_lock());
2734  assert(words <= capacity_words(mdtype),
2735         "About to decrement below 0: words " SIZE_FORMAT
2736         " is greater than _capacity_words[%u] " SIZE_FORMAT,
2737         words, mdtype, capacity_words(mdtype));
2738  _capacity_words[mdtype] -= words;
2739}
2740
2741void MetaspaceAux::inc_capacity(Metaspace::MetadataType mdtype, size_t words) {
2742  assert_lock_strong(SpaceManager::expand_lock());
2743  // Needs to be atomic
2744  _capacity_words[mdtype] += words;
2745}
2746
2747void MetaspaceAux::dec_used(Metaspace::MetadataType mdtype, size_t words) {
2748  assert(words <= used_words(mdtype),
2749         "About to decrement below 0: words " SIZE_FORMAT
2750         " is greater than _used_words[%u] " SIZE_FORMAT,
2751         words, mdtype, used_words(mdtype));
2752  // For CMS deallocation of the Metaspaces occurs during the
2753  // sweep which is a concurrent phase.  Protection by the expand_lock()
2754  // is not enough since allocation is on a per Metaspace basis
2755  // and protected by the Metaspace lock.
2756  jlong minus_words = (jlong) - (jlong) words;
2757  Atomic::add_ptr(minus_words, &_used_words[mdtype]);
2758}
2759
2760void MetaspaceAux::inc_used(Metaspace::MetadataType mdtype, size_t words) {
2761  // _used_words tracks allocations for
2762  // each piece of metadata.  Those allocations are
2763  // generally done concurrently by different application
2764  // threads so must be done atomically.
2765  Atomic::add_ptr(words, &_used_words[mdtype]);
2766}
2767
2768size_t MetaspaceAux::used_bytes_slow(Metaspace::MetadataType mdtype) {
2769  size_t used = 0;
2770  ClassLoaderDataGraphMetaspaceIterator iter;
2771  while (iter.repeat()) {
2772    Metaspace* msp = iter.get_next();
2773    // Sum allocated_blocks_words for each metaspace
2774    if (msp != NULL) {
2775      used += msp->used_words_slow(mdtype);
2776    }
2777  }
2778  return used * BytesPerWord;
2779}
2780
2781size_t MetaspaceAux::free_bytes_slow(Metaspace::MetadataType mdtype) {
2782  size_t free = 0;
2783  ClassLoaderDataGraphMetaspaceIterator iter;
2784  while (iter.repeat()) {
2785    Metaspace* msp = iter.get_next();
2786    if (msp != NULL) {
2787      free += msp->free_words_slow(mdtype);
2788    }
2789  }
2790  return free * BytesPerWord;
2791}
2792
2793size_t MetaspaceAux::capacity_bytes_slow(Metaspace::MetadataType mdtype) {
2794  if ((mdtype == Metaspace::ClassType) && !Metaspace::using_class_space()) {
2795    return 0;
2796  }
2797  // Don't count the space in the freelists.  That space will be
2798  // added to the capacity calculation as needed.
2799  size_t capacity = 0;
2800  ClassLoaderDataGraphMetaspaceIterator iter;
2801  while (iter.repeat()) {
2802    Metaspace* msp = iter.get_next();
2803    if (msp != NULL) {
2804      capacity += msp->capacity_words_slow(mdtype);
2805    }
2806  }
2807  return capacity * BytesPerWord;
2808}
2809
2810size_t MetaspaceAux::capacity_bytes_slow() {
2811#ifdef PRODUCT
2812  // Use capacity_bytes() in PRODUCT instead of this function.
2813  guarantee(false, "Should not call capacity_bytes_slow() in the PRODUCT");
2814#endif
2815  size_t class_capacity = capacity_bytes_slow(Metaspace::ClassType);
2816  size_t non_class_capacity = capacity_bytes_slow(Metaspace::NonClassType);
2817  assert(capacity_bytes() == class_capacity + non_class_capacity,
2818         "bad accounting: capacity_bytes() " SIZE_FORMAT
2819         " class_capacity + non_class_capacity " SIZE_FORMAT
2820         " class_capacity " SIZE_FORMAT " non_class_capacity " SIZE_FORMAT,
2821         capacity_bytes(), class_capacity + non_class_capacity,
2822         class_capacity, non_class_capacity);
2823
2824  return class_capacity + non_class_capacity;
2825}
2826
2827size_t MetaspaceAux::reserved_bytes(Metaspace::MetadataType mdtype) {
2828  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2829  return list == NULL ? 0 : list->reserved_bytes();
2830}
2831
2832size_t MetaspaceAux::committed_bytes(Metaspace::MetadataType mdtype) {
2833  VirtualSpaceList* list = Metaspace::get_space_list(mdtype);
2834  return list == NULL ? 0 : list->committed_bytes();
2835}
2836
2837size_t MetaspaceAux::min_chunk_size_words() { return Metaspace::first_chunk_word_size(); }
2838
2839size_t MetaspaceAux::free_chunks_total_words(Metaspace::MetadataType mdtype) {
2840  ChunkManager* chunk_manager = Metaspace::get_chunk_manager(mdtype);
2841  if (chunk_manager == NULL) {
2842    return 0;
2843  }
2844  chunk_manager->slow_verify();
2845  return chunk_manager->free_chunks_total_words();
2846}
2847
2848size_t MetaspaceAux::free_chunks_total_bytes(Metaspace::MetadataType mdtype) {
2849  return free_chunks_total_words(mdtype) * BytesPerWord;
2850}
2851
2852size_t MetaspaceAux::free_chunks_total_words() {
2853  return free_chunks_total_words(Metaspace::ClassType) +
2854         free_chunks_total_words(Metaspace::NonClassType);
2855}
2856
2857size_t MetaspaceAux::free_chunks_total_bytes() {
2858  return free_chunks_total_words() * BytesPerWord;
2859}
2860
2861bool MetaspaceAux::has_chunk_free_list(Metaspace::MetadataType mdtype) {
2862  return Metaspace::get_chunk_manager(mdtype) != NULL;
2863}
2864
2865MetaspaceChunkFreeListSummary MetaspaceAux::chunk_free_list_summary(Metaspace::MetadataType mdtype) {
2866  if (!has_chunk_free_list(mdtype)) {
2867    return MetaspaceChunkFreeListSummary();
2868  }
2869
2870  const ChunkManager* cm = Metaspace::get_chunk_manager(mdtype);
2871  return cm->chunk_free_list_summary();
2872}
2873
2874void MetaspaceAux::print_metaspace_change(size_t prev_metadata_used) {
2875  log_info(gc, metaspace)("Metaspace: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
2876                          prev_metadata_used/K, used_bytes()/K, reserved_bytes()/K);
2877}
2878
2879void MetaspaceAux::print_on(outputStream* out) {
2880  Metaspace::MetadataType nct = Metaspace::NonClassType;
2881
2882  out->print_cr(" Metaspace       "
2883                "used "      SIZE_FORMAT "K, "
2884                "capacity "  SIZE_FORMAT "K, "
2885                "committed " SIZE_FORMAT "K, "
2886                "reserved "  SIZE_FORMAT "K",
2887                used_bytes()/K,
2888                capacity_bytes()/K,
2889                committed_bytes()/K,
2890                reserved_bytes()/K);
2891
2892  if (Metaspace::using_class_space()) {
2893    Metaspace::MetadataType ct = Metaspace::ClassType;
2894    out->print_cr("  class space    "
2895                  "used "      SIZE_FORMAT "K, "
2896                  "capacity "  SIZE_FORMAT "K, "
2897                  "committed " SIZE_FORMAT "K, "
2898                  "reserved "  SIZE_FORMAT "K",
2899                  used_bytes(ct)/K,
2900                  capacity_bytes(ct)/K,
2901                  committed_bytes(ct)/K,
2902                  reserved_bytes(ct)/K);
2903  }
2904}
2905
2906// Print information for class space and data space separately.
2907// This is almost the same as above.
2908void MetaspaceAux::print_on(outputStream* out, Metaspace::MetadataType mdtype) {
2909  size_t free_chunks_capacity_bytes = free_chunks_total_bytes(mdtype);
2910  size_t capacity_bytes = capacity_bytes_slow(mdtype);
2911  size_t used_bytes = used_bytes_slow(mdtype);
2912  size_t free_bytes = free_bytes_slow(mdtype);
2913  size_t used_and_free = used_bytes + free_bytes +
2914                           free_chunks_capacity_bytes;
2915  out->print_cr("  Chunk accounting: used in chunks " SIZE_FORMAT
2916             "K + unused in chunks " SIZE_FORMAT "K  + "
2917             " capacity in free chunks " SIZE_FORMAT "K = " SIZE_FORMAT
2918             "K  capacity in allocated chunks " SIZE_FORMAT "K",
2919             used_bytes / K,
2920             free_bytes / K,
2921             free_chunks_capacity_bytes / K,
2922             used_and_free / K,
2923             capacity_bytes / K);
2924  // Accounting can only be correct if we got the values during a safepoint
2925  assert(!SafepointSynchronize::is_at_safepoint() || used_and_free == capacity_bytes, "Accounting is wrong");
2926}
2927
2928// Print total fragmentation for class metaspaces
2929void MetaspaceAux::print_class_waste(outputStream* out) {
2930  assert(Metaspace::using_class_space(), "class metaspace not used");
2931  size_t cls_specialized_waste = 0, cls_small_waste = 0, cls_medium_waste = 0;
2932  size_t cls_specialized_count = 0, cls_small_count = 0, cls_medium_count = 0, cls_humongous_count = 0;
2933  ClassLoaderDataGraphMetaspaceIterator iter;
2934  while (iter.repeat()) {
2935    Metaspace* msp = iter.get_next();
2936    if (msp != NULL) {
2937      cls_specialized_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2938      cls_specialized_count += msp->class_vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2939      cls_small_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2940      cls_small_count += msp->class_vsm()->sum_count_in_chunks_in_use(SmallIndex);
2941      cls_medium_waste += msp->class_vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2942      cls_medium_count += msp->class_vsm()->sum_count_in_chunks_in_use(MediumIndex);
2943      cls_humongous_count += msp->class_vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2944    }
2945  }
2946  out->print_cr(" class: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2947                SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2948                SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2949                "large count " SIZE_FORMAT,
2950                cls_specialized_count, cls_specialized_waste,
2951                cls_small_count, cls_small_waste,
2952                cls_medium_count, cls_medium_waste, cls_humongous_count);
2953}
2954
2955// Print total fragmentation for data and class metaspaces separately
2956void MetaspaceAux::print_waste(outputStream* out) {
2957  size_t specialized_waste = 0, small_waste = 0, medium_waste = 0;
2958  size_t specialized_count = 0, small_count = 0, medium_count = 0, humongous_count = 0;
2959
2960  ClassLoaderDataGraphMetaspaceIterator iter;
2961  while (iter.repeat()) {
2962    Metaspace* msp = iter.get_next();
2963    if (msp != NULL) {
2964      specialized_waste += msp->vsm()->sum_waste_in_chunks_in_use(SpecializedIndex);
2965      specialized_count += msp->vsm()->sum_count_in_chunks_in_use(SpecializedIndex);
2966      small_waste += msp->vsm()->sum_waste_in_chunks_in_use(SmallIndex);
2967      small_count += msp->vsm()->sum_count_in_chunks_in_use(SmallIndex);
2968      medium_waste += msp->vsm()->sum_waste_in_chunks_in_use(MediumIndex);
2969      medium_count += msp->vsm()->sum_count_in_chunks_in_use(MediumIndex);
2970      humongous_count += msp->vsm()->sum_count_in_chunks_in_use(HumongousIndex);
2971    }
2972  }
2973  out->print_cr("Total fragmentation waste (words) doesn't count free space");
2974  out->print_cr("  data: " SIZE_FORMAT " specialized(s) " SIZE_FORMAT ", "
2975                        SIZE_FORMAT " small(s) " SIZE_FORMAT ", "
2976                        SIZE_FORMAT " medium(s) " SIZE_FORMAT ", "
2977                        "large count " SIZE_FORMAT,
2978             specialized_count, specialized_waste, small_count,
2979             small_waste, medium_count, medium_waste, humongous_count);
2980  if (Metaspace::using_class_space()) {
2981    print_class_waste(out);
2982  }
2983}
2984
2985// Dump global metaspace things from the end of ClassLoaderDataGraph
2986void MetaspaceAux::dump(outputStream* out) {
2987  out->print_cr("All Metaspace:");
2988  out->print("data space: "); print_on(out, Metaspace::NonClassType);
2989  out->print("class space: "); print_on(out, Metaspace::ClassType);
2990  print_waste(out);
2991}
2992
2993void MetaspaceAux::verify_free_chunks() {
2994  Metaspace::chunk_manager_metadata()->verify();
2995  if (Metaspace::using_class_space()) {
2996    Metaspace::chunk_manager_class()->verify();
2997  }
2998}
2999
3000void MetaspaceAux::verify_capacity() {
3001#ifdef ASSERT
3002  size_t running_sum_capacity_bytes = capacity_bytes();
3003  // For purposes of the running sum of capacity, verify against capacity
3004  size_t capacity_in_use_bytes = capacity_bytes_slow();
3005  assert(running_sum_capacity_bytes == capacity_in_use_bytes,
3006         "capacity_words() * BytesPerWord " SIZE_FORMAT
3007         " capacity_bytes_slow()" SIZE_FORMAT,
3008         running_sum_capacity_bytes, capacity_in_use_bytes);
3009  for (Metaspace::MetadataType i = Metaspace::ClassType;
3010       i < Metaspace:: MetadataTypeCount;
3011       i = (Metaspace::MetadataType)(i + 1)) {
3012    size_t capacity_in_use_bytes = capacity_bytes_slow(i);
3013    assert(capacity_bytes(i) == capacity_in_use_bytes,
3014           "capacity_bytes(%u) " SIZE_FORMAT
3015           " capacity_bytes_slow(%u)" SIZE_FORMAT,
3016           i, capacity_bytes(i), i, capacity_in_use_bytes);
3017  }
3018#endif
3019}
3020
3021void MetaspaceAux::verify_used() {
3022#ifdef ASSERT
3023  size_t running_sum_used_bytes = used_bytes();
3024  // For purposes of the running sum of used, verify against used
3025  size_t used_in_use_bytes = used_bytes_slow();
3026  assert(used_bytes() == used_in_use_bytes,
3027         "used_bytes() " SIZE_FORMAT
3028         " used_bytes_slow()" SIZE_FORMAT,
3029         used_bytes(), used_in_use_bytes);
3030  for (Metaspace::MetadataType i = Metaspace::ClassType;
3031       i < Metaspace:: MetadataTypeCount;
3032       i = (Metaspace::MetadataType)(i + 1)) {
3033    size_t used_in_use_bytes = used_bytes_slow(i);
3034    assert(used_bytes(i) == used_in_use_bytes,
3035           "used_bytes(%u) " SIZE_FORMAT
3036           " used_bytes_slow(%u)" SIZE_FORMAT,
3037           i, used_bytes(i), i, used_in_use_bytes);
3038  }
3039#endif
3040}
3041
3042void MetaspaceAux::verify_metrics() {
3043  verify_capacity();
3044  verify_used();
3045}
3046
3047
3048// Metaspace methods
3049
3050size_t Metaspace::_first_chunk_word_size = 0;
3051size_t Metaspace::_first_class_chunk_word_size = 0;
3052
3053size_t Metaspace::_commit_alignment = 0;
3054size_t Metaspace::_reserve_alignment = 0;
3055
3056Metaspace::Metaspace(Mutex* lock, MetaspaceType type) {
3057  initialize(lock, type);
3058}
3059
3060Metaspace::~Metaspace() {
3061  delete _vsm;
3062  if (using_class_space()) {
3063    delete _class_vsm;
3064  }
3065}
3066
3067VirtualSpaceList* Metaspace::_space_list = NULL;
3068VirtualSpaceList* Metaspace::_class_space_list = NULL;
3069
3070ChunkManager* Metaspace::_chunk_manager_metadata = NULL;
3071ChunkManager* Metaspace::_chunk_manager_class = NULL;
3072
3073#define VIRTUALSPACEMULTIPLIER 2
3074
3075#ifdef _LP64
3076static const uint64_t UnscaledClassSpaceMax = (uint64_t(max_juint) + 1);
3077
3078void Metaspace::set_narrow_klass_base_and_shift(address metaspace_base, address cds_base) {
3079  assert(!DumpSharedSpaces, "narrow_klass is set by MetaspaceShared class.");
3080  // Figure out the narrow_klass_base and the narrow_klass_shift.  The
3081  // narrow_klass_base is the lower of the metaspace base and the cds base
3082  // (if cds is enabled).  The narrow_klass_shift depends on the distance
3083  // between the lower base and higher address.
3084  address lower_base;
3085  address higher_address;
3086#if INCLUDE_CDS
3087  if (UseSharedSpaces) {
3088    higher_address = MAX2((address)(cds_base + MetaspaceShared::core_spaces_size()),
3089                          (address)(metaspace_base + compressed_class_space_size()));
3090    lower_base = MIN2(metaspace_base, cds_base);
3091  } else
3092#endif
3093  {
3094    higher_address = metaspace_base + compressed_class_space_size();
3095    lower_base = metaspace_base;
3096
3097    uint64_t klass_encoding_max = UnscaledClassSpaceMax << LogKlassAlignmentInBytes;
3098    // If compressed class space fits in lower 32G, we don't need a base.
3099    if (higher_address <= (address)klass_encoding_max) {
3100      lower_base = 0; // Effectively lower base is zero.
3101    }
3102  }
3103
3104  Universe::set_narrow_klass_base(lower_base);
3105
3106  if ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax) {
3107    Universe::set_narrow_klass_shift(0);
3108  } else {
3109    assert(!UseSharedSpaces, "Cannot shift with UseSharedSpaces");
3110    Universe::set_narrow_klass_shift(LogKlassAlignmentInBytes);
3111  }
3112  AOTLoader::set_narrow_klass_shift();
3113}
3114
3115#if INCLUDE_CDS
3116// Return TRUE if the specified metaspace_base and cds_base are close enough
3117// to work with compressed klass pointers.
3118bool Metaspace::can_use_cds_with_metaspace_addr(char* metaspace_base, address cds_base) {
3119  assert(cds_base != 0 && UseSharedSpaces, "Only use with CDS");
3120  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3121  address lower_base = MIN2((address)metaspace_base, cds_base);
3122  address higher_address = MAX2((address)(cds_base + MetaspaceShared::core_spaces_size()),
3123                                (address)(metaspace_base + compressed_class_space_size()));
3124  return ((uint64_t)(higher_address - lower_base) <= UnscaledClassSpaceMax);
3125}
3126#endif
3127
3128// Try to allocate the metaspace at the requested addr.
3129void Metaspace::allocate_metaspace_compressed_klass_ptrs(char* requested_addr, address cds_base) {
3130  assert(!DumpSharedSpaces, "compress klass space is allocated by MetaspaceShared class.");
3131  assert(using_class_space(), "called improperly");
3132  assert(UseCompressedClassPointers, "Only use with CompressedKlassPtrs");
3133  assert(compressed_class_space_size() < KlassEncodingMetaspaceMax,
3134         "Metaspace size is too big");
3135  assert_is_aligned(requested_addr, _reserve_alignment);
3136  assert_is_aligned(cds_base, _reserve_alignment);
3137  assert_is_aligned(compressed_class_space_size(), _reserve_alignment);
3138
3139  // Don't use large pages for the class space.
3140  bool large_pages = false;
3141
3142#if !(defined(AARCH64) || defined(AIX))
3143  ReservedSpace metaspace_rs = ReservedSpace(compressed_class_space_size(),
3144                                             _reserve_alignment,
3145                                             large_pages,
3146                                             requested_addr);
3147#else // AARCH64
3148  ReservedSpace metaspace_rs;
3149
3150  // Our compressed klass pointers may fit nicely into the lower 32
3151  // bits.
3152  if ((uint64_t)requested_addr + compressed_class_space_size() < 4*G) {
3153    metaspace_rs = ReservedSpace(compressed_class_space_size(),
3154                                 _reserve_alignment,
3155                                 large_pages,
3156                                 requested_addr);
3157  }
3158
3159  if (! metaspace_rs.is_reserved()) {
3160    // Aarch64: Try to align metaspace so that we can decode a compressed
3161    // klass with a single MOVK instruction.  We can do this iff the
3162    // compressed class base is a multiple of 4G.
3163    // Aix: Search for a place where we can find memory. If we need to load
3164    // the base, 4G alignment is helpful, too.
3165    size_t increment = AARCH64_ONLY(4*)G;
3166    for (char *a = align_up(requested_addr, increment);
3167         a < (char*)(1024*G);
3168         a += increment) {
3169      if (a == (char *)(32*G)) {
3170        // Go faster from here on. Zero-based is no longer possible.
3171        increment = 4*G;
3172      }
3173
3174#if INCLUDE_CDS
3175      if (UseSharedSpaces
3176          && ! can_use_cds_with_metaspace_addr(a, cds_base)) {
3177        // We failed to find an aligned base that will reach.  Fall
3178        // back to using our requested addr.
3179        metaspace_rs = ReservedSpace(compressed_class_space_size(),
3180                                     _reserve_alignment,
3181                                     large_pages,
3182                                     requested_addr);
3183        break;
3184      }
3185#endif
3186
3187      metaspace_rs = ReservedSpace(compressed_class_space_size(),
3188                                   _reserve_alignment,
3189                                   large_pages,
3190                                   a);
3191      if (metaspace_rs.is_reserved())
3192        break;
3193    }
3194  }
3195
3196#endif // AARCH64
3197
3198  if (!metaspace_rs.is_reserved()) {
3199#if INCLUDE_CDS
3200    if (UseSharedSpaces) {
3201      size_t increment = align_up(1*G, _reserve_alignment);
3202
3203      // Keep trying to allocate the metaspace, increasing the requested_addr
3204      // by 1GB each time, until we reach an address that will no longer allow
3205      // use of CDS with compressed klass pointers.
3206      char *addr = requested_addr;
3207      while (!metaspace_rs.is_reserved() && (addr + increment > addr) &&
3208             can_use_cds_with_metaspace_addr(addr + increment, cds_base)) {
3209        addr = addr + increment;
3210        metaspace_rs = ReservedSpace(compressed_class_space_size(),
3211                                     _reserve_alignment, large_pages, addr);
3212      }
3213    }
3214#endif
3215    // If no successful allocation then try to allocate the space anywhere.  If
3216    // that fails then OOM doom.  At this point we cannot try allocating the
3217    // metaspace as if UseCompressedClassPointers is off because too much
3218    // initialization has happened that depends on UseCompressedClassPointers.
3219    // So, UseCompressedClassPointers cannot be turned off at this point.
3220    if (!metaspace_rs.is_reserved()) {
3221      metaspace_rs = ReservedSpace(compressed_class_space_size(),
3222                                   _reserve_alignment, large_pages);
3223      if (!metaspace_rs.is_reserved()) {
3224        vm_exit_during_initialization(err_msg("Could not allocate metaspace: " SIZE_FORMAT " bytes",
3225                                              compressed_class_space_size()));
3226      }
3227    }
3228  }
3229
3230  // If we got here then the metaspace got allocated.
3231  MemTracker::record_virtual_memory_type((address)metaspace_rs.base(), mtClass);
3232
3233#if INCLUDE_CDS
3234  // Verify that we can use shared spaces.  Otherwise, turn off CDS.
3235  if (UseSharedSpaces && !can_use_cds_with_metaspace_addr(metaspace_rs.base(), cds_base)) {
3236    FileMapInfo::stop_sharing_and_unmap(
3237        "Could not allocate metaspace at a compatible address");
3238  }
3239#endif
3240  set_narrow_klass_base_and_shift((address)metaspace_rs.base(),
3241                                  UseSharedSpaces ? (address)cds_base : 0);
3242
3243  initialize_class_space(metaspace_rs);
3244
3245  LogTarget(Trace, gc, metaspace) lt;
3246  if (lt.is_enabled()) {
3247    ResourceMark rm;
3248    LogStream ls(lt);
3249    print_compressed_class_space(&ls, requested_addr);
3250  }
3251}
3252
3253void Metaspace::print_compressed_class_space(outputStream* st, const char* requested_addr) {
3254  st->print_cr("Narrow klass base: " PTR_FORMAT ", Narrow klass shift: %d",
3255               p2i(Universe::narrow_klass_base()), Universe::narrow_klass_shift());
3256  if (_class_space_list != NULL) {
3257    address base = (address)_class_space_list->current_virtual_space()->bottom();
3258    st->print("Compressed class space size: " SIZE_FORMAT " Address: " PTR_FORMAT,
3259                 compressed_class_space_size(), p2i(base));
3260    if (requested_addr != 0) {
3261      st->print(" Req Addr: " PTR_FORMAT, p2i(requested_addr));
3262    }
3263    st->cr();
3264  }
3265}
3266
3267// For UseCompressedClassPointers the class space is reserved above the top of
3268// the Java heap.  The argument passed in is at the base of the compressed space.
3269void Metaspace::initialize_class_space(ReservedSpace rs) {
3270  // The reserved space size may be bigger because of alignment, esp with UseLargePages
3271  assert(rs.size() >= CompressedClassSpaceSize,
3272         SIZE_FORMAT " != " SIZE_FORMAT, rs.size(), CompressedClassSpaceSize);
3273  assert(using_class_space(), "Must be using class space");
3274  _class_space_list = new VirtualSpaceList(rs);
3275  _chunk_manager_class = new ChunkManager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3276
3277  if (!_class_space_list->initialization_succeeded()) {
3278    vm_exit_during_initialization("Failed to setup compressed class space virtual space list.");
3279  }
3280}
3281
3282#endif
3283
3284void Metaspace::ergo_initialize() {
3285  if (DumpSharedSpaces) {
3286    // Using large pages when dumping the shared archive is currently not implemented.
3287    FLAG_SET_ERGO(bool, UseLargePagesInMetaspace, false);
3288  }
3289
3290  size_t page_size = os::vm_page_size();
3291  if (UseLargePages && UseLargePagesInMetaspace) {
3292    page_size = os::large_page_size();
3293  }
3294
3295  _commit_alignment  = page_size;
3296  _reserve_alignment = MAX2(page_size, (size_t)os::vm_allocation_granularity());
3297
3298  // Do not use FLAG_SET_ERGO to update MaxMetaspaceSize, since this will
3299  // override if MaxMetaspaceSize was set on the command line or not.
3300  // This information is needed later to conform to the specification of the
3301  // java.lang.management.MemoryUsage API.
3302  //
3303  // Ideally, we would be able to set the default value of MaxMetaspaceSize in
3304  // globals.hpp to the aligned value, but this is not possible, since the
3305  // alignment depends on other flags being parsed.
3306  MaxMetaspaceSize = align_down_bounded(MaxMetaspaceSize, _reserve_alignment);
3307
3308  if (MetaspaceSize > MaxMetaspaceSize) {
3309    MetaspaceSize = MaxMetaspaceSize;
3310  }
3311
3312  MetaspaceSize = align_down_bounded(MetaspaceSize, _commit_alignment);
3313
3314  assert(MetaspaceSize <= MaxMetaspaceSize, "MetaspaceSize should be limited by MaxMetaspaceSize");
3315
3316  MinMetaspaceExpansion = align_down_bounded(MinMetaspaceExpansion, _commit_alignment);
3317  MaxMetaspaceExpansion = align_down_bounded(MaxMetaspaceExpansion, _commit_alignment);
3318
3319  CompressedClassSpaceSize = align_down_bounded(CompressedClassSpaceSize, _reserve_alignment);
3320  set_compressed_class_space_size(CompressedClassSpaceSize);
3321}
3322
3323void Metaspace::global_initialize() {
3324  MetaspaceGC::initialize();
3325
3326#if INCLUDE_CDS
3327  if (DumpSharedSpaces) {
3328    MetaspaceShared::initialize_shared_rs();
3329  } else if (UseSharedSpaces) {
3330    // If using shared space, open the file that contains the shared space
3331    // and map in the memory before initializing the rest of metaspace (so
3332    // the addresses don't conflict)
3333    address cds_address = NULL;
3334    FileMapInfo* mapinfo = new FileMapInfo();
3335
3336    // Open the shared archive file, read and validate the header. If
3337    // initialization fails, shared spaces [UseSharedSpaces] are
3338    // disabled and the file is closed.
3339    // Map in spaces now also
3340    if (mapinfo->initialize() && MetaspaceShared::map_shared_spaces(mapinfo)) {
3341      size_t cds_total = MetaspaceShared::core_spaces_size();
3342      cds_address = (address)mapinfo->header()->region_addr(0);
3343#ifdef _LP64
3344      if (using_class_space()) {
3345        char* cds_end = (char*)(cds_address + cds_total);
3346        cds_end = (char *)align_up(cds_end, _reserve_alignment);
3347        // If UseCompressedClassPointers is set then allocate the metaspace area
3348        // above the heap and above the CDS area (if it exists).
3349        allocate_metaspace_compressed_klass_ptrs(cds_end, cds_address);
3350        // map_heap_regions() compares the current narrow oop and klass encodings
3351        // with the archived ones, so it must be done after all encodings are determined.
3352        mapinfo->map_heap_regions();
3353      }
3354#endif // _LP64
3355    } else {
3356      assert(!mapinfo->is_open() && !UseSharedSpaces,
3357             "archive file not closed or shared spaces not disabled.");
3358    }
3359  }
3360#endif // INCLUDE_CDS
3361
3362#ifdef _LP64
3363  if (!UseSharedSpaces && using_class_space()) {
3364    if (DumpSharedSpaces) {
3365      // Already initialized inside MetaspaceShared::initialize_shared_rs()
3366    } else {
3367      char* base = (char*)align_up(Universe::heap()->reserved_region().end(), _reserve_alignment);
3368      allocate_metaspace_compressed_klass_ptrs(base, 0);
3369    }
3370  }
3371#endif // _LP64
3372
3373  // Initialize these before initializing the VirtualSpaceList
3374  _first_chunk_word_size = InitialBootClassLoaderMetaspaceSize / BytesPerWord;
3375  _first_chunk_word_size = align_word_size_up(_first_chunk_word_size);
3376  // Make the first class chunk bigger than a medium chunk so it's not put
3377  // on the medium chunk list.   The next chunk will be small and progress
3378  // from there.  This size calculated by -version.
3379  _first_class_chunk_word_size = MIN2((size_t)MediumChunk*6,
3380                                     (CompressedClassSpaceSize/BytesPerWord)*2);
3381  _first_class_chunk_word_size = align_word_size_up(_first_class_chunk_word_size);
3382  // Arbitrarily set the initial virtual space to a multiple
3383  // of the boot class loader size.
3384  size_t word_size = VIRTUALSPACEMULTIPLIER * _first_chunk_word_size;
3385  word_size = align_up(word_size, Metaspace::reserve_alignment_words());
3386
3387  // Initialize the list of virtual spaces.
3388  _space_list = new VirtualSpaceList(word_size);
3389  _chunk_manager_metadata = new ChunkManager(SpecializedChunk, SmallChunk, MediumChunk);
3390
3391  if (!_space_list->initialization_succeeded()) {
3392    vm_exit_during_initialization("Unable to setup metadata virtual space list.", NULL);
3393  }
3394
3395  _tracer = new MetaspaceTracer();
3396}
3397
3398void Metaspace::post_initialize() {
3399  MetaspaceGC::post_initialize();
3400}
3401
3402void Metaspace::initialize_first_chunk(MetaspaceType type, MetadataType mdtype) {
3403  Metachunk* chunk = get_initialization_chunk(type, mdtype);
3404  if (chunk != NULL) {
3405    // Add to this manager's list of chunks in use and current_chunk().
3406    get_space_manager(mdtype)->add_chunk(chunk, true);
3407  }
3408}
3409
3410Metachunk* Metaspace::get_initialization_chunk(MetaspaceType type, MetadataType mdtype) {
3411  size_t chunk_word_size = get_space_manager(mdtype)->get_initial_chunk_size(type);
3412
3413  // Get a chunk from the chunk freelist
3414  Metachunk* chunk = get_chunk_manager(mdtype)->chunk_freelist_allocate(chunk_word_size);
3415
3416  if (chunk == NULL) {
3417    chunk = get_space_list(mdtype)->get_new_chunk(chunk_word_size,
3418                                                  get_space_manager(mdtype)->medium_chunk_bunch());
3419  }
3420
3421  return chunk;
3422}
3423
3424void Metaspace::verify_global_initialization() {
3425  assert(space_list() != NULL, "Metadata VirtualSpaceList has not been initialized");
3426  assert(chunk_manager_metadata() != NULL, "Metadata ChunkManager has not been initialized");
3427
3428  if (using_class_space()) {
3429    assert(class_space_list() != NULL, "Class VirtualSpaceList has not been initialized");
3430    assert(chunk_manager_class() != NULL, "Class ChunkManager has not been initialized");
3431  }
3432}
3433
3434void Metaspace::initialize(Mutex* lock, MetaspaceType type) {
3435  verify_global_initialization();
3436
3437  // Allocate SpaceManager for metadata objects.
3438  _vsm = new SpaceManager(NonClassType, lock);
3439
3440  if (using_class_space()) {
3441    // Allocate SpaceManager for classes.
3442    _class_vsm = new SpaceManager(ClassType, lock);
3443  }
3444
3445  MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3446
3447  // Allocate chunk for metadata objects
3448  initialize_first_chunk(type, NonClassType);
3449
3450  // Allocate chunk for class metadata objects
3451  if (using_class_space()) {
3452    initialize_first_chunk(type, ClassType);
3453  }
3454}
3455
3456size_t Metaspace::align_word_size_up(size_t word_size) {
3457  size_t byte_size = word_size * wordSize;
3458  return ReservedSpace::allocation_align_size_up(byte_size) / wordSize;
3459}
3460
3461MetaWord* Metaspace::allocate(size_t word_size, MetadataType mdtype) {
3462  assert(!_frozen, "sanity");
3463  // Don't use class_vsm() unless UseCompressedClassPointers is true.
3464  if (is_class_space_allocation(mdtype)) {
3465    return  class_vsm()->allocate(word_size);
3466  } else {
3467    return  vsm()->allocate(word_size);
3468  }
3469}
3470
3471MetaWord* Metaspace::expand_and_allocate(size_t word_size, MetadataType mdtype) {
3472  assert(!_frozen, "sanity");
3473  size_t delta_bytes = MetaspaceGC::delta_capacity_until_GC(word_size * BytesPerWord);
3474  assert(delta_bytes > 0, "Must be");
3475
3476  size_t before = 0;
3477  size_t after = 0;
3478  MetaWord* res;
3479  bool incremented;
3480
3481  // Each thread increments the HWM at most once. Even if the thread fails to increment
3482  // the HWM, an allocation is still attempted. This is because another thread must then
3483  // have incremented the HWM and therefore the allocation might still succeed.
3484  do {
3485    incremented = MetaspaceGC::inc_capacity_until_GC(delta_bytes, &after, &before);
3486    res = allocate(word_size, mdtype);
3487  } while (!incremented && res == NULL);
3488
3489  if (incremented) {
3490    tracer()->report_gc_threshold(before, after,
3491                                  MetaspaceGCThresholdUpdater::ExpandAndAllocate);
3492    log_trace(gc, metaspace)("Increase capacity to GC from " SIZE_FORMAT " to " SIZE_FORMAT, before, after);
3493  }
3494
3495  return res;
3496}
3497
3498size_t Metaspace::used_words_slow(MetadataType mdtype) const {
3499  if (mdtype == ClassType) {
3500    return using_class_space() ? class_vsm()->sum_used_in_chunks_in_use() : 0;
3501  } else {
3502    return vsm()->sum_used_in_chunks_in_use();  // includes overhead!
3503  }
3504}
3505
3506size_t Metaspace::free_words_slow(MetadataType mdtype) const {
3507  assert(!_frozen, "sanity");
3508  if (mdtype == ClassType) {
3509    return using_class_space() ? class_vsm()->sum_free_in_chunks_in_use() : 0;
3510  } else {
3511    return vsm()->sum_free_in_chunks_in_use();
3512  }
3513}
3514
3515// Space capacity in the Metaspace.  It includes
3516// space in the list of chunks from which allocations
3517// have been made. Don't include space in the global freelist and
3518// in the space available in the dictionary which
3519// is already counted in some chunk.
3520size_t Metaspace::capacity_words_slow(MetadataType mdtype) const {
3521  if (mdtype == ClassType) {
3522    return using_class_space() ? class_vsm()->sum_capacity_in_chunks_in_use() : 0;
3523  } else {
3524    return vsm()->sum_capacity_in_chunks_in_use();
3525  }
3526}
3527
3528size_t Metaspace::used_bytes_slow(MetadataType mdtype) const {
3529  return used_words_slow(mdtype) * BytesPerWord;
3530}
3531
3532size_t Metaspace::capacity_bytes_slow(MetadataType mdtype) const {
3533  return capacity_words_slow(mdtype) * BytesPerWord;
3534}
3535
3536size_t Metaspace::allocated_blocks_bytes() const {
3537  return vsm()->allocated_blocks_bytes() +
3538      (using_class_space() ? class_vsm()->allocated_blocks_bytes() : 0);
3539}
3540
3541size_t Metaspace::allocated_chunks_bytes() const {
3542  return vsm()->allocated_chunks_bytes() +
3543      (using_class_space() ? class_vsm()->allocated_chunks_bytes() : 0);
3544}
3545
3546void Metaspace::deallocate(MetaWord* ptr, size_t word_size, bool is_class) {
3547  assert(!_frozen, "sanity");
3548  assert(!SafepointSynchronize::is_at_safepoint()
3549         || Thread::current()->is_VM_thread(), "should be the VM thread");
3550
3551  MutexLockerEx ml(vsm()->lock(), Mutex::_no_safepoint_check_flag);
3552
3553  if (is_class && using_class_space()) {
3554    class_vsm()->deallocate(ptr, word_size);
3555  } else {
3556    vsm()->deallocate(ptr, word_size);
3557  }
3558}
3559
3560MetaWord* Metaspace::allocate(ClassLoaderData* loader_data, size_t word_size,
3561                              MetaspaceObj::Type type, TRAPS) {
3562  assert(!_frozen, "sanity");
3563  if (HAS_PENDING_EXCEPTION) {
3564    assert(false, "Should not allocate with exception pending");
3565    return NULL;  // caller does a CHECK_NULL too
3566  }
3567
3568  assert(loader_data != NULL, "Should never pass around a NULL loader_data. "
3569        "ClassLoaderData::the_null_class_loader_data() should have been used.");
3570
3571  MetadataType mdtype = (type == MetaspaceObj::ClassType) ? ClassType : NonClassType;
3572
3573  // Try to allocate metadata.
3574  MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
3575
3576  if (result == NULL) {
3577    tracer()->report_metaspace_allocation_failure(loader_data, word_size, type, mdtype);
3578
3579    // Allocation failed.
3580    if (is_init_completed()) {
3581      // Only start a GC if the bootstrapping has completed.
3582
3583      // Try to clean out some memory and retry.
3584      result = Universe::heap()->collector_policy()->satisfy_failed_metadata_allocation(
3585          loader_data, word_size, mdtype);
3586    }
3587  }
3588
3589  if (result == NULL) {
3590    SpaceManager* sm;
3591    if (is_class_space_allocation(mdtype)) {
3592      sm = loader_data->metaspace_non_null()->class_vsm();
3593    } else {
3594      sm = loader_data->metaspace_non_null()->vsm();
3595    }
3596
3597    result = sm->get_small_chunk_and_allocate(word_size);
3598
3599    if (result == NULL) {
3600      report_metadata_oome(loader_data, word_size, type, mdtype, CHECK_NULL);
3601    }
3602  }
3603
3604  // Zero initialize.
3605  Copy::fill_to_words((HeapWord*)result, word_size, 0);
3606
3607  return result;
3608}
3609
3610size_t Metaspace::class_chunk_size(size_t word_size) {
3611  assert(using_class_space(), "Has to use class space");
3612  return class_vsm()->calc_chunk_size(word_size);
3613}
3614
3615void Metaspace::report_metadata_oome(ClassLoaderData* loader_data, size_t word_size, MetaspaceObj::Type type, MetadataType mdtype, TRAPS) {
3616  tracer()->report_metadata_oom(loader_data, word_size, type, mdtype);
3617
3618  // If result is still null, we are out of memory.
3619  Log(gc, metaspace, freelist) log;
3620  if (log.is_info()) {
3621    log.info("Metaspace (%s) allocation failed for size " SIZE_FORMAT,
3622             is_class_space_allocation(mdtype) ? "class" : "data", word_size);
3623    ResourceMark rm;
3624    if (log.is_debug()) {
3625      if (loader_data->metaspace_or_null() != NULL) {
3626        LogStream ls(log.debug());
3627        loader_data->dump(&ls);
3628      }
3629    }
3630    LogStream ls(log.info());
3631    MetaspaceAux::dump(&ls);
3632    ChunkManager::print_all_chunkmanagers(&ls);
3633  }
3634
3635  bool out_of_compressed_class_space = false;
3636  if (is_class_space_allocation(mdtype)) {
3637    Metaspace* metaspace = loader_data->metaspace_non_null();
3638    out_of_compressed_class_space =
3639      MetaspaceAux::committed_bytes(Metaspace::ClassType) +
3640      (metaspace->class_chunk_size(word_size) * BytesPerWord) >
3641      CompressedClassSpaceSize;
3642  }
3643
3644  // -XX:+HeapDumpOnOutOfMemoryError and -XX:OnOutOfMemoryError support
3645  const char* space_string = out_of_compressed_class_space ?
3646    "Compressed class space" : "Metaspace";
3647
3648  report_java_out_of_memory(space_string);
3649
3650  if (JvmtiExport::should_post_resource_exhausted()) {
3651    JvmtiExport::post_resource_exhausted(
3652        JVMTI_RESOURCE_EXHAUSTED_OOM_ERROR,
3653        space_string);
3654  }
3655
3656  if (!is_init_completed()) {
3657    vm_exit_during_initialization("OutOfMemoryError", space_string);
3658  }
3659
3660  if (out_of_compressed_class_space) {
3661    THROW_OOP(Universe::out_of_memory_error_class_metaspace());
3662  } else {
3663    THROW_OOP(Universe::out_of_memory_error_metaspace());
3664  }
3665}
3666
3667const char* Metaspace::metadata_type_name(Metaspace::MetadataType mdtype) {
3668  switch (mdtype) {
3669    case Metaspace::ClassType: return "Class";
3670    case Metaspace::NonClassType: return "Metadata";
3671    default:
3672      assert(false, "Got bad mdtype: %d", (int) mdtype);
3673      return NULL;
3674  }
3675}
3676
3677void Metaspace::purge(MetadataType mdtype) {
3678  get_space_list(mdtype)->purge(get_chunk_manager(mdtype));
3679}
3680
3681void Metaspace::purge() {
3682  MutexLockerEx cl(SpaceManager::expand_lock(),
3683                   Mutex::_no_safepoint_check_flag);
3684  purge(NonClassType);
3685  if (using_class_space()) {
3686    purge(ClassType);
3687  }
3688}
3689
3690void Metaspace::print_on(outputStream* out) const {
3691  // Print both class virtual space counts and metaspace.
3692  if (Verbose) {
3693    vsm()->print_on(out);
3694    if (using_class_space()) {
3695      class_vsm()->print_on(out);
3696    }
3697  }
3698}
3699
3700bool Metaspace::contains(const void* ptr) {
3701  if (UseSharedSpaces && MetaspaceShared::is_in_shared_space(ptr)) {
3702    return true;
3703  }
3704  return contains_non_shared(ptr);
3705}
3706
3707bool Metaspace::contains_non_shared(const void* ptr) {
3708  if (using_class_space() && get_space_list(ClassType)->contains(ptr)) {
3709     return true;
3710  }
3711
3712  return get_space_list(NonClassType)->contains(ptr);
3713}
3714
3715void Metaspace::verify() {
3716  vsm()->verify();
3717  if (using_class_space()) {
3718    class_vsm()->verify();
3719  }
3720}
3721
3722void Metaspace::dump(outputStream* const out) const {
3723  out->print_cr("\nVirtual space manager: " INTPTR_FORMAT, p2i(vsm()));
3724  vsm()->dump(out);
3725  if (using_class_space()) {
3726    out->print_cr("\nClass space manager: " INTPTR_FORMAT, p2i(class_vsm()));
3727    class_vsm()->dump(out);
3728  }
3729}
3730
3731/////////////// Unit tests ///////////////
3732
3733#ifndef PRODUCT
3734
3735class TestMetaspaceAuxTest : AllStatic {
3736 public:
3737  static void test_reserved() {
3738    size_t reserved = MetaspaceAux::reserved_bytes();
3739
3740    assert(reserved > 0, "assert");
3741
3742    size_t committed  = MetaspaceAux::committed_bytes();
3743    assert(committed <= reserved, "assert");
3744
3745    size_t reserved_metadata = MetaspaceAux::reserved_bytes(Metaspace::NonClassType);
3746    assert(reserved_metadata > 0, "assert");
3747    assert(reserved_metadata <= reserved, "assert");
3748
3749    if (UseCompressedClassPointers) {
3750      size_t reserved_class    = MetaspaceAux::reserved_bytes(Metaspace::ClassType);
3751      assert(reserved_class > 0, "assert");
3752      assert(reserved_class < reserved, "assert");
3753    }
3754  }
3755
3756  static void test_committed() {
3757    size_t committed = MetaspaceAux::committed_bytes();
3758
3759    assert(committed > 0, "assert");
3760
3761    size_t reserved  = MetaspaceAux::reserved_bytes();
3762    assert(committed <= reserved, "assert");
3763
3764    size_t committed_metadata = MetaspaceAux::committed_bytes(Metaspace::NonClassType);
3765    assert(committed_metadata > 0, "assert");
3766    assert(committed_metadata <= committed, "assert");
3767
3768    if (UseCompressedClassPointers) {
3769      size_t committed_class    = MetaspaceAux::committed_bytes(Metaspace::ClassType);
3770      assert(committed_class > 0, "assert");
3771      assert(committed_class < committed, "assert");
3772    }
3773  }
3774
3775  static void test_virtual_space_list_large_chunk() {
3776    VirtualSpaceList* vs_list = new VirtualSpaceList(os::vm_allocation_granularity());
3777    MutexLockerEx cl(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3778    // A size larger than VirtualSpaceSize (256k) and add one page to make it _not_ be
3779    // vm_allocation_granularity aligned on Windows.
3780    size_t large_size = (size_t)(2*256*K + (os::vm_page_size()/BytesPerWord));
3781    large_size += (os::vm_page_size()/BytesPerWord);
3782    vs_list->get_new_chunk(large_size, 0);
3783  }
3784
3785  static void test() {
3786    test_reserved();
3787    test_committed();
3788    test_virtual_space_list_large_chunk();
3789  }
3790};
3791
3792void TestMetaspaceAux_test() {
3793  TestMetaspaceAuxTest::test();
3794}
3795
3796class TestVirtualSpaceNodeTest {
3797  static void chunk_up(size_t words_left, size_t& num_medium_chunks,
3798                                          size_t& num_small_chunks,
3799                                          size_t& num_specialized_chunks) {
3800    num_medium_chunks = words_left / MediumChunk;
3801    words_left = words_left % MediumChunk;
3802
3803    num_small_chunks = words_left / SmallChunk;
3804    words_left = words_left % SmallChunk;
3805    // how many specialized chunks can we get?
3806    num_specialized_chunks = words_left / SpecializedChunk;
3807    assert(words_left % SpecializedChunk == 0, "should be nothing left");
3808  }
3809
3810 public:
3811  static void test() {
3812    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
3813    const size_t vsn_test_size_words = MediumChunk  * 4;
3814    const size_t vsn_test_size_bytes = vsn_test_size_words * BytesPerWord;
3815
3816    // The chunk sizes must be multiples of eachother, or this will fail
3817    STATIC_ASSERT(MediumChunk % SmallChunk == 0);
3818    STATIC_ASSERT(SmallChunk % SpecializedChunk == 0);
3819
3820    { // No committed memory in VSN
3821      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3822      VirtualSpaceNode vsn(vsn_test_size_bytes);
3823      vsn.initialize();
3824      vsn.retire(&cm);
3825      assert(cm.sum_free_chunks_count() == 0, "did not commit any memory in the VSN");
3826    }
3827
3828    { // All of VSN is committed, half is used by chunks
3829      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3830      VirtualSpaceNode vsn(vsn_test_size_bytes);
3831      vsn.initialize();
3832      vsn.expand_by(vsn_test_size_words, vsn_test_size_words);
3833      vsn.get_chunk_vs(MediumChunk);
3834      vsn.get_chunk_vs(MediumChunk);
3835      vsn.retire(&cm);
3836      assert(cm.sum_free_chunks_count() == 2, "should have been memory left for 2 medium chunks");
3837      assert(cm.sum_free_chunks() == 2*MediumChunk, "sizes should add up");
3838    }
3839
3840    const size_t page_chunks = 4 * (size_t)os::vm_page_size() / BytesPerWord;
3841    // This doesn't work for systems with vm_page_size >= 16K.
3842    if (page_chunks < MediumChunk) {
3843      // 4 pages of VSN is committed, some is used by chunks
3844      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3845      VirtualSpaceNode vsn(vsn_test_size_bytes);
3846
3847      vsn.initialize();
3848      vsn.expand_by(page_chunks, page_chunks);
3849      vsn.get_chunk_vs(SmallChunk);
3850      vsn.get_chunk_vs(SpecializedChunk);
3851      vsn.retire(&cm);
3852
3853      // committed - used = words left to retire
3854      const size_t words_left = page_chunks - SmallChunk - SpecializedChunk;
3855
3856      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3857      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3858
3859      assert(num_medium_chunks == 0, "should not get any medium chunks");
3860      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3861      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3862    }
3863
3864    { // Half of VSN is committed, a humongous chunk is used
3865      ChunkManager cm(SpecializedChunk, SmallChunk, MediumChunk);
3866      VirtualSpaceNode vsn(vsn_test_size_bytes);
3867      vsn.initialize();
3868      vsn.expand_by(MediumChunk * 2, MediumChunk * 2);
3869      vsn.get_chunk_vs(MediumChunk + SpecializedChunk); // Humongous chunks will be aligned up to MediumChunk + SpecializedChunk
3870      vsn.retire(&cm);
3871
3872      const size_t words_left = MediumChunk * 2 - (MediumChunk + SpecializedChunk);
3873      size_t num_medium_chunks, num_small_chunks, num_spec_chunks;
3874      chunk_up(words_left, num_medium_chunks, num_small_chunks, num_spec_chunks);
3875
3876      assert(num_medium_chunks == 0, "should not get any medium chunks");
3877      assert(cm.sum_free_chunks_count() == (num_small_chunks + num_spec_chunks), "should be space for 3 chunks");
3878      assert(cm.sum_free_chunks() == words_left, "sizes should add up");
3879    }
3880
3881  }
3882
3883#define assert_is_available_positive(word_size) \
3884  assert(vsn.is_available(word_size), \
3885         #word_size ": " PTR_FORMAT " bytes were not available in " \
3886         "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3887         (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3888
3889#define assert_is_available_negative(word_size) \
3890  assert(!vsn.is_available(word_size), \
3891         #word_size ": " PTR_FORMAT " bytes should not be available in " \
3892         "VirtualSpaceNode [" PTR_FORMAT ", " PTR_FORMAT ")", \
3893         (uintptr_t)(word_size * BytesPerWord), p2i(vsn.bottom()), p2i(vsn.end()));
3894
3895  static void test_is_available_positive() {
3896    // Reserve some memory.
3897    VirtualSpaceNode vsn(os::vm_allocation_granularity());
3898    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3899
3900    // Commit some memory.
3901    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3902    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3903    assert(expanded, "Failed to commit");
3904
3905    // Check that is_available accepts the committed size.
3906    assert_is_available_positive(commit_word_size);
3907
3908    // Check that is_available accepts half the committed size.
3909    size_t expand_word_size = commit_word_size / 2;
3910    assert_is_available_positive(expand_word_size);
3911  }
3912
3913  static void test_is_available_negative() {
3914    // Reserve some memory.
3915    VirtualSpaceNode vsn(os::vm_allocation_granularity());
3916    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3917
3918    // Commit some memory.
3919    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3920    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3921    assert(expanded, "Failed to commit");
3922
3923    // Check that is_available doesn't accept a too large size.
3924    size_t two_times_commit_word_size = commit_word_size * 2;
3925    assert_is_available_negative(two_times_commit_word_size);
3926  }
3927
3928  static void test_is_available_overflow() {
3929    // Reserve some memory.
3930    VirtualSpaceNode vsn(os::vm_allocation_granularity());
3931    assert(vsn.initialize(), "Failed to setup VirtualSpaceNode");
3932
3933    // Commit some memory.
3934    size_t commit_word_size = os::vm_allocation_granularity() / BytesPerWord;
3935    bool expanded = vsn.expand_by(commit_word_size, commit_word_size);
3936    assert(expanded, "Failed to commit");
3937
3938    // Calculate a size that will overflow the virtual space size.
3939    void* virtual_space_max = (void*)(uintptr_t)-1;
3940    size_t bottom_to_max = pointer_delta(virtual_space_max, vsn.bottom(), 1);
3941    size_t overflow_size = bottom_to_max + BytesPerWord;
3942    size_t overflow_word_size = overflow_size / BytesPerWord;
3943
3944    // Check that is_available can handle the overflow.
3945    assert_is_available_negative(overflow_word_size);
3946  }
3947
3948  static void test_is_available() {
3949    TestVirtualSpaceNodeTest::test_is_available_positive();
3950    TestVirtualSpaceNodeTest::test_is_available_negative();
3951    TestVirtualSpaceNodeTest::test_is_available_overflow();
3952  }
3953};
3954
3955void TestVirtualSpaceNode_test() {
3956  TestVirtualSpaceNodeTest::test();
3957  TestVirtualSpaceNodeTest::test_is_available();
3958}
3959
3960// The following test is placed here instead of a gtest / unittest file
3961// because the ChunkManager class is only available in this file.
3962void ChunkManager_test_list_index() {
3963  ChunkManager manager(ClassSpecializedChunk, ClassSmallChunk, ClassMediumChunk);
3964
3965  // Test previous bug where a query for a humongous class metachunk,
3966  // incorrectly matched the non-class medium metachunk size.
3967  {
3968    assert(MediumChunk > ClassMediumChunk, "Precondition for test");
3969
3970    ChunkIndex index = manager.list_index(MediumChunk);
3971
3972    assert(index == HumongousIndex,
3973           "Requested size is larger than ClassMediumChunk,"
3974           " so should return HumongousIndex. Got index: %d", (int)index);
3975  }
3976
3977  // Check the specified sizes as well.
3978  {
3979    ChunkIndex index = manager.list_index(ClassSpecializedChunk);
3980    assert(index == SpecializedIndex, "Wrong index returned. Got index: %d", (int)index);
3981  }
3982  {
3983    ChunkIndex index = manager.list_index(ClassSmallChunk);
3984    assert(index == SmallIndex, "Wrong index returned. Got index: %d", (int)index);
3985  }
3986  {
3987    ChunkIndex index = manager.list_index(ClassMediumChunk);
3988    assert(index == MediumIndex, "Wrong index returned. Got index: %d", (int)index);
3989  }
3990  {
3991    ChunkIndex index = manager.list_index(ClassMediumChunk + 1);
3992    assert(index == HumongousIndex, "Wrong index returned. Got index: %d", (int)index);
3993  }
3994}
3995
3996#endif // !PRODUCT
3997
3998#ifdef ASSERT
3999
4000// ChunkManagerReturnTest stresses taking/returning chunks from the ChunkManager. It takes and
4001// returns chunks from/to the ChunkManager while keeping track of the expected ChunkManager
4002// content.
4003class ChunkManagerReturnTestImpl {
4004
4005  VirtualSpaceNode _vsn;
4006  ChunkManager _cm;
4007
4008  // The expected content of the chunk manager.
4009  unsigned _chunks_in_chunkmanager;
4010  size_t _words_in_chunkmanager;
4011
4012  // A fixed size pool of chunks. Chunks may be in the chunk manager (free) or not (in use).
4013  static const int num_chunks = 256;
4014  Metachunk* _pool[num_chunks];
4015
4016  // Helper, return a random position into the chunk pool.
4017  static int get_random_position() {
4018    return os::random() % num_chunks;
4019  }
4020
4021  // Asserts that ChunkManager counters match expectations.
4022  void assert_counters() {
4023    assert(_vsn.container_count() == num_chunks - _chunks_in_chunkmanager, "vsn counter mismatch.");
4024    assert(_cm.free_chunks_count() == _chunks_in_chunkmanager, "cm counter mismatch.");
4025    assert(_cm.free_chunks_total_words() == _words_in_chunkmanager, "cm counter mismatch.");
4026  }
4027
4028  // Get a random chunk size. Equal chance to get spec/med/small chunk size or
4029  // a humongous chunk size. The latter itself is random in the range of [med+spec..4*med).
4030  size_t get_random_chunk_size() {
4031    const size_t sizes [] = { SpecializedChunk, SmallChunk, MediumChunk };
4032    const int rand = os::random() % 4;
4033    if (rand < 3) {
4034      return sizes[rand];
4035    } else {
4036      // Note: this affects the max. size of space (see _vsn initialization in ctor).
4037      return align_up(MediumChunk + 1 + (os::random() % (MediumChunk * 4)), SpecializedChunk);
4038    }
4039  }
4040
4041  // Starting at pool index <start>+1, find the next chunk tagged as either free or in use, depending
4042  // on <is_free>. Search wraps. Returns its position, or -1 if no matching chunk was found.
4043  int next_matching_chunk(int start, bool is_free) const {
4044    assert(start >= 0 && start < num_chunks, "invalid parameter");
4045    int pos = start;
4046    do {
4047      if (++pos == num_chunks) {
4048        pos = 0;
4049      }
4050      if (_pool[pos]->is_tagged_free() == is_free) {
4051        return pos;
4052      }
4053    } while (pos != start);
4054    return -1;
4055  }
4056
4057  // A structure to keep information about a chunk list including which
4058  // chunks are part of this list. This is needed to keep information about a chunk list
4059  // we will to return to the ChunkManager, because the original list will be destroyed.
4060  struct AChunkList {
4061    Metachunk* head;
4062    Metachunk* all[num_chunks];
4063    size_t size;
4064    int num;
4065    ChunkIndex index;
4066  };
4067
4068  // Assemble, from the in-use chunks (not in the chunk manager) in the pool,
4069  // a random chunk list of max. length <list_size> of chunks with the same
4070  // ChunkIndex (chunk size).
4071  // Returns false if list cannot be assembled. List is returned in the <out>
4072  // structure. Returned list may be smaller than <list_size>.
4073  bool assemble_random_chunklist(AChunkList* out, int list_size) {
4074    // Choose a random in-use chunk from the pool...
4075    const int headpos = next_matching_chunk(get_random_position(), false);
4076    if (headpos == -1) {
4077      return false;
4078    }
4079    Metachunk* const head = _pool[headpos];
4080    out->all[0] = head;
4081    assert(head->is_tagged_free() == false, "Chunk state mismatch");
4082    // ..then go from there, chain it up with up to list_size - 1 number of other
4083    // in-use chunks of the same index.
4084    const ChunkIndex index = _cm.list_index(head->word_size());
4085    int num_added = 1;
4086    size_t size_added = head->word_size();
4087    int pos = headpos;
4088    Metachunk* tail = head;
4089    do {
4090      pos = next_matching_chunk(pos, false);
4091      if (pos != headpos) {
4092        Metachunk* c = _pool[pos];
4093        assert(c->is_tagged_free() == false, "Chunk state mismatch");
4094        if (index == _cm.list_index(c->word_size())) {
4095          tail->set_next(c);
4096          c->set_prev(tail);
4097          tail = c;
4098          out->all[num_added] = c;
4099          num_added ++;
4100          size_added += c->word_size();
4101        }
4102      }
4103    } while (num_added < list_size && pos != headpos);
4104    out->head = head;
4105    out->index = index;
4106    out->size = size_added;
4107    out->num = num_added;
4108    return true;
4109  }
4110
4111  // Take a single random chunk from the ChunkManager.
4112  bool take_single_random_chunk_from_chunkmanager() {
4113    assert_counters();
4114    _cm.locked_verify();
4115    int pos = next_matching_chunk(get_random_position(), true);
4116    if (pos == -1) {
4117      return false;
4118    }
4119    Metachunk* c = _pool[pos];
4120    assert(c->is_tagged_free(), "Chunk state mismatch");
4121    // Note: instead of using ChunkManager::remove_chunk on this one chunk, we call
4122    // ChunkManager::free_chunks_get() with this chunk's word size. We really want
4123    // to exercise ChunkManager::free_chunks_get() because that one gets called for
4124    // normal chunk allocation.
4125    Metachunk* c2 = _cm.free_chunks_get(c->word_size());
4126    assert(c2 != NULL, "Unexpected.");
4127    assert(!c2->is_tagged_free(), "Chunk state mismatch");
4128    assert(c2->next() == NULL && c2->prev() == NULL, "Chunk should be outside of a list.");
4129    _chunks_in_chunkmanager --;
4130    _words_in_chunkmanager -= c->word_size();
4131    assert_counters();
4132    _cm.locked_verify();
4133    return true;
4134  }
4135
4136  // Returns a single random chunk to the chunk manager. Returns false if that
4137  // was not possible (all chunks are already in the chunk manager).
4138  bool return_single_random_chunk_to_chunkmanager() {
4139    assert_counters();
4140    _cm.locked_verify();
4141    int pos = next_matching_chunk(get_random_position(), false);
4142    if (pos == -1) {
4143      return false;
4144    }
4145    Metachunk* c = _pool[pos];
4146    assert(c->is_tagged_free() == false, "wrong chunk information");
4147    _cm.return_single_chunk(_cm.list_index(c->word_size()), c);
4148    _chunks_in_chunkmanager ++;
4149    _words_in_chunkmanager += c->word_size();
4150    assert(c->is_tagged_free() == true, "wrong chunk information");
4151    assert_counters();
4152    _cm.locked_verify();
4153    return true;
4154  }
4155
4156  // Return a random chunk list to the chunk manager. Returns the length of the
4157  // returned list.
4158  int return_random_chunk_list_to_chunkmanager(int list_size) {
4159    assert_counters();
4160    _cm.locked_verify();
4161    AChunkList aChunkList;
4162    if (!assemble_random_chunklist(&aChunkList, list_size)) {
4163      return 0;
4164    }
4165    // Before returning chunks are returned, they should be tagged in use.
4166    for (int i = 0; i < aChunkList.num; i ++) {
4167      assert(!aChunkList.all[i]->is_tagged_free(), "chunk state mismatch.");
4168    }
4169    _cm.return_chunk_list(aChunkList.index, aChunkList.head);
4170    _chunks_in_chunkmanager += aChunkList.num;
4171    _words_in_chunkmanager += aChunkList.size;
4172    // After all chunks are returned, check that they are now tagged free.
4173    for (int i = 0; i < aChunkList.num; i ++) {
4174      assert(aChunkList.all[i]->is_tagged_free(), "chunk state mismatch.");
4175    }
4176    assert_counters();
4177    _cm.locked_verify();
4178    return aChunkList.num;
4179  }
4180
4181public:
4182
4183  ChunkManagerReturnTestImpl()
4184    : _vsn(align_up(MediumChunk * num_chunks * 5 * sizeof(MetaWord), Metaspace::reserve_alignment()))
4185    , _cm(SpecializedChunk, SmallChunk, MediumChunk)
4186    , _chunks_in_chunkmanager(0)
4187    , _words_in_chunkmanager(0)
4188  {
4189    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
4190    // Allocate virtual space and allocate random chunks. Keep these chunks in the _pool. These chunks are
4191    // "in use", because not yet added to any chunk manager.
4192    _vsn.initialize();
4193    _vsn.expand_by(_vsn.reserved_words(), _vsn.reserved_words());
4194    for (int i = 0; i < num_chunks; i ++) {
4195      const size_t size = get_random_chunk_size();
4196      _pool[i] = _vsn.get_chunk_vs(size);
4197      assert(_pool[i] != NULL, "allocation failed");
4198    }
4199    assert_counters();
4200    _cm.locked_verify();
4201  }
4202
4203  // Test entry point.
4204  // Return some chunks to the chunk manager (return phase). Take some chunks out (take phase). Repeat.
4205  // Chunks are choosen randomly. Number of chunks to return or taken are choosen randomly, but affected
4206  // by the <phase_length_factor> argument: a factor of 0.0 will cause the test to quickly alternate between
4207  // returning and taking, whereas a factor of 1.0 will take/return all chunks from/to the
4208  // chunks manager, thereby emptying or filling it completely.
4209  void do_test(float phase_length_factor) {
4210    MutexLockerEx ml(SpaceManager::expand_lock(), Mutex::_no_safepoint_check_flag);
4211    assert_counters();
4212    // Execute n operations, and operation being the move of a single chunk to/from the chunk manager.
4213    const int num_max_ops = num_chunks * 100;
4214    int num_ops = num_max_ops;
4215    const int average_phase_length = (int)(phase_length_factor * num_chunks);
4216    int num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4));
4217    bool return_phase = true;
4218    while (num_ops > 0) {
4219      int chunks_moved = 0;
4220      if (return_phase) {
4221        // Randomly switch between returning a single chunk or a random length chunk list.
4222        if (os::random() % 2 == 0) {
4223          if (return_single_random_chunk_to_chunkmanager()) {
4224            chunks_moved = 1;
4225          }
4226        } else {
4227          const int list_length = MAX2(1, (os::random() % num_ops_until_switch));
4228          chunks_moved = return_random_chunk_list_to_chunkmanager(list_length);
4229        }
4230      } else {
4231        // Breath out.
4232        if (take_single_random_chunk_from_chunkmanager()) {
4233          chunks_moved = 1;
4234        }
4235      }
4236      num_ops -= chunks_moved;
4237      num_ops_until_switch -= chunks_moved;
4238      if (chunks_moved == 0 || num_ops_until_switch <= 0) {
4239        return_phase = !return_phase;
4240        num_ops_until_switch = MAX2(1, (average_phase_length + os::random() % 8 - 4));
4241      }
4242    }
4243  }
4244};
4245
4246void* setup_chunkmanager_returntests() {
4247  ChunkManagerReturnTestImpl* p = new ChunkManagerReturnTestImpl();
4248  return p;
4249}
4250
4251void teardown_chunkmanager_returntests(void* p) {
4252  delete (ChunkManagerReturnTestImpl*) p;
4253}
4254
4255void run_chunkmanager_returntests(void* p, float phase_length) {
4256  ChunkManagerReturnTestImpl* test = (ChunkManagerReturnTestImpl*) p;
4257  test->do_test(phase_length);
4258}
4259
4260// The following test is placed here instead of a gtest / unittest file
4261// because the ChunkManager class is only available in this file.
4262class SpaceManagerTest : AllStatic {
4263  friend void SpaceManager_test_adjust_initial_chunk_size();
4264
4265  static void test_adjust_initial_chunk_size(bool is_class) {
4266    const size_t smallest = SpaceManager::smallest_chunk_size(is_class);
4267    const size_t normal   = SpaceManager::small_chunk_size(is_class);
4268    const size_t medium   = SpaceManager::medium_chunk_size(is_class);
4269
4270#define test_adjust_initial_chunk_size(value, expected, is_class_value)          \
4271    do {                                                                         \
4272      size_t v = value;                                                          \
4273      size_t e = expected;                                                       \
4274      assert(SpaceManager::adjust_initial_chunk_size(v, (is_class_value)) == e,  \
4275             "Expected: " SIZE_FORMAT " got: " SIZE_FORMAT, e, v);               \
4276    } while (0)
4277
4278    // Smallest (specialized)
4279    test_adjust_initial_chunk_size(1,            smallest, is_class);
4280    test_adjust_initial_chunk_size(smallest - 1, smallest, is_class);
4281    test_adjust_initial_chunk_size(smallest,     smallest, is_class);
4282
4283    // Small
4284    test_adjust_initial_chunk_size(smallest + 1, normal, is_class);
4285    test_adjust_initial_chunk_size(normal - 1,   normal, is_class);
4286    test_adjust_initial_chunk_size(normal,       normal, is_class);
4287
4288    // Medium
4289    test_adjust_initial_chunk_size(normal + 1, medium, is_class);
4290    test_adjust_initial_chunk_size(medium - 1, medium, is_class);
4291    test_adjust_initial_chunk_size(medium,     medium, is_class);
4292
4293    // Humongous
4294    test_adjust_initial_chunk_size(medium + 1, medium + 1, is_class);
4295
4296#undef test_adjust_initial_chunk_size
4297  }
4298
4299  static void test_adjust_initial_chunk_size() {
4300    test_adjust_initial_chunk_size(false);
4301    test_adjust_initial_chunk_size(true);
4302  }
4303};
4304
4305void SpaceManager_test_adjust_initial_chunk_size() {
4306  SpaceManagerTest::test_adjust_initial_chunk_size();
4307}
4308
4309#endif // ASSERT
4310