1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_TASKQUEUE_HPP
26#define SHARE_VM_GC_SHARED_TASKQUEUE_HPP
27
28#include "memory/allocation.hpp"
29#include "utilities/stack.hpp"
30
31// Simple TaskQueue stats that are collected by default in debug builds.
32
33#if !defined(TASKQUEUE_STATS) && defined(ASSERT)
34#define TASKQUEUE_STATS 1
35#elif !defined(TASKQUEUE_STATS)
36#define TASKQUEUE_STATS 0
37#endif
38
39#if TASKQUEUE_STATS
40#define TASKQUEUE_STATS_ONLY(code) code
41#else
42#define TASKQUEUE_STATS_ONLY(code)
43#endif // TASKQUEUE_STATS
44
45#if TASKQUEUE_STATS
46class TaskQueueStats {
47public:
48  enum StatId {
49    push,             // number of taskqueue pushes
50    pop,              // number of taskqueue pops
51    pop_slow,         // subset of taskqueue pops that were done slow-path
52    steal_attempt,    // number of taskqueue steal attempts
53    steal,            // number of taskqueue steals
54    overflow,         // number of overflow pushes
55    overflow_max_len, // max length of overflow stack
56    last_stat_id
57  };
58
59public:
60  inline TaskQueueStats()       { reset(); }
61
62  inline void record_push()     { ++_stats[push]; }
63  inline void record_pop()      { ++_stats[pop]; }
64  inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
65  inline void record_steal(bool success);
66  inline void record_overflow(size_t new_length);
67
68  TaskQueueStats & operator +=(const TaskQueueStats & addend);
69
70  inline size_t get(StatId id) const { return _stats[id]; }
71  inline const size_t* get() const   { return _stats; }
72
73  inline void reset();
74
75  // Print the specified line of the header (does not include a line separator).
76  static void print_header(unsigned int line, outputStream* const stream = tty,
77                           unsigned int width = 10);
78  // Print the statistics (does not include a line separator).
79  void print(outputStream* const stream = tty, unsigned int width = 10) const;
80
81  DEBUG_ONLY(void verify() const;)
82
83private:
84  size_t                    _stats[last_stat_id];
85  static const char * const _names[last_stat_id];
86};
87
88void TaskQueueStats::record_steal(bool success) {
89  ++_stats[steal_attempt];
90  if (success) ++_stats[steal];
91}
92
93void TaskQueueStats::record_overflow(size_t new_len) {
94  ++_stats[overflow];
95  if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
96}
97
98void TaskQueueStats::reset() {
99  memset(_stats, 0, sizeof(_stats));
100}
101#endif // TASKQUEUE_STATS
102
103// TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
104
105template <unsigned int N, MEMFLAGS F>
106class TaskQueueSuper: public CHeapObj<F> {
107protected:
108  // Internal type for indexing the queue; also used for the tag.
109  typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
110
111  // The first free element after the last one pushed (mod N).
112  volatile uint _bottom;
113
114  enum { MOD_N_MASK = N - 1 };
115
116  class Age {
117  public:
118    Age(size_t data = 0)         { _data = data; }
119    Age(const Age& age)          { _data = age._data; }
120    Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
121
122    Age   get()        const volatile { return _data; }
123    void  set(Age age) volatile       { _data = age._data; }
124
125    idx_t top()        const volatile { return _fields._top; }
126    idx_t tag()        const volatile { return _fields._tag; }
127
128    // Increment top; if it wraps, increment tag also.
129    void increment() {
130      _fields._top = increment_index(_fields._top);
131      if (_fields._top == 0) ++_fields._tag;
132    }
133
134    Age cmpxchg(const Age new_age, const Age old_age) volatile;
135
136    bool operator ==(const Age& other) const { return _data == other._data; }
137
138  private:
139    struct fields {
140      idx_t _top;
141      idx_t _tag;
142    };
143    union {
144      size_t _data;
145      fields _fields;
146    };
147  };
148
149  volatile Age _age;
150
151  // These both operate mod N.
152  static uint increment_index(uint ind) {
153    return (ind + 1) & MOD_N_MASK;
154  }
155  static uint decrement_index(uint ind) {
156    return (ind - 1) & MOD_N_MASK;
157  }
158
159  // Returns a number in the range [0..N).  If the result is "N-1", it should be
160  // interpreted as 0.
161  uint dirty_size(uint bot, uint top) const {
162    return (bot - top) & MOD_N_MASK;
163  }
164
165  // Returns the size corresponding to the given "bot" and "top".
166  uint size(uint bot, uint top) const {
167    uint sz = dirty_size(bot, top);
168    // Has the queue "wrapped", so that bottom is less than top?  There's a
169    // complicated special case here.  A pair of threads could perform pop_local
170    // and pop_global operations concurrently, starting from a state in which
171    // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
172    // and the pop_global in incrementing _top (in which case the pop_global
173    // will be awarded the contested queue element.)  The resulting state must
174    // be interpreted as an empty queue.  (We only need to worry about one such
175    // event: only the queue owner performs pop_local's, and several concurrent
176    // threads attempting to perform the pop_global will all perform the same
177    // CAS, and only one can succeed.)  Any stealing thread that reads after
178    // either the increment or decrement will see an empty queue, and will not
179    // join the competitors.  The "sz == -1 || sz == N-1" state will not be
180    // modified by concurrent queues, so the owner thread can reset the state to
181    // _bottom == top so subsequent pushes will be performed normally.
182    return (sz == N - 1) ? 0 : sz;
183  }
184
185public:
186  TaskQueueSuper() : _bottom(0), _age() {}
187
188  // Return true if the TaskQueue contains/does not contain any tasks.
189  bool peek()     const { return _bottom != _age.top(); }
190  bool is_empty() const { return size() == 0; }
191
192  // Return an estimate of the number of elements in the queue.
193  // The "careful" version admits the possibility of pop_local/pop_global
194  // races.
195  uint size() const {
196    return size(_bottom, _age.top());
197  }
198
199  uint dirty_size() const {
200    return dirty_size(_bottom, _age.top());
201  }
202
203  void set_empty() {
204    _bottom = 0;
205    _age.set(0);
206  }
207
208  // Maximum number of elements allowed in the queue.  This is two less
209  // than the actual queue size, for somewhat complicated reasons.
210  uint max_elems() const { return N - 2; }
211
212  // Total size of queue.
213  static const uint total_size() { return N; }
214
215  TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
216};
217
218//
219// GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
220// ended-queue (deque), intended for use in work stealing. Queue operations
221// are non-blocking.
222//
223// A queue owner thread performs push() and pop_local() operations on one end
224// of the queue, while other threads may steal work using the pop_global()
225// method.
226//
227// The main difference to the original algorithm is that this
228// implementation allows wrap-around at the end of its allocated
229// storage, which is an array.
230//
231// The original paper is:
232//
233// Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
234// Thread scheduling for multiprogrammed multiprocessors.
235// Theory of Computing Systems 34, 2 (2001), 115-144.
236//
237// The following paper provides an correctness proof and an
238// implementation for weakly ordered memory models including (pseudo-)
239// code containing memory barriers for a Chase-Lev deque. Chase-Lev is
240// similar to ABP, with the main difference that it allows resizing of the
241// underlying storage:
242//
243// Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
244// Correct and efficient work-stealing for weak memory models
245// Proceedings of the 18th ACM SIGPLAN symposium on Principles and
246// practice of parallel programming (PPoPP 2013), 69-80
247//
248
249template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
250class GenericTaskQueue: public TaskQueueSuper<N, F> {
251protected:
252  typedef typename TaskQueueSuper<N, F>::Age Age;
253  typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
254
255  using TaskQueueSuper<N, F>::_bottom;
256  using TaskQueueSuper<N, F>::_age;
257  using TaskQueueSuper<N, F>::increment_index;
258  using TaskQueueSuper<N, F>::decrement_index;
259  using TaskQueueSuper<N, F>::dirty_size;
260
261public:
262  using TaskQueueSuper<N, F>::max_elems;
263  using TaskQueueSuper<N, F>::size;
264
265#if  TASKQUEUE_STATS
266  using TaskQueueSuper<N, F>::stats;
267#endif
268
269private:
270  // Slow paths for push, pop_local.  (pop_global has no fast path.)
271  bool push_slow(E t, uint dirty_n_elems);
272  bool pop_local_slow(uint localBot, Age oldAge);
273
274public:
275  typedef E element_type;
276
277  // Initializes the queue to empty.
278  GenericTaskQueue();
279
280  void initialize();
281
282  // Push the task "t" on the queue.  Returns "false" iff the queue is full.
283  inline bool push(E t);
284
285  // Attempts to claim a task from the "local" end of the queue (the most
286  // recently pushed).  If successful, returns true and sets t to the task;
287  // otherwise, returns false (the queue is empty).
288  inline bool pop_local(volatile E& t);
289
290  // Like pop_local(), but uses the "global" end of the queue (the least
291  // recently pushed).
292  bool pop_global(volatile E& t);
293
294  // Delete any resource associated with the queue.
295  ~GenericTaskQueue();
296
297  // Apply fn to each element in the task queue.  The queue must not
298  // be modified while iterating.
299  template<typename Fn> void iterate(Fn fn);
300
301private:
302  // Element array.
303  volatile E* _elems;
304};
305
306template<class E, MEMFLAGS F, unsigned int N>
307GenericTaskQueue<E, F, N>::GenericTaskQueue() {
308  assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
309}
310
311// OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
312// elements that do not fit in the TaskQueue.
313//
314// This class hides two methods from super classes:
315//
316// push() - push onto the task queue or, if that fails, onto the overflow stack
317// is_empty() - return true if both the TaskQueue and overflow stack are empty
318//
319// Note that size() is not hidden--it returns the number of elements in the
320// TaskQueue, and does not include the size of the overflow stack.  This
321// simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
322template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
323class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
324{
325public:
326  typedef Stack<E, F>               overflow_t;
327  typedef GenericTaskQueue<E, F, N> taskqueue_t;
328
329  TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
330
331  // Push task t onto the queue or onto the overflow stack.  Return true.
332  inline bool push(E t);
333  // Try to push task t onto the queue only. Returns true if successful, false otherwise.
334  inline bool try_push_to_taskqueue(E t);
335
336  // Attempt to pop from the overflow stack; return true if anything was popped.
337  inline bool pop_overflow(E& t);
338
339  inline overflow_t* overflow_stack() { return &_overflow_stack; }
340
341  inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
342  inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
343  inline bool is_empty()        const {
344    return taskqueue_empty() && overflow_empty();
345  }
346
347private:
348  overflow_t _overflow_stack;
349};
350
351class TaskQueueSetSuper {
352protected:
353  static int randomParkAndMiller(int* seed0);
354public:
355  // Returns "true" if some TaskQueue in the set contains a task.
356  virtual bool peek() = 0;
357};
358
359template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
360};
361
362template<class T, MEMFLAGS F>
363class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
364private:
365  uint _n;
366  T** _queues;
367
368public:
369  typedef typename T::element_type E;
370
371  GenericTaskQueueSet(int n);
372
373  bool steal_best_of_2(uint queue_num, int* seed, E& t);
374
375  void register_queue(uint i, T* q);
376
377  T* queue(uint n);
378
379  // The thread with queue number "queue_num" (and whose random number seed is
380  // at "seed") is trying to steal a task from some other queue.  (It may try
381  // several queues, according to some configuration parameter.)  If some steal
382  // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
383  // false.
384  bool steal(uint queue_num, int* seed, E& t);
385
386  bool peek();
387
388  uint size() const { return _n; }
389};
390
391template<class T, MEMFLAGS F> void
392GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
393  assert(i < _n, "index out of range.");
394  _queues[i] = q;
395}
396
397template<class T, MEMFLAGS F> T*
398GenericTaskQueueSet<T, F>::queue(uint i) {
399  return _queues[i];
400}
401
402template<class T, MEMFLAGS F>
403bool GenericTaskQueueSet<T, F>::peek() {
404  // Try all the queues.
405  for (uint j = 0; j < _n; j++) {
406    if (_queues[j]->peek())
407      return true;
408  }
409  return false;
410}
411
412// When to terminate from the termination protocol.
413class TerminatorTerminator: public CHeapObj<mtInternal> {
414public:
415  virtual bool should_exit_termination() = 0;
416};
417
418// A class to aid in the termination of a set of parallel tasks using
419// TaskQueueSet's for work stealing.
420
421#undef TRACESPINNING
422
423class ParallelTaskTerminator: public StackObj {
424private:
425  uint _n_threads;
426  TaskQueueSetSuper* _queue_set;
427  uint _offered_termination;
428
429#ifdef TRACESPINNING
430  static uint _total_yields;
431  static uint _total_spins;
432  static uint _total_peeks;
433#endif
434
435  bool peek_in_queue_set();
436protected:
437  virtual void yield();
438  void sleep(uint millis);
439
440public:
441
442  // "n_threads" is the number of threads to be terminated.  "queue_set" is a
443  // queue sets of work queues of other threads.
444  ParallelTaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set);
445
446  // The current thread has no work, and is ready to terminate if everyone
447  // else is.  If returns "true", all threads are terminated.  If returns
448  // "false", available work has been observed in one of the task queues,
449  // so the global task is not complete.
450  bool offer_termination() {
451    return offer_termination(NULL);
452  }
453
454  // As above, but it also terminates if the should_exit_termination()
455  // method of the terminator parameter returns true. If terminator is
456  // NULL, then it is ignored.
457  bool offer_termination(TerminatorTerminator* terminator);
458
459  // Reset the terminator, so that it may be reused again.
460  // The caller is responsible for ensuring that this is done
461  // in an MT-safe manner, once the previous round of use of
462  // the terminator is finished.
463  void reset_for_reuse();
464  // Same as above but the number of parallel threads is set to the
465  // given number.
466  void reset_for_reuse(uint n_threads);
467
468#ifdef TRACESPINNING
469  static uint total_yields() { return _total_yields; }
470  static uint total_spins() { return _total_spins; }
471  static uint total_peeks() { return _total_peeks; }
472  static void print_termination_counts();
473#endif
474};
475
476typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
477typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
478
479#ifdef _MSC_VER
480#pragma warning(push)
481// warning C4522: multiple assignment operators specified
482#pragma warning(disable:4522)
483#endif
484
485// This is a container class for either an oop* or a narrowOop*.
486// Both are pushed onto a task queue and the consumer will test is_narrow()
487// to determine which should be processed.
488class StarTask {
489  void*  _holder;        // either union oop* or narrowOop*
490
491  enum { COMPRESSED_OOP_MASK = 1 };
492
493 public:
494  StarTask(narrowOop* p) {
495    assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
496    _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
497  }
498  StarTask(oop* p)       {
499    assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
500    _holder = (void*)p;
501  }
502  StarTask()             { _holder = NULL; }
503  operator oop*()        { return (oop*)_holder; }
504  operator narrowOop*()  {
505    return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
506  }
507
508  StarTask& operator=(const StarTask& t) {
509    _holder = t._holder;
510    return *this;
511  }
512  volatile StarTask& operator=(const volatile StarTask& t) volatile {
513    _holder = t._holder;
514    return *this;
515  }
516
517  bool is_narrow() const {
518    return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
519  }
520};
521
522class ObjArrayTask
523{
524public:
525  ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
526  ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
527    assert(idx <= size_t(max_jint), "too big");
528  }
529  ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
530
531  ObjArrayTask& operator =(const ObjArrayTask& t) {
532    _obj = t._obj;
533    _index = t._index;
534    return *this;
535  }
536  volatile ObjArrayTask&
537  operator =(const volatile ObjArrayTask& t) volatile {
538    (void)const_cast<oop&>(_obj = t._obj);
539    _index = t._index;
540    return *this;
541  }
542
543  inline oop obj()   const { return _obj; }
544  inline int index() const { return _index; }
545
546  DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
547
548private:
549  oop _obj;
550  int _index;
551};
552
553#ifdef _MSC_VER
554#pragma warning(pop)
555#endif
556
557typedef OverflowTaskQueue<StarTask, mtGC>           OopStarTaskQueue;
558typedef GenericTaskQueueSet<OopStarTaskQueue, mtGC> OopStarTaskQueueSet;
559
560typedef OverflowTaskQueue<size_t, mtGC>             RegionTaskQueue;
561typedef GenericTaskQueueSet<RegionTaskQueue, mtGC>  RegionTaskQueueSet;
562
563#endif // SHARE_VM_GC_SHARED_TASKQUEUE_HPP
564