1/*
2 * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
26#define SHARE_VM_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
27
28#include "gc/shared/adaptiveSizePolicy.hpp"
29#include "gc/shared/gcCause.hpp"
30#include "gc/shared/gcStats.hpp"
31#include "gc/shared/gcUtil.hpp"
32#include "utilities/align.hpp"
33
34// This class keeps statistical information and computes the
35// optimal free space for both the young and old generation
36// based on current application characteristics (based on gc cost
37// and application footprint).
38//
39// It also computes an optimal tenuring threshold between the young
40// and old generations, so as to equalize the cost of collections
41// of those generations, as well as optimal survivor space sizes
42// for the young generation.
43//
44// While this class is specifically intended for a generational system
45// consisting of a young gen (containing an Eden and two semi-spaces)
46// and a tenured gen, as well as a perm gen for reflective data, it
47// makes NO references to specific generations.
48//
49// 05/02/2003 Update
50// The 1.5 policy makes use of data gathered for the costs of GC on
51// specific generations.  That data does reference specific
52// generation.  Also diagnostics specific to generations have
53// been added.
54
55// Forward decls
56class elapsedTimer;
57
58class PSAdaptiveSizePolicy : public AdaptiveSizePolicy {
59 friend class PSGCAdaptivePolicyCounters;
60 private:
61  // These values are used to record decisions made during the
62  // policy.  For example, if the young generation was decreased
63  // to decrease the GC cost of minor collections the value
64  // decrease_young_gen_for_throughput_true is used.
65
66  // Last calculated sizes, in bytes, and aligned
67  // NEEDS_CLEANUP should use sizes.hpp,  but it works in ints, not size_t's
68
69  // Time statistics
70  AdaptivePaddedAverage* _avg_major_pause;
71
72  // Footprint statistics
73  AdaptiveWeightedAverage* _avg_base_footprint;
74
75  // Statistical data gathered for GC
76  GCStats _gc_stats;
77
78  size_t _survivor_size_limit;   // Limit in bytes of survivor size
79  const double _collection_cost_margin_fraction;
80
81  // Variable for estimating the major and minor pause times.
82  // These variables represent linear least-squares fits of
83  // the data.
84  //   major pause time vs. old gen size
85  LinearLeastSquareFit* _major_pause_old_estimator;
86  //   major pause time vs. young gen size
87  LinearLeastSquareFit* _major_pause_young_estimator;
88
89
90  // These record the most recent collection times.  They
91  // are available as an alternative to using the averages
92  // for making ergonomic decisions.
93  double _latest_major_mutator_interval_seconds;
94
95  const size_t _space_alignment; // alignment for eden, survivors
96
97  const double _gc_minor_pause_goal_sec;    // goal for maximum minor gc pause
98
99  // The amount of live data in the heap at the last full GC, used
100  // as a baseline to help us determine when we need to perform the
101  // next full GC.
102  size_t _live_at_last_full_gc;
103
104  // decrease/increase the old generation for minor pause time
105  int _change_old_gen_for_min_pauses;
106
107  // increase/decrease the young generation for major pause time
108  int _change_young_gen_for_maj_pauses;
109
110
111  // Flag indicating that the adaptive policy is ready to use
112  bool _old_gen_policy_is_ready;
113
114  // Changing the generation sizing depends on the data that is
115  // gathered about the effects of changes on the pause times and
116  // throughput.  These variable count the number of data points
117  // gathered.  The policy may use these counters as a threshold
118  // for reliable data.
119  julong _young_gen_change_for_major_pause_count;
120
121  // To facilitate faster growth at start up, supplement the normal
122  // growth percentage for the young gen eden and the
123  // old gen space for promotion with these value which decay
124  // with increasing collections.
125  uint _young_gen_size_increment_supplement;
126  uint _old_gen_size_increment_supplement;
127
128  // The number of bytes absorbed from eden into the old gen by moving the
129  // boundary over live data.
130  size_t _bytes_absorbed_from_eden;
131
132 private:
133
134  // Accessors
135  AdaptivePaddedAverage* avg_major_pause() const { return _avg_major_pause; }
136  double gc_minor_pause_goal_sec() const { return _gc_minor_pause_goal_sec; }
137
138  void adjust_eden_for_minor_pause_time(bool is_full_gc,
139                                   size_t* desired_eden_size_ptr);
140  // Change the generation sizes to achieve a GC pause time goal
141  // Returned sizes are not necessarily aligned.
142  void adjust_promo_for_pause_time(bool is_full_gc,
143                         size_t* desired_promo_size_ptr,
144                         size_t* desired_eden_size_ptr);
145  void adjust_eden_for_pause_time(bool is_full_gc,
146                         size_t* desired_promo_size_ptr,
147                         size_t* desired_eden_size_ptr);
148  // Change the generation sizes to achieve an application throughput goal
149  // Returned sizes are not necessarily aligned.
150  void adjust_promo_for_throughput(bool is_full_gc,
151                             size_t* desired_promo_size_ptr);
152  void adjust_eden_for_throughput(bool is_full_gc,
153                             size_t* desired_eden_size_ptr);
154  // Change the generation sizes to achieve minimum footprint
155  // Returned sizes are not aligned.
156  size_t adjust_promo_for_footprint(size_t desired_promo_size,
157                                    size_t desired_total);
158  size_t adjust_eden_for_footprint(size_t desired_promo_size,
159                                   size_t desired_total);
160
161  // Size in bytes for an increment or decrement of eden.
162  virtual size_t eden_increment(size_t cur_eden, uint percent_change);
163  virtual size_t eden_decrement(size_t cur_eden);
164  size_t eden_decrement_aligned_down(size_t cur_eden);
165  size_t eden_increment_with_supplement_aligned_up(size_t cur_eden);
166
167  // Size in bytes for an increment or decrement of the promotion area
168  virtual size_t promo_increment(size_t cur_promo, uint percent_change);
169  virtual size_t promo_decrement(size_t cur_promo);
170  size_t promo_decrement_aligned_down(size_t cur_promo);
171  size_t promo_increment_with_supplement_aligned_up(size_t cur_promo);
172
173  // Returns a change that has been scaled down.  Result
174  // is not aligned.  (If useful, move to some shared
175  // location.)
176  size_t scale_down(size_t change, double part, double total);
177
178 protected:
179  // Time accessors
180
181  // Footprint accessors
182  size_t live_space() const {
183    return (size_t)(avg_base_footprint()->average() +
184                    avg_young_live()->average() +
185                    avg_old_live()->average());
186  }
187  size_t free_space() const {
188    return _eden_size + _promo_size;
189  }
190
191  void set_promo_size(size_t new_size) {
192    _promo_size = new_size;
193  }
194  void set_survivor_size(size_t new_size) {
195    _survivor_size = new_size;
196  }
197
198  // Update estimators
199  void update_minor_pause_old_estimator(double minor_pause_in_ms);
200
201  virtual GCPolicyKind kind() const { return _gc_ps_adaptive_size_policy; }
202
203 public:
204  // Use by ASPSYoungGen and ASPSOldGen to limit boundary moving.
205  size_t eden_increment_aligned_up(size_t cur_eden);
206  size_t eden_increment_aligned_down(size_t cur_eden);
207  size_t promo_increment_aligned_up(size_t cur_promo);
208  size_t promo_increment_aligned_down(size_t cur_promo);
209
210  virtual size_t eden_increment(size_t cur_eden);
211  virtual size_t promo_increment(size_t cur_promo);
212
213  // Accessors for use by performance counters
214  AdaptivePaddedNoZeroDevAverage*  avg_promoted() const {
215    return _gc_stats.avg_promoted();
216  }
217  AdaptiveWeightedAverage* avg_base_footprint() const {
218    return _avg_base_footprint;
219  }
220
221  // Input arguments are initial free space sizes for young and old
222  // generations, the initial survivor space size, the
223  // alignment values and the pause & throughput goals.
224  //
225  // NEEDS_CLEANUP this is a singleton object
226  PSAdaptiveSizePolicy(size_t init_eden_size,
227                       size_t init_promo_size,
228                       size_t init_survivor_size,
229                       size_t space_alignment,
230                       double gc_pause_goal_sec,
231                       double gc_minor_pause_goal_sec,
232                       uint gc_time_ratio);
233
234  // Methods indicating events of interest to the adaptive size policy,
235  // called by GC algorithms. It is the responsibility of users of this
236  // policy to call these methods at the correct times!
237  void major_collection_begin();
238  void major_collection_end(size_t amount_live, GCCause::Cause gc_cause);
239
240  void tenured_allocation(size_t size) {
241    _avg_pretenured->sample(size);
242  }
243
244  // Accessors
245  // NEEDS_CLEANUP   should use sizes.hpp
246
247  static size_t calculate_free_based_on_live(size_t live, uintx ratio_as_percentage);
248
249  size_t calculated_old_free_size_in_bytes() const;
250
251  size_t average_old_live_in_bytes() const {
252    return (size_t) avg_old_live()->average();
253  }
254
255  size_t average_promoted_in_bytes() const {
256    return (size_t)avg_promoted()->average();
257  }
258
259  size_t padded_average_promoted_in_bytes() const {
260    return (size_t)avg_promoted()->padded_average();
261  }
262
263  int change_young_gen_for_maj_pauses() {
264    return _change_young_gen_for_maj_pauses;
265  }
266  void set_change_young_gen_for_maj_pauses(int v) {
267    _change_young_gen_for_maj_pauses = v;
268  }
269
270  int change_old_gen_for_min_pauses() {
271    return _change_old_gen_for_min_pauses;
272  }
273  void set_change_old_gen_for_min_pauses(int v) {
274    _change_old_gen_for_min_pauses = v;
275  }
276
277  // Return true if the old generation size was changed
278  // to try to reach a pause time goal.
279  bool old_gen_changed_for_pauses() {
280    bool result = _change_old_gen_for_maj_pauses != 0 ||
281                  _change_old_gen_for_min_pauses != 0;
282    return result;
283  }
284
285  // Return true if the young generation size was changed
286  // to try to reach a pause time goal.
287  bool young_gen_changed_for_pauses() {
288    bool result = _change_young_gen_for_min_pauses != 0 ||
289                  _change_young_gen_for_maj_pauses != 0;
290    return result;
291  }
292  // end flags for pause goal
293
294  // Return true if the old generation size was changed
295  // to try to reach a throughput goal.
296  bool old_gen_changed_for_throughput() {
297    bool result = _change_old_gen_for_throughput != 0;
298    return result;
299  }
300
301  // Return true if the young generation size was changed
302  // to try to reach a throughput goal.
303  bool young_gen_changed_for_throughput() {
304    bool result = _change_young_gen_for_throughput != 0;
305    return result;
306  }
307
308  int decrease_for_footprint() { return _decrease_for_footprint; }
309
310
311  // Accessors for estimators.  The slope of the linear fit is
312  // currently all that is used for making decisions.
313
314  LinearLeastSquareFit* major_pause_old_estimator() {
315    return _major_pause_old_estimator;
316  }
317
318  LinearLeastSquareFit* major_pause_young_estimator() {
319    return _major_pause_young_estimator;
320  }
321
322
323  virtual void clear_generation_free_space_flags();
324
325  float major_pause_old_slope() { return _major_pause_old_estimator->slope(); }
326  float major_pause_young_slope() {
327    return _major_pause_young_estimator->slope();
328  }
329  float major_collection_slope() { return _major_collection_estimator->slope();}
330
331  bool old_gen_policy_is_ready() { return _old_gen_policy_is_ready; }
332
333  // Given the amount of live data in the heap, should we
334  // perform a Full GC?
335  bool should_full_GC(size_t live_in_old_gen);
336
337  // Calculates optimal (free) space sizes for both the young and old
338  // generations.  Stores results in _eden_size and _promo_size.
339  // Takes current used space in all generations as input, as well
340  // as an indication if a full gc has just been performed, for use
341  // in deciding if an OOM error should be thrown.
342  void compute_generations_free_space(size_t young_live,
343                                      size_t eden_live,
344                                      size_t old_live,
345                                      size_t cur_eden,  // current eden in bytes
346                                      size_t max_old_gen_size,
347                                      size_t max_eden_size,
348                                      bool   is_full_gc);
349
350  void compute_eden_space_size(size_t young_live,
351                               size_t eden_live,
352                               size_t cur_eden,  // current eden in bytes
353                               size_t max_eden_size,
354                               bool   is_full_gc);
355
356  void compute_old_gen_free_space(size_t old_live,
357                                             size_t cur_eden,  // current eden in bytes
358                                             size_t max_old_gen_size,
359                                             bool   is_full_gc);
360
361  // Calculates new survivor space size;  returns a new tenuring threshold
362  // value. Stores new survivor size in _survivor_size.
363  uint compute_survivor_space_size_and_threshold(bool   is_survivor_overflow,
364                                                 uint    tenuring_threshold,
365                                                 size_t survivor_limit);
366
367  // Return the maximum size of a survivor space if the young generation were of
368  // size gen_size.
369  size_t max_survivor_size(size_t gen_size) {
370    // Never allow the target survivor size to grow more than MinSurvivorRatio
371    // of the young generation size.  We cannot grow into a two semi-space
372    // system, with Eden zero sized.  Even if the survivor space grows, from()
373    // might grow by moving the bottom boundary "down" -- so from space will
374    // remain almost full anyway (top() will be near end(), but there will be a
375    // large filler object at the bottom).
376    const size_t sz = gen_size / MinSurvivorRatio;
377    const size_t alignment = _space_alignment;
378    return sz > alignment ? align_down(sz, alignment) : alignment;
379  }
380
381  size_t live_at_last_full_gc() {
382    return _live_at_last_full_gc;
383  }
384
385  size_t bytes_absorbed_from_eden() const { return _bytes_absorbed_from_eden; }
386  void   reset_bytes_absorbed_from_eden() { _bytes_absorbed_from_eden = 0; }
387
388  void set_bytes_absorbed_from_eden(size_t val) {
389    _bytes_absorbed_from_eden = val;
390  }
391
392  // Update averages that are always used (even
393  // if adaptive sizing is turned off).
394  void update_averages(bool is_survivor_overflow,
395                       size_t survived,
396                       size_t promoted);
397
398  // Printing support
399  virtual bool print() const;
400
401  // Decay the supplemental growth additive.
402  void decay_supplemental_growth(bool is_full_gc);
403};
404
405#endif // SHARE_VM_GC_PARALLEL_PSADAPTIVESIZEPOLICY_HPP
406