generation.hpp revision 9727:f944761a3ce3
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_GENERATION_HPP
26#define SHARE_VM_GC_SHARED_GENERATION_HPP
27
28#include "gc/shared/collectorCounters.hpp"
29#include "gc/shared/referenceProcessor.hpp"
30#include "memory/allocation.hpp"
31#include "memory/memRegion.hpp"
32#include "memory/universe.hpp"
33#include "memory/virtualspace.hpp"
34#include "runtime/mutex.hpp"
35#include "runtime/perfData.hpp"
36
37// A Generation models a heap area for similarly-aged objects.
38// It will contain one ore more spaces holding the actual objects.
39//
40// The Generation class hierarchy:
41//
42// Generation                      - abstract base class
43// - DefNewGeneration              - allocation area (copy collected)
44//   - ParNewGeneration            - a DefNewGeneration that is collected by
45//                                   several threads
46// - CardGeneration                 - abstract class adding offset array behavior
47//   - TenuredGeneration             - tenured (old object) space (markSweepCompact)
48//   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
49//                                       (Detlefs-Printezis refinement of
50//                                       Boehm-Demers-Schenker)
51//
52// The system configurations currently allowed are:
53//
54//   DefNewGeneration + TenuredGeneration
55//
56//   ParNewGeneration + ConcurrentMarkSweepGeneration
57//
58
59class DefNewGeneration;
60class GenerationSpec;
61class CompactibleSpace;
62class ContiguousSpace;
63class CompactPoint;
64class OopsInGenClosure;
65class OopClosure;
66class ScanClosure;
67class FastScanClosure;
68class GenCollectedHeap;
69class GCStats;
70
71// A "ScratchBlock" represents a block of memory in one generation usable by
72// another.  It represents "num_words" free words, starting at and including
73// the address of "this".
74struct ScratchBlock {
75  ScratchBlock* next;
76  size_t num_words;
77  HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
78                              // first two fields are word-sized.)
79};
80
81class Generation: public CHeapObj<mtGC> {
82  friend class VMStructs;
83 private:
84  jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
85  MemRegion _prev_used_region; // for collectors that want to "remember" a value for
86                               // used region at some specific point during collection.
87
88 protected:
89  // Minimum and maximum addresses for memory reserved (not necessarily
90  // committed) for generation.
91  // Used by card marking code. Must not overlap with address ranges of
92  // other generations.
93  MemRegion _reserved;
94
95  // Memory area reserved for generation
96  VirtualSpace _virtual_space;
97
98  // ("Weak") Reference processing support
99  ReferenceProcessor* _ref_processor;
100
101  // Performance Counters
102  CollectorCounters* _gc_counters;
103
104  // Statistics for garbage collection
105  GCStats* _gc_stats;
106
107  // Initialize the generation.
108  Generation(ReservedSpace rs, size_t initial_byte_size);
109
110  // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
111  // "sp" that point into younger generations.
112  // The iteration is only over objects allocated at the start of the
113  // iterations; objects allocated as a result of applying the closure are
114  // not included.
115  void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl, uint n_threads);
116
117 public:
118  // The set of possible generation kinds.
119  enum Name {
120    DefNew,
121    ParNew,
122    MarkSweepCompact,
123    ConcurrentMarkSweep,
124    Other
125  };
126
127  enum SomePublicConstants {
128    // Generations are GenGrain-aligned and have size that are multiples of
129    // GenGrain.
130    // Note: on ARM we add 1 bit for card_table_base to be properly aligned
131    // (we expect its low byte to be zero - see implementation of post_barrier)
132    LogOfGenGrain = 16 ARM32_ONLY(+1),
133    GenGrain = 1 << LogOfGenGrain
134  };
135
136  // allocate and initialize ("weak") refs processing support
137  virtual void ref_processor_init();
138  void set_ref_processor(ReferenceProcessor* rp) {
139    assert(_ref_processor == NULL, "clobbering existing _ref_processor");
140    _ref_processor = rp;
141  }
142
143  virtual Generation::Name kind() { return Generation::Other; }
144
145  // This properly belongs in the collector, but for now this
146  // will do.
147  virtual bool refs_discovery_is_atomic() const { return true;  }
148  virtual bool refs_discovery_is_mt()     const { return false; }
149
150  // Space inquiries (results in bytes)
151  size_t initial_size();
152  virtual size_t capacity() const = 0;  // The maximum number of object bytes the
153                                        // generation can currently hold.
154  virtual size_t used() const = 0;      // The number of used bytes in the gen.
155  virtual size_t free() const = 0;      // The number of free bytes in the gen.
156
157  // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
158  // Returns the total number of bytes  available in a generation
159  // for the allocation of objects.
160  virtual size_t max_capacity() const;
161
162  // If this is a young generation, the maximum number of bytes that can be
163  // allocated in this generation before a GC is triggered.
164  virtual size_t capacity_before_gc() const { return 0; }
165
166  // The largest number of contiguous free bytes in the generation,
167  // including expansion  (Assumes called at a safepoint.)
168  virtual size_t contiguous_available() const = 0;
169  // The largest number of contiguous free bytes in this or any higher generation.
170  virtual size_t max_contiguous_available() const;
171
172  // Returns true if promotions of the specified amount are
173  // likely to succeed without a promotion failure.
174  // Promotion of the full amount is not guaranteed but
175  // might be attempted in the worst case.
176  virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
177
178  // For a non-young generation, this interface can be used to inform a
179  // generation that a promotion attempt into that generation failed.
180  // Typically used to enable diagnostic output for post-mortem analysis,
181  // but other uses of the interface are not ruled out.
182  virtual void promotion_failure_occurred() { /* does nothing */ }
183
184  // Return an estimate of the maximum allocation that could be performed
185  // in the generation without triggering any collection or expansion
186  // activity.  It is "unsafe" because no locks are taken; the result
187  // should be treated as an approximation, not a guarantee, for use in
188  // heuristic resizing decisions.
189  virtual size_t unsafe_max_alloc_nogc() const = 0;
190
191  // Returns true if this generation cannot be expanded further
192  // without a GC. Override as appropriate.
193  virtual bool is_maximal_no_gc() const {
194    return _virtual_space.uncommitted_size() == 0;
195  }
196
197  MemRegion reserved() const { return _reserved; }
198
199  // Returns a region guaranteed to contain all the objects in the
200  // generation.
201  virtual MemRegion used_region() const { return _reserved; }
202
203  MemRegion prev_used_region() const { return _prev_used_region; }
204  virtual void  save_used_region()   { _prev_used_region = used_region(); }
205
206  // Returns "TRUE" iff "p" points into the committed areas in the generation.
207  // For some kinds of generations, this may be an expensive operation.
208  // To avoid performance problems stemming from its inadvertent use in
209  // product jvm's, we restrict its use to assertion checking or
210  // verification only.
211  virtual bool is_in(const void* p) const;
212
213  /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
214  bool is_in_reserved(const void* p) const {
215    return _reserved.contains(p);
216  }
217
218  // If some space in the generation contains the given "addr", return a
219  // pointer to that space, else return "NULL".
220  virtual Space* space_containing(const void* addr) const;
221
222  // Iteration - do not use for time critical operations
223  virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
224
225  // Returns the first space, if any, in the generation that can participate
226  // in compaction, or else "NULL".
227  virtual CompactibleSpace* first_compaction_space() const = 0;
228
229  // Returns "true" iff this generation should be used to allocate an
230  // object of the given size.  Young generations might
231  // wish to exclude very large objects, for example, since, if allocated
232  // often, they would greatly increase the frequency of young-gen
233  // collection.
234  virtual bool should_allocate(size_t word_size, bool is_tlab) {
235    bool result = false;
236    size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
237    if (!is_tlab || supports_tlab_allocation()) {
238      result = (word_size > 0) && (word_size < overflow_limit);
239    }
240    return result;
241  }
242
243  // Allocate and returns a block of the requested size, or returns "NULL".
244  // Assumes the caller has done any necessary locking.
245  virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
246
247  // Like "allocate", but performs any necessary locking internally.
248  virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
249
250  // Some generation may offer a region for shared, contiguous allocation,
251  // via inlined code (by exporting the address of the top and end fields
252  // defining the extent of the contiguous allocation region.)
253
254  // This function returns "true" iff the heap supports this kind of
255  // allocation.  (More precisely, this means the style of allocation that
256  // increments *top_addr()" with a CAS.) (Default is "no".)
257  // A generation that supports this allocation style must use lock-free
258  // allocation for *all* allocation, since there are times when lock free
259  // allocation will be concurrent with plain "allocate" calls.
260  virtual bool supports_inline_contig_alloc() const { return false; }
261
262  // These functions return the addresses of the fields that define the
263  // boundaries of the contiguous allocation area.  (These fields should be
264  // physically near to one another.)
265  virtual HeapWord** top_addr() const { return NULL; }
266  virtual HeapWord** end_addr() const { return NULL; }
267
268  // Thread-local allocation buffers
269  virtual bool supports_tlab_allocation() const { return false; }
270  virtual size_t tlab_capacity() const {
271    guarantee(false, "Generation doesn't support thread local allocation buffers");
272    return 0;
273  }
274  virtual size_t tlab_used() const {
275    guarantee(false, "Generation doesn't support thread local allocation buffers");
276    return 0;
277  }
278  virtual size_t unsafe_max_tlab_alloc() const {
279    guarantee(false, "Generation doesn't support thread local allocation buffers");
280    return 0;
281  }
282
283  // "obj" is the address of an object in a younger generation.  Allocate space
284  // for "obj" in the current (or some higher) generation, and copy "obj" into
285  // the newly allocated space, if possible, returning the result (or NULL if
286  // the allocation failed).
287  //
288  // The "obj_size" argument is just obj->size(), passed along so the caller can
289  // avoid repeating the virtual call to retrieve it.
290  virtual oop promote(oop obj, size_t obj_size);
291
292  // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
293  // object "obj", whose original mark word was "m", and whose size is
294  // "word_sz".  If possible, allocate space for "obj", copy obj into it
295  // (taking care to copy "m" into the mark word when done, since the mark
296  // word of "obj" may have been overwritten with a forwarding pointer, and
297  // also taking care to copy the klass pointer *last*.  Returns the new
298  // object if successful, or else NULL.
299  virtual oop par_promote(int thread_num, oop obj, markOop m, size_t word_sz);
300
301  // Informs the current generation that all par_promote_alloc's in the
302  // collection have been completed; any supporting data structures can be
303  // reset.  Default is to do nothing.
304  virtual void par_promote_alloc_done(int thread_num) {}
305
306  // Informs the current generation that all oop_since_save_marks_iterates
307  // performed by "thread_num" in the current collection, if any, have been
308  // completed; any supporting data structures can be reset.  Default is to
309  // do nothing.
310  virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
311
312  // This generation does in-place marking, meaning that mark words
313  // are mutated during the marking phase and presumably reinitialized
314  // to a canonical value after the GC. This is currently used by the
315  // biased locking implementation to determine whether additional
316  // work is required during the GC prologue and epilogue.
317  virtual bool performs_in_place_marking() const { return true; }
318
319  // Returns "true" iff collect() should subsequently be called on this
320  // this generation. See comment below.
321  // This is a generic implementation which can be overridden.
322  //
323  // Note: in the current (1.4) implementation, when genCollectedHeap's
324  // incremental_collection_will_fail flag is set, all allocations are
325  // slow path (the only fast-path place to allocate is DefNew, which
326  // will be full if the flag is set).
327  // Thus, older generations which collect younger generations should
328  // test this flag and collect if it is set.
329  virtual bool should_collect(bool   full,
330                              size_t word_size,
331                              bool   is_tlab) {
332    return (full || should_allocate(word_size, is_tlab));
333  }
334
335  // Returns true if the collection is likely to be safely
336  // completed. Even if this method returns true, a collection
337  // may not be guaranteed to succeed, and the system should be
338  // able to safely unwind and recover from that failure, albeit
339  // at some additional cost.
340  virtual bool collection_attempt_is_safe() {
341    guarantee(false, "Are you sure you want to call this method?");
342    return true;
343  }
344
345  // Perform a garbage collection.
346  // If full is true attempt a full garbage collection of this generation.
347  // Otherwise, attempting to (at least) free enough space to support an
348  // allocation of the given "word_size".
349  virtual void collect(bool   full,
350                       bool   clear_all_soft_refs,
351                       size_t word_size,
352                       bool   is_tlab) = 0;
353
354  // Perform a heap collection, attempting to create (at least) enough
355  // space to support an allocation of the given "word_size".  If
356  // successful, perform the allocation and return the resulting
357  // "oop" (initializing the allocated block). If the allocation is
358  // still unsuccessful, return "NULL".
359  virtual HeapWord* expand_and_allocate(size_t word_size,
360                                        bool is_tlab,
361                                        bool parallel = false) = 0;
362
363  // Some generations may require some cleanup or preparation actions before
364  // allowing a collection.  The default is to do nothing.
365  virtual void gc_prologue(bool full) {}
366
367  // Some generations may require some cleanup actions after a collection.
368  // The default is to do nothing.
369  virtual void gc_epilogue(bool full) {}
370
371  // Save the high water marks for the used space in a generation.
372  virtual void record_spaces_top() {}
373
374  // Some generations may need to be "fixed-up" after some allocation
375  // activity to make them parsable again. The default is to do nothing.
376  virtual void ensure_parsability() {}
377
378  // Time (in ms) when we were last collected or now if a collection is
379  // in progress.
380  virtual jlong time_of_last_gc(jlong now) {
381    // Both _time_of_last_gc and now are set using a time source
382    // that guarantees monotonically non-decreasing values provided
383    // the underlying platform provides such a source. So we still
384    // have to guard against non-monotonicity.
385    NOT_PRODUCT(
386      if (now < _time_of_last_gc) {
387        warning("time warp: " JLONG_FORMAT " to " JLONG_FORMAT, _time_of_last_gc, now);
388      }
389    )
390    return _time_of_last_gc;
391  }
392
393  virtual void update_time_of_last_gc(jlong now)  {
394    _time_of_last_gc = now;
395  }
396
397  // Generations may keep statistics about collection. This method
398  // updates those statistics. current_generation is the generation
399  // that was most recently collected. This allows the generation to
400  // decide what statistics are valid to collect. For example, the
401  // generation can decide to gather the amount of promoted data if
402  // the collection of the young generation has completed.
403  GCStats* gc_stats() const { return _gc_stats; }
404  virtual void update_gc_stats(Generation* current_generation, bool full) {}
405
406  // Mark sweep support phase2
407  virtual void prepare_for_compaction(CompactPoint* cp);
408  // Mark sweep support phase3
409  virtual void adjust_pointers();
410  // Mark sweep support phase4
411  virtual void compact();
412  virtual void post_compact() { ShouldNotReachHere(); }
413
414  // Support for CMS's rescan. In this general form we return a pointer
415  // to an abstract object that can be used, based on specific previously
416  // decided protocols, to exchange information between generations,
417  // information that may be useful for speeding up certain types of
418  // garbage collectors. A NULL value indicates to the client that
419  // no data recording is expected by the provider. The data-recorder is
420  // expected to be GC worker thread-local, with the worker index
421  // indicated by "thr_num".
422  virtual void* get_data_recorder(int thr_num) { return NULL; }
423  virtual void sample_eden_chunk() {}
424
425  // Some generations may require some cleanup actions before allowing
426  // a verification.
427  virtual void prepare_for_verify() {}
428
429  // Accessing "marks".
430
431  // This function gives a generation a chance to note a point between
432  // collections.  For example, a contiguous generation might note the
433  // beginning allocation point post-collection, which might allow some later
434  // operations to be optimized.
435  virtual void save_marks() {}
436
437  // This function allows generations to initialize any "saved marks".  That
438  // is, should only be called when the generation is empty.
439  virtual void reset_saved_marks() {}
440
441  // This function is "true" iff any no allocations have occurred in the
442  // generation since the last call to "save_marks".
443  virtual bool no_allocs_since_save_marks() = 0;
444
445  // Apply "cl->apply" to (the addresses of) all reference fields in objects
446  // allocated in the current generation since the last call to "save_marks".
447  // If more objects are allocated in this generation as a result of applying
448  // the closure, iterates over reference fields in those objects as well.
449  // Calls "save_marks" at the end of the iteration.
450  // General signature...
451  virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
452  // ...and specializations for de-virtualization.  (The general
453  // implementation of the _nv versions call the virtual version.
454  // Note that the _nv suffix is not really semantically necessary,
455  // but it avoids some not-so-useful warnings on Solaris.)
456#define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
457  virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
458    oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
459  }
460  SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
461
462#undef Generation_SINCE_SAVE_MARKS_DECL
463
464  // The "requestor" generation is performing some garbage collection
465  // action for which it would be useful to have scratch space.  If
466  // the target is not the requestor, no gc actions will be required
467  // of the target.  The requestor promises to allocate no more than
468  // "max_alloc_words" in the target generation (via promotion say,
469  // if the requestor is a young generation and the target is older).
470  // If the target generation can provide any scratch space, it adds
471  // it to "list", leaving "list" pointing to the head of the
472  // augmented list.  The default is to offer no space.
473  virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
474                                  size_t max_alloc_words) {}
475
476  // Give each generation an opportunity to do clean up for any
477  // contributed scratch.
478  virtual void reset_scratch() {}
479
480  // When an older generation has been collected, and perhaps resized,
481  // this method will be invoked on all younger generations (from older to
482  // younger), allowing them to resize themselves as appropriate.
483  virtual void compute_new_size() = 0;
484
485  // Printing
486  virtual const char* name() const = 0;
487  virtual const char* short_name() const = 0;
488
489  // Reference Processing accessor
490  ReferenceProcessor* const ref_processor() { return _ref_processor; }
491
492  // Iteration.
493
494  // Iterate over all the ref-containing fields of all objects in the
495  // generation, calling "cl.do_oop" on each.
496  virtual void oop_iterate(ExtendedOopClosure* cl);
497
498  // Iterate over all objects in the generation, calling "cl.do_object" on
499  // each.
500  virtual void object_iterate(ObjectClosure* cl);
501
502  // Iterate over all safe objects in the generation, calling "cl.do_object" on
503  // each.  An object is safe if its references point to other objects in
504  // the heap.  This defaults to object_iterate() unless overridden.
505  virtual void safe_object_iterate(ObjectClosure* cl);
506
507  // Apply "cl->do_oop" to (the address of) all and only all the ref fields
508  // in the current generation that contain pointers to objects in younger
509  // generations. Objects allocated since the last "save_marks" call are
510  // excluded.
511  virtual void younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) = 0;
512
513  // Inform a generation that it longer contains references to objects
514  // in any younger generation.    [e.g. Because younger gens are empty,
515  // clear the card table.]
516  virtual void clear_remembered_set() { }
517
518  // Inform a generation that some of its objects have moved.  [e.g. The
519  // generation's spaces were compacted, invalidating the card table.]
520  virtual void invalidate_remembered_set() { }
521
522  // Block abstraction.
523
524  // Returns the address of the start of the "block" that contains the
525  // address "addr".  We say "blocks" instead of "object" since some heaps
526  // may not pack objects densely; a chunk may either be an object or a
527  // non-object.
528  virtual HeapWord* block_start(const void* addr) const;
529
530  // Requires "addr" to be the start of a chunk, and returns its size.
531  // "addr + size" is required to be the start of a new chunk, or the end
532  // of the active area of the heap.
533  virtual size_t block_size(const HeapWord* addr) const ;
534
535  // Requires "addr" to be the start of a block, and returns "TRUE" iff
536  // the block is an object.
537  virtual bool block_is_obj(const HeapWord* addr) const;
538
539  void print_heap_change(size_t prev_used) const;
540
541  virtual void print() const;
542  virtual void print_on(outputStream* st) const;
543
544  virtual void verify() = 0;
545
546  struct StatRecord {
547    int invocations;
548    elapsedTimer accumulated_time;
549    StatRecord() :
550      invocations(0),
551      accumulated_time(elapsedTimer()) {}
552  };
553private:
554  StatRecord _stat_record;
555public:
556  StatRecord* stat_record() { return &_stat_record; }
557
558  virtual void print_summary_info();
559  virtual void print_summary_info_on(outputStream* st);
560
561  // Performance Counter support
562  virtual void update_counters() = 0;
563  virtual CollectorCounters* counters() { return _gc_counters; }
564};
565
566#endif // SHARE_VM_GC_SHARED_GENERATION_HPP
567