space.hpp revision 13243:7235bc30c0d7
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_SPACE_HPP
26#define SHARE_VM_GC_SHARED_SPACE_HPP
27
28#include "gc/shared/blockOffsetTable.hpp"
29#include "gc/shared/cardTableModRefBS.hpp"
30#include "gc/shared/workgroup.hpp"
31#include "memory/allocation.hpp"
32#include "memory/iterator.hpp"
33#include "memory/memRegion.hpp"
34#include "oops/markOop.hpp"
35#include "runtime/mutexLocker.hpp"
36#include "utilities/macros.hpp"
37
38// A space is an abstraction for the "storage units" backing
39// up the generation abstraction. It includes specific
40// implementations for keeping track of free and used space,
41// for iterating over objects and free blocks, etc.
42
43// Forward decls.
44class Space;
45class BlockOffsetArray;
46class BlockOffsetArrayContigSpace;
47class Generation;
48class CompactibleSpace;
49class BlockOffsetTable;
50class CardTableRS;
51class DirtyCardToOopClosure;
52
53// A Space describes a heap area. Class Space is an abstract
54// base class.
55//
56// Space supports allocation, size computation and GC support is provided.
57//
58// Invariant: bottom() and end() are on page_size boundaries and
59// bottom() <= top() <= end()
60// top() is inclusive and end() is exclusive.
61
62class Space: public CHeapObj<mtGC> {
63  friend class VMStructs;
64 protected:
65  HeapWord* _bottom;
66  HeapWord* _end;
67
68  // Used in support of save_marks()
69  HeapWord* _saved_mark_word;
70
71  // A sequential tasks done structure. This supports
72  // parallel GC, where we have threads dynamically
73  // claiming sub-tasks from a larger parallel task.
74  SequentialSubTasksDone _par_seq_tasks;
75
76  Space():
77    _bottom(NULL), _end(NULL) { }
78
79 public:
80  // Accessors
81  HeapWord* bottom() const         { return _bottom; }
82  HeapWord* end() const            { return _end;    }
83  virtual void set_bottom(HeapWord* value) { _bottom = value; }
84  virtual void set_end(HeapWord* value)    { _end = value; }
85
86  virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
87
88  void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
89
90  // Returns true if this object has been allocated since a
91  // generation's "save_marks" call.
92  virtual bool obj_allocated_since_save_marks(const oop obj) const {
93    return (HeapWord*)obj >= saved_mark_word();
94  }
95
96  virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
97    return NULL;
98  }
99
100  // Returns a subregion of the space containing only the allocated objects in
101  // the space.
102  virtual MemRegion used_region() const = 0;
103
104  // Returns a region that is guaranteed to contain (at least) all objects
105  // allocated at the time of the last call to "save_marks".  If the space
106  // initializes its DirtyCardToOopClosure's specifying the "contig" option
107  // (that is, if the space is contiguous), then this region must contain only
108  // such objects: the memregion will be from the bottom of the region to the
109  // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
110  // the space must distinguish between objects in the region allocated before
111  // and after the call to save marks.
112  MemRegion used_region_at_save_marks() const {
113    return MemRegion(bottom(), saved_mark_word());
114  }
115
116  // Initialization.
117  // "initialize" should be called once on a space, before it is used for
118  // any purpose.  The "mr" arguments gives the bounds of the space, and
119  // the "clear_space" argument should be true unless the memory in "mr" is
120  // known to be zeroed.
121  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
122
123  // The "clear" method must be called on a region that may have
124  // had allocation performed in it, but is now to be considered empty.
125  virtual void clear(bool mangle_space);
126
127  // For detecting GC bugs.  Should only be called at GC boundaries, since
128  // some unused space may be used as scratch space during GC's.
129  // We also call this when expanding a space to satisfy an allocation
130  // request. See bug #4668531
131  virtual void mangle_unused_area() = 0;
132  virtual void mangle_unused_area_complete() = 0;
133
134  // Testers
135  bool is_empty() const              { return used() == 0; }
136  bool not_empty() const             { return used() > 0; }
137
138  // Returns true iff the given the space contains the
139  // given address as part of an allocated object. For
140  // certain kinds of spaces, this might be a potentially
141  // expensive operation. To prevent performance problems
142  // on account of its inadvertent use in product jvm's,
143  // we restrict its use to assertion checks only.
144  bool is_in(const void* p) const {
145    return used_region().contains(p);
146  }
147
148  // Returns true iff the given reserved memory of the space contains the
149  // given address.
150  bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
151
152  // Returns true iff the given block is not allocated.
153  virtual bool is_free_block(const HeapWord* p) const = 0;
154
155  // Test whether p is double-aligned
156  static bool is_aligned(void* p) {
157    return ::is_aligned(p, sizeof(double));
158  }
159
160  // Size computations.  Sizes are in bytes.
161  size_t capacity()     const { return byte_size(bottom(), end()); }
162  virtual size_t used() const = 0;
163  virtual size_t free() const = 0;
164
165  // Iterate over all the ref-containing fields of all objects in the
166  // space, calling "cl.do_oop" on each.  Fields in objects allocated by
167  // applications of the closure are not included in the iteration.
168  virtual void oop_iterate(ExtendedOopClosure* cl);
169
170  // Iterate over all objects in the space, calling "cl.do_object" on
171  // each.  Objects allocated by applications of the closure are not
172  // included in the iteration.
173  virtual void object_iterate(ObjectClosure* blk) = 0;
174  // Similar to object_iterate() except only iterates over
175  // objects whose internal references point to objects in the space.
176  virtual void safe_object_iterate(ObjectClosure* blk) = 0;
177
178  // Create and return a new dirty card to oop closure. Can be
179  // overridden to return the appropriate type of closure
180  // depending on the type of space in which the closure will
181  // operate. ResourceArea allocated.
182  virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
183                                             CardTableModRefBS::PrecisionStyle precision,
184                                             HeapWord* boundary,
185                                             bool parallel);
186
187  // If "p" is in the space, returns the address of the start of the
188  // "block" that contains "p".  We say "block" instead of "object" since
189  // some heaps may not pack objects densely; a chunk may either be an
190  // object or a non-object.  If "p" is not in the space, return NULL.
191  virtual HeapWord* block_start_const(const void* p) const = 0;
192
193  // The non-const version may have benevolent side effects on the data
194  // structure supporting these calls, possibly speeding up future calls.
195  // The default implementation, however, is simply to call the const
196  // version.
197  virtual HeapWord* block_start(const void* p);
198
199  // Requires "addr" to be the start of a chunk, and returns its size.
200  // "addr + size" is required to be the start of a new chunk, or the end
201  // of the active area of the heap.
202  virtual size_t block_size(const HeapWord* addr) const = 0;
203
204  // Requires "addr" to be the start of a block, and returns "TRUE" iff
205  // the block is an object.
206  virtual bool block_is_obj(const HeapWord* addr) const = 0;
207
208  // Requires "addr" to be the start of a block, and returns "TRUE" iff
209  // the block is an object and the object is alive.
210  virtual bool obj_is_alive(const HeapWord* addr) const;
211
212  // Allocation (return NULL if full).  Assumes the caller has established
213  // mutually exclusive access to the space.
214  virtual HeapWord* allocate(size_t word_size) = 0;
215
216  // Allocation (return NULL if full).  Enforces mutual exclusion internally.
217  virtual HeapWord* par_allocate(size_t word_size) = 0;
218
219  // Mark-sweep-compact support: all spaces can update pointers to objects
220  // moving as a part of compaction.
221  virtual void adjust_pointers() = 0;
222
223  virtual void print() const;
224  virtual void print_on(outputStream* st) const;
225  virtual void print_short() const;
226  virtual void print_short_on(outputStream* st) const;
227
228
229  // Accessor for parallel sequential tasks.
230  SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
231
232  // IF "this" is a ContiguousSpace, return it, else return NULL.
233  virtual ContiguousSpace* toContiguousSpace() {
234    return NULL;
235  }
236
237  // Debugging
238  virtual void verify() const = 0;
239};
240
241// A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
242// OopClosure to (the addresses of) all the ref-containing fields that could
243// be modified by virtue of the given MemRegion being dirty. (Note that
244// because of the imprecise nature of the write barrier, this may iterate
245// over oops beyond the region.)
246// This base type for dirty card to oop closures handles memory regions
247// in non-contiguous spaces with no boundaries, and should be sub-classed
248// to support other space types. See ContiguousDCTOC for a sub-class
249// that works with ContiguousSpaces.
250
251class DirtyCardToOopClosure: public MemRegionClosureRO {
252protected:
253  ExtendedOopClosure* _cl;
254  Space* _sp;
255  CardTableModRefBS::PrecisionStyle _precision;
256  HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
257                                // pointing below boundary.
258  HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
259                                // a downwards traversal; this is the
260                                // lowest location already done (or,
261                                // alternatively, the lowest address that
262                                // shouldn't be done again.  NULL means infinity.)
263  NOT_PRODUCT(HeapWord* _last_bottom;)
264  NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
265
266  // Get the actual top of the area on which the closure will
267  // operate, given where the top is assumed to be (the end of the
268  // memory region passed to do_MemRegion) and where the object
269  // at the top is assumed to start. For example, an object may
270  // start at the top but actually extend past the assumed top,
271  // in which case the top becomes the end of the object.
272  virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
273
274  // Walk the given memory region from bottom to (actual) top
275  // looking for objects and applying the oop closure (_cl) to
276  // them. The base implementation of this treats the area as
277  // blocks, where a block may or may not be an object. Sub-
278  // classes should override this to provide more accurate
279  // or possibly more efficient walking.
280  virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
281
282public:
283  DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
284                        CardTableModRefBS::PrecisionStyle precision,
285                        HeapWord* boundary) :
286    _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
287    _min_done(NULL) {
288    NOT_PRODUCT(_last_bottom = NULL);
289    NOT_PRODUCT(_last_explicit_min_done = NULL);
290  }
291
292  void do_MemRegion(MemRegion mr);
293
294  void set_min_done(HeapWord* min_done) {
295    _min_done = min_done;
296    NOT_PRODUCT(_last_explicit_min_done = _min_done);
297  }
298#ifndef PRODUCT
299  void set_last_bottom(HeapWord* last_bottom) {
300    _last_bottom = last_bottom;
301  }
302#endif
303};
304
305// A structure to represent a point at which objects are being copied
306// during compaction.
307class CompactPoint : public StackObj {
308public:
309  Generation* gen;
310  CompactibleSpace* space;
311  HeapWord* threshold;
312
313  CompactPoint(Generation* g = NULL) :
314    gen(g), space(NULL), threshold(0) {}
315};
316
317// A space that supports compaction operations.  This is usually, but not
318// necessarily, a space that is normally contiguous.  But, for example, a
319// free-list-based space whose normal collection is a mark-sweep without
320// compaction could still support compaction in full GC's.
321//
322// The compaction operations are implemented by the
323// scan_and_{adjust_pointers,compact,forward} function templates.
324// The following are, non-virtual, auxiliary functions used by these function templates:
325// - scan_limit()
326// - scanned_block_is_obj()
327// - scanned_block_size()
328// - adjust_obj_size()
329// - obj_size()
330// These functions are to be used exclusively by the scan_and_* function templates,
331// and must be defined for all (non-abstract) subclasses of CompactibleSpace.
332//
333// NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
334// in any of the auxiliary functions must also override the corresponding
335// prepare_for_compaction/adjust_pointers/compact functions using them.
336// If not, such changes will not be used or have no effect on the compaction operations.
337//
338// This translates to the following dependencies:
339// Overrides/definitions of
340//  - scan_limit
341//  - scanned_block_is_obj
342//  - scanned_block_size
343// require override/definition of prepare_for_compaction().
344// Similar dependencies exist between
345//  - adjust_obj_size  and adjust_pointers()
346//  - obj_size         and compact().
347//
348// Additionally, this also means that changes to block_size() or block_is_obj() that
349// should be effective during the compaction operations must provide a corresponding
350// definition of scanned_block_size/scanned_block_is_obj respectively.
351class CompactibleSpace: public Space {
352  friend class VMStructs;
353  friend class CompactibleFreeListSpace;
354private:
355  HeapWord* _compaction_top;
356  CompactibleSpace* _next_compaction_space;
357
358  // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
359  inline size_t adjust_obj_size(size_t size) const {
360    return size;
361  }
362
363  inline size_t obj_size(const HeapWord* addr) const;
364
365  template <class SpaceType>
366  static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;
367
368  template <class SpaceType>
369  static inline void clear_empty_region(SpaceType* space);
370
371public:
372  CompactibleSpace() :
373   _compaction_top(NULL), _next_compaction_space(NULL) {}
374
375  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
376  virtual void clear(bool mangle_space);
377
378  // Used temporarily during a compaction phase to hold the value
379  // top should have when compaction is complete.
380  HeapWord* compaction_top() const { return _compaction_top;    }
381
382  void set_compaction_top(HeapWord* value) {
383    assert(value == NULL || (value >= bottom() && value <= end()),
384      "should point inside space");
385    _compaction_top = value;
386  }
387
388  // Perform operations on the space needed after a compaction
389  // has been performed.
390  virtual void reset_after_compaction() = 0;
391
392  // Returns the next space (in the current generation) to be compacted in
393  // the global compaction order.  Also is used to select the next
394  // space into which to compact.
395
396  virtual CompactibleSpace* next_compaction_space() const {
397    return _next_compaction_space;
398  }
399
400  void set_next_compaction_space(CompactibleSpace* csp) {
401    _next_compaction_space = csp;
402  }
403
404  // MarkSweep support phase2
405
406  // Start the process of compaction of the current space: compute
407  // post-compaction addresses, and insert forwarding pointers.  The fields
408  // "cp->gen" and "cp->compaction_space" are the generation and space into
409  // which we are currently compacting.  This call updates "cp" as necessary,
410  // and leaves the "compaction_top" of the final value of
411  // "cp->compaction_space" up-to-date.  Offset tables may be updated in
412  // this phase as if the final copy had occurred; if so, "cp->threshold"
413  // indicates when the next such action should be taken.
414  virtual void prepare_for_compaction(CompactPoint* cp) = 0;
415  // MarkSweep support phase3
416  virtual void adjust_pointers();
417  // MarkSweep support phase4
418  virtual void compact();
419
420  // The maximum percentage of objects that can be dead in the compacted
421  // live part of a compacted space ("deadwood" support.)
422  virtual size_t allowed_dead_ratio() const { return 0; };
423
424  // Some contiguous spaces may maintain some data structures that should
425  // be updated whenever an allocation crosses a boundary.  This function
426  // returns the first such boundary.
427  // (The default implementation returns the end of the space, so the
428  // boundary is never crossed.)
429  virtual HeapWord* initialize_threshold() { return end(); }
430
431  // "q" is an object of the given "size" that should be forwarded;
432  // "cp" names the generation ("gen") and containing "this" (which must
433  // also equal "cp->space").  "compact_top" is where in "this" the
434  // next object should be forwarded to.  If there is room in "this" for
435  // the object, insert an appropriate forwarding pointer in "q".
436  // If not, go to the next compaction space (there must
437  // be one, since compaction must succeed -- we go to the first space of
438  // the previous generation if necessary, updating "cp"), reset compact_top
439  // and then forward.  In either case, returns the new value of "compact_top".
440  // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
441  // function of the then-current compaction space, and updates "cp->threshold
442  // accordingly".
443  virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
444                    HeapWord* compact_top);
445
446  // Return a size with adjustments as required of the space.
447  virtual size_t adjust_object_size_v(size_t size) const { return size; }
448
449protected:
450  // Used during compaction.
451  HeapWord* _first_dead;
452  HeapWord* _end_of_live;
453
454  // Minimum size of a free block.
455  virtual size_t minimum_free_block_size() const { return 0; }
456
457  // This the function is invoked when an allocation of an object covering
458  // "start" to "end occurs crosses the threshold; returns the next
459  // threshold.  (The default implementation does nothing.)
460  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
461    return end();
462  }
463
464  // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
465  // The space argument should be a subclass of CompactibleSpace, implementing
466  // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
467  // and possibly also overriding obj_size(), and adjust_obj_size().
468  // These functions should avoid virtual calls whenever possible.
469
470  // Frequently calls adjust_obj_size().
471  template <class SpaceType>
472  static inline void scan_and_adjust_pointers(SpaceType* space);
473
474  // Frequently calls obj_size().
475  template <class SpaceType>
476  static inline void scan_and_compact(SpaceType* space);
477
478  // Frequently calls scanned_block_is_obj() and scanned_block_size().
479  // Requires the scan_limit() function.
480  template <class SpaceType>
481  static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
482};
483
484class GenSpaceMangler;
485
486// A space in which the free area is contiguous.  It therefore supports
487// faster allocation, and compaction.
488class ContiguousSpace: public CompactibleSpace {
489  friend class VMStructs;
490  // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
491  template <typename SpaceType>
492  friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
493
494 private:
495  // Auxiliary functions for scan_and_forward support.
496  // See comments for CompactibleSpace for more information.
497  inline HeapWord* scan_limit() const {
498    return top();
499  }
500
501  inline bool scanned_block_is_obj(const HeapWord* addr) const {
502    return true; // Always true, since scan_limit is top
503  }
504
505  inline size_t scanned_block_size(const HeapWord* addr) const;
506
507 protected:
508  HeapWord* _top;
509  HeapWord* _concurrent_iteration_safe_limit;
510  // A helper for mangling the unused area of the space in debug builds.
511  GenSpaceMangler* _mangler;
512
513  GenSpaceMangler* mangler() { return _mangler; }
514
515  // Allocation helpers (return NULL if full).
516  inline HeapWord* allocate_impl(size_t word_size);
517  inline HeapWord* par_allocate_impl(size_t word_size);
518
519 public:
520  ContiguousSpace();
521  ~ContiguousSpace();
522
523  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
524  virtual void clear(bool mangle_space);
525
526  // Accessors
527  HeapWord* top() const            { return _top;    }
528  void set_top(HeapWord* value)    { _top = value; }
529
530  void set_saved_mark()            { _saved_mark_word = top();    }
531  void reset_saved_mark()          { _saved_mark_word = bottom(); }
532
533  bool saved_mark_at_top() const { return saved_mark_word() == top(); }
534
535  // In debug mode mangle (write it with a particular bit
536  // pattern) the unused part of a space.
537
538  // Used to save the an address in a space for later use during mangling.
539  void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
540  // Used to save the space's current top for later use during mangling.
541  void set_top_for_allocations() PRODUCT_RETURN;
542
543  // Mangle regions in the space from the current top up to the
544  // previously mangled part of the space.
545  void mangle_unused_area() PRODUCT_RETURN;
546  // Mangle [top, end)
547  void mangle_unused_area_complete() PRODUCT_RETURN;
548
549  // Do some sparse checking on the area that should have been mangled.
550  void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
551  // Check the complete area that should have been mangled.
552  // This code may be NULL depending on the macro DEBUG_MANGLING.
553  void check_mangled_unused_area_complete() PRODUCT_RETURN;
554
555  // Size computations: sizes in bytes.
556  size_t capacity() const        { return byte_size(bottom(), end()); }
557  size_t used() const            { return byte_size(bottom(), top()); }
558  size_t free() const            { return byte_size(top(),    end()); }
559
560  virtual bool is_free_block(const HeapWord* p) const;
561
562  // In a contiguous space we have a more obvious bound on what parts
563  // contain objects.
564  MemRegion used_region() const { return MemRegion(bottom(), top()); }
565
566  // Allocation (return NULL if full)
567  virtual HeapWord* allocate(size_t word_size);
568  virtual HeapWord* par_allocate(size_t word_size);
569  HeapWord* allocate_aligned(size_t word_size);
570
571  // Iteration
572  void oop_iterate(ExtendedOopClosure* cl);
573  void object_iterate(ObjectClosure* blk);
574  // For contiguous spaces this method will iterate safely over objects
575  // in the space (i.e., between bottom and top) when at a safepoint.
576  void safe_object_iterate(ObjectClosure* blk);
577
578  // Iterate over as many initialized objects in the space as possible,
579  // calling "cl.do_object_careful" on each. Return NULL if all objects
580  // in the space (at the start of the iteration) were iterated over.
581  // Return an address indicating the extent of the iteration in the
582  // event that the iteration had to return because of finding an
583  // uninitialized object in the space, or if the closure "cl"
584  // signaled early termination.
585  HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
586  HeapWord* concurrent_iteration_safe_limit() {
587    assert(_concurrent_iteration_safe_limit <= top(),
588           "_concurrent_iteration_safe_limit update missed");
589    return _concurrent_iteration_safe_limit;
590  }
591  // changes the safe limit, all objects from bottom() to the new
592  // limit should be properly initialized
593  void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
594    assert(new_limit <= top(), "uninitialized objects in the safe range");
595    _concurrent_iteration_safe_limit = new_limit;
596  }
597
598
599#if INCLUDE_ALL_GCS
600  // In support of parallel oop_iterate.
601  #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
602    void par_oop_iterate(MemRegion mr, OopClosureType* blk);
603
604    ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
605  #undef ContigSpace_PAR_OOP_ITERATE_DECL
606#endif // INCLUDE_ALL_GCS
607
608  // Compaction support
609  virtual void reset_after_compaction() {
610    assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
611    set_top(compaction_top());
612    // set new iteration safe limit
613    set_concurrent_iteration_safe_limit(compaction_top());
614  }
615
616  // Override.
617  DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
618                                     CardTableModRefBS::PrecisionStyle precision,
619                                     HeapWord* boundary,
620                                     bool parallel);
621
622  // Apply "blk->do_oop" to the addresses of all reference fields in objects
623  // starting with the _saved_mark_word, which was noted during a generation's
624  // save_marks and is required to denote the head of an object.
625  // Fields in objects allocated by applications of the closure
626  // *are* included in the iteration.
627  // Updates _saved_mark_word to point to just after the last object
628  // iterated over.
629#define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
630  void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
631
632  ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
633#undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
634
635  // Same as object_iterate, but starting from "mark", which is required
636  // to denote the start of an object.  Objects allocated by
637  // applications of the closure *are* included in the iteration.
638  virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);
639
640  // Very inefficient implementation.
641  virtual HeapWord* block_start_const(const void* p) const;
642  size_t block_size(const HeapWord* p) const;
643  // If a block is in the allocated area, it is an object.
644  bool block_is_obj(const HeapWord* p) const { return p < top(); }
645
646  // Addresses for inlined allocation
647  HeapWord** top_addr() { return &_top; }
648  HeapWord** end_addr() { return &_end; }
649
650  // Overrides for more efficient compaction support.
651  void prepare_for_compaction(CompactPoint* cp);
652
653  virtual void print_on(outputStream* st) const;
654
655  // Checked dynamic downcasts.
656  virtual ContiguousSpace* toContiguousSpace() {
657    return this;
658  }
659
660  // Debugging
661  virtual void verify() const;
662
663  // Used to increase collection frequency.  "factor" of 0 means entire
664  // space.
665  void allocate_temporary_filler(int factor);
666};
667
668
669// A dirty card to oop closure that does filtering.
670// It knows how to filter out objects that are outside of the _boundary.
671class FilteringDCTOC : public DirtyCardToOopClosure {
672protected:
673  // Override.
674  void walk_mem_region(MemRegion mr,
675                       HeapWord* bottom, HeapWord* top);
676
677  // Walk the given memory region, from bottom to top, applying
678  // the given oop closure to (possibly) all objects found. The
679  // given oop closure may or may not be the same as the oop
680  // closure with which this closure was created, as it may
681  // be a filtering closure which makes use of the _boundary.
682  // We offer two signatures, so the FilteringClosure static type is
683  // apparent.
684  virtual void walk_mem_region_with_cl(MemRegion mr,
685                                       HeapWord* bottom, HeapWord* top,
686                                       ExtendedOopClosure* cl) = 0;
687  virtual void walk_mem_region_with_cl(MemRegion mr,
688                                       HeapWord* bottom, HeapWord* top,
689                                       FilteringClosure* cl) = 0;
690
691public:
692  FilteringDCTOC(Space* sp, ExtendedOopClosure* cl,
693                  CardTableModRefBS::PrecisionStyle precision,
694                  HeapWord* boundary) :
695    DirtyCardToOopClosure(sp, cl, precision, boundary) {}
696};
697
698// A dirty card to oop closure for contiguous spaces
699// (ContiguousSpace and sub-classes).
700// It is a FilteringClosure, as defined above, and it knows:
701//
702// 1. That the actual top of any area in a memory region
703//    contained by the space is bounded by the end of the contiguous
704//    region of the space.
705// 2. That the space is really made up of objects and not just
706//    blocks.
707
708class ContiguousSpaceDCTOC : public FilteringDCTOC {
709protected:
710  // Overrides.
711  HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
712
713  virtual void walk_mem_region_with_cl(MemRegion mr,
714                                       HeapWord* bottom, HeapWord* top,
715                                       ExtendedOopClosure* cl);
716  virtual void walk_mem_region_with_cl(MemRegion mr,
717                                       HeapWord* bottom, HeapWord* top,
718                                       FilteringClosure* cl);
719
720public:
721  ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
722                       CardTableModRefBS::PrecisionStyle precision,
723                       HeapWord* boundary) :
724    FilteringDCTOC(sp, cl, precision, boundary)
725  {}
726};
727
728// A ContigSpace that Supports an efficient "block_start" operation via
729// a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
730// other spaces.)  This is the abstract base class for old generation
731// (tenured) spaces.
732
733class OffsetTableContigSpace: public ContiguousSpace {
734  friend class VMStructs;
735 protected:
736  BlockOffsetArrayContigSpace _offsets;
737  Mutex _par_alloc_lock;
738
739 public:
740  // Constructor
741  OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
742                         MemRegion mr);
743
744  void set_bottom(HeapWord* value);
745  void set_end(HeapWord* value);
746
747  void clear(bool mangle_space);
748
749  inline HeapWord* block_start_const(const void* p) const;
750
751  // Add offset table update.
752  virtual inline HeapWord* allocate(size_t word_size);
753  inline HeapWord* par_allocate(size_t word_size);
754
755  // MarkSweep support phase3
756  virtual HeapWord* initialize_threshold();
757  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
758
759  virtual void print_on(outputStream* st) const;
760
761  // Debugging
762  void verify() const;
763};
764
765
766// Class TenuredSpace is used by TenuredGeneration
767
768class TenuredSpace: public OffsetTableContigSpace {
769  friend class VMStructs;
770 protected:
771  // Mark sweep support
772  size_t allowed_dead_ratio() const;
773 public:
774  // Constructor
775  TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
776               MemRegion mr) :
777    OffsetTableContigSpace(sharedOffsetArray, mr) {}
778};
779#endif // SHARE_VM_GC_SHARED_SPACE_HPP
780