1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_SHARED_GENERATION_HPP
26#define SHARE_VM_GC_SHARED_GENERATION_HPP
27
28#include "gc/shared/collectorCounters.hpp"
29#include "gc/shared/referenceProcessor.hpp"
30#include "logging/log.hpp"
31#include "memory/allocation.hpp"
32#include "memory/memRegion.hpp"
33#include "memory/universe.hpp"
34#include "memory/virtualspace.hpp"
35#include "runtime/mutex.hpp"
36#include "runtime/perfData.hpp"
37
38// A Generation models a heap area for similarly-aged objects.
39// It will contain one ore more spaces holding the actual objects.
40//
41// The Generation class hierarchy:
42//
43// Generation                      - abstract base class
44// - DefNewGeneration              - allocation area (copy collected)
45//   - ParNewGeneration            - a DefNewGeneration that is collected by
46//                                   several threads
47// - CardGeneration                 - abstract class adding offset array behavior
48//   - TenuredGeneration             - tenured (old object) space (markSweepCompact)
49//   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
50//                                       (Detlefs-Printezis refinement of
51//                                       Boehm-Demers-Schenker)
52//
53// The system configurations currently allowed are:
54//
55//   DefNewGeneration + TenuredGeneration
56//
57//   ParNewGeneration + ConcurrentMarkSweepGeneration
58//
59
60class DefNewGeneration;
61class GenerationSpec;
62class CompactibleSpace;
63class ContiguousSpace;
64class CompactPoint;
65class OopsInGenClosure;
66class OopClosure;
67class ScanClosure;
68class FastScanClosure;
69class GenCollectedHeap;
70class GCStats;
71
72// A "ScratchBlock" represents a block of memory in one generation usable by
73// another.  It represents "num_words" free words, starting at and including
74// the address of "this".
75struct ScratchBlock {
76  ScratchBlock* next;
77  size_t num_words;
78  HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
79                              // first two fields are word-sized.)
80};
81
82class Generation: public CHeapObj<mtGC> {
83  friend class VMStructs;
84 private:
85  jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
86  MemRegion _prev_used_region; // for collectors that want to "remember" a value for
87                               // used region at some specific point during collection.
88
89 protected:
90  // Minimum and maximum addresses for memory reserved (not necessarily
91  // committed) for generation.
92  // Used by card marking code. Must not overlap with address ranges of
93  // other generations.
94  MemRegion _reserved;
95
96  // Memory area reserved for generation
97  VirtualSpace _virtual_space;
98
99  // ("Weak") Reference processing support
100  ReferenceProcessor* _ref_processor;
101
102  // Performance Counters
103  CollectorCounters* _gc_counters;
104
105  // Statistics for garbage collection
106  GCStats* _gc_stats;
107
108  // Initialize the generation.
109  Generation(ReservedSpace rs, size_t initial_byte_size);
110
111  // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
112  // "sp" that point into younger generations.
113  // The iteration is only over objects allocated at the start of the
114  // iterations; objects allocated as a result of applying the closure are
115  // not included.
116  void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl, uint n_threads);
117
118 public:
119  // The set of possible generation kinds.
120  enum Name {
121    DefNew,
122    ParNew,
123    MarkSweepCompact,
124    ConcurrentMarkSweep,
125    Other
126  };
127
128  enum SomePublicConstants {
129    // Generations are GenGrain-aligned and have size that are multiples of
130    // GenGrain.
131    // Note: on ARM we add 1 bit for card_table_base to be properly aligned
132    // (we expect its low byte to be zero - see implementation of post_barrier)
133    LogOfGenGrain = 16 ARM32_ONLY(+1),
134    GenGrain = 1 << LogOfGenGrain
135  };
136
137  // allocate and initialize ("weak") refs processing support
138  virtual void ref_processor_init();
139  void set_ref_processor(ReferenceProcessor* rp) {
140    assert(_ref_processor == NULL, "clobbering existing _ref_processor");
141    _ref_processor = rp;
142  }
143
144  virtual Generation::Name kind() { return Generation::Other; }
145
146  // This properly belongs in the collector, but for now this
147  // will do.
148  virtual bool refs_discovery_is_atomic() const { return true;  }
149  virtual bool refs_discovery_is_mt()     const { return false; }
150
151  // Space inquiries (results in bytes)
152  size_t initial_size();
153  virtual size_t capacity() const = 0;  // The maximum number of object bytes the
154                                        // generation can currently hold.
155  virtual size_t used() const = 0;      // The number of used bytes in the gen.
156  virtual size_t free() const = 0;      // The number of free bytes in the gen.
157
158  // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
159  // Returns the total number of bytes  available in a generation
160  // for the allocation of objects.
161  virtual size_t max_capacity() const;
162
163  // If this is a young generation, the maximum number of bytes that can be
164  // allocated in this generation before a GC is triggered.
165  virtual size_t capacity_before_gc() const { return 0; }
166
167  // The largest number of contiguous free bytes in the generation,
168  // including expansion  (Assumes called at a safepoint.)
169  virtual size_t contiguous_available() const = 0;
170  // The largest number of contiguous free bytes in this or any higher generation.
171  virtual size_t max_contiguous_available() const;
172
173  // Returns true if promotions of the specified amount are
174  // likely to succeed without a promotion failure.
175  // Promotion of the full amount is not guaranteed but
176  // might be attempted in the worst case.
177  virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
178
179  // For a non-young generation, this interface can be used to inform a
180  // generation that a promotion attempt into that generation failed.
181  // Typically used to enable diagnostic output for post-mortem analysis,
182  // but other uses of the interface are not ruled out.
183  virtual void promotion_failure_occurred() { /* does nothing */ }
184
185  // Return an estimate of the maximum allocation that could be performed
186  // in the generation without triggering any collection or expansion
187  // activity.  It is "unsafe" because no locks are taken; the result
188  // should be treated as an approximation, not a guarantee, for use in
189  // heuristic resizing decisions.
190  virtual size_t unsafe_max_alloc_nogc() const = 0;
191
192  // Returns true if this generation cannot be expanded further
193  // without a GC. Override as appropriate.
194  virtual bool is_maximal_no_gc() const {
195    return _virtual_space.uncommitted_size() == 0;
196  }
197
198  MemRegion reserved() const { return _reserved; }
199
200  // Returns a region guaranteed to contain all the objects in the
201  // generation.
202  virtual MemRegion used_region() const { return _reserved; }
203
204  MemRegion prev_used_region() const { return _prev_used_region; }
205  virtual void  save_used_region()   { _prev_used_region = used_region(); }
206
207  // Returns "TRUE" iff "p" points into the committed areas in the generation.
208  // For some kinds of generations, this may be an expensive operation.
209  // To avoid performance problems stemming from its inadvertent use in
210  // product jvm's, we restrict its use to assertion checking or
211  // verification only.
212  virtual bool is_in(const void* p) const;
213
214  /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
215  bool is_in_reserved(const void* p) const {
216    return _reserved.contains(p);
217  }
218
219  // If some space in the generation contains the given "addr", return a
220  // pointer to that space, else return "NULL".
221  virtual Space* space_containing(const void* addr) const;
222
223  // Iteration - do not use for time critical operations
224  virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
225
226  // Returns the first space, if any, in the generation that can participate
227  // in compaction, or else "NULL".
228  virtual CompactibleSpace* first_compaction_space() const = 0;
229
230  // Returns "true" iff this generation should be used to allocate an
231  // object of the given size.  Young generations might
232  // wish to exclude very large objects, for example, since, if allocated
233  // often, they would greatly increase the frequency of young-gen
234  // collection.
235  virtual bool should_allocate(size_t word_size, bool is_tlab) {
236    bool result = false;
237    size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
238    if (!is_tlab || supports_tlab_allocation()) {
239      result = (word_size > 0) && (word_size < overflow_limit);
240    }
241    return result;
242  }
243
244  // Allocate and returns a block of the requested size, or returns "NULL".
245  // Assumes the caller has done any necessary locking.
246  virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
247
248  // Like "allocate", but performs any necessary locking internally.
249  virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
250
251  // Some generation may offer a region for shared, contiguous allocation,
252  // via inlined code (by exporting the address of the top and end fields
253  // defining the extent of the contiguous allocation region.)
254
255  // This function returns "true" iff the heap supports this kind of
256  // allocation.  (More precisely, this means the style of allocation that
257  // increments *top_addr()" with a CAS.) (Default is "no".)
258  // A generation that supports this allocation style must use lock-free
259  // allocation for *all* allocation, since there are times when lock free
260  // allocation will be concurrent with plain "allocate" calls.
261  virtual bool supports_inline_contig_alloc() const { return false; }
262
263  // These functions return the addresses of the fields that define the
264  // boundaries of the contiguous allocation area.  (These fields should be
265  // physically near to one another.)
266  virtual HeapWord* volatile* top_addr() const { return NULL; }
267  virtual HeapWord** end_addr() const { return NULL; }
268
269  // Thread-local allocation buffers
270  virtual bool supports_tlab_allocation() const { return false; }
271  virtual size_t tlab_capacity() const {
272    guarantee(false, "Generation doesn't support thread local allocation buffers");
273    return 0;
274  }
275  virtual size_t tlab_used() const {
276    guarantee(false, "Generation doesn't support thread local allocation buffers");
277    return 0;
278  }
279  virtual size_t unsafe_max_tlab_alloc() const {
280    guarantee(false, "Generation doesn't support thread local allocation buffers");
281    return 0;
282  }
283
284  // "obj" is the address of an object in a younger generation.  Allocate space
285  // for "obj" in the current (or some higher) generation, and copy "obj" into
286  // the newly allocated space, if possible, returning the result (or NULL if
287  // the allocation failed).
288  //
289  // The "obj_size" argument is just obj->size(), passed along so the caller can
290  // avoid repeating the virtual call to retrieve it.
291  virtual oop promote(oop obj, size_t obj_size);
292
293  // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
294  // object "obj", whose original mark word was "m", and whose size is
295  // "word_sz".  If possible, allocate space for "obj", copy obj into it
296  // (taking care to copy "m" into the mark word when done, since the mark
297  // word of "obj" may have been overwritten with a forwarding pointer, and
298  // also taking care to copy the klass pointer *last*.  Returns the new
299  // object if successful, or else NULL.
300  virtual oop par_promote(int thread_num, oop obj, markOop m, size_t word_sz);
301
302  // Informs the current generation that all par_promote_alloc's in the
303  // collection have been completed; any supporting data structures can be
304  // reset.  Default is to do nothing.
305  virtual void par_promote_alloc_done(int thread_num) {}
306
307  // Informs the current generation that all oop_since_save_marks_iterates
308  // performed by "thread_num" in the current collection, if any, have been
309  // completed; any supporting data structures can be reset.  Default is to
310  // do nothing.
311  virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
312
313  // Returns "true" iff collect() should subsequently be called on this
314  // this generation. See comment below.
315  // This is a generic implementation which can be overridden.
316  //
317  // Note: in the current (1.4) implementation, when genCollectedHeap's
318  // incremental_collection_will_fail flag is set, all allocations are
319  // slow path (the only fast-path place to allocate is DefNew, which
320  // will be full if the flag is set).
321  // Thus, older generations which collect younger generations should
322  // test this flag and collect if it is set.
323  virtual bool should_collect(bool   full,
324                              size_t word_size,
325                              bool   is_tlab) {
326    return (full || should_allocate(word_size, is_tlab));
327  }
328
329  // Returns true if the collection is likely to be safely
330  // completed. Even if this method returns true, a collection
331  // may not be guaranteed to succeed, and the system should be
332  // able to safely unwind and recover from that failure, albeit
333  // at some additional cost.
334  virtual bool collection_attempt_is_safe() {
335    guarantee(false, "Are you sure you want to call this method?");
336    return true;
337  }
338
339  // Perform a garbage collection.
340  // If full is true attempt a full garbage collection of this generation.
341  // Otherwise, attempting to (at least) free enough space to support an
342  // allocation of the given "word_size".
343  virtual void collect(bool   full,
344                       bool   clear_all_soft_refs,
345                       size_t word_size,
346                       bool   is_tlab) = 0;
347
348  // Perform a heap collection, attempting to create (at least) enough
349  // space to support an allocation of the given "word_size".  If
350  // successful, perform the allocation and return the resulting
351  // "oop" (initializing the allocated block). If the allocation is
352  // still unsuccessful, return "NULL".
353  virtual HeapWord* expand_and_allocate(size_t word_size,
354                                        bool is_tlab,
355                                        bool parallel = false) = 0;
356
357  // Some generations may require some cleanup or preparation actions before
358  // allowing a collection.  The default is to do nothing.
359  virtual void gc_prologue(bool full) {}
360
361  // Some generations may require some cleanup actions after a collection.
362  // The default is to do nothing.
363  virtual void gc_epilogue(bool full) {}
364
365  // Save the high water marks for the used space in a generation.
366  virtual void record_spaces_top() {}
367
368  // Some generations may need to be "fixed-up" after some allocation
369  // activity to make them parsable again. The default is to do nothing.
370  virtual void ensure_parsability() {}
371
372  // Time (in ms) when we were last collected or now if a collection is
373  // in progress.
374  virtual jlong time_of_last_gc(jlong now) {
375    // Both _time_of_last_gc and now are set using a time source
376    // that guarantees monotonically non-decreasing values provided
377    // the underlying platform provides such a source. So we still
378    // have to guard against non-monotonicity.
379    NOT_PRODUCT(
380      if (now < _time_of_last_gc) {
381        log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT, _time_of_last_gc, now);
382      }
383    )
384    return _time_of_last_gc;
385  }
386
387  virtual void update_time_of_last_gc(jlong now)  {
388    _time_of_last_gc = now;
389  }
390
391  // Generations may keep statistics about collection. This method
392  // updates those statistics. current_generation is the generation
393  // that was most recently collected. This allows the generation to
394  // decide what statistics are valid to collect. For example, the
395  // generation can decide to gather the amount of promoted data if
396  // the collection of the young generation has completed.
397  GCStats* gc_stats() const { return _gc_stats; }
398  virtual void update_gc_stats(Generation* current_generation, bool full) {}
399
400  // Mark sweep support phase2
401  virtual void prepare_for_compaction(CompactPoint* cp);
402  // Mark sweep support phase3
403  virtual void adjust_pointers();
404  // Mark sweep support phase4
405  virtual void compact();
406  virtual void post_compact() { ShouldNotReachHere(); }
407
408  // Support for CMS's rescan. In this general form we return a pointer
409  // to an abstract object that can be used, based on specific previously
410  // decided protocols, to exchange information between generations,
411  // information that may be useful for speeding up certain types of
412  // garbage collectors. A NULL value indicates to the client that
413  // no data recording is expected by the provider. The data-recorder is
414  // expected to be GC worker thread-local, with the worker index
415  // indicated by "thr_num".
416  virtual void* get_data_recorder(int thr_num) { return NULL; }
417  virtual void sample_eden_chunk() {}
418
419  // Some generations may require some cleanup actions before allowing
420  // a verification.
421  virtual void prepare_for_verify() {}
422
423  // Accessing "marks".
424
425  // This function gives a generation a chance to note a point between
426  // collections.  For example, a contiguous generation might note the
427  // beginning allocation point post-collection, which might allow some later
428  // operations to be optimized.
429  virtual void save_marks() {}
430
431  // This function allows generations to initialize any "saved marks".  That
432  // is, should only be called when the generation is empty.
433  virtual void reset_saved_marks() {}
434
435  // This function is "true" iff any no allocations have occurred in the
436  // generation since the last call to "save_marks".
437  virtual bool no_allocs_since_save_marks() = 0;
438
439  // Apply "cl->apply" to (the addresses of) all reference fields in objects
440  // allocated in the current generation since the last call to "save_marks".
441  // If more objects are allocated in this generation as a result of applying
442  // the closure, iterates over reference fields in those objects as well.
443  // Calls "save_marks" at the end of the iteration.
444  // General signature...
445  virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
446  // ...and specializations for de-virtualization.  (The general
447  // implementation of the _nv versions call the virtual version.
448  // Note that the _nv suffix is not really semantically necessary,
449  // but it avoids some not-so-useful warnings on Solaris.)
450#define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
451  virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
452    oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
453  }
454  SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
455
456#undef Generation_SINCE_SAVE_MARKS_DECL
457
458  // The "requestor" generation is performing some garbage collection
459  // action for which it would be useful to have scratch space.  If
460  // the target is not the requestor, no gc actions will be required
461  // of the target.  The requestor promises to allocate no more than
462  // "max_alloc_words" in the target generation (via promotion say,
463  // if the requestor is a young generation and the target is older).
464  // If the target generation can provide any scratch space, it adds
465  // it to "list", leaving "list" pointing to the head of the
466  // augmented list.  The default is to offer no space.
467  virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
468                                  size_t max_alloc_words) {}
469
470  // Give each generation an opportunity to do clean up for any
471  // contributed scratch.
472  virtual void reset_scratch() {}
473
474  // When an older generation has been collected, and perhaps resized,
475  // this method will be invoked on all younger generations (from older to
476  // younger), allowing them to resize themselves as appropriate.
477  virtual void compute_new_size() = 0;
478
479  // Printing
480  virtual const char* name() const = 0;
481  virtual const char* short_name() const = 0;
482
483  // Reference Processing accessor
484  ReferenceProcessor* const ref_processor() { return _ref_processor; }
485
486  // Iteration.
487
488  // Iterate over all the ref-containing fields of all objects in the
489  // generation, calling "cl.do_oop" on each.
490  virtual void oop_iterate(ExtendedOopClosure* cl);
491
492  // Iterate over all objects in the generation, calling "cl.do_object" on
493  // each.
494  virtual void object_iterate(ObjectClosure* cl);
495
496  // Iterate over all safe objects in the generation, calling "cl.do_object" on
497  // each.  An object is safe if its references point to other objects in
498  // the heap.  This defaults to object_iterate() unless overridden.
499  virtual void safe_object_iterate(ObjectClosure* cl);
500
501  // Apply "cl->do_oop" to (the address of) all and only all the ref fields
502  // in the current generation that contain pointers to objects in younger
503  // generations. Objects allocated since the last "save_marks" call are
504  // excluded.
505  virtual void younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) = 0;
506
507  // Inform a generation that it longer contains references to objects
508  // in any younger generation.    [e.g. Because younger gens are empty,
509  // clear the card table.]
510  virtual void clear_remembered_set() { }
511
512  // Inform a generation that some of its objects have moved.  [e.g. The
513  // generation's spaces were compacted, invalidating the card table.]
514  virtual void invalidate_remembered_set() { }
515
516  // Block abstraction.
517
518  // Returns the address of the start of the "block" that contains the
519  // address "addr".  We say "blocks" instead of "object" since some heaps
520  // may not pack objects densely; a chunk may either be an object or a
521  // non-object.
522  virtual HeapWord* block_start(const void* addr) const;
523
524  // Requires "addr" to be the start of a chunk, and returns its size.
525  // "addr + size" is required to be the start of a new chunk, or the end
526  // of the active area of the heap.
527  virtual size_t block_size(const HeapWord* addr) const ;
528
529  // Requires "addr" to be the start of a block, and returns "TRUE" iff
530  // the block is an object.
531  virtual bool block_is_obj(const HeapWord* addr) const;
532
533  void print_heap_change(size_t prev_used) const;
534
535  virtual void print() const;
536  virtual void print_on(outputStream* st) const;
537
538  virtual void verify() = 0;
539
540  struct StatRecord {
541    int invocations;
542    elapsedTimer accumulated_time;
543    StatRecord() :
544      invocations(0),
545      accumulated_time(elapsedTimer()) {}
546  };
547private:
548  StatRecord _stat_record;
549public:
550  StatRecord* stat_record() { return &_stat_record; }
551
552  virtual void print_summary_info();
553  virtual void print_summary_info_on(outputStream* st);
554
555  // Performance Counter support
556  virtual void update_counters() = 0;
557  virtual CollectorCounters* counters() { return _gc_counters; }
558};
559
560#endif // SHARE_VM_GC_SHARED_GENERATION_HPP
561