1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_SPACE_HPP
26#define SHARE_VM_GC_SHARED_SPACE_HPP
27
28#include "gc/shared/blockOffsetTable.hpp"
29#include "gc/shared/cardTableModRefBS.hpp"
30#include "gc/shared/workgroup.hpp"
31#include "memory/allocation.hpp"
32#include "memory/iterator.hpp"
33#include "memory/memRegion.hpp"
34#include "oops/markOop.hpp"
35#include "runtime/mutexLocker.hpp"
36#include "utilities/align.hpp"
37#include "utilities/macros.hpp"
38
39// A space is an abstraction for the "storage units" backing
40// up the generation abstraction. It includes specific
41// implementations for keeping track of free and used space,
42// for iterating over objects and free blocks, etc.
43
44// Forward decls.
45class Space;
46class BlockOffsetArray;
47class BlockOffsetArrayContigSpace;
48class Generation;
49class CompactibleSpace;
50class BlockOffsetTable;
51class CardTableRS;
52class DirtyCardToOopClosure;
53
54// A Space describes a heap area. Class Space is an abstract
55// base class.
56//
57// Space supports allocation, size computation and GC support is provided.
58//
59// Invariant: bottom() and end() are on page_size boundaries and
60// bottom() <= top() <= end()
61// top() is inclusive and end() is exclusive.
62
63class Space: public CHeapObj<mtGC> {
64  friend class VMStructs;
65 protected:
66  HeapWord* _bottom;
67  HeapWord* _end;
68
69  // Used in support of save_marks()
70  HeapWord* _saved_mark_word;
71
72  // A sequential tasks done structure. This supports
73  // parallel GC, where we have threads dynamically
74  // claiming sub-tasks from a larger parallel task.
75  SequentialSubTasksDone _par_seq_tasks;
76
77  Space():
78    _bottom(NULL), _end(NULL) { }
79
80 public:
81  // Accessors
82  HeapWord* bottom() const         { return _bottom; }
83  HeapWord* end() const            { return _end;    }
84  virtual void set_bottom(HeapWord* value) { _bottom = value; }
85  virtual void set_end(HeapWord* value)    { _end = value; }
86
87  virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
88
89  void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
90
91  // Returns true if this object has been allocated since a
92  // generation's "save_marks" call.
93  virtual bool obj_allocated_since_save_marks(const oop obj) const {
94    return (HeapWord*)obj >= saved_mark_word();
95  }
96
97  virtual MemRegionClosure* preconsumptionDirtyCardClosure() const {
98    return NULL;
99  }
100
101  // Returns a subregion of the space containing only the allocated objects in
102  // the space.
103  virtual MemRegion used_region() const = 0;
104
105  // Returns a region that is guaranteed to contain (at least) all objects
106  // allocated at the time of the last call to "save_marks".  If the space
107  // initializes its DirtyCardToOopClosure's specifying the "contig" option
108  // (that is, if the space is contiguous), then this region must contain only
109  // such objects: the memregion will be from the bottom of the region to the
110  // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
111  // the space must distinguish between objects in the region allocated before
112  // and after the call to save marks.
113  MemRegion used_region_at_save_marks() const {
114    return MemRegion(bottom(), saved_mark_word());
115  }
116
117  // Initialization.
118  // "initialize" should be called once on a space, before it is used for
119  // any purpose.  The "mr" arguments gives the bounds of the space, and
120  // the "clear_space" argument should be true unless the memory in "mr" is
121  // known to be zeroed.
122  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
123
124  // The "clear" method must be called on a region that may have
125  // had allocation performed in it, but is now to be considered empty.
126  virtual void clear(bool mangle_space);
127
128  // For detecting GC bugs.  Should only be called at GC boundaries, since
129  // some unused space may be used as scratch space during GC's.
130  // We also call this when expanding a space to satisfy an allocation
131  // request. See bug #4668531
132  virtual void mangle_unused_area() = 0;
133  virtual void mangle_unused_area_complete() = 0;
134
135  // Testers
136  bool is_empty() const              { return used() == 0; }
137  bool not_empty() const             { return used() > 0; }
138
139  // Returns true iff the given the space contains the
140  // given address as part of an allocated object. For
141  // certain kinds of spaces, this might be a potentially
142  // expensive operation. To prevent performance problems
143  // on account of its inadvertent use in product jvm's,
144  // we restrict its use to assertion checks only.
145  bool is_in(const void* p) const {
146    return used_region().contains(p);
147  }
148
149  // Returns true iff the given reserved memory of the space contains the
150  // given address.
151  bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
152
153  // Returns true iff the given block is not allocated.
154  virtual bool is_free_block(const HeapWord* p) const = 0;
155
156  // Test whether p is double-aligned
157  static bool is_aligned(void* p) {
158    return ::is_aligned(p, sizeof(double));
159  }
160
161  // Size computations.  Sizes are in bytes.
162  size_t capacity()     const { return byte_size(bottom(), end()); }
163  virtual size_t used() const = 0;
164  virtual size_t free() const = 0;
165
166  // Iterate over all the ref-containing fields of all objects in the
167  // space, calling "cl.do_oop" on each.  Fields in objects allocated by
168  // applications of the closure are not included in the iteration.
169  virtual void oop_iterate(ExtendedOopClosure* cl);
170
171  // Iterate over all objects in the space, calling "cl.do_object" on
172  // each.  Objects allocated by applications of the closure are not
173  // included in the iteration.
174  virtual void object_iterate(ObjectClosure* blk) = 0;
175  // Similar to object_iterate() except only iterates over
176  // objects whose internal references point to objects in the space.
177  virtual void safe_object_iterate(ObjectClosure* blk) = 0;
178
179  // Create and return a new dirty card to oop closure. Can be
180  // overridden to return the appropriate type of closure
181  // depending on the type of space in which the closure will
182  // operate. ResourceArea allocated.
183  virtual DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
184                                             CardTableModRefBS::PrecisionStyle precision,
185                                             HeapWord* boundary,
186                                             bool parallel);
187
188  // If "p" is in the space, returns the address of the start of the
189  // "block" that contains "p".  We say "block" instead of "object" since
190  // some heaps may not pack objects densely; a chunk may either be an
191  // object or a non-object.  If "p" is not in the space, return NULL.
192  virtual HeapWord* block_start_const(const void* p) const = 0;
193
194  // The non-const version may have benevolent side effects on the data
195  // structure supporting these calls, possibly speeding up future calls.
196  // The default implementation, however, is simply to call the const
197  // version.
198  virtual HeapWord* block_start(const void* p);
199
200  // Requires "addr" to be the start of a chunk, and returns its size.
201  // "addr + size" is required to be the start of a new chunk, or the end
202  // of the active area of the heap.
203  virtual size_t block_size(const HeapWord* addr) const = 0;
204
205  // Requires "addr" to be the start of a block, and returns "TRUE" iff
206  // the block is an object.
207  virtual bool block_is_obj(const HeapWord* addr) const = 0;
208
209  // Requires "addr" to be the start of a block, and returns "TRUE" iff
210  // the block is an object and the object is alive.
211  virtual bool obj_is_alive(const HeapWord* addr) const;
212
213  // Allocation (return NULL if full).  Assumes the caller has established
214  // mutually exclusive access to the space.
215  virtual HeapWord* allocate(size_t word_size) = 0;
216
217  // Allocation (return NULL if full).  Enforces mutual exclusion internally.
218  virtual HeapWord* par_allocate(size_t word_size) = 0;
219
220  // Mark-sweep-compact support: all spaces can update pointers to objects
221  // moving as a part of compaction.
222  virtual void adjust_pointers() = 0;
223
224  virtual void print() const;
225  virtual void print_on(outputStream* st) const;
226  virtual void print_short() const;
227  virtual void print_short_on(outputStream* st) const;
228
229
230  // Accessor for parallel sequential tasks.
231  SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
232
233  // IF "this" is a ContiguousSpace, return it, else return NULL.
234  virtual ContiguousSpace* toContiguousSpace() {
235    return NULL;
236  }
237
238  // Debugging
239  virtual void verify() const = 0;
240};
241
242// A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
243// OopClosure to (the addresses of) all the ref-containing fields that could
244// be modified by virtue of the given MemRegion being dirty. (Note that
245// because of the imprecise nature of the write barrier, this may iterate
246// over oops beyond the region.)
247// This base type for dirty card to oop closures handles memory regions
248// in non-contiguous spaces with no boundaries, and should be sub-classed
249// to support other space types. See ContiguousDCTOC for a sub-class
250// that works with ContiguousSpaces.
251
252class DirtyCardToOopClosure: public MemRegionClosureRO {
253protected:
254  ExtendedOopClosure* _cl;
255  Space* _sp;
256  CardTableModRefBS::PrecisionStyle _precision;
257  HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
258                                // pointing below boundary.
259  HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
260                                // a downwards traversal; this is the
261                                // lowest location already done (or,
262                                // alternatively, the lowest address that
263                                // shouldn't be done again.  NULL means infinity.)
264  NOT_PRODUCT(HeapWord* _last_bottom;)
265  NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
266
267  // Get the actual top of the area on which the closure will
268  // operate, given where the top is assumed to be (the end of the
269  // memory region passed to do_MemRegion) and where the object
270  // at the top is assumed to start. For example, an object may
271  // start at the top but actually extend past the assumed top,
272  // in which case the top becomes the end of the object.
273  virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
274
275  // Walk the given memory region from bottom to (actual) top
276  // looking for objects and applying the oop closure (_cl) to
277  // them. The base implementation of this treats the area as
278  // blocks, where a block may or may not be an object. Sub-
279  // classes should override this to provide more accurate
280  // or possibly more efficient walking.
281  virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
282
283public:
284  DirtyCardToOopClosure(Space* sp, ExtendedOopClosure* cl,
285                        CardTableModRefBS::PrecisionStyle precision,
286                        HeapWord* boundary) :
287    _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
288    _min_done(NULL) {
289    NOT_PRODUCT(_last_bottom = NULL);
290    NOT_PRODUCT(_last_explicit_min_done = NULL);
291  }
292
293  void do_MemRegion(MemRegion mr);
294
295  void set_min_done(HeapWord* min_done) {
296    _min_done = min_done;
297    NOT_PRODUCT(_last_explicit_min_done = _min_done);
298  }
299#ifndef PRODUCT
300  void set_last_bottom(HeapWord* last_bottom) {
301    _last_bottom = last_bottom;
302  }
303#endif
304};
305
306// A structure to represent a point at which objects are being copied
307// during compaction.
308class CompactPoint : public StackObj {
309public:
310  Generation* gen;
311  CompactibleSpace* space;
312  HeapWord* threshold;
313
314  CompactPoint(Generation* g = NULL) :
315    gen(g), space(NULL), threshold(0) {}
316};
317
318// A space that supports compaction operations.  This is usually, but not
319// necessarily, a space that is normally contiguous.  But, for example, a
320// free-list-based space whose normal collection is a mark-sweep without
321// compaction could still support compaction in full GC's.
322//
323// The compaction operations are implemented by the
324// scan_and_{adjust_pointers,compact,forward} function templates.
325// The following are, non-virtual, auxiliary functions used by these function templates:
326// - scan_limit()
327// - scanned_block_is_obj()
328// - scanned_block_size()
329// - adjust_obj_size()
330// - obj_size()
331// These functions are to be used exclusively by the scan_and_* function templates,
332// and must be defined for all (non-abstract) subclasses of CompactibleSpace.
333//
334// NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
335// in any of the auxiliary functions must also override the corresponding
336// prepare_for_compaction/adjust_pointers/compact functions using them.
337// If not, such changes will not be used or have no effect on the compaction operations.
338//
339// This translates to the following dependencies:
340// Overrides/definitions of
341//  - scan_limit
342//  - scanned_block_is_obj
343//  - scanned_block_size
344// require override/definition of prepare_for_compaction().
345// Similar dependencies exist between
346//  - adjust_obj_size  and adjust_pointers()
347//  - obj_size         and compact().
348//
349// Additionally, this also means that changes to block_size() or block_is_obj() that
350// should be effective during the compaction operations must provide a corresponding
351// definition of scanned_block_size/scanned_block_is_obj respectively.
352class CompactibleSpace: public Space {
353  friend class VMStructs;
354  friend class CompactibleFreeListSpace;
355private:
356  HeapWord* _compaction_top;
357  CompactibleSpace* _next_compaction_space;
358
359  // Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
360  inline size_t adjust_obj_size(size_t size) const {
361    return size;
362  }
363
364  inline size_t obj_size(const HeapWord* addr) const;
365
366  template <class SpaceType>
367  static inline void verify_up_to_first_dead(SpaceType* space) NOT_DEBUG_RETURN;
368
369  template <class SpaceType>
370  static inline void clear_empty_region(SpaceType* space);
371
372public:
373  CompactibleSpace() :
374   _compaction_top(NULL), _next_compaction_space(NULL) {}
375
376  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
377  virtual void clear(bool mangle_space);
378
379  // Used temporarily during a compaction phase to hold the value
380  // top should have when compaction is complete.
381  HeapWord* compaction_top() const { return _compaction_top;    }
382
383  void set_compaction_top(HeapWord* value) {
384    assert(value == NULL || (value >= bottom() && value <= end()),
385      "should point inside space");
386    _compaction_top = value;
387  }
388
389  // Perform operations on the space needed after a compaction
390  // has been performed.
391  virtual void reset_after_compaction() = 0;
392
393  // Returns the next space (in the current generation) to be compacted in
394  // the global compaction order.  Also is used to select the next
395  // space into which to compact.
396
397  virtual CompactibleSpace* next_compaction_space() const {
398    return _next_compaction_space;
399  }
400
401  void set_next_compaction_space(CompactibleSpace* csp) {
402    _next_compaction_space = csp;
403  }
404
405  // MarkSweep support phase2
406
407  // Start the process of compaction of the current space: compute
408  // post-compaction addresses, and insert forwarding pointers.  The fields
409  // "cp->gen" and "cp->compaction_space" are the generation and space into
410  // which we are currently compacting.  This call updates "cp" as necessary,
411  // and leaves the "compaction_top" of the final value of
412  // "cp->compaction_space" up-to-date.  Offset tables may be updated in
413  // this phase as if the final copy had occurred; if so, "cp->threshold"
414  // indicates when the next such action should be taken.
415  virtual void prepare_for_compaction(CompactPoint* cp) = 0;
416  // MarkSweep support phase3
417  virtual void adjust_pointers();
418  // MarkSweep support phase4
419  virtual void compact();
420
421  // The maximum percentage of objects that can be dead in the compacted
422  // live part of a compacted space ("deadwood" support.)
423  virtual size_t allowed_dead_ratio() const { return 0; };
424
425  // Some contiguous spaces may maintain some data structures that should
426  // be updated whenever an allocation crosses a boundary.  This function
427  // returns the first such boundary.
428  // (The default implementation returns the end of the space, so the
429  // boundary is never crossed.)
430  virtual HeapWord* initialize_threshold() { return end(); }
431
432  // "q" is an object of the given "size" that should be forwarded;
433  // "cp" names the generation ("gen") and containing "this" (which must
434  // also equal "cp->space").  "compact_top" is where in "this" the
435  // next object should be forwarded to.  If there is room in "this" for
436  // the object, insert an appropriate forwarding pointer in "q".
437  // If not, go to the next compaction space (there must
438  // be one, since compaction must succeed -- we go to the first space of
439  // the previous generation if necessary, updating "cp"), reset compact_top
440  // and then forward.  In either case, returns the new value of "compact_top".
441  // If the forwarding crosses "cp->threshold", invokes the "cross_threshold"
442  // function of the then-current compaction space, and updates "cp->threshold
443  // accordingly".
444  virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
445                    HeapWord* compact_top);
446
447  // Return a size with adjustments as required of the space.
448  virtual size_t adjust_object_size_v(size_t size) const { return size; }
449
450  void set_first_dead(HeapWord* value) { _first_dead = value; }
451  void set_end_of_live(HeapWord* value) { _end_of_live = value; }
452
453protected:
454  // Used during compaction.
455  HeapWord* _first_dead;
456  HeapWord* _end_of_live;
457
458  // Minimum size of a free block.
459  virtual size_t minimum_free_block_size() const { return 0; }
460
461  // This the function is invoked when an allocation of an object covering
462  // "start" to "end occurs crosses the threshold; returns the next
463  // threshold.  (The default implementation does nothing.)
464  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
465    return end();
466  }
467
468  // Below are template functions for scan_and_* algorithms (avoiding virtual calls).
469  // The space argument should be a subclass of CompactibleSpace, implementing
470  // scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
471  // and possibly also overriding obj_size(), and adjust_obj_size().
472  // These functions should avoid virtual calls whenever possible.
473
474  // Frequently calls adjust_obj_size().
475  template <class SpaceType>
476  static inline void scan_and_adjust_pointers(SpaceType* space);
477
478  // Frequently calls obj_size().
479  template <class SpaceType>
480  static inline void scan_and_compact(SpaceType* space);
481
482  // Frequently calls scanned_block_is_obj() and scanned_block_size().
483  // Requires the scan_limit() function.
484  template <class SpaceType>
485  static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
486};
487
488class GenSpaceMangler;
489
490// A space in which the free area is contiguous.  It therefore supports
491// faster allocation, and compaction.
492class ContiguousSpace: public CompactibleSpace {
493  friend class VMStructs;
494  // Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
495  template <typename SpaceType>
496  friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
497
498 private:
499  // Auxiliary functions for scan_and_forward support.
500  // See comments for CompactibleSpace for more information.
501  inline HeapWord* scan_limit() const {
502    return top();
503  }
504
505  inline bool scanned_block_is_obj(const HeapWord* addr) const {
506    return true; // Always true, since scan_limit is top
507  }
508
509  inline size_t scanned_block_size(const HeapWord* addr) const;
510
511 protected:
512  HeapWord* _top;
513  HeapWord* _concurrent_iteration_safe_limit;
514  // A helper for mangling the unused area of the space in debug builds.
515  GenSpaceMangler* _mangler;
516
517  GenSpaceMangler* mangler() { return _mangler; }
518
519  // Allocation helpers (return NULL if full).
520  inline HeapWord* allocate_impl(size_t word_size);
521  inline HeapWord* par_allocate_impl(size_t word_size);
522
523 public:
524  ContiguousSpace();
525  ~ContiguousSpace();
526
527  virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
528  virtual void clear(bool mangle_space);
529
530  // Accessors
531  HeapWord* top() const            { return _top;    }
532  void set_top(HeapWord* value)    { _top = value; }
533
534  void set_saved_mark()            { _saved_mark_word = top();    }
535  void reset_saved_mark()          { _saved_mark_word = bottom(); }
536
537  bool saved_mark_at_top() const { return saved_mark_word() == top(); }
538
539  // In debug mode mangle (write it with a particular bit
540  // pattern) the unused part of a space.
541
542  // Used to save the an address in a space for later use during mangling.
543  void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
544  // Used to save the space's current top for later use during mangling.
545  void set_top_for_allocations() PRODUCT_RETURN;
546
547  // Mangle regions in the space from the current top up to the
548  // previously mangled part of the space.
549  void mangle_unused_area() PRODUCT_RETURN;
550  // Mangle [top, end)
551  void mangle_unused_area_complete() PRODUCT_RETURN;
552
553  // Do some sparse checking on the area that should have been mangled.
554  void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
555  // Check the complete area that should have been mangled.
556  // This code may be NULL depending on the macro DEBUG_MANGLING.
557  void check_mangled_unused_area_complete() PRODUCT_RETURN;
558
559  // Size computations: sizes in bytes.
560  size_t capacity() const        { return byte_size(bottom(), end()); }
561  size_t used() const            { return byte_size(bottom(), top()); }
562  size_t free() const            { return byte_size(top(),    end()); }
563
564  virtual bool is_free_block(const HeapWord* p) const;
565
566  // In a contiguous space we have a more obvious bound on what parts
567  // contain objects.
568  MemRegion used_region() const { return MemRegion(bottom(), top()); }
569
570  // Allocation (return NULL if full)
571  virtual HeapWord* allocate(size_t word_size);
572  virtual HeapWord* par_allocate(size_t word_size);
573  HeapWord* allocate_aligned(size_t word_size);
574
575  // Iteration
576  void oop_iterate(ExtendedOopClosure* cl);
577  void object_iterate(ObjectClosure* blk);
578  // For contiguous spaces this method will iterate safely over objects
579  // in the space (i.e., between bottom and top) when at a safepoint.
580  void safe_object_iterate(ObjectClosure* blk);
581
582  // Iterate over as many initialized objects in the space as possible,
583  // calling "cl.do_object_careful" on each. Return NULL if all objects
584  // in the space (at the start of the iteration) were iterated over.
585  // Return an address indicating the extent of the iteration in the
586  // event that the iteration had to return because of finding an
587  // uninitialized object in the space, or if the closure "cl"
588  // signaled early termination.
589  HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
590  HeapWord* concurrent_iteration_safe_limit() {
591    assert(_concurrent_iteration_safe_limit <= top(),
592           "_concurrent_iteration_safe_limit update missed");
593    return _concurrent_iteration_safe_limit;
594  }
595  // changes the safe limit, all objects from bottom() to the new
596  // limit should be properly initialized
597  void set_concurrent_iteration_safe_limit(HeapWord* new_limit) {
598    assert(new_limit <= top(), "uninitialized objects in the safe range");
599    _concurrent_iteration_safe_limit = new_limit;
600  }
601
602
603#if INCLUDE_ALL_GCS
604  // In support of parallel oop_iterate.
605  #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
606    void par_oop_iterate(MemRegion mr, OopClosureType* blk);
607
608    ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
609  #undef ContigSpace_PAR_OOP_ITERATE_DECL
610#endif // INCLUDE_ALL_GCS
611
612  // Compaction support
613  virtual void reset_after_compaction() {
614    assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
615    set_top(compaction_top());
616    // set new iteration safe limit
617    set_concurrent_iteration_safe_limit(compaction_top());
618  }
619
620  // Override.
621  DirtyCardToOopClosure* new_dcto_cl(ExtendedOopClosure* cl,
622                                     CardTableModRefBS::PrecisionStyle precision,
623                                     HeapWord* boundary,
624                                     bool parallel);
625
626  // Apply "blk->do_oop" to the addresses of all reference fields in objects
627  // starting with the _saved_mark_word, which was noted during a generation's
628  // save_marks and is required to denote the head of an object.
629  // Fields in objects allocated by applications of the closure
630  // *are* included in the iteration.
631  // Updates _saved_mark_word to point to just after the last object
632  // iterated over.
633#define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
634  void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
635
636  ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
637#undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
638
639  // Same as object_iterate, but starting from "mark", which is required
640  // to denote the start of an object.  Objects allocated by
641  // applications of the closure *are* included in the iteration.
642  virtual void object_iterate_from(HeapWord* mark, ObjectClosure* blk);
643
644  // Very inefficient implementation.
645  virtual HeapWord* block_start_const(const void* p) const;
646  size_t block_size(const HeapWord* p) const;
647  // If a block is in the allocated area, it is an object.
648  bool block_is_obj(const HeapWord* p) const { return p < top(); }
649
650  // Addresses for inlined allocation
651  HeapWord** top_addr() { return &_top; }
652  HeapWord** end_addr() { return &_end; }
653
654  // Overrides for more efficient compaction support.
655  void prepare_for_compaction(CompactPoint* cp);
656
657  virtual void print_on(outputStream* st) const;
658
659  // Checked dynamic downcasts.
660  virtual ContiguousSpace* toContiguousSpace() {
661    return this;
662  }
663
664  // Debugging
665  virtual void verify() const;
666
667  // Used to increase collection frequency.  "factor" of 0 means entire
668  // space.
669  void allocate_temporary_filler(int factor);
670};
671
672
673// A dirty card to oop closure that does filtering.
674// It knows how to filter out objects that are outside of the _boundary.
675class FilteringDCTOC : public DirtyCardToOopClosure {
676protected:
677  // Override.
678  void walk_mem_region(MemRegion mr,
679                       HeapWord* bottom, HeapWord* top);
680
681  // Walk the given memory region, from bottom to top, applying
682  // the given oop closure to (possibly) all objects found. The
683  // given oop closure may or may not be the same as the oop
684  // closure with which this closure was created, as it may
685  // be a filtering closure which makes use of the _boundary.
686  // We offer two signatures, so the FilteringClosure static type is
687  // apparent.
688  virtual void walk_mem_region_with_cl(MemRegion mr,
689                                       HeapWord* bottom, HeapWord* top,
690                                       ExtendedOopClosure* cl) = 0;
691  virtual void walk_mem_region_with_cl(MemRegion mr,
692                                       HeapWord* bottom, HeapWord* top,
693                                       FilteringClosure* cl) = 0;
694
695public:
696  FilteringDCTOC(Space* sp, ExtendedOopClosure* cl,
697                  CardTableModRefBS::PrecisionStyle precision,
698                  HeapWord* boundary) :
699    DirtyCardToOopClosure(sp, cl, precision, boundary) {}
700};
701
702// A dirty card to oop closure for contiguous spaces
703// (ContiguousSpace and sub-classes).
704// It is a FilteringClosure, as defined above, and it knows:
705//
706// 1. That the actual top of any area in a memory region
707//    contained by the space is bounded by the end of the contiguous
708//    region of the space.
709// 2. That the space is really made up of objects and not just
710//    blocks.
711
712class ContiguousSpaceDCTOC : public FilteringDCTOC {
713protected:
714  // Overrides.
715  HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
716
717  virtual void walk_mem_region_with_cl(MemRegion mr,
718                                       HeapWord* bottom, HeapWord* top,
719                                       ExtendedOopClosure* cl);
720  virtual void walk_mem_region_with_cl(MemRegion mr,
721                                       HeapWord* bottom, HeapWord* top,
722                                       FilteringClosure* cl);
723
724public:
725  ContiguousSpaceDCTOC(ContiguousSpace* sp, ExtendedOopClosure* cl,
726                       CardTableModRefBS::PrecisionStyle precision,
727                       HeapWord* boundary) :
728    FilteringDCTOC(sp, cl, precision, boundary)
729  {}
730};
731
732// A ContigSpace that Supports an efficient "block_start" operation via
733// a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
734// other spaces.)  This is the abstract base class for old generation
735// (tenured) spaces.
736
737class OffsetTableContigSpace: public ContiguousSpace {
738  friend class VMStructs;
739 protected:
740  BlockOffsetArrayContigSpace _offsets;
741  Mutex _par_alloc_lock;
742
743 public:
744  // Constructor
745  OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
746                         MemRegion mr);
747
748  void set_bottom(HeapWord* value);
749  void set_end(HeapWord* value);
750
751  void clear(bool mangle_space);
752
753  inline HeapWord* block_start_const(const void* p) const;
754
755  // Add offset table update.
756  virtual inline HeapWord* allocate(size_t word_size);
757  inline HeapWord* par_allocate(size_t word_size);
758
759  // MarkSweep support phase3
760  virtual HeapWord* initialize_threshold();
761  virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
762
763  virtual void print_on(outputStream* st) const;
764
765  // Debugging
766  void verify() const;
767};
768
769
770// Class TenuredSpace is used by TenuredGeneration
771
772class TenuredSpace: public OffsetTableContigSpace {
773  friend class VMStructs;
774 protected:
775  // Mark sweep support
776  size_t allowed_dead_ratio() const;
777 public:
778  // Constructor
779  TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
780               MemRegion mr) :
781    OffsetTableContigSpace(sharedOffsetArray, mr) {}
782};
783#endif // SHARE_VM_GC_SHARED_SPACE_HPP
784