1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/g1/concurrentG1Refine.hpp"
27#include "gc/g1/dirtyCardQueue.hpp"
28#include "gc/g1/g1BlockOffsetTable.inline.hpp"
29#include "gc/g1/g1CollectedHeap.inline.hpp"
30#include "gc/g1/g1FromCardCache.hpp"
31#include "gc/g1/g1GCPhaseTimes.hpp"
32#include "gc/g1/g1HotCardCache.hpp"
33#include "gc/g1/g1OopClosures.inline.hpp"
34#include "gc/g1/g1RemSet.inline.hpp"
35#include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
36#include "gc/g1/heapRegion.inline.hpp"
37#include "gc/g1/heapRegionManager.inline.hpp"
38#include "gc/g1/heapRegionRemSet.hpp"
39#include "gc/g1/suspendibleThreadSet.hpp"
40#include "gc/shared/gcTraceTime.inline.hpp"
41#include "memory/iterator.hpp"
42#include "memory/resourceArea.hpp"
43#include "oops/oop.inline.hpp"
44#include "utilities/align.hpp"
45#include "utilities/globalDefinitions.hpp"
46#include "utilities/intHisto.hpp"
47#include "utilities/stack.inline.hpp"
48
49// Collects information about the overall remembered set scan progress during an evacuation.
50class G1RemSetScanState : public CHeapObj<mtGC> {
51private:
52  class G1ClearCardTableTask : public AbstractGangTask {
53    G1CollectedHeap* _g1h;
54    uint* _dirty_region_list;
55    size_t _num_dirty_regions;
56    size_t _chunk_length;
57
58    size_t volatile _cur_dirty_regions;
59  public:
60    G1ClearCardTableTask(G1CollectedHeap* g1h,
61                         uint* dirty_region_list,
62                         size_t num_dirty_regions,
63                         size_t chunk_length) :
64      AbstractGangTask("G1 Clear Card Table Task"),
65      _g1h(g1h),
66      _dirty_region_list(dirty_region_list),
67      _num_dirty_regions(num_dirty_regions),
68      _chunk_length(chunk_length),
69      _cur_dirty_regions(0) {
70
71      assert(chunk_length > 0, "must be");
72    }
73
74    static size_t chunk_size() { return M; }
75
76    void work(uint worker_id) {
77      G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
78
79      while (_cur_dirty_regions < _num_dirty_regions) {
80        size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
81        size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
82
83        for (size_t i = next; i < max; i++) {
84          HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
85          if (!r->is_survivor()) {
86            ct_bs->clear(MemRegion(r->bottom(), r->end()));
87          }
88        }
89      }
90    }
91  };
92
93  size_t _max_regions;
94
95  // Scan progress for the remembered set of a single region. Transitions from
96  // Unclaimed -> Claimed -> Complete.
97  // At each of the transitions the thread that does the transition needs to perform
98  // some special action once. This is the reason for the extra "Claimed" state.
99  typedef jint G1RemsetIterState;
100
101  static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
102  static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
103  static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
104
105  G1RemsetIterState volatile* _iter_states;
106  // The current location where the next thread should continue scanning in a region's
107  // remembered set.
108  size_t volatile* _iter_claims;
109
110  // Temporary buffer holding the regions we used to store remembered set scan duplicate
111  // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
112  uint* _dirty_region_buffer;
113
114  typedef jbyte IsDirtyRegionState;
115  static const IsDirtyRegionState Clean = 0;
116  static const IsDirtyRegionState Dirty = 1;
117  // Holds a flag for every region whether it is in the _dirty_region_buffer already
118  // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
119  IsDirtyRegionState* _in_dirty_region_buffer;
120  size_t _cur_dirty_region;
121
122  // Creates a snapshot of the current _top values at the start of collection to
123  // filter out card marks that we do not want to scan.
124  class G1ResetScanTopClosure : public HeapRegionClosure {
125  private:
126    HeapWord** _scan_top;
127  public:
128    G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
129
130    virtual bool doHeapRegion(HeapRegion* r) {
131      uint hrm_index = r->hrm_index();
132      if (!r->in_collection_set() && r->is_old_or_humongous()) {
133        _scan_top[hrm_index] = r->top();
134      } else {
135        _scan_top[hrm_index] = r->bottom();
136      }
137      return false;
138    }
139  };
140
141  // For each region, contains the maximum top() value to be used during this garbage
142  // collection. Subsumes common checks like filtering out everything but old and
143  // humongous regions outside the collection set.
144  // This is valid because we are not interested in scanning stray remembered set
145  // entries from free or archive regions.
146  HeapWord** _scan_top;
147public:
148  G1RemSetScanState() :
149    _max_regions(0),
150    _iter_states(NULL),
151    _iter_claims(NULL),
152    _dirty_region_buffer(NULL),
153    _in_dirty_region_buffer(NULL),
154    _cur_dirty_region(0),
155    _scan_top(NULL) {
156  }
157
158  ~G1RemSetScanState() {
159    if (_iter_states != NULL) {
160      FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
161    }
162    if (_iter_claims != NULL) {
163      FREE_C_HEAP_ARRAY(size_t, _iter_claims);
164    }
165    if (_dirty_region_buffer != NULL) {
166      FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
167    }
168    if (_in_dirty_region_buffer != NULL) {
169      FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
170    }
171    if (_scan_top != NULL) {
172      FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
173    }
174  }
175
176  void initialize(uint max_regions) {
177    assert(_iter_states == NULL, "Must not be initialized twice");
178    assert(_iter_claims == NULL, "Must not be initialized twice");
179    _max_regions = max_regions;
180    _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
181    _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
182    _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
183    _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
184    _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
185  }
186
187  void reset() {
188    for (uint i = 0; i < _max_regions; i++) {
189      _iter_states[i] = Unclaimed;
190    }
191
192    G1ResetScanTopClosure cl(_scan_top);
193    G1CollectedHeap::heap()->heap_region_iterate(&cl);
194
195    memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
196    memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
197    _cur_dirty_region = 0;
198  }
199
200  // Attempt to claim the remembered set of the region for iteration. Returns true
201  // if this call caused the transition from Unclaimed to Claimed.
202  inline bool claim_iter(uint region) {
203    assert(region < _max_regions, "Tried to access invalid region %u", region);
204    if (_iter_states[region] != Unclaimed) {
205      return false;
206    }
207    jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed);
208    return (res == Unclaimed);
209  }
210
211  // Try to atomically sets the iteration state to "complete". Returns true for the
212  // thread that caused the transition.
213  inline bool set_iter_complete(uint region) {
214    if (iter_is_complete(region)) {
215      return false;
216    }
217    jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed);
218    return (res == Claimed);
219  }
220
221  // Returns true if the region's iteration is complete.
222  inline bool iter_is_complete(uint region) const {
223    assert(region < _max_regions, "Tried to access invalid region %u", region);
224    return _iter_states[region] == Complete;
225  }
226
227  // The current position within the remembered set of the given region.
228  inline size_t iter_claimed(uint region) const {
229    assert(region < _max_regions, "Tried to access invalid region %u", region);
230    return _iter_claims[region];
231  }
232
233  // Claim the next block of cards within the remembered set of the region with
234  // step size.
235  inline size_t iter_claimed_next(uint region, size_t step) {
236    return Atomic::add(step, &_iter_claims[region]) - step;
237  }
238
239  void add_dirty_region(uint region) {
240    if (_in_dirty_region_buffer[region] == Dirty) {
241      return;
242    }
243
244    bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
245    if (marked_as_dirty) {
246      size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
247      _dirty_region_buffer[allocated] = region;
248    }
249  }
250
251  HeapWord* scan_top(uint region_idx) const {
252    return _scan_top[region_idx];
253  }
254
255  // Clear the card table of "dirty" regions.
256  void clear_card_table(WorkGang* workers) {
257    if (_cur_dirty_region == 0) {
258      return;
259    }
260
261    size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
262    uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
263    size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
264
265    // Iterate over the dirty cards region list.
266    G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
267
268    log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
269                        "units of work for " SIZE_FORMAT " regions.",
270                        cl.name(), num_workers, num_chunks, _cur_dirty_region);
271    workers->run_task(&cl, num_workers);
272
273#ifndef PRODUCT
274    // Need to synchronize with concurrent cleanup since it needs to
275    // finish its card table clearing before we can verify.
276    G1CollectedHeap::heap()->wait_while_free_regions_coming();
277    G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
278#endif
279  }
280};
281
282G1RemSet::G1RemSet(G1CollectedHeap* g1,
283                   CardTableModRefBS* ct_bs,
284                   G1HotCardCache* hot_card_cache) :
285  _g1(g1),
286  _scan_state(new G1RemSetScanState()),
287  _num_conc_refined_cards(0),
288  _ct_bs(ct_bs),
289  _g1p(_g1->g1_policy()),
290  _hot_card_cache(hot_card_cache),
291  _prev_period_summary() {
292}
293
294G1RemSet::~G1RemSet() {
295  if (_scan_state != NULL) {
296    delete _scan_state;
297  }
298}
299
300uint G1RemSet::num_par_rem_sets() {
301  return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads);
302}
303
304void G1RemSet::initialize(size_t capacity, uint max_regions) {
305  G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
306  _scan_state->initialize(max_regions);
307  {
308    GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
309    _card_live_data.initialize(capacity, max_regions);
310  }
311  if (G1PretouchAuxiliaryMemory) {
312    GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
313    _card_live_data.pretouch();
314  }
315}
316
317G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
318                                                   G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
319                                                   CodeBlobClosure* code_root_cl,
320                                                   uint worker_i) :
321  _scan_state(scan_state),
322  _scan_objs_on_card_cl(scan_obj_on_card),
323  _code_root_cl(code_root_cl),
324  _strong_code_root_scan_time_sec(0.0),
325  _cards_claimed(0),
326  _cards_scanned(0),
327  _cards_skipped(0),
328  _worker_i(worker_i) {
329  _g1h = G1CollectedHeap::heap();
330  _bot = _g1h->bot();
331  _ct_bs = _g1h->g1_barrier_set();
332}
333
334void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
335  HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
336  _scan_objs_on_card_cl->set_region(card_region);
337  card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
338  _cards_scanned++;
339}
340
341void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
342  double scan_start = os::elapsedTime();
343  r->strong_code_roots_do(_code_root_cl);
344  _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
345}
346
347void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
348  _ct_bs->set_card_claimed(card_index);
349  _scan_state->add_dirty_region(region_idx_for_card);
350}
351
352bool G1ScanRSForRegionClosure::doHeapRegion(HeapRegion* r) {
353  assert(r->in_collection_set(), "should only be called on elements of CS.");
354  uint region_idx = r->hrm_index();
355
356  if (_scan_state->iter_is_complete(region_idx)) {
357    return false;
358  }
359  if (_scan_state->claim_iter(region_idx)) {
360    // If we ever free the collection set concurrently, we should also
361    // clear the card table concurrently therefore we won't need to
362    // add regions of the collection set to the dirty cards region.
363    _scan_state->add_dirty_region(region_idx);
364  }
365
366  // We claim cards in blocks so as to reduce the contention.
367  size_t const block_size = G1RSetScanBlockSize;
368
369  HeapRegionRemSetIterator iter(r->rem_set());
370  size_t card_index;
371
372  size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
373  for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
374    if (current_card >= claimed_card_block + block_size) {
375      claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
376    }
377    if (current_card < claimed_card_block) {
378      _cards_skipped++;
379      continue;
380    }
381    _cards_claimed++;
382
383    // If the card is dirty, then G1 will scan it during Update RS.
384    if (_ct_bs->is_card_claimed(card_index) || _ct_bs->is_card_dirty(card_index)) {
385      continue;
386    }
387
388    HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
389    uint const region_idx_for_card = _g1h->addr_to_region(card_start);
390
391    assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
392           "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
393    HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
394    if (card_start >= top) {
395      continue;
396    }
397
398    // We claim lazily (so races are possible but they're benign), which reduces the
399    // number of duplicate scans (the rsets of the regions in the cset can intersect).
400    // Claim the card after checking bounds above: the remembered set may contain
401    // random cards into current survivor, and we would then have an incorrectly
402    // claimed card in survivor space. Card table clear does not reset the card table
403    // of survivor space regions.
404    claim_card(card_index, region_idx_for_card);
405
406    MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
407
408    scan_card(mr, region_idx_for_card);
409  }
410  if (_scan_state->set_iter_complete(region_idx)) {
411    // Scan the strong code root list attached to the current region
412    scan_strong_code_roots(r);
413  }
414  return false;
415}
416
417void G1RemSet::scan_rem_set(G1ParScanThreadState* pss,
418                            CodeBlobClosure* heap_region_codeblobs,
419                            uint worker_i) {
420  double rs_time_start = os::elapsedTime();
421
422  G1ScanObjsDuringScanRSClosure scan_cl(_g1, pss);
423  G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, heap_region_codeblobs, worker_i);
424  _g1->collection_set_iterate_from(&cl, worker_i);
425
426  double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
427                             cl.strong_code_root_scan_time_sec();
428
429  G1GCPhaseTimes* p = _g1p->phase_times();
430
431  p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
432  p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
433  p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
434  p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
435
436  p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
437}
438
439// Closure used for updating rem sets. Only called during an evacuation pause.
440class G1RefineCardClosure: public CardTableEntryClosure {
441  G1RemSet* _g1rs;
442  G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
443
444  size_t _cards_scanned;
445  size_t _cards_skipped;
446public:
447  G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
448    _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
449  {}
450
451  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
452    // The only time we care about recording cards that
453    // contain references that point into the collection set
454    // is during RSet updating within an evacuation pause.
455    // In this case worker_i should be the id of a GC worker thread.
456    assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
457
458    bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
459
460    if (card_scanned) {
461      _cards_scanned++;
462    } else {
463      _cards_skipped++;
464    }
465    return true;
466  }
467
468  size_t cards_scanned() const { return _cards_scanned; }
469  size_t cards_skipped() const { return _cards_skipped; }
470};
471
472void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
473  G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1, pss, worker_i);
474  G1RefineCardClosure refine_card_cl(_g1, &update_rs_cl);
475
476  G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
477  if (G1HotCardCache::default_use_cache()) {
478    // Apply the closure to the entries of the hot card cache.
479    G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
480    _g1->iterate_hcc_closure(&refine_card_cl, worker_i);
481  }
482  // Apply the closure to all remaining log entries.
483  _g1->iterate_dirty_card_closure(&refine_card_cl, worker_i);
484
485  G1GCPhaseTimes* p = _g1p->phase_times();
486  p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
487  p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
488}
489
490void G1RemSet::cleanupHRRS() {
491  HeapRegionRemSet::cleanup();
492}
493
494void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss,
495                                           CodeBlobClosure* heap_region_codeblobs,
496                                           uint worker_i) {
497  update_rem_set(pss, worker_i);
498  scan_rem_set(pss, heap_region_codeblobs, worker_i);;
499}
500
501void G1RemSet::prepare_for_oops_into_collection_set_do() {
502  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
503  dcqs.concatenate_logs();
504
505  _scan_state->reset();
506}
507
508void G1RemSet::cleanup_after_oops_into_collection_set_do() {
509  G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
510
511  // Set all cards back to clean.
512  double start = os::elapsedTime();
513  _scan_state->clear_card_table(_g1->workers());
514  phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
515}
516
517class G1ScrubRSClosure: public HeapRegionClosure {
518  G1CollectedHeap* _g1h;
519  G1CardLiveData* _live_data;
520public:
521  G1ScrubRSClosure(G1CardLiveData* live_data) :
522    _g1h(G1CollectedHeap::heap()),
523    _live_data(live_data) { }
524
525  bool doHeapRegion(HeapRegion* r) {
526    if (!r->is_continues_humongous()) {
527      r->rem_set()->scrub(_live_data);
528    }
529    return false;
530  }
531};
532
533void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) {
534  G1ScrubRSClosure scrub_cl(&_card_live_data);
535  _g1->heap_region_par_iterate(&scrub_cl, worker_num, hrclaimer);
536}
537
538inline void check_card_ptr(jbyte* card_ptr, CardTableModRefBS* ct_bs) {
539#ifdef ASSERT
540  G1CollectedHeap* g1 = G1CollectedHeap::heap();
541  assert(g1->is_in_exact(ct_bs->addr_for(card_ptr)),
542         "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
543         p2i(card_ptr),
544         ct_bs->index_for(ct_bs->addr_for(card_ptr)),
545         p2i(ct_bs->addr_for(card_ptr)),
546         g1->addr_to_region(ct_bs->addr_for(card_ptr)));
547#endif
548}
549
550void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
551                                        uint worker_i) {
552  assert(!_g1->is_gc_active(), "Only call concurrently");
553
554  check_card_ptr(card_ptr, _ct_bs);
555
556  // If the card is no longer dirty, nothing to do.
557  if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
558    return;
559  }
560
561  // Construct the region representing the card.
562  HeapWord* start = _ct_bs->addr_for(card_ptr);
563  // And find the region containing it.
564  HeapRegion* r = _g1->heap_region_containing(start);
565
566  // This check is needed for some uncommon cases where we should
567  // ignore the card.
568  //
569  // The region could be young.  Cards for young regions are
570  // distinctly marked (set to g1_young_gen), so the post-barrier will
571  // filter them out.  However, that marking is performed
572  // concurrently.  A write to a young object could occur before the
573  // card has been marked young, slipping past the filter.
574  //
575  // The card could be stale, because the region has been freed since
576  // the card was recorded. In this case the region type could be
577  // anything.  If (still) free or (reallocated) young, just ignore
578  // it.  If (reallocated) old or humongous, the later card trimming
579  // and additional checks in iteration may detect staleness.  At
580  // worst, we end up processing a stale card unnecessarily.
581  //
582  // In the normal (non-stale) case, the synchronization between the
583  // enqueueing of the card and processing it here will have ensured
584  // we see the up-to-date region type here.
585  if (!r->is_old_or_humongous()) {
586    return;
587  }
588
589  // While we are processing RSet buffers during the collection, we
590  // actually don't want to scan any cards on the collection set,
591  // since we don't want to update remembered sets with entries that
592  // point into the collection set, given that live objects from the
593  // collection set are about to move and such entries will be stale
594  // very soon. This change also deals with a reliability issue which
595  // involves scanning a card in the collection set and coming across
596  // an array that was being chunked and looking malformed. Note,
597  // however, that if evacuation fails, we have to scan any objects
598  // that were not moved and create any missing entries.
599  if (r->in_collection_set()) {
600    return;
601  }
602
603  // The result from the hot card cache insert call is either:
604  //   * pointer to the current card
605  //     (implying that the current card is not 'hot'),
606  //   * null
607  //     (meaning we had inserted the card ptr into the "hot" card cache,
608  //     which had some headroom),
609  //   * a pointer to a "hot" card that was evicted from the "hot" cache.
610  //
611
612  if (_hot_card_cache->use_cache()) {
613    assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
614
615    const jbyte* orig_card_ptr = card_ptr;
616    card_ptr = _hot_card_cache->insert(card_ptr);
617    if (card_ptr == NULL) {
618      // There was no eviction. Nothing to do.
619      return;
620    } else if (card_ptr != orig_card_ptr) {
621      // Original card was inserted and an old card was evicted.
622      start = _ct_bs->addr_for(card_ptr);
623      r = _g1->heap_region_containing(start);
624
625      // Check whether the region formerly in the cache should be
626      // ignored, as discussed earlier for the original card.  The
627      // region could have been freed while in the cache.  The cset is
628      // not relevant here, since we're in concurrent phase.
629      if (!r->is_old_or_humongous()) {
630        return;
631      }
632    } // Else we still have the original card.
633  }
634
635  // Trim the region designated by the card to what's been allocated
636  // in the region.  The card could be stale, or the card could cover
637  // (part of) an object at the end of the allocated space and extend
638  // beyond the end of allocation.
639
640  // Non-humongous objects are only allocated in the old-gen during
641  // GC, so if region is old then top is stable.  Humongous object
642  // allocation sets top last; if top has not yet been set, this is
643  // a stale card and we'll end up with an empty intersection.  If
644  // this is not a stale card, the synchronization between the
645  // enqueuing of the card and processing it here will have ensured
646  // we see the up-to-date top here.
647  HeapWord* scan_limit = r->top();
648
649  if (scan_limit <= start) {
650    // If the trimmed region is empty, the card must be stale.
651    return;
652  }
653
654  // Okay to clean and process the card now.  There are still some
655  // stale card cases that may be detected by iteration and dealt with
656  // as iteration failure.
657  *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
658
659  // This fence serves two purposes.  First, the card must be cleaned
660  // before processing the contents.  Second, we can't proceed with
661  // processing until after the read of top, for synchronization with
662  // possibly concurrent humongous object allocation.  It's okay that
663  // reading top and reading type were racy wrto each other.  We need
664  // both set, in any order, to proceed.
665  OrderAccess::fence();
666
667  // Don't use addr_for(card_ptr + 1) which can ask for
668  // a card beyond the heap.
669  HeapWord* end = start + CardTableModRefBS::card_size_in_words;
670  MemRegion dirty_region(start, MIN2(scan_limit, end));
671  assert(!dirty_region.is_empty(), "sanity");
672
673  G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i);
674
675  bool card_processed =
676    r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
677
678  // If unable to process the card then we encountered an unparsable
679  // part of the heap (e.g. a partially allocated object) while
680  // processing a stale card.  Despite the card being stale, redirty
681  // and re-enqueue, because we've already cleaned the card.  Without
682  // this we could incorrectly discard a non-stale card.
683  if (!card_processed) {
684    // The card might have gotten re-dirtied and re-enqueued while we
685    // worked.  (In fact, it's pretty likely.)
686    if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
687      *card_ptr = CardTableModRefBS::dirty_card_val();
688      MutexLockerEx x(Shared_DirtyCardQ_lock,
689                      Mutex::_no_safepoint_check_flag);
690      DirtyCardQueue* sdcq =
691        JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
692      sdcq->enqueue(card_ptr);
693    }
694  } else {
695    _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
696  }
697}
698
699bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
700                                     G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
701  assert(_g1->is_gc_active(), "Only call during GC");
702
703  check_card_ptr(card_ptr, _ct_bs);
704
705  // If the card is no longer dirty, nothing to do. This covers cards that were already
706  // scanned as parts of the remembered sets.
707  if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
708    return false;
709  }
710
711  // We claim lazily (so races are possible but they're benign), which reduces the
712  // number of potential duplicate scans (multiple threads may enqueue the same card twice).
713  *card_ptr = CardTableModRefBS::clean_card_val() | CardTableModRefBS::claimed_card_val();
714
715  // Construct the region representing the card.
716  HeapWord* card_start = _ct_bs->addr_for(card_ptr);
717  // And find the region containing it.
718  uint const card_region_idx = _g1->addr_to_region(card_start);
719
720  _scan_state->add_dirty_region(card_region_idx);
721  HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
722  if (scan_limit <= card_start) {
723    // If the card starts above the area in the region containing objects to scan, skip it.
724    return false;
725  }
726
727  // Don't use addr_for(card_ptr + 1) which can ask for
728  // a card beyond the heap.
729  HeapWord* card_end = card_start + CardTableModRefBS::card_size_in_words;
730  MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
731  assert(!dirty_region.is_empty(), "sanity");
732
733  HeapRegion* const card_region = _g1->region_at(card_region_idx);
734  update_rs_cl->set_region(card_region);
735  bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
736  assert(card_processed, "must be");
737  return true;
738}
739
740void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
741  if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
742      (period_count % G1SummarizeRSetStatsPeriod == 0)) {
743
744    G1RemSetSummary current(this);
745    _prev_period_summary.subtract_from(&current);
746
747    Log(gc, remset) log;
748    log.trace("%s", header);
749    ResourceMark rm;
750    LogStream ls(log.trace());
751    _prev_period_summary.print_on(&ls);
752
753    _prev_period_summary.set(&current);
754  }
755}
756
757void G1RemSet::print_summary_info() {
758  Log(gc, remset, exit) log;
759  if (log.is_trace()) {
760    log.trace(" Cumulative RS summary");
761    G1RemSetSummary current(this);
762    ResourceMark rm;
763    LogStream ls(log.trace());
764    current.print_on(&ls);
765  }
766}
767
768void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
769  _card_live_data.create(workers, mark_bitmap);
770}
771
772void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
773  _card_live_data.finalize(workers, mark_bitmap);
774}
775
776void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
777  _card_live_data.verify(workers, bitmap);
778}
779
780void G1RemSet::clear_card_live_data(WorkGang* workers) {
781  _card_live_data.clear(workers);
782}
783
784#ifdef ASSERT
785void G1RemSet::verify_card_live_data_is_clear() {
786  _card_live_data.verify_is_clear();
787}
788#endif
789