1/*
2 * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
26#define SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
27
28#include "gc/serial/markSweep.inline.hpp"
29#include "gc/shared/collectedHeap.hpp"
30#include "gc/shared/generation.hpp"
31#include "gc/shared/space.hpp"
32#include "gc/shared/spaceDecorator.hpp"
33#include "memory/universe.hpp"
34#include "oops/oopsHierarchy.hpp"
35#include "runtime/prefetch.inline.hpp"
36#include "runtime/safepoint.hpp"
37
38inline HeapWord* Space::block_start(const void* p) {
39  return block_start_const(p);
40}
41
42inline HeapWord* OffsetTableContigSpace::allocate(size_t size) {
43  HeapWord* res = ContiguousSpace::allocate(size);
44  if (res != NULL) {
45    _offsets.alloc_block(res, size);
46  }
47  return res;
48}
49
50// Because of the requirement of keeping "_offsets" up to date with the
51// allocations, we sequentialize these with a lock.  Therefore, best if
52// this is used for larger LAB allocations only.
53inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) {
54  MutexLocker x(&_par_alloc_lock);
55  // This ought to be just "allocate", because of the lock above, but that
56  // ContiguousSpace::allocate asserts that either the allocating thread
57  // holds the heap lock or it is the VM thread and we're at a safepoint.
58  // The best I (dld) could figure was to put a field in ContiguousSpace
59  // meaning "locking at safepoint taken care of", and set/reset that
60  // here.  But this will do for now, especially in light of the comment
61  // above.  Perhaps in the future some lock-free manner of keeping the
62  // coordination.
63  HeapWord* res = ContiguousSpace::par_allocate(size);
64  if (res != NULL) {
65    _offsets.alloc_block(res, size);
66  }
67  return res;
68}
69
70inline HeapWord*
71OffsetTableContigSpace::block_start_const(const void* p) const {
72  return _offsets.block_start(p);
73}
74
75size_t CompactibleSpace::obj_size(const HeapWord* addr) const {
76  return oop(addr)->size();
77}
78
79class DeadSpacer : StackObj {
80  size_t _allowed_deadspace_words;
81  bool _active;
82  CompactibleSpace* _space;
83
84public:
85  DeadSpacer(CompactibleSpace* space) : _space(space), _allowed_deadspace_words(0) {
86    size_t ratio = _space->allowed_dead_ratio();
87    _active = ratio > 0;
88
89    if (_active) {
90      assert(!UseG1GC, "G1 should not be using dead space");
91
92      // We allow some amount of garbage towards the bottom of the space, so
93      // we don't start compacting before there is a significant gain to be made.
94      // Occasionally, we want to ensure a full compaction, which is determined
95      // by the MarkSweepAlwaysCompactCount parameter.
96      if ((MarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0) {
97        _allowed_deadspace_words = (space->capacity() * ratio / 100) / HeapWordSize;
98      } else {
99        _active = false;
100      }
101    }
102  }
103
104
105  bool insert_deadspace(HeapWord* dead_start, HeapWord* dead_end) {
106    if (!_active) {
107      return false;
108    }
109
110    size_t dead_length = pointer_delta(dead_end, dead_start);
111    if (_allowed_deadspace_words >= dead_length) {
112      _allowed_deadspace_words -= dead_length;
113      CollectedHeap::fill_with_object(dead_start, dead_length);
114      oop obj = oop(dead_start);
115      obj->set_mark(obj->mark()->set_marked());
116
117      assert(dead_length == (size_t)obj->size(), "bad filler object size");
118      log_develop_trace(gc, compaction)("Inserting object to dead space: " PTR_FORMAT ", " PTR_FORMAT ", " SIZE_FORMAT "b",
119          p2i(dead_start), p2i(dead_end), dead_length * HeapWordSize);
120
121      return true;
122    } else {
123      _active = false;
124      return false;
125    }
126  }
127
128};
129
130template <class SpaceType>
131inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
132  // Compute the new addresses for the live objects and store it in the mark
133  // Used by universe::mark_sweep_phase2()
134
135  // We're sure to be here before any objects are compacted into this
136  // space, so this is a good time to initialize this:
137  space->set_compaction_top(space->bottom());
138
139  if (cp->space == NULL) {
140    assert(cp->gen != NULL, "need a generation");
141    assert(cp->threshold == NULL, "just checking");
142    assert(cp->gen->first_compaction_space() == space, "just checking");
143    cp->space = cp->gen->first_compaction_space();
144    cp->threshold = cp->space->initialize_threshold();
145    cp->space->set_compaction_top(cp->space->bottom());
146  }
147
148  HeapWord* compact_top = cp->space->compaction_top(); // This is where we are currently compacting to.
149
150  DeadSpacer dead_spacer(space);
151
152  HeapWord*  end_of_live = space->bottom();  // One byte beyond the last byte of the last live object.
153  HeapWord*  first_dead = NULL; // The first dead object.
154
155  const intx interval = PrefetchScanIntervalInBytes;
156
157  HeapWord* cur_obj = space->bottom();
158  HeapWord* scan_limit = space->scan_limit();
159
160  while (cur_obj < scan_limit) {
161    assert(!space->scanned_block_is_obj(cur_obj) ||
162           oop(cur_obj)->mark()->is_marked() || oop(cur_obj)->mark()->is_unlocked() ||
163           oop(cur_obj)->mark()->has_bias_pattern(),
164           "these are the only valid states during a mark sweep");
165    if (space->scanned_block_is_obj(cur_obj) && oop(cur_obj)->is_gc_marked()) {
166      // prefetch beyond cur_obj
167      Prefetch::write(cur_obj, interval);
168      size_t size = space->scanned_block_size(cur_obj);
169      compact_top = cp->space->forward(oop(cur_obj), size, cp, compact_top);
170      cur_obj += size;
171      end_of_live = cur_obj;
172    } else {
173      // run over all the contiguous dead objects
174      HeapWord* end = cur_obj;
175      do {
176        // prefetch beyond end
177        Prefetch::write(end, interval);
178        end += space->scanned_block_size(end);
179      } while (end < scan_limit && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
180
181      // see if we might want to pretend this object is alive so that
182      // we don't have to compact quite as often.
183      if (cur_obj == compact_top && dead_spacer.insert_deadspace(cur_obj, end)) {
184        oop obj = oop(cur_obj);
185        compact_top = cp->space->forward(obj, obj->size(), cp, compact_top);
186        end_of_live = end;
187      } else {
188        // otherwise, it really is a free region.
189
190        // cur_obj is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
191        *(HeapWord**)cur_obj = end;
192
193        // see if this is the first dead region.
194        if (first_dead == NULL) {
195          first_dead = cur_obj;
196        }
197      }
198
199      // move on to the next object
200      cur_obj = end;
201    }
202  }
203
204  assert(cur_obj == scan_limit, "just checking");
205  space->_end_of_live = end_of_live;
206  if (first_dead != NULL) {
207    space->_first_dead = first_dead;
208  } else {
209    space->_first_dead = end_of_live;
210  }
211
212  // save the compaction_top of the compaction space.
213  cp->space->set_compaction_top(compact_top);
214}
215
216template <class SpaceType>
217inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
218  // adjust all the interior pointers to point at the new locations of objects
219  // Used by MarkSweep::mark_sweep_phase3()
220
221  HeapWord* cur_obj = space->bottom();
222  HeapWord* const end_of_live = space->_end_of_live;  // Established by "scan_and_forward".
223  HeapWord* const first_dead = space->_first_dead;    // Established by "scan_and_forward".
224
225  assert(first_dead <= end_of_live, "Stands to reason, no?");
226
227  const intx interval = PrefetchScanIntervalInBytes;
228
229  debug_only(HeapWord* prev_obj = NULL);
230  while (cur_obj < end_of_live) {
231    Prefetch::write(cur_obj, interval);
232    if (cur_obj < first_dead || oop(cur_obj)->is_gc_marked()) {
233      // cur_obj is alive
234      // point all the oops to the new location
235      size_t size = MarkSweep::adjust_pointers(oop(cur_obj));
236      size = space->adjust_obj_size(size);
237      debug_only(prev_obj = cur_obj);
238      cur_obj += size;
239    } else {
240      debug_only(prev_obj = cur_obj);
241      // cur_obj is not a live object, instead it points at the next live object
242      cur_obj = *(HeapWord**)cur_obj;
243      assert(cur_obj > prev_obj, "we should be moving forward through memory, cur_obj: " PTR_FORMAT ", prev_obj: " PTR_FORMAT, p2i(cur_obj), p2i(prev_obj));
244    }
245  }
246
247  assert(cur_obj == end_of_live, "just checking");
248}
249
250#ifdef ASSERT
251template <class SpaceType>
252inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) {
253  HeapWord* cur_obj = space->bottom();
254
255  if (cur_obj < space->_end_of_live && space->_first_dead > cur_obj && !oop(cur_obj)->is_gc_marked()) {
256     // we have a chunk of the space which hasn't moved and we've reinitialized
257     // the mark word during the previous pass, so we can't use is_gc_marked for
258     // the traversal.
259     HeapWord* prev_obj = NULL;
260
261     while (cur_obj < space->_first_dead) {
262       size_t size = space->obj_size(cur_obj);
263       assert(!oop(cur_obj)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
264       prev_obj = cur_obj;
265       cur_obj += size;
266     }
267  }
268}
269#endif
270
271template <class SpaceType>
272inline void CompactibleSpace::clear_empty_region(SpaceType* space) {
273  // Let's remember if we were empty before we did the compaction.
274  bool was_empty = space->used_region().is_empty();
275  // Reset space after compaction is complete
276  space->reset_after_compaction();
277  // We do this clear, below, since it has overloaded meanings for some
278  // space subtypes.  For example, OffsetTableContigSpace's that were
279  // compacted into will have had their offset table thresholds updated
280  // continuously, but those that weren't need to have their thresholds
281  // re-initialized.  Also mangles unused area for debugging.
282  if (space->used_region().is_empty()) {
283    if (!was_empty) space->clear(SpaceDecorator::Mangle);
284  } else {
285    if (ZapUnusedHeapArea) space->mangle_unused_area();
286  }
287}
288
289template <class SpaceType>
290inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
291  // Copy all live objects to their new location
292  // Used by MarkSweep::mark_sweep_phase4()
293
294  verify_up_to_first_dead(space);
295
296  HeapWord* const bottom = space->bottom();
297  HeapWord* const end_of_live = space->_end_of_live;
298
299  assert(space->_first_dead <= end_of_live, "Invariant. _first_dead: " PTR_FORMAT " <= end_of_live: " PTR_FORMAT, p2i(space->_first_dead), p2i(end_of_live));
300  if (space->_first_dead == end_of_live && (bottom == end_of_live || !oop(bottom)->is_gc_marked())) {
301    // Nothing to compact. The space is either empty or all live object should be left in place.
302    clear_empty_region(space);
303    return;
304  }
305
306  const intx scan_interval = PrefetchScanIntervalInBytes;
307  const intx copy_interval = PrefetchCopyIntervalInBytes;
308
309  assert(bottom < end_of_live, "bottom: " PTR_FORMAT " should be < end_of_live: " PTR_FORMAT, p2i(bottom), p2i(end_of_live));
310  HeapWord* cur_obj = bottom;
311  if (space->_first_dead > cur_obj && !oop(cur_obj)->is_gc_marked()) {
312    // All object before _first_dead can be skipped. They should not be moved.
313    // A pointer to the first live object is stored at the memory location for _first_dead.
314    cur_obj = *(HeapWord**)(space->_first_dead);
315  }
316
317  debug_only(HeapWord* prev_obj = NULL);
318  while (cur_obj < end_of_live) {
319    if (!oop(cur_obj)->is_gc_marked()) {
320      debug_only(prev_obj = cur_obj);
321      // The first word of the dead object contains a pointer to the next live object or end of space.
322      cur_obj = *(HeapWord**)cur_obj;
323      assert(cur_obj > prev_obj, "we should be moving forward through memory");
324    } else {
325      // prefetch beyond q
326      Prefetch::read(cur_obj, scan_interval);
327
328      // size and destination
329      size_t size = space->obj_size(cur_obj);
330      HeapWord* compaction_top = (HeapWord*)oop(cur_obj)->forwardee();
331
332      // prefetch beyond compaction_top
333      Prefetch::write(compaction_top, copy_interval);
334
335      // copy object and reinit its mark
336      assert(cur_obj != compaction_top, "everything in this pass should be moving");
337      Copy::aligned_conjoint_words(cur_obj, compaction_top, size);
338      oop(compaction_top)->init_mark();
339      assert(oop(compaction_top)->klass() != NULL, "should have a class");
340
341      debug_only(prev_obj = cur_obj);
342      cur_obj += size;
343    }
344  }
345
346  clear_empty_region(space);
347}
348
349size_t ContiguousSpace::scanned_block_size(const HeapWord* addr) const {
350  return oop(addr)->size();
351}
352
353#endif // SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
354