g1CollectedHeap.cpp revision 13243:7235bc30c0d7
1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/metadataOnStackMark.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "code/codeCache.hpp"
30#include "code/icBuffer.hpp"
31#include "gc/g1/bufferingOopClosure.hpp"
32#include "gc/g1/concurrentG1Refine.hpp"
33#include "gc/g1/concurrentG1RefineThread.hpp"
34#include "gc/g1/concurrentMarkThread.inline.hpp"
35#include "gc/g1/g1Allocator.inline.hpp"
36#include "gc/g1/g1CollectedHeap.inline.hpp"
37#include "gc/g1/g1CollectionSet.hpp"
38#include "gc/g1/g1CollectorPolicy.hpp"
39#include "gc/g1/g1CollectorState.hpp"
40#include "gc/g1/g1EvacStats.inline.hpp"
41#include "gc/g1/g1GCPhaseTimes.hpp"
42#include "gc/g1/g1HeapSizingPolicy.hpp"
43#include "gc/g1/g1HeapTransition.hpp"
44#include "gc/g1/g1HeapVerifier.hpp"
45#include "gc/g1/g1HotCardCache.hpp"
46#include "gc/g1/g1MarkSweep.hpp"
47#include "gc/g1/g1OopClosures.inline.hpp"
48#include "gc/g1/g1ParScanThreadState.inline.hpp"
49#include "gc/g1/g1Policy.hpp"
50#include "gc/g1/g1RegionToSpaceMapper.hpp"
51#include "gc/g1/g1RemSet.inline.hpp"
52#include "gc/g1/g1RootClosures.hpp"
53#include "gc/g1/g1RootProcessor.hpp"
54#include "gc/g1/g1StringDedup.hpp"
55#include "gc/g1/g1YCTypes.hpp"
56#include "gc/g1/heapRegion.inline.hpp"
57#include "gc/g1/heapRegionRemSet.hpp"
58#include "gc/g1/heapRegionSet.inline.hpp"
59#include "gc/g1/suspendibleThreadSet.hpp"
60#include "gc/g1/vm_operations_g1.hpp"
61#include "gc/shared/gcHeapSummary.hpp"
62#include "gc/shared/gcId.hpp"
63#include "gc/shared/gcLocker.inline.hpp"
64#include "gc/shared/gcTimer.hpp"
65#include "gc/shared/gcTrace.hpp"
66#include "gc/shared/gcTraceTime.inline.hpp"
67#include "gc/shared/generationSpec.hpp"
68#include "gc/shared/isGCActiveMark.hpp"
69#include "gc/shared/preservedMarks.inline.hpp"
70#include "gc/shared/referenceProcessor.inline.hpp"
71#include "gc/shared/taskqueue.inline.hpp"
72#include "logging/log.hpp"
73#include "memory/allocation.hpp"
74#include "memory/iterator.hpp"
75#include "memory/resourceArea.hpp"
76#include "oops/oop.inline.hpp"
77#include "prims/resolvedMethodTable.hpp"
78#include "runtime/atomic.hpp"
79#include "runtime/init.hpp"
80#include "runtime/orderAccess.inline.hpp"
81#include "runtime/vmThread.hpp"
82#include "utilities/globalDefinitions.hpp"
83#include "utilities/stack.inline.hpp"
84
85size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
86
87// INVARIANTS/NOTES
88//
89// All allocation activity covered by the G1CollectedHeap interface is
90// serialized by acquiring the HeapLock.  This happens in mem_allocate
91// and allocate_new_tlab, which are the "entry" points to the
92// allocation code from the rest of the JVM.  (Note that this does not
93// apply to TLAB allocation, which is not part of this interface: it
94// is done by clients of this interface.)
95
96// Local to this file.
97
98class RefineCardTableEntryClosure: public CardTableEntryClosure {
99  bool _concurrent;
100public:
101  RefineCardTableEntryClosure() : _concurrent(true) { }
102
103  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
104    G1CollectedHeap::heap()->g1_rem_set()->refine_card_concurrently(card_ptr, worker_i);
105
106    if (_concurrent && SuspendibleThreadSet::should_yield()) {
107      // Caller will actually yield.
108      return false;
109    }
110    // Otherwise, we finished successfully; return true.
111    return true;
112  }
113
114  void set_concurrent(bool b) { _concurrent = b; }
115};
116
117
118class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
119 private:
120  size_t _num_dirtied;
121  G1CollectedHeap* _g1h;
122  G1SATBCardTableLoggingModRefBS* _g1_bs;
123
124  HeapRegion* region_for_card(jbyte* card_ptr) const {
125    return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
126  }
127
128  bool will_become_free(HeapRegion* hr) const {
129    // A region will be freed by free_collection_set if the region is in the
130    // collection set and has not had an evacuation failure.
131    return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
132  }
133
134 public:
135  RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
136    _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
137
138  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
139    HeapRegion* hr = region_for_card(card_ptr);
140
141    // Should only dirty cards in regions that won't be freed.
142    if (!will_become_free(hr)) {
143      *card_ptr = CardTableModRefBS::dirty_card_val();
144      _num_dirtied++;
145    }
146
147    return true;
148  }
149
150  size_t num_dirtied()   const { return _num_dirtied; }
151};
152
153
154void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
155  HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
156}
157
158void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
159  // The from card cache is not the memory that is actually committed. So we cannot
160  // take advantage of the zero_filled parameter.
161  reset_from_card_cache(start_idx, num_regions);
162}
163
164// Returns true if the reference points to an object that
165// can move in an incremental collection.
166bool G1CollectedHeap::is_scavengable(const void* p) {
167  HeapRegion* hr = heap_region_containing(p);
168  return !hr->is_pinned();
169}
170
171// Private methods.
172
173HeapRegion*
174G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
175  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
176  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
177    if (!_secondary_free_list.is_empty()) {
178      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
179                                      "secondary_free_list has %u entries",
180                                      _secondary_free_list.length());
181      // It looks as if there are free regions available on the
182      // secondary_free_list. Let's move them to the free_list and try
183      // again to allocate from it.
184      append_secondary_free_list();
185
186      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
187             "empty we should have moved at least one entry to the free_list");
188      HeapRegion* res = _hrm.allocate_free_region(is_old);
189      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
190                                      "allocated " HR_FORMAT " from secondary_free_list",
191                                      HR_FORMAT_PARAMS(res));
192      return res;
193    }
194
195    // Wait here until we get notified either when (a) there are no
196    // more free regions coming or (b) some regions have been moved on
197    // the secondary_free_list.
198    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
199  }
200
201  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
202                                  "could not allocate from secondary_free_list");
203  return NULL;
204}
205
206HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
207  assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
208         "the only time we use this to allocate a humongous region is "
209         "when we are allocating a single humongous region");
210
211  HeapRegion* res;
212  if (G1StressConcRegionFreeing) {
213    if (!_secondary_free_list.is_empty()) {
214      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
215                                      "forced to look at the secondary_free_list");
216      res = new_region_try_secondary_free_list(is_old);
217      if (res != NULL) {
218        return res;
219      }
220    }
221  }
222
223  res = _hrm.allocate_free_region(is_old);
224
225  if (res == NULL) {
226    log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
227                                    "res == NULL, trying the secondary_free_list");
228    res = new_region_try_secondary_free_list(is_old);
229  }
230  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
231    // Currently, only attempts to allocate GC alloc regions set
232    // do_expand to true. So, we should only reach here during a
233    // safepoint. If this assumption changes we might have to
234    // reconsider the use of _expand_heap_after_alloc_failure.
235    assert(SafepointSynchronize::is_at_safepoint(), "invariant");
236
237    log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
238                              word_size * HeapWordSize);
239
240    if (expand(word_size * HeapWordSize)) {
241      // Given that expand() succeeded in expanding the heap, and we
242      // always expand the heap by an amount aligned to the heap
243      // region size, the free list should in theory not be empty.
244      // In either case allocate_free_region() will check for NULL.
245      res = _hrm.allocate_free_region(is_old);
246    } else {
247      _expand_heap_after_alloc_failure = false;
248    }
249  }
250  return res;
251}
252
253HeapWord*
254G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
255                                                           uint num_regions,
256                                                           size_t word_size,
257                                                           AllocationContext_t context) {
258  assert(first != G1_NO_HRM_INDEX, "pre-condition");
259  assert(is_humongous(word_size), "word_size should be humongous");
260  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
261
262  // Index of last region in the series.
263  uint last = first + num_regions - 1;
264
265  // We need to initialize the region(s) we just discovered. This is
266  // a bit tricky given that it can happen concurrently with
267  // refinement threads refining cards on these regions and
268  // potentially wanting to refine the BOT as they are scanning
269  // those cards (this can happen shortly after a cleanup; see CR
270  // 6991377). So we have to set up the region(s) carefully and in
271  // a specific order.
272
273  // The word size sum of all the regions we will allocate.
274  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
275  assert(word_size <= word_size_sum, "sanity");
276
277  // This will be the "starts humongous" region.
278  HeapRegion* first_hr = region_at(first);
279  // The header of the new object will be placed at the bottom of
280  // the first region.
281  HeapWord* new_obj = first_hr->bottom();
282  // This will be the new top of the new object.
283  HeapWord* obj_top = new_obj + word_size;
284
285  // First, we need to zero the header of the space that we will be
286  // allocating. When we update top further down, some refinement
287  // threads might try to scan the region. By zeroing the header we
288  // ensure that any thread that will try to scan the region will
289  // come across the zero klass word and bail out.
290  //
291  // NOTE: It would not have been correct to have used
292  // CollectedHeap::fill_with_object() and make the space look like
293  // an int array. The thread that is doing the allocation will
294  // later update the object header to a potentially different array
295  // type and, for a very short period of time, the klass and length
296  // fields will be inconsistent. This could cause a refinement
297  // thread to calculate the object size incorrectly.
298  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
299
300  // Next, pad out the unused tail of the last region with filler
301  // objects, for improved usage accounting.
302  // How many words we use for filler objects.
303  size_t word_fill_size = word_size_sum - word_size;
304
305  // How many words memory we "waste" which cannot hold a filler object.
306  size_t words_not_fillable = 0;
307
308  if (word_fill_size >= min_fill_size()) {
309    fill_with_objects(obj_top, word_fill_size);
310  } else if (word_fill_size > 0) {
311    // We have space to fill, but we cannot fit an object there.
312    words_not_fillable = word_fill_size;
313    word_fill_size = 0;
314  }
315
316  // We will set up the first region as "starts humongous". This
317  // will also update the BOT covering all the regions to reflect
318  // that there is a single object that starts at the bottom of the
319  // first region.
320  first_hr->set_starts_humongous(obj_top, word_fill_size);
321  first_hr->set_allocation_context(context);
322  // Then, if there are any, we will set up the "continues
323  // humongous" regions.
324  HeapRegion* hr = NULL;
325  for (uint i = first + 1; i <= last; ++i) {
326    hr = region_at(i);
327    hr->set_continues_humongous(first_hr);
328    hr->set_allocation_context(context);
329  }
330
331  // Up to this point no concurrent thread would have been able to
332  // do any scanning on any region in this series. All the top
333  // fields still point to bottom, so the intersection between
334  // [bottom,top] and [card_start,card_end] will be empty. Before we
335  // update the top fields, we'll do a storestore to make sure that
336  // no thread sees the update to top before the zeroing of the
337  // object header and the BOT initialization.
338  OrderAccess::storestore();
339
340  // Now, we will update the top fields of the "continues humongous"
341  // regions except the last one.
342  for (uint i = first; i < last; ++i) {
343    hr = region_at(i);
344    hr->set_top(hr->end());
345  }
346
347  hr = region_at(last);
348  // If we cannot fit a filler object, we must set top to the end
349  // of the humongous object, otherwise we cannot iterate the heap
350  // and the BOT will not be complete.
351  hr->set_top(hr->end() - words_not_fillable);
352
353  assert(hr->bottom() < obj_top && obj_top <= hr->end(),
354         "obj_top should be in last region");
355
356  _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
357
358  assert(words_not_fillable == 0 ||
359         first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
360         "Miscalculation in humongous allocation");
361
362  increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
363
364  for (uint i = first; i <= last; ++i) {
365    hr = region_at(i);
366    _humongous_set.add(hr);
367    _hr_printer.alloc(hr);
368  }
369
370  return new_obj;
371}
372
373size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
374  assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
375  return align_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
376}
377
378// If could fit into free regions w/o expansion, try.
379// Otherwise, if can expand, do so.
380// Otherwise, if using ex regions might help, try with ex given back.
381HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
382  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
383
384  _verifier->verify_region_sets_optional();
385
386  uint first = G1_NO_HRM_INDEX;
387  uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
388
389  if (obj_regions == 1) {
390    // Only one region to allocate, try to use a fast path by directly allocating
391    // from the free lists. Do not try to expand here, we will potentially do that
392    // later.
393    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
394    if (hr != NULL) {
395      first = hr->hrm_index();
396    }
397  } else {
398    // We can't allocate humongous regions spanning more than one region while
399    // cleanupComplete() is running, since some of the regions we find to be
400    // empty might not yet be added to the free list. It is not straightforward
401    // to know in which list they are on so that we can remove them. We only
402    // need to do this if we need to allocate more than one region to satisfy the
403    // current humongous allocation request. If we are only allocating one region
404    // we use the one-region region allocation code (see above), that already
405    // potentially waits for regions from the secondary free list.
406    wait_while_free_regions_coming();
407    append_secondary_free_list_if_not_empty_with_lock();
408
409    // Policy: Try only empty regions (i.e. already committed first). Maybe we
410    // are lucky enough to find some.
411    first = _hrm.find_contiguous_only_empty(obj_regions);
412    if (first != G1_NO_HRM_INDEX) {
413      _hrm.allocate_free_regions_starting_at(first, obj_regions);
414    }
415  }
416
417  if (first == G1_NO_HRM_INDEX) {
418    // Policy: We could not find enough regions for the humongous object in the
419    // free list. Look through the heap to find a mix of free and uncommitted regions.
420    // If so, try expansion.
421    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
422    if (first != G1_NO_HRM_INDEX) {
423      // We found something. Make sure these regions are committed, i.e. expand
424      // the heap. Alternatively we could do a defragmentation GC.
425      log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
426                                    word_size * HeapWordSize);
427
428      _hrm.expand_at(first, obj_regions, workers());
429      g1_policy()->record_new_heap_size(num_regions());
430
431#ifdef ASSERT
432      for (uint i = first; i < first + obj_regions; ++i) {
433        HeapRegion* hr = region_at(i);
434        assert(hr->is_free(), "sanity");
435        assert(hr->is_empty(), "sanity");
436        assert(is_on_master_free_list(hr), "sanity");
437      }
438#endif
439      _hrm.allocate_free_regions_starting_at(first, obj_regions);
440    } else {
441      // Policy: Potentially trigger a defragmentation GC.
442    }
443  }
444
445  HeapWord* result = NULL;
446  if (first != G1_NO_HRM_INDEX) {
447    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
448                                                       word_size, context);
449    assert(result != NULL, "it should always return a valid result");
450
451    // A successful humongous object allocation changes the used space
452    // information of the old generation so we need to recalculate the
453    // sizes and update the jstat counters here.
454    g1mm()->update_sizes();
455  }
456
457  _verifier->verify_region_sets_optional();
458
459  return result;
460}
461
462HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
463  assert_heap_not_locked_and_not_at_safepoint();
464  assert(!is_humongous(word_size), "we do not allow humongous TLABs");
465
466  uint dummy_gc_count_before;
467  uint dummy_gclocker_retry_count = 0;
468  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
469}
470
471HeapWord*
472G1CollectedHeap::mem_allocate(size_t word_size,
473                              bool*  gc_overhead_limit_was_exceeded) {
474  assert_heap_not_locked_and_not_at_safepoint();
475
476  // Loop until the allocation is satisfied, or unsatisfied after GC.
477  for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
478    uint gc_count_before;
479
480    HeapWord* result = NULL;
481    if (!is_humongous(word_size)) {
482      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
483    } else {
484      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
485    }
486    if (result != NULL) {
487      return result;
488    }
489
490    // Create the garbage collection operation...
491    VM_G1CollectForAllocation op(gc_count_before, word_size);
492    op.set_allocation_context(AllocationContext::current());
493
494    // ...and get the VM thread to execute it.
495    VMThread::execute(&op);
496
497    if (op.prologue_succeeded() && op.pause_succeeded()) {
498      // If the operation was successful we'll return the result even
499      // if it is NULL. If the allocation attempt failed immediately
500      // after a Full GC, it's unlikely we'll be able to allocate now.
501      HeapWord* result = op.result();
502      if (result != NULL && !is_humongous(word_size)) {
503        // Allocations that take place on VM operations do not do any
504        // card dirtying and we have to do it here. We only have to do
505        // this for non-humongous allocations, though.
506        dirty_young_block(result, word_size);
507      }
508      return result;
509    } else {
510      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
511        return NULL;
512      }
513      assert(op.result() == NULL,
514             "the result should be NULL if the VM op did not succeed");
515    }
516
517    // Give a warning if we seem to be looping forever.
518    if ((QueuedAllocationWarningCount > 0) &&
519        (try_count % QueuedAllocationWarningCount == 0)) {
520      log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
521    }
522  }
523
524  ShouldNotReachHere();
525  return NULL;
526}
527
528HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
529                                                   AllocationContext_t context,
530                                                   uint* gc_count_before_ret,
531                                                   uint* gclocker_retry_count_ret) {
532  // Make sure you read the note in attempt_allocation_humongous().
533
534  assert_heap_not_locked_and_not_at_safepoint();
535  assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
536         "be called for humongous allocation requests");
537
538  // We should only get here after the first-level allocation attempt
539  // (attempt_allocation()) failed to allocate.
540
541  // We will loop until a) we manage to successfully perform the
542  // allocation or b) we successfully schedule a collection which
543  // fails to perform the allocation. b) is the only case when we'll
544  // return NULL.
545  HeapWord* result = NULL;
546  for (int try_count = 1; /* we'll return */; try_count += 1) {
547    bool should_try_gc;
548    uint gc_count_before;
549
550    {
551      MutexLockerEx x(Heap_lock);
552      result = _allocator->attempt_allocation_locked(word_size, context);
553      if (result != NULL) {
554        return result;
555      }
556
557      if (GCLocker::is_active_and_needs_gc()) {
558        if (g1_policy()->can_expand_young_list()) {
559          // No need for an ergo verbose message here,
560          // can_expand_young_list() does this when it returns true.
561          result = _allocator->attempt_allocation_force(word_size, context);
562          if (result != NULL) {
563            return result;
564          }
565        }
566        should_try_gc = false;
567      } else {
568        // The GCLocker may not be active but the GCLocker initiated
569        // GC may not yet have been performed (GCLocker::needs_gc()
570        // returns true). In this case we do not try this GC and
571        // wait until the GCLocker initiated GC is performed, and
572        // then retry the allocation.
573        if (GCLocker::needs_gc()) {
574          should_try_gc = false;
575        } else {
576          // Read the GC count while still holding the Heap_lock.
577          gc_count_before = total_collections();
578          should_try_gc = true;
579        }
580      }
581    }
582
583    if (should_try_gc) {
584      bool succeeded;
585      result = do_collection_pause(word_size, gc_count_before, &succeeded,
586                                   GCCause::_g1_inc_collection_pause);
587      if (result != NULL) {
588        assert(succeeded, "only way to get back a non-NULL result");
589        return result;
590      }
591
592      if (succeeded) {
593        // If we get here we successfully scheduled a collection which
594        // failed to allocate. No point in trying to allocate
595        // further. We'll just return NULL.
596        MutexLockerEx x(Heap_lock);
597        *gc_count_before_ret = total_collections();
598        return NULL;
599      }
600    } else {
601      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
602        MutexLockerEx x(Heap_lock);
603        *gc_count_before_ret = total_collections();
604        return NULL;
605      }
606      // The GCLocker is either active or the GCLocker initiated
607      // GC has not yet been performed. Stall until it is and
608      // then retry the allocation.
609      GCLocker::stall_until_clear();
610      (*gclocker_retry_count_ret) += 1;
611    }
612
613    // We can reach here if we were unsuccessful in scheduling a
614    // collection (because another thread beat us to it) or if we were
615    // stalled due to the GC locker. In either can we should retry the
616    // allocation attempt in case another thread successfully
617    // performed a collection and reclaimed enough space. We do the
618    // first attempt (without holding the Heap_lock) here and the
619    // follow-on attempt will be at the start of the next loop
620    // iteration (after taking the Heap_lock).
621    result = _allocator->attempt_allocation(word_size, context);
622    if (result != NULL) {
623      return result;
624    }
625
626    // Give a warning if we seem to be looping forever.
627    if ((QueuedAllocationWarningCount > 0) &&
628        (try_count % QueuedAllocationWarningCount == 0)) {
629      log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
630                      "retries %d times", try_count);
631    }
632  }
633
634  ShouldNotReachHere();
635  return NULL;
636}
637
638void G1CollectedHeap::begin_archive_alloc_range() {
639  assert_at_safepoint(true /* should_be_vm_thread */);
640  if (_archive_allocator == NULL) {
641    _archive_allocator = G1ArchiveAllocator::create_allocator(this);
642  }
643}
644
645bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
646  // Allocations in archive regions cannot be of a size that would be considered
647  // humongous even for a minimum-sized region, because G1 region sizes/boundaries
648  // may be different at archive-restore time.
649  return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
650}
651
652HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
653  assert_at_safepoint(true /* should_be_vm_thread */);
654  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
655  if (is_archive_alloc_too_large(word_size)) {
656    return NULL;
657  }
658  return _archive_allocator->archive_mem_allocate(word_size);
659}
660
661void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
662                                              size_t end_alignment_in_bytes) {
663  assert_at_safepoint(true /* should_be_vm_thread */);
664  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
665
666  // Call complete_archive to do the real work, filling in the MemRegion
667  // array with the archive regions.
668  _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
669  delete _archive_allocator;
670  _archive_allocator = NULL;
671}
672
673bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
674  assert(ranges != NULL, "MemRegion array NULL");
675  assert(count != 0, "No MemRegions provided");
676  MemRegion reserved = _hrm.reserved();
677  for (size_t i = 0; i < count; i++) {
678    if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
679      return false;
680    }
681  }
682  return true;
683}
684
685bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
686  assert(!is_init_completed(), "Expect to be called at JVM init time");
687  assert(ranges != NULL, "MemRegion array NULL");
688  assert(count != 0, "No MemRegions provided");
689  MutexLockerEx x(Heap_lock);
690
691  MemRegion reserved = _hrm.reserved();
692  HeapWord* prev_last_addr = NULL;
693  HeapRegion* prev_last_region = NULL;
694
695  // Temporarily disable pretouching of heap pages. This interface is used
696  // when mmap'ing archived heap data in, so pre-touching is wasted.
697  FlagSetting fs(AlwaysPreTouch, false);
698
699  // Enable archive object checking used by G1MarkSweep. We have to let it know
700  // about each archive range, so that objects in those ranges aren't marked.
701  G1ArchiveAllocator::enable_archive_object_check();
702
703  // For each specified MemRegion range, allocate the corresponding G1
704  // regions and mark them as archive regions. We expect the ranges in
705  // ascending starting address order, without overlap.
706  for (size_t i = 0; i < count; i++) {
707    MemRegion curr_range = ranges[i];
708    HeapWord* start_address = curr_range.start();
709    size_t word_size = curr_range.word_size();
710    HeapWord* last_address = curr_range.last();
711    size_t commits = 0;
712
713    guarantee(reserved.contains(start_address) && reserved.contains(last_address),
714              "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
715              p2i(start_address), p2i(last_address));
716    guarantee(start_address > prev_last_addr,
717              "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
718              p2i(start_address), p2i(prev_last_addr));
719    prev_last_addr = last_address;
720
721    // Check for ranges that start in the same G1 region in which the previous
722    // range ended, and adjust the start address so we don't try to allocate
723    // the same region again. If the current range is entirely within that
724    // region, skip it, just adjusting the recorded top.
725    HeapRegion* start_region = _hrm.addr_to_region(start_address);
726    if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
727      start_address = start_region->end();
728      if (start_address > last_address) {
729        increase_used(word_size * HeapWordSize);
730        start_region->set_top(last_address + 1);
731        continue;
732      }
733      start_region->set_top(start_address);
734      curr_range = MemRegion(start_address, last_address + 1);
735      start_region = _hrm.addr_to_region(start_address);
736    }
737
738    // Perform the actual region allocation, exiting if it fails.
739    // Then note how much new space we have allocated.
740    if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
741      return false;
742    }
743    increase_used(word_size * HeapWordSize);
744    if (commits != 0) {
745      log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
746                                HeapRegion::GrainWords * HeapWordSize * commits);
747
748    }
749
750    // Mark each G1 region touched by the range as archive, add it to the old set,
751    // and set the allocation context and top.
752    HeapRegion* curr_region = _hrm.addr_to_region(start_address);
753    HeapRegion* last_region = _hrm.addr_to_region(last_address);
754    prev_last_region = last_region;
755
756    while (curr_region != NULL) {
757      assert(curr_region->is_empty() && !curr_region->is_pinned(),
758             "Region already in use (index %u)", curr_region->hrm_index());
759      curr_region->set_allocation_context(AllocationContext::system());
760      curr_region->set_archive();
761      _hr_printer.alloc(curr_region);
762      _old_set.add(curr_region);
763      if (curr_region != last_region) {
764        curr_region->set_top(curr_region->end());
765        curr_region = _hrm.next_region_in_heap(curr_region);
766      } else {
767        curr_region->set_top(last_address + 1);
768        curr_region = NULL;
769      }
770    }
771
772    // Notify mark-sweep of the archive range.
773    G1ArchiveAllocator::set_range_archive(curr_range, true);
774  }
775  return true;
776}
777
778void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
779  assert(!is_init_completed(), "Expect to be called at JVM init time");
780  assert(ranges != NULL, "MemRegion array NULL");
781  assert(count != 0, "No MemRegions provided");
782  MemRegion reserved = _hrm.reserved();
783  HeapWord *prev_last_addr = NULL;
784  HeapRegion* prev_last_region = NULL;
785
786  // For each MemRegion, create filler objects, if needed, in the G1 regions
787  // that contain the address range. The address range actually within the
788  // MemRegion will not be modified. That is assumed to have been initialized
789  // elsewhere, probably via an mmap of archived heap data.
790  MutexLockerEx x(Heap_lock);
791  for (size_t i = 0; i < count; i++) {
792    HeapWord* start_address = ranges[i].start();
793    HeapWord* last_address = ranges[i].last();
794
795    assert(reserved.contains(start_address) && reserved.contains(last_address),
796           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
797           p2i(start_address), p2i(last_address));
798    assert(start_address > prev_last_addr,
799           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
800           p2i(start_address), p2i(prev_last_addr));
801
802    HeapRegion* start_region = _hrm.addr_to_region(start_address);
803    HeapRegion* last_region = _hrm.addr_to_region(last_address);
804    HeapWord* bottom_address = start_region->bottom();
805
806    // Check for a range beginning in the same region in which the
807    // previous one ended.
808    if (start_region == prev_last_region) {
809      bottom_address = prev_last_addr + 1;
810    }
811
812    // Verify that the regions were all marked as archive regions by
813    // alloc_archive_regions.
814    HeapRegion* curr_region = start_region;
815    while (curr_region != NULL) {
816      guarantee(curr_region->is_archive(),
817                "Expected archive region at index %u", curr_region->hrm_index());
818      if (curr_region != last_region) {
819        curr_region = _hrm.next_region_in_heap(curr_region);
820      } else {
821        curr_region = NULL;
822      }
823    }
824
825    prev_last_addr = last_address;
826    prev_last_region = last_region;
827
828    // Fill the memory below the allocated range with dummy object(s),
829    // if the region bottom does not match the range start, or if the previous
830    // range ended within the same G1 region, and there is a gap.
831    if (start_address != bottom_address) {
832      size_t fill_size = pointer_delta(start_address, bottom_address);
833      G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
834      increase_used(fill_size * HeapWordSize);
835    }
836  }
837}
838
839inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
840                                                     uint* gc_count_before_ret,
841                                                     uint* gclocker_retry_count_ret) {
842  assert_heap_not_locked_and_not_at_safepoint();
843  assert(!is_humongous(word_size), "attempt_allocation() should not "
844         "be called for humongous allocation requests");
845
846  AllocationContext_t context = AllocationContext::current();
847  HeapWord* result = _allocator->attempt_allocation(word_size, context);
848
849  if (result == NULL) {
850    result = attempt_allocation_slow(word_size,
851                                     context,
852                                     gc_count_before_ret,
853                                     gclocker_retry_count_ret);
854  }
855  assert_heap_not_locked();
856  if (result != NULL) {
857    dirty_young_block(result, word_size);
858  }
859  return result;
860}
861
862void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
863  assert(!is_init_completed(), "Expect to be called at JVM init time");
864  assert(ranges != NULL, "MemRegion array NULL");
865  assert(count != 0, "No MemRegions provided");
866  MemRegion reserved = _hrm.reserved();
867  HeapWord* prev_last_addr = NULL;
868  HeapRegion* prev_last_region = NULL;
869  size_t size_used = 0;
870  size_t uncommitted_regions = 0;
871
872  // For each Memregion, free the G1 regions that constitute it, and
873  // notify mark-sweep that the range is no longer to be considered 'archive.'
874  MutexLockerEx x(Heap_lock);
875  for (size_t i = 0; i < count; i++) {
876    HeapWord* start_address = ranges[i].start();
877    HeapWord* last_address = ranges[i].last();
878
879    assert(reserved.contains(start_address) && reserved.contains(last_address),
880           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
881           p2i(start_address), p2i(last_address));
882    assert(start_address > prev_last_addr,
883           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
884           p2i(start_address), p2i(prev_last_addr));
885    size_used += ranges[i].byte_size();
886    prev_last_addr = last_address;
887
888    HeapRegion* start_region = _hrm.addr_to_region(start_address);
889    HeapRegion* last_region = _hrm.addr_to_region(last_address);
890
891    // Check for ranges that start in the same G1 region in which the previous
892    // range ended, and adjust the start address so we don't try to free
893    // the same region again. If the current range is entirely within that
894    // region, skip it.
895    if (start_region == prev_last_region) {
896      start_address = start_region->end();
897      if (start_address > last_address) {
898        continue;
899      }
900      start_region = _hrm.addr_to_region(start_address);
901    }
902    prev_last_region = last_region;
903
904    // After verifying that each region was marked as an archive region by
905    // alloc_archive_regions, set it free and empty and uncommit it.
906    HeapRegion* curr_region = start_region;
907    while (curr_region != NULL) {
908      guarantee(curr_region->is_archive(),
909                "Expected archive region at index %u", curr_region->hrm_index());
910      uint curr_index = curr_region->hrm_index();
911      _old_set.remove(curr_region);
912      curr_region->set_free();
913      curr_region->set_top(curr_region->bottom());
914      if (curr_region != last_region) {
915        curr_region = _hrm.next_region_in_heap(curr_region);
916      } else {
917        curr_region = NULL;
918      }
919      _hrm.shrink_at(curr_index, 1);
920      uncommitted_regions++;
921    }
922
923    // Notify mark-sweep that this is no longer an archive range.
924    G1ArchiveAllocator::set_range_archive(ranges[i], false);
925  }
926
927  if (uncommitted_regions != 0) {
928    log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
929                              HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
930  }
931  decrease_used(size_used);
932}
933
934HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
935                                                        uint* gc_count_before_ret,
936                                                        uint* gclocker_retry_count_ret) {
937  // The structure of this method has a lot of similarities to
938  // attempt_allocation_slow(). The reason these two were not merged
939  // into a single one is that such a method would require several "if
940  // allocation is not humongous do this, otherwise do that"
941  // conditional paths which would obscure its flow. In fact, an early
942  // version of this code did use a unified method which was harder to
943  // follow and, as a result, it had subtle bugs that were hard to
944  // track down. So keeping these two methods separate allows each to
945  // be more readable. It will be good to keep these two in sync as
946  // much as possible.
947
948  assert_heap_not_locked_and_not_at_safepoint();
949  assert(is_humongous(word_size), "attempt_allocation_humongous() "
950         "should only be called for humongous allocations");
951
952  // Humongous objects can exhaust the heap quickly, so we should check if we
953  // need to start a marking cycle at each humongous object allocation. We do
954  // the check before we do the actual allocation. The reason for doing it
955  // before the allocation is that we avoid having to keep track of the newly
956  // allocated memory while we do a GC.
957  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
958                                           word_size)) {
959    collect(GCCause::_g1_humongous_allocation);
960  }
961
962  // We will loop until a) we manage to successfully perform the
963  // allocation or b) we successfully schedule a collection which
964  // fails to perform the allocation. b) is the only case when we'll
965  // return NULL.
966  HeapWord* result = NULL;
967  for (int try_count = 1; /* we'll return */; try_count += 1) {
968    bool should_try_gc;
969    uint gc_count_before;
970
971    {
972      MutexLockerEx x(Heap_lock);
973
974      // Given that humongous objects are not allocated in young
975      // regions, we'll first try to do the allocation without doing a
976      // collection hoping that there's enough space in the heap.
977      result = humongous_obj_allocate(word_size, AllocationContext::current());
978      if (result != NULL) {
979        size_t size_in_regions = humongous_obj_size_in_regions(word_size);
980        g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
981        return result;
982      }
983
984      if (GCLocker::is_active_and_needs_gc()) {
985        should_try_gc = false;
986      } else {
987         // The GCLocker may not be active but the GCLocker initiated
988        // GC may not yet have been performed (GCLocker::needs_gc()
989        // returns true). In this case we do not try this GC and
990        // wait until the GCLocker initiated GC is performed, and
991        // then retry the allocation.
992        if (GCLocker::needs_gc()) {
993          should_try_gc = false;
994        } else {
995          // Read the GC count while still holding the Heap_lock.
996          gc_count_before = total_collections();
997          should_try_gc = true;
998        }
999      }
1000    }
1001
1002    if (should_try_gc) {
1003      // If we failed to allocate the humongous object, we should try to
1004      // do a collection pause (if we're allowed) in case it reclaims
1005      // enough space for the allocation to succeed after the pause.
1006
1007      bool succeeded;
1008      result = do_collection_pause(word_size, gc_count_before, &succeeded,
1009                                   GCCause::_g1_humongous_allocation);
1010      if (result != NULL) {
1011        assert(succeeded, "only way to get back a non-NULL result");
1012        return result;
1013      }
1014
1015      if (succeeded) {
1016        // If we get here we successfully scheduled a collection which
1017        // failed to allocate. No point in trying to allocate
1018        // further. We'll just return NULL.
1019        MutexLockerEx x(Heap_lock);
1020        *gc_count_before_ret = total_collections();
1021        return NULL;
1022      }
1023    } else {
1024      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1025        MutexLockerEx x(Heap_lock);
1026        *gc_count_before_ret = total_collections();
1027        return NULL;
1028      }
1029      // The GCLocker is either active or the GCLocker initiated
1030      // GC has not yet been performed. Stall until it is and
1031      // then retry the allocation.
1032      GCLocker::stall_until_clear();
1033      (*gclocker_retry_count_ret) += 1;
1034    }
1035
1036    // We can reach here if we were unsuccessful in scheduling a
1037    // collection (because another thread beat us to it) or if we were
1038    // stalled due to the GC locker. In either can we should retry the
1039    // allocation attempt in case another thread successfully
1040    // performed a collection and reclaimed enough space.  Give a
1041    // warning if we seem to be looping forever.
1042
1043    if ((QueuedAllocationWarningCount > 0) &&
1044        (try_count % QueuedAllocationWarningCount == 0)) {
1045      log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1046                      "retries %d times", try_count);
1047    }
1048  }
1049
1050  ShouldNotReachHere();
1051  return NULL;
1052}
1053
1054HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1055                                                           AllocationContext_t context,
1056                                                           bool expect_null_mutator_alloc_region) {
1057  assert_at_safepoint(true /* should_be_vm_thread */);
1058  assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1059         "the current alloc region was unexpectedly found to be non-NULL");
1060
1061  if (!is_humongous(word_size)) {
1062    return _allocator->attempt_allocation_locked(word_size, context);
1063  } else {
1064    HeapWord* result = humongous_obj_allocate(word_size, context);
1065    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1066      collector_state()->set_initiate_conc_mark_if_possible(true);
1067    }
1068    return result;
1069  }
1070
1071  ShouldNotReachHere();
1072}
1073
1074class PostMCRemSetClearClosure: public HeapRegionClosure {
1075  G1CollectedHeap* _g1h;
1076  ModRefBarrierSet* _mr_bs;
1077public:
1078  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1079    _g1h(g1h), _mr_bs(mr_bs) {}
1080
1081  bool doHeapRegion(HeapRegion* r) {
1082    HeapRegionRemSet* hrrs = r->rem_set();
1083
1084    _g1h->reset_gc_time_stamps(r);
1085
1086    if (r->is_continues_humongous()) {
1087      // We'll assert that the strong code root list and RSet is empty
1088      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1089      assert(hrrs->occupied() == 0, "RSet should be empty");
1090    } else {
1091      hrrs->clear();
1092    }
1093    // You might think here that we could clear just the cards
1094    // corresponding to the used region.  But no: if we leave a dirty card
1095    // in a region we might allocate into, then it would prevent that card
1096    // from being enqueued, and cause it to be missed.
1097    // Re: the performance cost: we shouldn't be doing full GC anyway!
1098    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1099
1100    return false;
1101  }
1102};
1103
1104void G1CollectedHeap::clear_rsets_post_compaction() {
1105  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1106  heap_region_iterate(&rs_clear);
1107}
1108
1109class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1110  G1CollectedHeap*   _g1h;
1111  RebuildRSOopClosure _cl;
1112public:
1113  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1114    _cl(g1->g1_rem_set(), worker_i),
1115    _g1h(g1)
1116  { }
1117
1118  bool doHeapRegion(HeapRegion* r) {
1119    if (!r->is_continues_humongous()) {
1120      _cl.set_from(r);
1121      r->oop_iterate(&_cl);
1122    }
1123    return false;
1124  }
1125};
1126
1127class ParRebuildRSTask: public AbstractGangTask {
1128  G1CollectedHeap* _g1;
1129  HeapRegionClaimer _hrclaimer;
1130
1131public:
1132  ParRebuildRSTask(G1CollectedHeap* g1) :
1133      AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1134
1135  void work(uint worker_id) {
1136    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1137    _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1138  }
1139};
1140
1141class PostCompactionPrinterClosure: public HeapRegionClosure {
1142private:
1143  G1HRPrinter* _hr_printer;
1144public:
1145  bool doHeapRegion(HeapRegion* hr) {
1146    assert(!hr->is_young(), "not expecting to find young regions");
1147    _hr_printer->post_compaction(hr);
1148    return false;
1149  }
1150
1151  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1152    : _hr_printer(hr_printer) { }
1153};
1154
1155void G1CollectedHeap::print_hrm_post_compaction() {
1156  if (_hr_printer.is_active()) {
1157    PostCompactionPrinterClosure cl(hr_printer());
1158    heap_region_iterate(&cl);
1159  }
1160
1161}
1162
1163bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1164                                         bool clear_all_soft_refs) {
1165  assert_at_safepoint(true /* should_be_vm_thread */);
1166
1167  if (GCLocker::check_active_before_gc()) {
1168    return false;
1169  }
1170
1171  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1172  gc_timer->register_gc_start();
1173
1174  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1175  GCIdMark gc_id_mark;
1176  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1177
1178  SvcGCMarker sgcm(SvcGCMarker::FULL);
1179  ResourceMark rm;
1180
1181  print_heap_before_gc();
1182  print_heap_regions();
1183  trace_heap_before_gc(gc_tracer);
1184
1185  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1186
1187  _verifier->verify_region_sets_optional();
1188
1189  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1190                           collector_policy()->should_clear_all_soft_refs();
1191
1192  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1193
1194  {
1195    IsGCActiveMark x;
1196
1197    // Timing
1198    assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1199    GCTraceCPUTime tcpu;
1200
1201    {
1202      GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1203      TraceCollectorStats tcs(g1mm()->full_collection_counters());
1204      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1205
1206      G1HeapTransition heap_transition(this);
1207      g1_policy()->record_full_collection_start();
1208
1209      // Note: When we have a more flexible GC logging framework that
1210      // allows us to add optional attributes to a GC log record we
1211      // could consider timing and reporting how long we wait in the
1212      // following two methods.
1213      wait_while_free_regions_coming();
1214      // If we start the compaction before the CM threads finish
1215      // scanning the root regions we might trip them over as we'll
1216      // be moving objects / updating references. So let's wait until
1217      // they are done. By telling them to abort, they should complete
1218      // early.
1219      _cm->root_regions()->abort();
1220      _cm->root_regions()->wait_until_scan_finished();
1221      append_secondary_free_list_if_not_empty_with_lock();
1222
1223      gc_prologue(true);
1224      increment_total_collections(true /* full gc */);
1225      increment_old_marking_cycles_started();
1226
1227      assert(used() == recalculate_used(), "Should be equal");
1228
1229      _verifier->verify_before_gc();
1230
1231      _verifier->check_bitmaps("Full GC Start");
1232      pre_full_gc_dump(gc_timer);
1233
1234#if defined(COMPILER2) || INCLUDE_JVMCI
1235      DerivedPointerTable::clear();
1236#endif
1237
1238      // Disable discovery and empty the discovered lists
1239      // for the CM ref processor.
1240      ref_processor_cm()->disable_discovery();
1241      ref_processor_cm()->abandon_partial_discovery();
1242      ref_processor_cm()->verify_no_references_recorded();
1243
1244      // Abandon current iterations of concurrent marking and concurrent
1245      // refinement, if any are in progress.
1246      concurrent_mark()->abort();
1247
1248      // Make sure we'll choose a new allocation region afterwards.
1249      _allocator->release_mutator_alloc_region();
1250      _allocator->abandon_gc_alloc_regions();
1251      g1_rem_set()->cleanupHRRS();
1252
1253      // We may have added regions to the current incremental collection
1254      // set between the last GC or pause and now. We need to clear the
1255      // incremental collection set and then start rebuilding it afresh
1256      // after this full GC.
1257      abandon_collection_set(collection_set());
1258
1259      tear_down_region_sets(false /* free_list_only */);
1260      collector_state()->set_gcs_are_young(true);
1261
1262      // See the comments in g1CollectedHeap.hpp and
1263      // G1CollectedHeap::ref_processing_init() about
1264      // how reference processing currently works in G1.
1265
1266      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1267      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1268
1269      // Temporarily clear the STW ref processor's _is_alive_non_header field.
1270      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1271
1272      ref_processor_stw()->enable_discovery();
1273      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1274
1275      // Do collection work
1276      {
1277        HandleMark hm;  // Discard invalid handles created during gc
1278        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1279      }
1280
1281      assert(num_free_regions() == 0, "we should not have added any free regions");
1282      rebuild_region_sets(false /* free_list_only */);
1283
1284      // Enqueue any discovered reference objects that have
1285      // not been removed from the discovered lists.
1286      ref_processor_stw()->enqueue_discovered_references();
1287
1288#if defined(COMPILER2) || INCLUDE_JVMCI
1289      DerivedPointerTable::update_pointers();
1290#endif
1291
1292      MemoryService::track_memory_usage();
1293
1294      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1295      ref_processor_stw()->verify_no_references_recorded();
1296
1297      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1298      ClassLoaderDataGraph::purge();
1299      MetaspaceAux::verify_metrics();
1300
1301      // Note: since we've just done a full GC, concurrent
1302      // marking is no longer active. Therefore we need not
1303      // re-enable reference discovery for the CM ref processor.
1304      // That will be done at the start of the next marking cycle.
1305      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1306      ref_processor_cm()->verify_no_references_recorded();
1307
1308      reset_gc_time_stamp();
1309      // Since everything potentially moved, we will clear all remembered
1310      // sets, and clear all cards.  Later we will rebuild remembered
1311      // sets. We will also reset the GC time stamps of the regions.
1312      clear_rsets_post_compaction();
1313      check_gc_time_stamps();
1314
1315      resize_if_necessary_after_full_collection();
1316
1317      // We should do this after we potentially resize the heap so
1318      // that all the COMMIT / UNCOMMIT events are generated before
1319      // the compaction events.
1320      print_hrm_post_compaction();
1321
1322      if (_hot_card_cache->use_cache()) {
1323        _hot_card_cache->reset_card_counts();
1324        _hot_card_cache->reset_hot_cache();
1325      }
1326
1327      // Rebuild remembered sets of all regions.
1328      uint n_workers =
1329        AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1330                                                workers()->active_workers(),
1331                                                Threads::number_of_non_daemon_threads());
1332      workers()->update_active_workers(n_workers);
1333      log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1334
1335      ParRebuildRSTask rebuild_rs_task(this);
1336      workers()->run_task(&rebuild_rs_task);
1337
1338      // Rebuild the strong code root lists for each region
1339      rebuild_strong_code_roots();
1340
1341      if (true) { // FIXME
1342        MetaspaceGC::compute_new_size();
1343      }
1344
1345#ifdef TRACESPINNING
1346      ParallelTaskTerminator::print_termination_counts();
1347#endif
1348
1349      // Discard all rset updates
1350      JavaThread::dirty_card_queue_set().abandon_logs();
1351      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1352
1353      // At this point there should be no regions in the
1354      // entire heap tagged as young.
1355      assert(check_young_list_empty(), "young list should be empty at this point");
1356
1357      // Update the number of full collections that have been completed.
1358      increment_old_marking_cycles_completed(false /* concurrent */);
1359
1360      _hrm.verify_optional();
1361      _verifier->verify_region_sets_optional();
1362
1363      _verifier->verify_after_gc();
1364
1365      // Clear the previous marking bitmap, if needed for bitmap verification.
1366      // Note we cannot do this when we clear the next marking bitmap in
1367      // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1368      // objects marked during a full GC against the previous bitmap.
1369      // But we need to clear it before calling check_bitmaps below since
1370      // the full GC has compacted objects and updated TAMS but not updated
1371      // the prev bitmap.
1372      if (G1VerifyBitmaps) {
1373        GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1374        _cm->clear_prev_bitmap(workers());
1375      }
1376      _verifier->check_bitmaps("Full GC End");
1377
1378      start_new_collection_set();
1379
1380      _allocator->init_mutator_alloc_region();
1381
1382      g1_policy()->record_full_collection_end();
1383
1384      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1385      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1386      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1387      // before any GC notifications are raised.
1388      g1mm()->update_sizes();
1389
1390      gc_epilogue(true);
1391
1392      heap_transition.print();
1393
1394      print_heap_after_gc();
1395      print_heap_regions();
1396      trace_heap_after_gc(gc_tracer);
1397
1398      post_full_gc_dump(gc_timer);
1399    }
1400
1401    gc_timer->register_gc_end();
1402    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1403  }
1404
1405  return true;
1406}
1407
1408void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1409  // Currently, there is no facility in the do_full_collection(bool) API to notify
1410  // the caller that the collection did not succeed (e.g., because it was locked
1411  // out by the GC locker). So, right now, we'll ignore the return value.
1412  bool dummy = do_full_collection(true,                /* explicit_gc */
1413                                  clear_all_soft_refs);
1414}
1415
1416void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1417  // Include bytes that will be pre-allocated to support collections, as "used".
1418  const size_t used_after_gc = used();
1419  const size_t capacity_after_gc = capacity();
1420  const size_t free_after_gc = capacity_after_gc - used_after_gc;
1421
1422  // This is enforced in arguments.cpp.
1423  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1424         "otherwise the code below doesn't make sense");
1425
1426  // We don't have floating point command-line arguments
1427  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1428  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1429  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1430  const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1431
1432  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1433  const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1434
1435  // We have to be careful here as these two calculations can overflow
1436  // 32-bit size_t's.
1437  double used_after_gc_d = (double) used_after_gc;
1438  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1439  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1440
1441  // Let's make sure that they are both under the max heap size, which
1442  // by default will make them fit into a size_t.
1443  double desired_capacity_upper_bound = (double) max_heap_size;
1444  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1445                                    desired_capacity_upper_bound);
1446  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1447                                    desired_capacity_upper_bound);
1448
1449  // We can now safely turn them into size_t's.
1450  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1451  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1452
1453  // This assert only makes sense here, before we adjust them
1454  // with respect to the min and max heap size.
1455  assert(minimum_desired_capacity <= maximum_desired_capacity,
1456         "minimum_desired_capacity = " SIZE_FORMAT ", "
1457         "maximum_desired_capacity = " SIZE_FORMAT,
1458         minimum_desired_capacity, maximum_desired_capacity);
1459
1460  // Should not be greater than the heap max size. No need to adjust
1461  // it with respect to the heap min size as it's a lower bound (i.e.,
1462  // we'll try to make the capacity larger than it, not smaller).
1463  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1464  // Should not be less than the heap min size. No need to adjust it
1465  // with respect to the heap max size as it's an upper bound (i.e.,
1466  // we'll try to make the capacity smaller than it, not greater).
1467  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1468
1469  if (capacity_after_gc < minimum_desired_capacity) {
1470    // Don't expand unless it's significant
1471    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1472
1473    log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1474                              "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1475                              capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1476
1477    expand(expand_bytes, _workers);
1478
1479    // No expansion, now see if we want to shrink
1480  } else if (capacity_after_gc > maximum_desired_capacity) {
1481    // Capacity too large, compute shrinking size
1482    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1483
1484    log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1485                              "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1486                              capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1487
1488    shrink(shrink_bytes);
1489  }
1490}
1491
1492HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1493                                                            AllocationContext_t context,
1494                                                            bool do_gc,
1495                                                            bool clear_all_soft_refs,
1496                                                            bool expect_null_mutator_alloc_region,
1497                                                            bool* gc_succeeded) {
1498  *gc_succeeded = true;
1499  // Let's attempt the allocation first.
1500  HeapWord* result =
1501    attempt_allocation_at_safepoint(word_size,
1502                                    context,
1503                                    expect_null_mutator_alloc_region);
1504  if (result != NULL) {
1505    assert(*gc_succeeded, "sanity");
1506    return result;
1507  }
1508
1509  // In a G1 heap, we're supposed to keep allocation from failing by
1510  // incremental pauses.  Therefore, at least for now, we'll favor
1511  // expansion over collection.  (This might change in the future if we can
1512  // do something smarter than full collection to satisfy a failed alloc.)
1513  result = expand_and_allocate(word_size, context);
1514  if (result != NULL) {
1515    assert(*gc_succeeded, "sanity");
1516    return result;
1517  }
1518
1519  if (do_gc) {
1520    // Expansion didn't work, we'll try to do a Full GC.
1521    *gc_succeeded = do_full_collection(false, /* explicit_gc */
1522                                       clear_all_soft_refs);
1523  }
1524
1525  return NULL;
1526}
1527
1528HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1529                                                     AllocationContext_t context,
1530                                                     bool* succeeded) {
1531  assert_at_safepoint(true /* should_be_vm_thread */);
1532
1533  // Attempts to allocate followed by Full GC.
1534  HeapWord* result =
1535    satisfy_failed_allocation_helper(word_size,
1536                                     context,
1537                                     true,  /* do_gc */
1538                                     false, /* clear_all_soft_refs */
1539                                     false, /* expect_null_mutator_alloc_region */
1540                                     succeeded);
1541
1542  if (result != NULL || !*succeeded) {
1543    return result;
1544  }
1545
1546  // Attempts to allocate followed by Full GC that will collect all soft references.
1547  result = satisfy_failed_allocation_helper(word_size,
1548                                            context,
1549                                            true, /* do_gc */
1550                                            true, /* clear_all_soft_refs */
1551                                            true, /* expect_null_mutator_alloc_region */
1552                                            succeeded);
1553
1554  if (result != NULL || !*succeeded) {
1555    return result;
1556  }
1557
1558  // Attempts to allocate, no GC
1559  result = satisfy_failed_allocation_helper(word_size,
1560                                            context,
1561                                            false, /* do_gc */
1562                                            false, /* clear_all_soft_refs */
1563                                            true,  /* expect_null_mutator_alloc_region */
1564                                            succeeded);
1565
1566  if (result != NULL) {
1567    assert(*succeeded, "sanity");
1568    return result;
1569  }
1570
1571  assert(!collector_policy()->should_clear_all_soft_refs(),
1572         "Flag should have been handled and cleared prior to this point");
1573
1574  // What else?  We might try synchronous finalization later.  If the total
1575  // space available is large enough for the allocation, then a more
1576  // complete compaction phase than we've tried so far might be
1577  // appropriate.
1578  assert(*succeeded, "sanity");
1579  return NULL;
1580}
1581
1582// Attempting to expand the heap sufficiently
1583// to support an allocation of the given "word_size".  If
1584// successful, perform the allocation and return the address of the
1585// allocated block, or else "NULL".
1586
1587HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1588  assert_at_safepoint(true /* should_be_vm_thread */);
1589
1590  _verifier->verify_region_sets_optional();
1591
1592  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1593  log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1594                            word_size * HeapWordSize);
1595
1596
1597  if (expand(expand_bytes, _workers)) {
1598    _hrm.verify_optional();
1599    _verifier->verify_region_sets_optional();
1600    return attempt_allocation_at_safepoint(word_size,
1601                                           context,
1602                                           false /* expect_null_mutator_alloc_region */);
1603  }
1604  return NULL;
1605}
1606
1607bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1608  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1609  aligned_expand_bytes = align_up(aligned_expand_bytes,
1610                                       HeapRegion::GrainBytes);
1611
1612  log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1613                            expand_bytes, aligned_expand_bytes);
1614
1615  if (is_maximal_no_gc()) {
1616    log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1617    return false;
1618  }
1619
1620  double expand_heap_start_time_sec = os::elapsedTime();
1621  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1622  assert(regions_to_expand > 0, "Must expand by at least one region");
1623
1624  uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1625  if (expand_time_ms != NULL) {
1626    *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1627  }
1628
1629  if (expanded_by > 0) {
1630    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1631    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1632    g1_policy()->record_new_heap_size(num_regions());
1633  } else {
1634    log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1635
1636    // The expansion of the virtual storage space was unsuccessful.
1637    // Let's see if it was because we ran out of swap.
1638    if (G1ExitOnExpansionFailure &&
1639        _hrm.available() >= regions_to_expand) {
1640      // We had head room...
1641      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1642    }
1643  }
1644  return regions_to_expand > 0;
1645}
1646
1647void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1648  size_t aligned_shrink_bytes =
1649    ReservedSpace::page_align_size_down(shrink_bytes);
1650  aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1651                                         HeapRegion::GrainBytes);
1652  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1653
1654  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1655  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1656
1657
1658  log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1659                            shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1660  if (num_regions_removed > 0) {
1661    g1_policy()->record_new_heap_size(num_regions());
1662  } else {
1663    log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1664  }
1665}
1666
1667void G1CollectedHeap::shrink(size_t shrink_bytes) {
1668  _verifier->verify_region_sets_optional();
1669
1670  // We should only reach here at the end of a Full GC which means we
1671  // should not not be holding to any GC alloc regions. The method
1672  // below will make sure of that and do any remaining clean up.
1673  _allocator->abandon_gc_alloc_regions();
1674
1675  // Instead of tearing down / rebuilding the free lists here, we
1676  // could instead use the remove_all_pending() method on free_list to
1677  // remove only the ones that we need to remove.
1678  tear_down_region_sets(true /* free_list_only */);
1679  shrink_helper(shrink_bytes);
1680  rebuild_region_sets(true /* free_list_only */);
1681
1682  _hrm.verify_optional();
1683  _verifier->verify_region_sets_optional();
1684}
1685
1686// Public methods.
1687
1688G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1689  CollectedHeap(),
1690  _collector_policy(collector_policy),
1691  _g1_policy(create_g1_policy()),
1692  _collection_set(this, _g1_policy),
1693  _dirty_card_queue_set(false),
1694  _is_alive_closure_cm(this),
1695  _is_alive_closure_stw(this),
1696  _ref_processor_cm(NULL),
1697  _ref_processor_stw(NULL),
1698  _bot(NULL),
1699  _hot_card_cache(NULL),
1700  _g1_rem_set(NULL),
1701  _cg1r(NULL),
1702  _g1mm(NULL),
1703  _refine_cte_cl(NULL),
1704  _preserved_marks_set(true /* in_c_heap */),
1705  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1706  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1707  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1708  _humongous_reclaim_candidates(),
1709  _has_humongous_reclaim_candidates(false),
1710  _archive_allocator(NULL),
1711  _free_regions_coming(false),
1712  _gc_time_stamp(0),
1713  _summary_bytes_used(0),
1714  _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1715  _old_evac_stats("Old", OldPLABSize, PLABWeight),
1716  _expand_heap_after_alloc_failure(true),
1717  _old_marking_cycles_started(0),
1718  _old_marking_cycles_completed(0),
1719  _in_cset_fast_test(),
1720  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1721  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1722
1723  _workers = new WorkGang("GC Thread", ParallelGCThreads,
1724                          /* are_GC_task_threads */true,
1725                          /* are_ConcurrentGC_threads */false);
1726  _workers->initialize_workers();
1727  _verifier = new G1HeapVerifier(this);
1728
1729  _allocator = G1Allocator::create_allocator(this);
1730
1731  _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1732
1733  _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1734
1735  // Override the default _filler_array_max_size so that no humongous filler
1736  // objects are created.
1737  _filler_array_max_size = _humongous_object_threshold_in_words;
1738
1739  uint n_queues = ParallelGCThreads;
1740  _task_queues = new RefToScanQueueSet(n_queues);
1741
1742  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1743
1744  for (uint i = 0; i < n_queues; i++) {
1745    RefToScanQueue* q = new RefToScanQueue();
1746    q->initialize();
1747    _task_queues->register_queue(i, q);
1748    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1749  }
1750
1751  // Initialize the G1EvacuationFailureALot counters and flags.
1752  NOT_PRODUCT(reset_evacuation_should_fail();)
1753
1754  guarantee(_task_queues != NULL, "task_queues allocation failure.");
1755}
1756
1757G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1758                                                                 size_t size,
1759                                                                 size_t translation_factor) {
1760  size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1761  // Allocate a new reserved space, preferring to use large pages.
1762  ReservedSpace rs(size, preferred_page_size);
1763  G1RegionToSpaceMapper* result  =
1764    G1RegionToSpaceMapper::create_mapper(rs,
1765                                         size,
1766                                         rs.alignment(),
1767                                         HeapRegion::GrainBytes,
1768                                         translation_factor,
1769                                         mtGC);
1770
1771  os::trace_page_sizes_for_requested_size(description,
1772                                          size,
1773                                          preferred_page_size,
1774                                          rs.alignment(),
1775                                          rs.base(),
1776                                          rs.size());
1777
1778  return result;
1779}
1780
1781jint G1CollectedHeap::initialize() {
1782  CollectedHeap::pre_initialize();
1783  os::enable_vtime();
1784
1785  // Necessary to satisfy locking discipline assertions.
1786
1787  MutexLocker x(Heap_lock);
1788
1789  // While there are no constraints in the GC code that HeapWordSize
1790  // be any particular value, there are multiple other areas in the
1791  // system which believe this to be true (e.g. oop->object_size in some
1792  // cases incorrectly returns the size in wordSize units rather than
1793  // HeapWordSize).
1794  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1795
1796  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1797  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1798  size_t heap_alignment = collector_policy()->heap_alignment();
1799
1800  // Ensure that the sizes are properly aligned.
1801  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1802  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1803  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1804
1805  _refine_cte_cl = new RefineCardTableEntryClosure();
1806
1807  jint ecode = JNI_OK;
1808  _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1809  if (_cg1r == NULL) {
1810    return ecode;
1811  }
1812
1813  // Reserve the maximum.
1814
1815  // When compressed oops are enabled, the preferred heap base
1816  // is calculated by subtracting the requested size from the
1817  // 32Gb boundary and using the result as the base address for
1818  // heap reservation. If the requested size is not aligned to
1819  // HeapRegion::GrainBytes (i.e. the alignment that is passed
1820  // into the ReservedHeapSpace constructor) then the actual
1821  // base of the reserved heap may end up differing from the
1822  // address that was requested (i.e. the preferred heap base).
1823  // If this happens then we could end up using a non-optimal
1824  // compressed oops mode.
1825
1826  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1827                                                 heap_alignment);
1828
1829  initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1830
1831  // Create the barrier set for the entire reserved region.
1832  G1SATBCardTableLoggingModRefBS* bs
1833    = new G1SATBCardTableLoggingModRefBS(reserved_region());
1834  bs->initialize();
1835  assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1836  set_barrier_set(bs);
1837
1838  // Create the hot card cache.
1839  _hot_card_cache = new G1HotCardCache(this);
1840
1841  // Also create a G1 rem set.
1842  _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1843
1844  // Carve out the G1 part of the heap.
1845  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1846  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1847  G1RegionToSpaceMapper* heap_storage =
1848    G1RegionToSpaceMapper::create_mapper(g1_rs,
1849                                         g1_rs.size(),
1850                                         page_size,
1851                                         HeapRegion::GrainBytes,
1852                                         1,
1853                                         mtJavaHeap);
1854  os::trace_page_sizes("Heap",
1855                       collector_policy()->min_heap_byte_size(),
1856                       max_byte_size,
1857                       page_size,
1858                       heap_rs.base(),
1859                       heap_rs.size());
1860  heap_storage->set_mapping_changed_listener(&_listener);
1861
1862  // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1863  G1RegionToSpaceMapper* bot_storage =
1864    create_aux_memory_mapper("Block Offset Table",
1865                             G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1866                             G1BlockOffsetTable::heap_map_factor());
1867
1868  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1869  G1RegionToSpaceMapper* cardtable_storage =
1870    create_aux_memory_mapper("Card Table",
1871                             G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1872                             G1SATBCardTableLoggingModRefBS::heap_map_factor());
1873
1874  G1RegionToSpaceMapper* card_counts_storage =
1875    create_aux_memory_mapper("Card Counts Table",
1876                             G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1877                             G1CardCounts::heap_map_factor());
1878
1879  size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1880  G1RegionToSpaceMapper* prev_bitmap_storage =
1881    create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1882  G1RegionToSpaceMapper* next_bitmap_storage =
1883    create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1884
1885  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1886  g1_barrier_set()->initialize(cardtable_storage);
1887  // Do later initialization work for concurrent refinement.
1888  _hot_card_cache->initialize(card_counts_storage);
1889
1890  // 6843694 - ensure that the maximum region index can fit
1891  // in the remembered set structures.
1892  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1893  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1894
1895  g1_rem_set()->initialize(max_capacity(), max_regions());
1896
1897  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1898  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1899  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1900            "too many cards per region");
1901
1902  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1903
1904  _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1905
1906  {
1907    HeapWord* start = _hrm.reserved().start();
1908    HeapWord* end = _hrm.reserved().end();
1909    size_t granularity = HeapRegion::GrainBytes;
1910
1911    _in_cset_fast_test.initialize(start, end, granularity);
1912    _humongous_reclaim_candidates.initialize(start, end, granularity);
1913  }
1914
1915  // Create the G1ConcurrentMark data structure and thread.
1916  // (Must do this late, so that "max_regions" is defined.)
1917  _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1918  if (_cm == NULL || !_cm->completed_initialization()) {
1919    vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1920    return JNI_ENOMEM;
1921  }
1922  _cmThread = _cm->cmThread();
1923
1924  // Now expand into the initial heap size.
1925  if (!expand(init_byte_size, _workers)) {
1926    vm_shutdown_during_initialization("Failed to allocate initial heap.");
1927    return JNI_ENOMEM;
1928  }
1929
1930  // Perform any initialization actions delegated to the policy.
1931  g1_policy()->init(this, &_collection_set);
1932
1933  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1934                                               SATB_Q_FL_lock,
1935                                               G1SATBProcessCompletedThreshold,
1936                                               Shared_SATB_Q_lock);
1937
1938  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1939                                                DirtyCardQ_CBL_mon,
1940                                                DirtyCardQ_FL_lock,
1941                                                (int)concurrent_g1_refine()->yellow_zone(),
1942                                                (int)concurrent_g1_refine()->red_zone(),
1943                                                Shared_DirtyCardQ_lock,
1944                                                NULL,  // fl_owner
1945                                                true); // init_free_ids
1946
1947  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1948                                    DirtyCardQ_CBL_mon,
1949                                    DirtyCardQ_FL_lock,
1950                                    -1, // never trigger processing
1951                                    -1, // no limit on length
1952                                    Shared_DirtyCardQ_lock,
1953                                    &JavaThread::dirty_card_queue_set());
1954
1955  // Here we allocate the dummy HeapRegion that is required by the
1956  // G1AllocRegion class.
1957  HeapRegion* dummy_region = _hrm.get_dummy_region();
1958
1959  // We'll re-use the same region whether the alloc region will
1960  // require BOT updates or not and, if it doesn't, then a non-young
1961  // region will complain that it cannot support allocations without
1962  // BOT updates. So we'll tag the dummy region as eden to avoid that.
1963  dummy_region->set_eden();
1964  // Make sure it's full.
1965  dummy_region->set_top(dummy_region->end());
1966  G1AllocRegion::setup(this, dummy_region);
1967
1968  _allocator->init_mutator_alloc_region();
1969
1970  // Do create of the monitoring and management support so that
1971  // values in the heap have been properly initialized.
1972  _g1mm = new G1MonitoringSupport(this);
1973
1974  G1StringDedup::initialize();
1975
1976  _preserved_marks_set.init(ParallelGCThreads);
1977
1978  _collection_set.initialize(max_regions());
1979
1980  return JNI_OK;
1981}
1982
1983void G1CollectedHeap::stop() {
1984  // Stop all concurrent threads. We do this to make sure these threads
1985  // do not continue to execute and access resources (e.g. logging)
1986  // that are destroyed during shutdown.
1987  _cg1r->stop();
1988  _cmThread->stop();
1989  if (G1StringDedup::is_enabled()) {
1990    G1StringDedup::stop();
1991  }
1992}
1993
1994size_t G1CollectedHeap::conservative_max_heap_alignment() {
1995  return HeapRegion::max_region_size();
1996}
1997
1998void G1CollectedHeap::post_initialize() {
1999  ref_processing_init();
2000}
2001
2002void G1CollectedHeap::ref_processing_init() {
2003  // Reference processing in G1 currently works as follows:
2004  //
2005  // * There are two reference processor instances. One is
2006  //   used to record and process discovered references
2007  //   during concurrent marking; the other is used to
2008  //   record and process references during STW pauses
2009  //   (both full and incremental).
2010  // * Both ref processors need to 'span' the entire heap as
2011  //   the regions in the collection set may be dotted around.
2012  //
2013  // * For the concurrent marking ref processor:
2014  //   * Reference discovery is enabled at initial marking.
2015  //   * Reference discovery is disabled and the discovered
2016  //     references processed etc during remarking.
2017  //   * Reference discovery is MT (see below).
2018  //   * Reference discovery requires a barrier (see below).
2019  //   * Reference processing may or may not be MT
2020  //     (depending on the value of ParallelRefProcEnabled
2021  //     and ParallelGCThreads).
2022  //   * A full GC disables reference discovery by the CM
2023  //     ref processor and abandons any entries on it's
2024  //     discovered lists.
2025  //
2026  // * For the STW processor:
2027  //   * Non MT discovery is enabled at the start of a full GC.
2028  //   * Processing and enqueueing during a full GC is non-MT.
2029  //   * During a full GC, references are processed after marking.
2030  //
2031  //   * Discovery (may or may not be MT) is enabled at the start
2032  //     of an incremental evacuation pause.
2033  //   * References are processed near the end of a STW evacuation pause.
2034  //   * For both types of GC:
2035  //     * Discovery is atomic - i.e. not concurrent.
2036  //     * Reference discovery will not need a barrier.
2037
2038  MemRegion mr = reserved_region();
2039
2040  // Concurrent Mark ref processor
2041  _ref_processor_cm =
2042    new ReferenceProcessor(mr,    // span
2043                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
2044                                // mt processing
2045                           ParallelGCThreads,
2046                                // degree of mt processing
2047                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2048                                // mt discovery
2049                           MAX2(ParallelGCThreads, ConcGCThreads),
2050                                // degree of mt discovery
2051                           false,
2052                                // Reference discovery is not atomic
2053                           &_is_alive_closure_cm);
2054                                // is alive closure
2055                                // (for efficiency/performance)
2056
2057  // STW ref processor
2058  _ref_processor_stw =
2059    new ReferenceProcessor(mr,    // span
2060                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
2061                                // mt processing
2062                           ParallelGCThreads,
2063                                // degree of mt processing
2064                           (ParallelGCThreads > 1),
2065                                // mt discovery
2066                           ParallelGCThreads,
2067                                // degree of mt discovery
2068                           true,
2069                                // Reference discovery is atomic
2070                           &_is_alive_closure_stw);
2071                                // is alive closure
2072                                // (for efficiency/performance)
2073}
2074
2075CollectorPolicy* G1CollectedHeap::collector_policy() const {
2076  return _collector_policy;
2077}
2078
2079size_t G1CollectedHeap::capacity() const {
2080  return _hrm.length() * HeapRegion::GrainBytes;
2081}
2082
2083void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2084  hr->reset_gc_time_stamp();
2085}
2086
2087#ifndef PRODUCT
2088
2089class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2090private:
2091  unsigned _gc_time_stamp;
2092  bool _failures;
2093
2094public:
2095  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2096    _gc_time_stamp(gc_time_stamp), _failures(false) { }
2097
2098  virtual bool doHeapRegion(HeapRegion* hr) {
2099    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2100    if (_gc_time_stamp != region_gc_time_stamp) {
2101      log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2102                            region_gc_time_stamp, _gc_time_stamp);
2103      _failures = true;
2104    }
2105    return false;
2106  }
2107
2108  bool failures() { return _failures; }
2109};
2110
2111void G1CollectedHeap::check_gc_time_stamps() {
2112  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2113  heap_region_iterate(&cl);
2114  guarantee(!cl.failures(), "all GC time stamps should have been reset");
2115}
2116#endif // PRODUCT
2117
2118void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2119  _hot_card_cache->drain(cl, worker_i);
2120}
2121
2122void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2123  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2124  size_t n_completed_buffers = 0;
2125  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2126    n_completed_buffers++;
2127  }
2128  g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2129  dcqs.clear_n_completed_buffers();
2130  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2131}
2132
2133// Computes the sum of the storage used by the various regions.
2134size_t G1CollectedHeap::used() const {
2135  size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2136  if (_archive_allocator != NULL) {
2137    result += _archive_allocator->used();
2138  }
2139  return result;
2140}
2141
2142size_t G1CollectedHeap::used_unlocked() const {
2143  return _summary_bytes_used;
2144}
2145
2146class SumUsedClosure: public HeapRegionClosure {
2147  size_t _used;
2148public:
2149  SumUsedClosure() : _used(0) {}
2150  bool doHeapRegion(HeapRegion* r) {
2151    _used += r->used();
2152    return false;
2153  }
2154  size_t result() { return _used; }
2155};
2156
2157size_t G1CollectedHeap::recalculate_used() const {
2158  double recalculate_used_start = os::elapsedTime();
2159
2160  SumUsedClosure blk;
2161  heap_region_iterate(&blk);
2162
2163  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2164  return blk.result();
2165}
2166
2167bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2168  switch (cause) {
2169    case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2170    case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2171    case GCCause::_update_allocation_context_stats_inc: return true;
2172    case GCCause::_wb_conc_mark:                        return true;
2173    default :                                           return false;
2174  }
2175}
2176
2177bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2178  switch (cause) {
2179    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2180    case GCCause::_g1_humongous_allocation: return true;
2181    default:                                return is_user_requested_concurrent_full_gc(cause);
2182  }
2183}
2184
2185#ifndef PRODUCT
2186void G1CollectedHeap::allocate_dummy_regions() {
2187  // Let's fill up most of the region
2188  size_t word_size = HeapRegion::GrainWords - 1024;
2189  // And as a result the region we'll allocate will be humongous.
2190  guarantee(is_humongous(word_size), "sanity");
2191
2192  // _filler_array_max_size is set to humongous object threshold
2193  // but temporarily change it to use CollectedHeap::fill_with_object().
2194  SizeTFlagSetting fs(_filler_array_max_size, word_size);
2195
2196  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2197    // Let's use the existing mechanism for the allocation
2198    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2199                                                 AllocationContext::system());
2200    if (dummy_obj != NULL) {
2201      MemRegion mr(dummy_obj, word_size);
2202      CollectedHeap::fill_with_object(mr);
2203    } else {
2204      // If we can't allocate once, we probably cannot allocate
2205      // again. Let's get out of the loop.
2206      break;
2207    }
2208  }
2209}
2210#endif // !PRODUCT
2211
2212void G1CollectedHeap::increment_old_marking_cycles_started() {
2213  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2214         _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2215         "Wrong marking cycle count (started: %d, completed: %d)",
2216         _old_marking_cycles_started, _old_marking_cycles_completed);
2217
2218  _old_marking_cycles_started++;
2219}
2220
2221void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2222  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2223
2224  // We assume that if concurrent == true, then the caller is a
2225  // concurrent thread that was joined the Suspendible Thread
2226  // Set. If there's ever a cheap way to check this, we should add an
2227  // assert here.
2228
2229  // Given that this method is called at the end of a Full GC or of a
2230  // concurrent cycle, and those can be nested (i.e., a Full GC can
2231  // interrupt a concurrent cycle), the number of full collections
2232  // completed should be either one (in the case where there was no
2233  // nesting) or two (when a Full GC interrupted a concurrent cycle)
2234  // behind the number of full collections started.
2235
2236  // This is the case for the inner caller, i.e. a Full GC.
2237  assert(concurrent ||
2238         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2239         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2240         "for inner caller (Full GC): _old_marking_cycles_started = %u "
2241         "is inconsistent with _old_marking_cycles_completed = %u",
2242         _old_marking_cycles_started, _old_marking_cycles_completed);
2243
2244  // This is the case for the outer caller, i.e. the concurrent cycle.
2245  assert(!concurrent ||
2246         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2247         "for outer caller (concurrent cycle): "
2248         "_old_marking_cycles_started = %u "
2249         "is inconsistent with _old_marking_cycles_completed = %u",
2250         _old_marking_cycles_started, _old_marking_cycles_completed);
2251
2252  _old_marking_cycles_completed += 1;
2253
2254  // We need to clear the "in_progress" flag in the CM thread before
2255  // we wake up any waiters (especially when ExplicitInvokesConcurrent
2256  // is set) so that if a waiter requests another System.gc() it doesn't
2257  // incorrectly see that a marking cycle is still in progress.
2258  if (concurrent) {
2259    _cmThread->set_idle();
2260  }
2261
2262  // This notify_all() will ensure that a thread that called
2263  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2264  // and it's waiting for a full GC to finish will be woken up. It is
2265  // waiting in VM_G1IncCollectionPause::doit_epilogue().
2266  FullGCCount_lock->notify_all();
2267}
2268
2269void G1CollectedHeap::collect(GCCause::Cause cause) {
2270  assert_heap_not_locked();
2271
2272  uint gc_count_before;
2273  uint old_marking_count_before;
2274  uint full_gc_count_before;
2275  bool retry_gc;
2276
2277  do {
2278    retry_gc = false;
2279
2280    {
2281      MutexLocker ml(Heap_lock);
2282
2283      // Read the GC count while holding the Heap_lock
2284      gc_count_before = total_collections();
2285      full_gc_count_before = total_full_collections();
2286      old_marking_count_before = _old_marking_cycles_started;
2287    }
2288
2289    if (should_do_concurrent_full_gc(cause)) {
2290      // Schedule an initial-mark evacuation pause that will start a
2291      // concurrent cycle. We're setting word_size to 0 which means that
2292      // we are not requesting a post-GC allocation.
2293      VM_G1IncCollectionPause op(gc_count_before,
2294                                 0,     /* word_size */
2295                                 true,  /* should_initiate_conc_mark */
2296                                 g1_policy()->max_pause_time_ms(),
2297                                 cause);
2298      op.set_allocation_context(AllocationContext::current());
2299
2300      VMThread::execute(&op);
2301      if (!op.pause_succeeded()) {
2302        if (old_marking_count_before == _old_marking_cycles_started) {
2303          retry_gc = op.should_retry_gc();
2304        } else {
2305          // A Full GC happened while we were trying to schedule the
2306          // initial-mark GC. No point in starting a new cycle given
2307          // that the whole heap was collected anyway.
2308        }
2309
2310        if (retry_gc) {
2311          if (GCLocker::is_active_and_needs_gc()) {
2312            GCLocker::stall_until_clear();
2313          }
2314        }
2315      }
2316    } else {
2317      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2318          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2319
2320        // Schedule a standard evacuation pause. We're setting word_size
2321        // to 0 which means that we are not requesting a post-GC allocation.
2322        VM_G1IncCollectionPause op(gc_count_before,
2323                                   0,     /* word_size */
2324                                   false, /* should_initiate_conc_mark */
2325                                   g1_policy()->max_pause_time_ms(),
2326                                   cause);
2327        VMThread::execute(&op);
2328      } else {
2329        // Schedule a Full GC.
2330        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2331        VMThread::execute(&op);
2332      }
2333    }
2334  } while (retry_gc);
2335}
2336
2337bool G1CollectedHeap::is_in(const void* p) const {
2338  if (_hrm.reserved().contains(p)) {
2339    // Given that we know that p is in the reserved space,
2340    // heap_region_containing() should successfully
2341    // return the containing region.
2342    HeapRegion* hr = heap_region_containing(p);
2343    return hr->is_in(p);
2344  } else {
2345    return false;
2346  }
2347}
2348
2349#ifdef ASSERT
2350bool G1CollectedHeap::is_in_exact(const void* p) const {
2351  bool contains = reserved_region().contains(p);
2352  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2353  if (contains && available) {
2354    return true;
2355  } else {
2356    return false;
2357  }
2358}
2359#endif
2360
2361// Iteration functions.
2362
2363// Iterates an ObjectClosure over all objects within a HeapRegion.
2364
2365class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2366  ObjectClosure* _cl;
2367public:
2368  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2369  bool doHeapRegion(HeapRegion* r) {
2370    if (!r->is_continues_humongous()) {
2371      r->object_iterate(_cl);
2372    }
2373    return false;
2374  }
2375};
2376
2377void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2378  IterateObjectClosureRegionClosure blk(cl);
2379  heap_region_iterate(&blk);
2380}
2381
2382void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2383  _hrm.iterate(cl);
2384}
2385
2386void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2387                                              uint worker_id,
2388                                              HeapRegionClaimer *hrclaimer) const {
2389  _hrm.par_iterate(cl, worker_id, hrclaimer);
2390}
2391
2392void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2393  _collection_set.iterate(cl);
2394}
2395
2396void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2397  _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2398}
2399
2400HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2401  HeapRegion* result = _hrm.next_region_in_heap(from);
2402  while (result != NULL && result->is_pinned()) {
2403    result = _hrm.next_region_in_heap(result);
2404  }
2405  return result;
2406}
2407
2408HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2409  HeapRegion* hr = heap_region_containing(addr);
2410  return hr->block_start(addr);
2411}
2412
2413size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2414  HeapRegion* hr = heap_region_containing(addr);
2415  return hr->block_size(addr);
2416}
2417
2418bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2419  HeapRegion* hr = heap_region_containing(addr);
2420  return hr->block_is_obj(addr);
2421}
2422
2423bool G1CollectedHeap::supports_tlab_allocation() const {
2424  return true;
2425}
2426
2427size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2428  return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2429}
2430
2431size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2432  return _eden.length() * HeapRegion::GrainBytes;
2433}
2434
2435// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2436// must be equal to the humongous object limit.
2437size_t G1CollectedHeap::max_tlab_size() const {
2438  return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2439}
2440
2441size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2442  AllocationContext_t context = AllocationContext::current();
2443  return _allocator->unsafe_max_tlab_alloc(context);
2444}
2445
2446size_t G1CollectedHeap::max_capacity() const {
2447  return _hrm.reserved().byte_size();
2448}
2449
2450jlong G1CollectedHeap::millis_since_last_gc() {
2451  // See the notes in GenCollectedHeap::millis_since_last_gc()
2452  // for more information about the implementation.
2453  jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2454    _g1_policy->collection_pause_end_millis();
2455  if (ret_val < 0) {
2456    log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2457      ". returning zero instead.", ret_val);
2458    return 0;
2459  }
2460  return ret_val;
2461}
2462
2463void G1CollectedHeap::prepare_for_verify() {
2464  _verifier->prepare_for_verify();
2465}
2466
2467void G1CollectedHeap::verify(VerifyOption vo) {
2468  _verifier->verify(vo);
2469}
2470
2471bool G1CollectedHeap::supports_concurrent_phase_control() const {
2472  return true;
2473}
2474
2475const char* const* G1CollectedHeap::concurrent_phases() const {
2476  return _cmThread->concurrent_phases();
2477}
2478
2479bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2480  return _cmThread->request_concurrent_phase(phase);
2481}
2482
2483class PrintRegionClosure: public HeapRegionClosure {
2484  outputStream* _st;
2485public:
2486  PrintRegionClosure(outputStream* st) : _st(st) {}
2487  bool doHeapRegion(HeapRegion* r) {
2488    r->print_on(_st);
2489    return false;
2490  }
2491};
2492
2493bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2494                                       const HeapRegion* hr,
2495                                       const VerifyOption vo) const {
2496  switch (vo) {
2497  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2498  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2499  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2500  default:                            ShouldNotReachHere();
2501  }
2502  return false; // keep some compilers happy
2503}
2504
2505bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2506                                       const VerifyOption vo) const {
2507  switch (vo) {
2508  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2509  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2510  case VerifyOption_G1UseMarkWord: {
2511    HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2512    return !obj->is_gc_marked() && !hr->is_archive();
2513  }
2514  default:                            ShouldNotReachHere();
2515  }
2516  return false; // keep some compilers happy
2517}
2518
2519void G1CollectedHeap::print_heap_regions() const {
2520  Log(gc, heap, region) log;
2521  if (log.is_trace()) {
2522    ResourceMark rm;
2523    print_regions_on(log.trace_stream());
2524  }
2525}
2526
2527void G1CollectedHeap::print_on(outputStream* st) const {
2528  st->print(" %-20s", "garbage-first heap");
2529  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2530            capacity()/K, used_unlocked()/K);
2531  st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2532            p2i(_hrm.reserved().start()),
2533            p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2534            p2i(_hrm.reserved().end()));
2535  st->cr();
2536  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2537  uint young_regions = young_regions_count();
2538  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2539            (size_t) young_regions * HeapRegion::GrainBytes / K);
2540  uint survivor_regions = survivor_regions_count();
2541  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2542            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2543  st->cr();
2544  MetaspaceAux::print_on(st);
2545}
2546
2547void G1CollectedHeap::print_regions_on(outputStream* st) const {
2548  st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2549               "HS=humongous(starts), HC=humongous(continues), "
2550               "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2551               "AC=allocation context, "
2552               "TAMS=top-at-mark-start (previous, next)");
2553  PrintRegionClosure blk(st);
2554  heap_region_iterate(&blk);
2555}
2556
2557void G1CollectedHeap::print_extended_on(outputStream* st) const {
2558  print_on(st);
2559
2560  // Print the per-region information.
2561  print_regions_on(st);
2562}
2563
2564void G1CollectedHeap::print_on_error(outputStream* st) const {
2565  this->CollectedHeap::print_on_error(st);
2566
2567  if (_cm != NULL) {
2568    st->cr();
2569    _cm->print_on_error(st);
2570  }
2571}
2572
2573void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2574  workers()->print_worker_threads_on(st);
2575  _cmThread->print_on(st);
2576  st->cr();
2577  _cm->print_worker_threads_on(st);
2578  _cg1r->print_worker_threads_on(st); // also prints the sample thread
2579  if (G1StringDedup::is_enabled()) {
2580    G1StringDedup::print_worker_threads_on(st);
2581  }
2582}
2583
2584void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2585  workers()->threads_do(tc);
2586  tc->do_thread(_cmThread);
2587  _cm->threads_do(tc);
2588  _cg1r->threads_do(tc); // also iterates over the sample thread
2589  if (G1StringDedup::is_enabled()) {
2590    G1StringDedup::threads_do(tc);
2591  }
2592}
2593
2594void G1CollectedHeap::print_tracing_info() const {
2595  g1_rem_set()->print_summary_info();
2596  concurrent_mark()->print_summary_info();
2597}
2598
2599#ifndef PRODUCT
2600// Helpful for debugging RSet issues.
2601
2602class PrintRSetsClosure : public HeapRegionClosure {
2603private:
2604  const char* _msg;
2605  size_t _occupied_sum;
2606
2607public:
2608  bool doHeapRegion(HeapRegion* r) {
2609    HeapRegionRemSet* hrrs = r->rem_set();
2610    size_t occupied = hrrs->occupied();
2611    _occupied_sum += occupied;
2612
2613    tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2614    if (occupied == 0) {
2615      tty->print_cr("  RSet is empty");
2616    } else {
2617      hrrs->print();
2618    }
2619    tty->print_cr("----------");
2620    return false;
2621  }
2622
2623  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2624    tty->cr();
2625    tty->print_cr("========================================");
2626    tty->print_cr("%s", msg);
2627    tty->cr();
2628  }
2629
2630  ~PrintRSetsClosure() {
2631    tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2632    tty->print_cr("========================================");
2633    tty->cr();
2634  }
2635};
2636
2637void G1CollectedHeap::print_cset_rsets() {
2638  PrintRSetsClosure cl("Printing CSet RSets");
2639  collection_set_iterate(&cl);
2640}
2641
2642void G1CollectedHeap::print_all_rsets() {
2643  PrintRSetsClosure cl("Printing All RSets");;
2644  heap_region_iterate(&cl);
2645}
2646#endif // PRODUCT
2647
2648G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2649
2650  size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2651  size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2652  size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2653
2654  size_t eden_capacity_bytes =
2655    (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2656
2657  VirtualSpaceSummary heap_summary = create_heap_space_summary();
2658  return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2659                       eden_capacity_bytes, survivor_used_bytes, num_regions());
2660}
2661
2662G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2663  return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2664                       stats->unused(), stats->used(), stats->region_end_waste(),
2665                       stats->regions_filled(), stats->direct_allocated(),
2666                       stats->failure_used(), stats->failure_waste());
2667}
2668
2669void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2670  const G1HeapSummary& heap_summary = create_g1_heap_summary();
2671  gc_tracer->report_gc_heap_summary(when, heap_summary);
2672
2673  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2674  gc_tracer->report_metaspace_summary(when, metaspace_summary);
2675}
2676
2677G1CollectedHeap* G1CollectedHeap::heap() {
2678  CollectedHeap* heap = Universe::heap();
2679  assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2680  assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2681  return (G1CollectedHeap*)heap;
2682}
2683
2684void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2685  // always_do_update_barrier = false;
2686  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2687
2688  double start = os::elapsedTime();
2689  // Fill TLAB's and such
2690  accumulate_statistics_all_tlabs();
2691  ensure_parsability(true);
2692  g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2693
2694  g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2695}
2696
2697void G1CollectedHeap::gc_epilogue(bool full) {
2698  // we are at the end of the GC. Total collections has already been increased.
2699  g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2700
2701  // FIXME: what is this about?
2702  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2703  // is set.
2704#if defined(COMPILER2) || INCLUDE_JVMCI
2705  assert(DerivedPointerTable::is_empty(), "derived pointer present");
2706#endif
2707  // always_do_update_barrier = true;
2708
2709  double start = os::elapsedTime();
2710  resize_all_tlabs();
2711  g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2712
2713  allocation_context_stats().update(full);
2714
2715  // We have just completed a GC. Update the soft reference
2716  // policy with the new heap occupancy
2717  Universe::update_heap_info_at_gc();
2718}
2719
2720HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2721                                               uint gc_count_before,
2722                                               bool* succeeded,
2723                                               GCCause::Cause gc_cause) {
2724  assert_heap_not_locked_and_not_at_safepoint();
2725  VM_G1IncCollectionPause op(gc_count_before,
2726                             word_size,
2727                             false, /* should_initiate_conc_mark */
2728                             g1_policy()->max_pause_time_ms(),
2729                             gc_cause);
2730
2731  op.set_allocation_context(AllocationContext::current());
2732  VMThread::execute(&op);
2733
2734  HeapWord* result = op.result();
2735  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2736  assert(result == NULL || ret_succeeded,
2737         "the result should be NULL if the VM did not succeed");
2738  *succeeded = ret_succeeded;
2739
2740  assert_heap_not_locked();
2741  return result;
2742}
2743
2744void
2745G1CollectedHeap::doConcurrentMark() {
2746  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2747  if (!_cmThread->in_progress()) {
2748    _cmThread->set_started();
2749    CGC_lock->notify();
2750  }
2751}
2752
2753size_t G1CollectedHeap::pending_card_num() {
2754  size_t extra_cards = 0;
2755  JavaThread *curr = Threads::first();
2756  while (curr != NULL) {
2757    DirtyCardQueue& dcq = curr->dirty_card_queue();
2758    extra_cards += dcq.size();
2759    curr = curr->next();
2760  }
2761  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2762  size_t buffer_size = dcqs.buffer_size();
2763  size_t buffer_num = dcqs.completed_buffers_num();
2764
2765  return buffer_size * buffer_num + extra_cards;
2766}
2767
2768class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2769 private:
2770  size_t _total_humongous;
2771  size_t _candidate_humongous;
2772
2773  DirtyCardQueue _dcq;
2774
2775  // We don't nominate objects with many remembered set entries, on
2776  // the assumption that such objects are likely still live.
2777  bool is_remset_small(HeapRegion* region) const {
2778    HeapRegionRemSet* const rset = region->rem_set();
2779    return G1EagerReclaimHumongousObjectsWithStaleRefs
2780      ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2781      : rset->is_empty();
2782  }
2783
2784  bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2785    assert(region->is_starts_humongous(), "Must start a humongous object");
2786
2787    oop obj = oop(region->bottom());
2788
2789    // Dead objects cannot be eager reclaim candidates. Due to class
2790    // unloading it is unsafe to query their classes so we return early.
2791    if (heap->is_obj_dead(obj, region)) {
2792      return false;
2793    }
2794
2795    // Candidate selection must satisfy the following constraints
2796    // while concurrent marking is in progress:
2797    //
2798    // * In order to maintain SATB invariants, an object must not be
2799    // reclaimed if it was allocated before the start of marking and
2800    // has not had its references scanned.  Such an object must have
2801    // its references (including type metadata) scanned to ensure no
2802    // live objects are missed by the marking process.  Objects
2803    // allocated after the start of concurrent marking don't need to
2804    // be scanned.
2805    //
2806    // * An object must not be reclaimed if it is on the concurrent
2807    // mark stack.  Objects allocated after the start of concurrent
2808    // marking are never pushed on the mark stack.
2809    //
2810    // Nominating only objects allocated after the start of concurrent
2811    // marking is sufficient to meet both constraints.  This may miss
2812    // some objects that satisfy the constraints, but the marking data
2813    // structures don't support efficiently performing the needed
2814    // additional tests or scrubbing of the mark stack.
2815    //
2816    // However, we presently only nominate is_typeArray() objects.
2817    // A humongous object containing references induces remembered
2818    // set entries on other regions.  In order to reclaim such an
2819    // object, those remembered sets would need to be cleaned up.
2820    //
2821    // We also treat is_typeArray() objects specially, allowing them
2822    // to be reclaimed even if allocated before the start of
2823    // concurrent mark.  For this we rely on mark stack insertion to
2824    // exclude is_typeArray() objects, preventing reclaiming an object
2825    // that is in the mark stack.  We also rely on the metadata for
2826    // such objects to be built-in and so ensured to be kept live.
2827    // Frequent allocation and drop of large binary blobs is an
2828    // important use case for eager reclaim, and this special handling
2829    // may reduce needed headroom.
2830
2831    return obj->is_typeArray() && is_remset_small(region);
2832  }
2833
2834 public:
2835  RegisterHumongousWithInCSetFastTestClosure()
2836  : _total_humongous(0),
2837    _candidate_humongous(0),
2838    _dcq(&JavaThread::dirty_card_queue_set()) {
2839  }
2840
2841  virtual bool doHeapRegion(HeapRegion* r) {
2842    if (!r->is_starts_humongous()) {
2843      return false;
2844    }
2845    G1CollectedHeap* g1h = G1CollectedHeap::heap();
2846
2847    bool is_candidate = humongous_region_is_candidate(g1h, r);
2848    uint rindex = r->hrm_index();
2849    g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2850    if (is_candidate) {
2851      _candidate_humongous++;
2852      g1h->register_humongous_region_with_cset(rindex);
2853      // Is_candidate already filters out humongous object with large remembered sets.
2854      // If we have a humongous object with a few remembered sets, we simply flush these
2855      // remembered set entries into the DCQS. That will result in automatic
2856      // re-evaluation of their remembered set entries during the following evacuation
2857      // phase.
2858      if (!r->rem_set()->is_empty()) {
2859        guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2860                  "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2861        G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2862        HeapRegionRemSetIterator hrrs(r->rem_set());
2863        size_t card_index;
2864        while (hrrs.has_next(card_index)) {
2865          jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2866          // The remembered set might contain references to already freed
2867          // regions. Filter out such entries to avoid failing card table
2868          // verification.
2869          if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2870            if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2871              *card_ptr = CardTableModRefBS::dirty_card_val();
2872              _dcq.enqueue(card_ptr);
2873            }
2874          }
2875        }
2876        assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2877               "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2878               hrrs.n_yielded(), r->rem_set()->occupied());
2879        r->rem_set()->clear_locked();
2880      }
2881      assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2882    }
2883    _total_humongous++;
2884
2885    return false;
2886  }
2887
2888  size_t total_humongous() const { return _total_humongous; }
2889  size_t candidate_humongous() const { return _candidate_humongous; }
2890
2891  void flush_rem_set_entries() { _dcq.flush(); }
2892};
2893
2894void G1CollectedHeap::register_humongous_regions_with_cset() {
2895  if (!G1EagerReclaimHumongousObjects) {
2896    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2897    return;
2898  }
2899  double time = os::elapsed_counter();
2900
2901  // Collect reclaim candidate information and register candidates with cset.
2902  RegisterHumongousWithInCSetFastTestClosure cl;
2903  heap_region_iterate(&cl);
2904
2905  time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2906  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2907                                                                  cl.total_humongous(),
2908                                                                  cl.candidate_humongous());
2909  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2910
2911  // Finally flush all remembered set entries to re-check into the global DCQS.
2912  cl.flush_rem_set_entries();
2913}
2914
2915class VerifyRegionRemSetClosure : public HeapRegionClosure {
2916  public:
2917    bool doHeapRegion(HeapRegion* hr) {
2918      if (!hr->is_archive() && !hr->is_continues_humongous()) {
2919        hr->verify_rem_set();
2920      }
2921      return false;
2922    }
2923};
2924
2925uint G1CollectedHeap::num_task_queues() const {
2926  return _task_queues->size();
2927}
2928
2929#if TASKQUEUE_STATS
2930void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2931  st->print_raw_cr("GC Task Stats");
2932  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2933  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2934}
2935
2936void G1CollectedHeap::print_taskqueue_stats() const {
2937  if (!log_is_enabled(Trace, gc, task, stats)) {
2938    return;
2939  }
2940  Log(gc, task, stats) log;
2941  ResourceMark rm;
2942  outputStream* st = log.trace_stream();
2943
2944  print_taskqueue_stats_hdr(st);
2945
2946  TaskQueueStats totals;
2947  const uint n = num_task_queues();
2948  for (uint i = 0; i < n; ++i) {
2949    st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2950    totals += task_queue(i)->stats;
2951  }
2952  st->print_raw("tot "); totals.print(st); st->cr();
2953
2954  DEBUG_ONLY(totals.verify());
2955}
2956
2957void G1CollectedHeap::reset_taskqueue_stats() {
2958  const uint n = num_task_queues();
2959  for (uint i = 0; i < n; ++i) {
2960    task_queue(i)->stats.reset();
2961  }
2962}
2963#endif // TASKQUEUE_STATS
2964
2965void G1CollectedHeap::wait_for_root_region_scanning() {
2966  double scan_wait_start = os::elapsedTime();
2967  // We have to wait until the CM threads finish scanning the
2968  // root regions as it's the only way to ensure that all the
2969  // objects on them have been correctly scanned before we start
2970  // moving them during the GC.
2971  bool waited = _cm->root_regions()->wait_until_scan_finished();
2972  double wait_time_ms = 0.0;
2973  if (waited) {
2974    double scan_wait_end = os::elapsedTime();
2975    wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2976  }
2977  g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2978}
2979
2980class G1PrintCollectionSetClosure : public HeapRegionClosure {
2981private:
2982  G1HRPrinter* _hr_printer;
2983public:
2984  G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2985
2986  virtual bool doHeapRegion(HeapRegion* r) {
2987    _hr_printer->cset(r);
2988    return false;
2989  }
2990};
2991
2992void G1CollectedHeap::start_new_collection_set() {
2993  collection_set()->start_incremental_building();
2994
2995  clear_cset_fast_test();
2996
2997  guarantee(_eden.length() == 0, "eden should have been cleared");
2998  g1_policy()->transfer_survivors_to_cset(survivor());
2999}
3000
3001bool
3002G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3003  assert_at_safepoint(true /* should_be_vm_thread */);
3004  guarantee(!is_gc_active(), "collection is not reentrant");
3005
3006  if (GCLocker::check_active_before_gc()) {
3007    return false;
3008  }
3009
3010  _gc_timer_stw->register_gc_start();
3011
3012  GCIdMark gc_id_mark;
3013  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3014
3015  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3016  ResourceMark rm;
3017
3018  g1_policy()->note_gc_start();
3019
3020  wait_for_root_region_scanning();
3021
3022  print_heap_before_gc();
3023  print_heap_regions();
3024  trace_heap_before_gc(_gc_tracer_stw);
3025
3026  _verifier->verify_region_sets_optional();
3027  _verifier->verify_dirty_young_regions();
3028
3029  // We should not be doing initial mark unless the conc mark thread is running
3030  if (!_cmThread->should_terminate()) {
3031    // This call will decide whether this pause is an initial-mark
3032    // pause. If it is, during_initial_mark_pause() will return true
3033    // for the duration of this pause.
3034    g1_policy()->decide_on_conc_mark_initiation();
3035  }
3036
3037  // We do not allow initial-mark to be piggy-backed on a mixed GC.
3038  assert(!collector_state()->during_initial_mark_pause() ||
3039          collector_state()->gcs_are_young(), "sanity");
3040
3041  // We also do not allow mixed GCs during marking.
3042  assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3043
3044  // Record whether this pause is an initial mark. When the current
3045  // thread has completed its logging output and it's safe to signal
3046  // the CM thread, the flag's value in the policy has been reset.
3047  bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3048
3049  // Inner scope for scope based logging, timers, and stats collection
3050  {
3051    EvacuationInfo evacuation_info;
3052
3053    if (collector_state()->during_initial_mark_pause()) {
3054      // We are about to start a marking cycle, so we increment the
3055      // full collection counter.
3056      increment_old_marking_cycles_started();
3057      _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3058    }
3059
3060    _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3061
3062    GCTraceCPUTime tcpu;
3063
3064    FormatBuffer<> gc_string("Pause ");
3065    if (collector_state()->during_initial_mark_pause()) {
3066      gc_string.append("Initial Mark");
3067    } else if (collector_state()->gcs_are_young()) {
3068      gc_string.append("Young");
3069    } else {
3070      gc_string.append("Mixed");
3071    }
3072    GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3073
3074    uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3075                                                                  workers()->active_workers(),
3076                                                                  Threads::number_of_non_daemon_threads());
3077    workers()->update_active_workers(active_workers);
3078    log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3079
3080    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3081    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3082
3083    // If the secondary_free_list is not empty, append it to the
3084    // free_list. No need to wait for the cleanup operation to finish;
3085    // the region allocation code will check the secondary_free_list
3086    // and wait if necessary. If the G1StressConcRegionFreeing flag is
3087    // set, skip this step so that the region allocation code has to
3088    // get entries from the secondary_free_list.
3089    if (!G1StressConcRegionFreeing) {
3090      append_secondary_free_list_if_not_empty_with_lock();
3091    }
3092
3093    G1HeapTransition heap_transition(this);
3094    size_t heap_used_bytes_before_gc = used();
3095
3096    // Don't dynamically change the number of GC threads this early.  A value of
3097    // 0 is used to indicate serial work.  When parallel work is done,
3098    // it will be set.
3099
3100    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3101      IsGCActiveMark x;
3102
3103      gc_prologue(false);
3104      increment_total_collections(false /* full gc */);
3105      increment_gc_time_stamp();
3106
3107      if (VerifyRememberedSets) {
3108        log_info(gc, verify)("[Verifying RemSets before GC]");
3109        VerifyRegionRemSetClosure v_cl;
3110        heap_region_iterate(&v_cl);
3111      }
3112
3113      _verifier->verify_before_gc();
3114
3115      _verifier->check_bitmaps("GC Start");
3116
3117#if defined(COMPILER2) || INCLUDE_JVMCI
3118      DerivedPointerTable::clear();
3119#endif
3120
3121      // Please see comment in g1CollectedHeap.hpp and
3122      // G1CollectedHeap::ref_processing_init() to see how
3123      // reference processing currently works in G1.
3124
3125      // Enable discovery in the STW reference processor
3126      if (g1_policy()->should_process_references()) {
3127        ref_processor_stw()->enable_discovery();
3128      } else {
3129        ref_processor_stw()->disable_discovery();
3130      }
3131
3132      {
3133        // We want to temporarily turn off discovery by the
3134        // CM ref processor, if necessary, and turn it back on
3135        // on again later if we do. Using a scoped
3136        // NoRefDiscovery object will do this.
3137        NoRefDiscovery no_cm_discovery(ref_processor_cm());
3138
3139        // Forget the current alloc region (we might even choose it to be part
3140        // of the collection set!).
3141        _allocator->release_mutator_alloc_region();
3142
3143        // This timing is only used by the ergonomics to handle our pause target.
3144        // It is unclear why this should not include the full pause. We will
3145        // investigate this in CR 7178365.
3146        //
3147        // Preserving the old comment here if that helps the investigation:
3148        //
3149        // The elapsed time induced by the start time below deliberately elides
3150        // the possible verification above.
3151        double sample_start_time_sec = os::elapsedTime();
3152
3153        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3154
3155        if (collector_state()->during_initial_mark_pause()) {
3156          concurrent_mark()->checkpointRootsInitialPre();
3157        }
3158
3159        g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3160
3161        evacuation_info.set_collectionset_regions(collection_set()->region_length());
3162
3163        // Make sure the remembered sets are up to date. This needs to be
3164        // done before register_humongous_regions_with_cset(), because the
3165        // remembered sets are used there to choose eager reclaim candidates.
3166        // If the remembered sets are not up to date we might miss some
3167        // entries that need to be handled.
3168        g1_rem_set()->cleanupHRRS();
3169
3170        register_humongous_regions_with_cset();
3171
3172        assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3173
3174        // We call this after finalize_cset() to
3175        // ensure that the CSet has been finalized.
3176        _cm->verify_no_cset_oops();
3177
3178        if (_hr_printer.is_active()) {
3179          G1PrintCollectionSetClosure cl(&_hr_printer);
3180          _collection_set.iterate(&cl);
3181        }
3182
3183        // Initialize the GC alloc regions.
3184        _allocator->init_gc_alloc_regions(evacuation_info);
3185
3186        G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3187        pre_evacuate_collection_set();
3188
3189        // Actually do the work...
3190        evacuate_collection_set(evacuation_info, &per_thread_states);
3191
3192        post_evacuate_collection_set(evacuation_info, &per_thread_states);
3193
3194        const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3195        free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3196
3197        eagerly_reclaim_humongous_regions();
3198
3199        record_obj_copy_mem_stats();
3200        _survivor_evac_stats.adjust_desired_plab_sz();
3201        _old_evac_stats.adjust_desired_plab_sz();
3202
3203        double start = os::elapsedTime();
3204        start_new_collection_set();
3205        g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3206
3207        if (evacuation_failed()) {
3208          set_used(recalculate_used());
3209          if (_archive_allocator != NULL) {
3210            _archive_allocator->clear_used();
3211          }
3212          for (uint i = 0; i < ParallelGCThreads; i++) {
3213            if (_evacuation_failed_info_array[i].has_failed()) {
3214              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3215            }
3216          }
3217        } else {
3218          // The "used" of the the collection set have already been subtracted
3219          // when they were freed.  Add in the bytes evacuated.
3220          increase_used(g1_policy()->bytes_copied_during_gc());
3221        }
3222
3223        if (collector_state()->during_initial_mark_pause()) {
3224          // We have to do this before we notify the CM threads that
3225          // they can start working to make sure that all the
3226          // appropriate initialization is done on the CM object.
3227          concurrent_mark()->checkpointRootsInitialPost();
3228          collector_state()->set_mark_in_progress(true);
3229          // Note that we don't actually trigger the CM thread at
3230          // this point. We do that later when we're sure that
3231          // the current thread has completed its logging output.
3232        }
3233
3234        allocate_dummy_regions();
3235
3236        _allocator->init_mutator_alloc_region();
3237
3238        {
3239          size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3240          if (expand_bytes > 0) {
3241            size_t bytes_before = capacity();
3242            // No need for an ergo logging here,
3243            // expansion_amount() does this when it returns a value > 0.
3244            double expand_ms;
3245            if (!expand(expand_bytes, _workers, &expand_ms)) {
3246              // We failed to expand the heap. Cannot do anything about it.
3247            }
3248            g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3249          }
3250        }
3251
3252        // We redo the verification but now wrt to the new CSet which
3253        // has just got initialized after the previous CSet was freed.
3254        _cm->verify_no_cset_oops();
3255
3256        // This timing is only used by the ergonomics to handle our pause target.
3257        // It is unclear why this should not include the full pause. We will
3258        // investigate this in CR 7178365.
3259        double sample_end_time_sec = os::elapsedTime();
3260        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3261        size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScannedCards);
3262        g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3263
3264        evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3265        evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3266
3267        MemoryService::track_memory_usage();
3268
3269        if (VerifyRememberedSets) {
3270          log_info(gc, verify)("[Verifying RemSets after GC]");
3271          VerifyRegionRemSetClosure v_cl;
3272          heap_region_iterate(&v_cl);
3273        }
3274
3275        _verifier->verify_after_gc();
3276        _verifier->check_bitmaps("GC End");
3277
3278        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3279        ref_processor_stw()->verify_no_references_recorded();
3280
3281        // CM reference discovery will be re-enabled if necessary.
3282      }
3283
3284#ifdef TRACESPINNING
3285      ParallelTaskTerminator::print_termination_counts();
3286#endif
3287
3288      gc_epilogue(false);
3289    }
3290
3291    // Print the remainder of the GC log output.
3292    if (evacuation_failed()) {
3293      log_info(gc)("To-space exhausted");
3294    }
3295
3296    g1_policy()->print_phases();
3297    heap_transition.print();
3298
3299    // It is not yet to safe to tell the concurrent mark to
3300    // start as we have some optional output below. We don't want the
3301    // output from the concurrent mark thread interfering with this
3302    // logging output either.
3303
3304    _hrm.verify_optional();
3305    _verifier->verify_region_sets_optional();
3306
3307    TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3308    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3309
3310    print_heap_after_gc();
3311    print_heap_regions();
3312    trace_heap_after_gc(_gc_tracer_stw);
3313
3314    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3315    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3316    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3317    // before any GC notifications are raised.
3318    g1mm()->update_sizes();
3319
3320    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3321    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3322    _gc_timer_stw->register_gc_end();
3323    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3324  }
3325  // It should now be safe to tell the concurrent mark thread to start
3326  // without its logging output interfering with the logging output
3327  // that came from the pause.
3328
3329  if (should_start_conc_mark) {
3330    // CAUTION: after the doConcurrentMark() call below,
3331    // the concurrent marking thread(s) could be running
3332    // concurrently with us. Make sure that anything after
3333    // this point does not assume that we are the only GC thread
3334    // running. Note: of course, the actual marking work will
3335    // not start until the safepoint itself is released in
3336    // SuspendibleThreadSet::desynchronize().
3337    doConcurrentMark();
3338  }
3339
3340  return true;
3341}
3342
3343void G1CollectedHeap::remove_self_forwarding_pointers() {
3344  G1ParRemoveSelfForwardPtrsTask rsfp_task;
3345  workers()->run_task(&rsfp_task);
3346}
3347
3348void G1CollectedHeap::restore_after_evac_failure() {
3349  double remove_self_forwards_start = os::elapsedTime();
3350
3351  remove_self_forwarding_pointers();
3352  SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3353  _preserved_marks_set.restore(&task_executor);
3354
3355  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3356}
3357
3358void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3359  if (!_evacuation_failed) {
3360    _evacuation_failed = true;
3361  }
3362
3363  _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3364  _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3365}
3366
3367bool G1ParEvacuateFollowersClosure::offer_termination() {
3368  G1ParScanThreadState* const pss = par_scan_state();
3369  start_term_time();
3370  const bool res = terminator()->offer_termination();
3371  end_term_time();
3372  return res;
3373}
3374
3375void G1ParEvacuateFollowersClosure::do_void() {
3376  G1ParScanThreadState* const pss = par_scan_state();
3377  pss->trim_queue();
3378  do {
3379    pss->steal_and_trim_queue(queues());
3380  } while (!offer_termination());
3381}
3382
3383class G1ParTask : public AbstractGangTask {
3384protected:
3385  G1CollectedHeap*         _g1h;
3386  G1ParScanThreadStateSet* _pss;
3387  RefToScanQueueSet*       _queues;
3388  G1RootProcessor*         _root_processor;
3389  ParallelTaskTerminator   _terminator;
3390  uint                     _n_workers;
3391
3392public:
3393  G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3394    : AbstractGangTask("G1 collection"),
3395      _g1h(g1h),
3396      _pss(per_thread_states),
3397      _queues(task_queues),
3398      _root_processor(root_processor),
3399      _terminator(n_workers, _queues),
3400      _n_workers(n_workers)
3401  {}
3402
3403  void work(uint worker_id) {
3404    if (worker_id >= _n_workers) return;  // no work needed this round
3405
3406    double start_sec = os::elapsedTime();
3407    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3408
3409    {
3410      ResourceMark rm;
3411      HandleMark   hm;
3412
3413      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3414
3415      G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3416      pss->set_ref_processor(rp);
3417
3418      double start_strong_roots_sec = os::elapsedTime();
3419
3420      _root_processor->evacuate_roots(pss->closures(), worker_id);
3421
3422      // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3423      // treating the nmethods visited to act as roots for concurrent marking.
3424      // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3425      // objects copied by the current evacuation.
3426      _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3427                                                      pss->closures()->weak_codeblobs(),
3428                                                      worker_id);
3429
3430      double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3431
3432      double term_sec = 0.0;
3433      size_t evac_term_attempts = 0;
3434      {
3435        double start = os::elapsedTime();
3436        G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3437        evac.do_void();
3438
3439        evac_term_attempts = evac.term_attempts();
3440        term_sec = evac.term_time();
3441        double elapsed_sec = os::elapsedTime() - start;
3442        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3443        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3444        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3445      }
3446
3447      assert(pss->queue_is_empty(), "should be empty");
3448
3449      if (log_is_enabled(Debug, gc, task, stats)) {
3450        MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3451        size_t lab_waste;
3452        size_t lab_undo_waste;
3453        pss->waste(lab_waste, lab_undo_waste);
3454        _g1h->print_termination_stats(worker_id,
3455                                      (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3456                                      strong_roots_sec * 1000.0,                  /* strong roots time */
3457                                      term_sec * 1000.0,                          /* evac term time */
3458                                      evac_term_attempts,                         /* evac term attempts */
3459                                      lab_waste,                                  /* alloc buffer waste */
3460                                      lab_undo_waste                              /* undo waste */
3461                                      );
3462      }
3463
3464      // Close the inner scope so that the ResourceMark and HandleMark
3465      // destructors are executed here and are included as part of the
3466      // "GC Worker Time".
3467    }
3468    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3469  }
3470};
3471
3472void G1CollectedHeap::print_termination_stats_hdr() {
3473  log_debug(gc, task, stats)("GC Termination Stats");
3474  log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3475  log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3476  log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3477}
3478
3479void G1CollectedHeap::print_termination_stats(uint worker_id,
3480                                              double elapsed_ms,
3481                                              double strong_roots_ms,
3482                                              double term_ms,
3483                                              size_t term_attempts,
3484                                              size_t alloc_buffer_waste,
3485                                              size_t undo_waste) const {
3486  log_debug(gc, task, stats)
3487              ("%3d %9.2f %9.2f %6.2f "
3488               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3489               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3490               worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3491               term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3492               (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3493               alloc_buffer_waste * HeapWordSize / K,
3494               undo_waste * HeapWordSize / K);
3495}
3496
3497class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3498private:
3499  BoolObjectClosure* _is_alive;
3500  G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3501
3502  int _initial_string_table_size;
3503  int _initial_symbol_table_size;
3504
3505  bool  _process_strings;
3506  int _strings_processed;
3507  int _strings_removed;
3508
3509  bool  _process_symbols;
3510  int _symbols_processed;
3511  int _symbols_removed;
3512
3513  bool _process_string_dedup;
3514
3515public:
3516  G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3517    AbstractGangTask("String/Symbol Unlinking"),
3518    _is_alive(is_alive),
3519    _dedup_closure(is_alive, NULL, false),
3520    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3521    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3522    _process_string_dedup(process_string_dedup) {
3523
3524    _initial_string_table_size = StringTable::the_table()->table_size();
3525    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3526    if (process_strings) {
3527      StringTable::clear_parallel_claimed_index();
3528    }
3529    if (process_symbols) {
3530      SymbolTable::clear_parallel_claimed_index();
3531    }
3532  }
3533
3534  ~G1StringAndSymbolCleaningTask() {
3535    guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3536              "claim value %d after unlink less than initial string table size %d",
3537              StringTable::parallel_claimed_index(), _initial_string_table_size);
3538    guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3539              "claim value %d after unlink less than initial symbol table size %d",
3540              SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3541
3542    log_info(gc, stringtable)(
3543        "Cleaned string and symbol table, "
3544        "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3545        "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3546        strings_processed(), strings_removed(),
3547        symbols_processed(), symbols_removed());
3548  }
3549
3550  void work(uint worker_id) {
3551    int strings_processed = 0;
3552    int strings_removed = 0;
3553    int symbols_processed = 0;
3554    int symbols_removed = 0;
3555    if (_process_strings) {
3556      StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3557      Atomic::add(strings_processed, &_strings_processed);
3558      Atomic::add(strings_removed, &_strings_removed);
3559    }
3560    if (_process_symbols) {
3561      SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3562      Atomic::add(symbols_processed, &_symbols_processed);
3563      Atomic::add(symbols_removed, &_symbols_removed);
3564    }
3565    if (_process_string_dedup) {
3566      G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3567    }
3568  }
3569
3570  size_t strings_processed() const { return (size_t)_strings_processed; }
3571  size_t strings_removed()   const { return (size_t)_strings_removed; }
3572
3573  size_t symbols_processed() const { return (size_t)_symbols_processed; }
3574  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3575};
3576
3577class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3578private:
3579  static Monitor* _lock;
3580
3581  BoolObjectClosure* const _is_alive;
3582  const bool               _unloading_occurred;
3583  const uint               _num_workers;
3584
3585  // Variables used to claim nmethods.
3586  CompiledMethod* _first_nmethod;
3587  volatile CompiledMethod* _claimed_nmethod;
3588
3589  // The list of nmethods that need to be processed by the second pass.
3590  volatile CompiledMethod* _postponed_list;
3591  volatile uint            _num_entered_barrier;
3592
3593 public:
3594  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3595      _is_alive(is_alive),
3596      _unloading_occurred(unloading_occurred),
3597      _num_workers(num_workers),
3598      _first_nmethod(NULL),
3599      _claimed_nmethod(NULL),
3600      _postponed_list(NULL),
3601      _num_entered_barrier(0)
3602  {
3603    CompiledMethod::increase_unloading_clock();
3604    // Get first alive nmethod
3605    CompiledMethodIterator iter = CompiledMethodIterator();
3606    if(iter.next_alive()) {
3607      _first_nmethod = iter.method();
3608    }
3609    _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3610  }
3611
3612  ~G1CodeCacheUnloadingTask() {
3613    CodeCache::verify_clean_inline_caches();
3614
3615    CodeCache::set_needs_cache_clean(false);
3616    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3617
3618    CodeCache::verify_icholder_relocations();
3619  }
3620
3621 private:
3622  void add_to_postponed_list(CompiledMethod* nm) {
3623      CompiledMethod* old;
3624      do {
3625        old = (CompiledMethod*)_postponed_list;
3626        nm->set_unloading_next(old);
3627      } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3628  }
3629
3630  void clean_nmethod(CompiledMethod* nm) {
3631    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3632
3633    if (postponed) {
3634      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3635      add_to_postponed_list(nm);
3636    }
3637
3638    // Mark that this thread has been cleaned/unloaded.
3639    // After this call, it will be safe to ask if this nmethod was unloaded or not.
3640    nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3641  }
3642
3643  void clean_nmethod_postponed(CompiledMethod* nm) {
3644    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3645  }
3646
3647  static const int MaxClaimNmethods = 16;
3648
3649  void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3650    CompiledMethod* first;
3651    CompiledMethodIterator last;
3652
3653    do {
3654      *num_claimed_nmethods = 0;
3655
3656      first = (CompiledMethod*)_claimed_nmethod;
3657      last = CompiledMethodIterator(first);
3658
3659      if (first != NULL) {
3660
3661        for (int i = 0; i < MaxClaimNmethods; i++) {
3662          if (!last.next_alive()) {
3663            break;
3664          }
3665          claimed_nmethods[i] = last.method();
3666          (*num_claimed_nmethods)++;
3667        }
3668      }
3669
3670    } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3671  }
3672
3673  CompiledMethod* claim_postponed_nmethod() {
3674    CompiledMethod* claim;
3675    CompiledMethod* next;
3676
3677    do {
3678      claim = (CompiledMethod*)_postponed_list;
3679      if (claim == NULL) {
3680        return NULL;
3681      }
3682
3683      next = claim->unloading_next();
3684
3685    } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3686
3687    return claim;
3688  }
3689
3690 public:
3691  // Mark that we're done with the first pass of nmethod cleaning.
3692  void barrier_mark(uint worker_id) {
3693    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3694    _num_entered_barrier++;
3695    if (_num_entered_barrier == _num_workers) {
3696      ml.notify_all();
3697    }
3698  }
3699
3700  // See if we have to wait for the other workers to
3701  // finish their first-pass nmethod cleaning work.
3702  void barrier_wait(uint worker_id) {
3703    if (_num_entered_barrier < _num_workers) {
3704      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3705      while (_num_entered_barrier < _num_workers) {
3706          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3707      }
3708    }
3709  }
3710
3711  // Cleaning and unloading of nmethods. Some work has to be postponed
3712  // to the second pass, when we know which nmethods survive.
3713  void work_first_pass(uint worker_id) {
3714    // The first nmethods is claimed by the first worker.
3715    if (worker_id == 0 && _first_nmethod != NULL) {
3716      clean_nmethod(_first_nmethod);
3717      _first_nmethod = NULL;
3718    }
3719
3720    int num_claimed_nmethods;
3721    CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3722
3723    while (true) {
3724      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3725
3726      if (num_claimed_nmethods == 0) {
3727        break;
3728      }
3729
3730      for (int i = 0; i < num_claimed_nmethods; i++) {
3731        clean_nmethod(claimed_nmethods[i]);
3732      }
3733    }
3734  }
3735
3736  void work_second_pass(uint worker_id) {
3737    CompiledMethod* nm;
3738    // Take care of postponed nmethods.
3739    while ((nm = claim_postponed_nmethod()) != NULL) {
3740      clean_nmethod_postponed(nm);
3741    }
3742  }
3743};
3744
3745Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3746
3747class G1KlassCleaningTask : public StackObj {
3748  BoolObjectClosure*                      _is_alive;
3749  volatile jint                           _clean_klass_tree_claimed;
3750  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3751
3752 public:
3753  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3754      _is_alive(is_alive),
3755      _clean_klass_tree_claimed(0),
3756      _klass_iterator() {
3757  }
3758
3759 private:
3760  bool claim_clean_klass_tree_task() {
3761    if (_clean_klass_tree_claimed) {
3762      return false;
3763    }
3764
3765    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3766  }
3767
3768  InstanceKlass* claim_next_klass() {
3769    Klass* klass;
3770    do {
3771      klass =_klass_iterator.next_klass();
3772    } while (klass != NULL && !klass->is_instance_klass());
3773
3774    // this can be null so don't call InstanceKlass::cast
3775    return static_cast<InstanceKlass*>(klass);
3776  }
3777
3778public:
3779
3780  void clean_klass(InstanceKlass* ik) {
3781    ik->clean_weak_instanceklass_links(_is_alive);
3782  }
3783
3784  void work() {
3785    ResourceMark rm;
3786
3787    // One worker will clean the subklass/sibling klass tree.
3788    if (claim_clean_klass_tree_task()) {
3789      Klass::clean_subklass_tree(_is_alive);
3790    }
3791
3792    // All workers will help cleaning the classes,
3793    InstanceKlass* klass;
3794    while ((klass = claim_next_klass()) != NULL) {
3795      clean_klass(klass);
3796    }
3797  }
3798};
3799
3800class G1ResolvedMethodCleaningTask : public StackObj {
3801  BoolObjectClosure* _is_alive;
3802  volatile jint      _resolved_method_task_claimed;
3803public:
3804  G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3805      _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3806
3807  bool claim_resolved_method_task() {
3808    if (_resolved_method_task_claimed) {
3809      return false;
3810    }
3811    return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3812  }
3813
3814  // These aren't big, one thread can do it all.
3815  void work() {
3816    if (claim_resolved_method_task()) {
3817      ResolvedMethodTable::unlink(_is_alive);
3818    }
3819  }
3820};
3821
3822
3823// To minimize the remark pause times, the tasks below are done in parallel.
3824class G1ParallelCleaningTask : public AbstractGangTask {
3825private:
3826  G1StringAndSymbolCleaningTask _string_symbol_task;
3827  G1CodeCacheUnloadingTask      _code_cache_task;
3828  G1KlassCleaningTask           _klass_cleaning_task;
3829  G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3830
3831public:
3832  // The constructor is run in the VMThread.
3833  G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3834      AbstractGangTask("Parallel Cleaning"),
3835      _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3836      _code_cache_task(num_workers, is_alive, unloading_occurred),
3837      _klass_cleaning_task(is_alive),
3838      _resolved_method_cleaning_task(is_alive) {
3839  }
3840
3841  // The parallel work done by all worker threads.
3842  void work(uint worker_id) {
3843    // Do first pass of code cache cleaning.
3844    _code_cache_task.work_first_pass(worker_id);
3845
3846    // Let the threads mark that the first pass is done.
3847    _code_cache_task.barrier_mark(worker_id);
3848
3849    // Clean the Strings and Symbols.
3850    _string_symbol_task.work(worker_id);
3851
3852    // Clean unreferenced things in the ResolvedMethodTable
3853    _resolved_method_cleaning_task.work();
3854
3855    // Wait for all workers to finish the first code cache cleaning pass.
3856    _code_cache_task.barrier_wait(worker_id);
3857
3858    // Do the second code cache cleaning work, which realize on
3859    // the liveness information gathered during the first pass.
3860    _code_cache_task.work_second_pass(worker_id);
3861
3862    // Clean all klasses that were not unloaded.
3863    _klass_cleaning_task.work();
3864  }
3865};
3866
3867
3868void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3869                                        bool class_unloading_occurred) {
3870  uint n_workers = workers()->active_workers();
3871
3872  G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3873  workers()->run_task(&g1_unlink_task);
3874}
3875
3876void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3877                                       bool process_strings,
3878                                       bool process_symbols,
3879                                       bool process_string_dedup) {
3880  if (!process_strings && !process_symbols && !process_string_dedup) {
3881    // Nothing to clean.
3882    return;
3883  }
3884
3885  G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3886  workers()->run_task(&g1_unlink_task);
3887
3888}
3889
3890class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3891 private:
3892  DirtyCardQueueSet* _queue;
3893  G1CollectedHeap* _g1h;
3894 public:
3895  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3896    _queue(queue), _g1h(g1h) { }
3897
3898  virtual void work(uint worker_id) {
3899    G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3900    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3901
3902    RedirtyLoggedCardTableEntryClosure cl(_g1h);
3903    _queue->par_apply_closure_to_all_completed_buffers(&cl);
3904
3905    phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3906  }
3907};
3908
3909void G1CollectedHeap::redirty_logged_cards() {
3910  double redirty_logged_cards_start = os::elapsedTime();
3911
3912  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3913  dirty_card_queue_set().reset_for_par_iteration();
3914  workers()->run_task(&redirty_task);
3915
3916  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3917  dcq.merge_bufferlists(&dirty_card_queue_set());
3918  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3919
3920  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3921}
3922
3923// Weak Reference Processing support
3924
3925// An always "is_alive" closure that is used to preserve referents.
3926// If the object is non-null then it's alive.  Used in the preservation
3927// of referent objects that are pointed to by reference objects
3928// discovered by the CM ref processor.
3929class G1AlwaysAliveClosure: public BoolObjectClosure {
3930  G1CollectedHeap* _g1;
3931public:
3932  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3933  bool do_object_b(oop p) {
3934    if (p != NULL) {
3935      return true;
3936    }
3937    return false;
3938  }
3939};
3940
3941bool G1STWIsAliveClosure::do_object_b(oop p) {
3942  // An object is reachable if it is outside the collection set,
3943  // or is inside and copied.
3944  return !_g1->is_in_cset(p) || p->is_forwarded();
3945}
3946
3947// Non Copying Keep Alive closure
3948class G1KeepAliveClosure: public OopClosure {
3949  G1CollectedHeap* _g1;
3950public:
3951  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3952  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3953  void do_oop(oop* p) {
3954    oop obj = *p;
3955    assert(obj != NULL, "the caller should have filtered out NULL values");
3956
3957    const InCSetState cset_state = _g1->in_cset_state(obj);
3958    if (!cset_state.is_in_cset_or_humongous()) {
3959      return;
3960    }
3961    if (cset_state.is_in_cset()) {
3962      assert( obj->is_forwarded(), "invariant" );
3963      *p = obj->forwardee();
3964    } else {
3965      assert(!obj->is_forwarded(), "invariant" );
3966      assert(cset_state.is_humongous(),
3967             "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3968      _g1->set_humongous_is_live(obj);
3969    }
3970  }
3971};
3972
3973// Copying Keep Alive closure - can be called from both
3974// serial and parallel code as long as different worker
3975// threads utilize different G1ParScanThreadState instances
3976// and different queues.
3977
3978class G1CopyingKeepAliveClosure: public OopClosure {
3979  G1CollectedHeap*         _g1h;
3980  OopClosure*              _copy_non_heap_obj_cl;
3981  G1ParScanThreadState*    _par_scan_state;
3982
3983public:
3984  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3985                            OopClosure* non_heap_obj_cl,
3986                            G1ParScanThreadState* pss):
3987    _g1h(g1h),
3988    _copy_non_heap_obj_cl(non_heap_obj_cl),
3989    _par_scan_state(pss)
3990  {}
3991
3992  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3993  virtual void do_oop(      oop* p) { do_oop_work(p); }
3994
3995  template <class T> void do_oop_work(T* p) {
3996    oop obj = oopDesc::load_decode_heap_oop(p);
3997
3998    if (_g1h->is_in_cset_or_humongous(obj)) {
3999      // If the referent object has been forwarded (either copied
4000      // to a new location or to itself in the event of an
4001      // evacuation failure) then we need to update the reference
4002      // field and, if both reference and referent are in the G1
4003      // heap, update the RSet for the referent.
4004      //
4005      // If the referent has not been forwarded then we have to keep
4006      // it alive by policy. Therefore we have copy the referent.
4007      //
4008      // If the reference field is in the G1 heap then we can push
4009      // on the PSS queue. When the queue is drained (after each
4010      // phase of reference processing) the object and it's followers
4011      // will be copied, the reference field set to point to the
4012      // new location, and the RSet updated. Otherwise we need to
4013      // use the the non-heap or metadata closures directly to copy
4014      // the referent object and update the pointer, while avoiding
4015      // updating the RSet.
4016
4017      if (_g1h->is_in_g1_reserved(p)) {
4018        _par_scan_state->push_on_queue(p);
4019      } else {
4020        assert(!Metaspace::contains((const void*)p),
4021               "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4022        _copy_non_heap_obj_cl->do_oop(p);
4023      }
4024    }
4025  }
4026};
4027
4028// Serial drain queue closure. Called as the 'complete_gc'
4029// closure for each discovered list in some of the
4030// reference processing phases.
4031
4032class G1STWDrainQueueClosure: public VoidClosure {
4033protected:
4034  G1CollectedHeap* _g1h;
4035  G1ParScanThreadState* _par_scan_state;
4036
4037  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4038
4039public:
4040  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4041    _g1h(g1h),
4042    _par_scan_state(pss)
4043  { }
4044
4045  void do_void() {
4046    G1ParScanThreadState* const pss = par_scan_state();
4047    pss->trim_queue();
4048  }
4049};
4050
4051// Parallel Reference Processing closures
4052
4053// Implementation of AbstractRefProcTaskExecutor for parallel reference
4054// processing during G1 evacuation pauses.
4055
4056class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4057private:
4058  G1CollectedHeap*          _g1h;
4059  G1ParScanThreadStateSet*  _pss;
4060  RefToScanQueueSet*        _queues;
4061  WorkGang*                 _workers;
4062  uint                      _active_workers;
4063
4064public:
4065  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4066                           G1ParScanThreadStateSet* per_thread_states,
4067                           WorkGang* workers,
4068                           RefToScanQueueSet *task_queues,
4069                           uint n_workers) :
4070    _g1h(g1h),
4071    _pss(per_thread_states),
4072    _queues(task_queues),
4073    _workers(workers),
4074    _active_workers(n_workers)
4075  {
4076    g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4077  }
4078
4079  // Executes the given task using concurrent marking worker threads.
4080  virtual void execute(ProcessTask& task);
4081  virtual void execute(EnqueueTask& task);
4082};
4083
4084// Gang task for possibly parallel reference processing
4085
4086class G1STWRefProcTaskProxy: public AbstractGangTask {
4087  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4088  ProcessTask&     _proc_task;
4089  G1CollectedHeap* _g1h;
4090  G1ParScanThreadStateSet* _pss;
4091  RefToScanQueueSet* _task_queues;
4092  ParallelTaskTerminator* _terminator;
4093
4094public:
4095  G1STWRefProcTaskProxy(ProcessTask& proc_task,
4096                        G1CollectedHeap* g1h,
4097                        G1ParScanThreadStateSet* per_thread_states,
4098                        RefToScanQueueSet *task_queues,
4099                        ParallelTaskTerminator* terminator) :
4100    AbstractGangTask("Process reference objects in parallel"),
4101    _proc_task(proc_task),
4102    _g1h(g1h),
4103    _pss(per_thread_states),
4104    _task_queues(task_queues),
4105    _terminator(terminator)
4106  {}
4107
4108  virtual void work(uint worker_id) {
4109    // The reference processing task executed by a single worker.
4110    ResourceMark rm;
4111    HandleMark   hm;
4112
4113    G1STWIsAliveClosure is_alive(_g1h);
4114
4115    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4116    pss->set_ref_processor(NULL);
4117
4118    // Keep alive closure.
4119    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4120
4121    // Complete GC closure
4122    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4123
4124    // Call the reference processing task's work routine.
4125    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4126
4127    // Note we cannot assert that the refs array is empty here as not all
4128    // of the processing tasks (specifically phase2 - pp2_work) execute
4129    // the complete_gc closure (which ordinarily would drain the queue) so
4130    // the queue may not be empty.
4131  }
4132};
4133
4134// Driver routine for parallel reference processing.
4135// Creates an instance of the ref processing gang
4136// task and has the worker threads execute it.
4137void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4138  assert(_workers != NULL, "Need parallel worker threads.");
4139
4140  ParallelTaskTerminator terminator(_active_workers, _queues);
4141  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4142
4143  _workers->run_task(&proc_task_proxy);
4144}
4145
4146// Gang task for parallel reference enqueueing.
4147
4148class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4149  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4150  EnqueueTask& _enq_task;
4151
4152public:
4153  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4154    AbstractGangTask("Enqueue reference objects in parallel"),
4155    _enq_task(enq_task)
4156  { }
4157
4158  virtual void work(uint worker_id) {
4159    _enq_task.work(worker_id);
4160  }
4161};
4162
4163// Driver routine for parallel reference enqueueing.
4164// Creates an instance of the ref enqueueing gang
4165// task and has the worker threads execute it.
4166
4167void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4168  assert(_workers != NULL, "Need parallel worker threads.");
4169
4170  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4171
4172  _workers->run_task(&enq_task_proxy);
4173}
4174
4175// End of weak reference support closures
4176
4177// Abstract task used to preserve (i.e. copy) any referent objects
4178// that are in the collection set and are pointed to by reference
4179// objects discovered by the CM ref processor.
4180
4181class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4182protected:
4183  G1CollectedHeap*         _g1h;
4184  G1ParScanThreadStateSet* _pss;
4185  RefToScanQueueSet*       _queues;
4186  ParallelTaskTerminator   _terminator;
4187  uint                     _n_workers;
4188
4189public:
4190  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4191    AbstractGangTask("ParPreserveCMReferents"),
4192    _g1h(g1h),
4193    _pss(per_thread_states),
4194    _queues(task_queues),
4195    _terminator(workers, _queues),
4196    _n_workers(workers)
4197  {
4198    g1h->ref_processor_cm()->set_active_mt_degree(workers);
4199  }
4200
4201  void work(uint worker_id) {
4202    G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4203
4204    ResourceMark rm;
4205    HandleMark   hm;
4206
4207    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4208    pss->set_ref_processor(NULL);
4209    assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4210
4211    // Is alive closure
4212    G1AlwaysAliveClosure always_alive(_g1h);
4213
4214    // Copying keep alive closure. Applied to referent objects that need
4215    // to be copied.
4216    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4217
4218    ReferenceProcessor* rp = _g1h->ref_processor_cm();
4219
4220    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4221    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4222
4223    // limit is set using max_num_q() - which was set using ParallelGCThreads.
4224    // So this must be true - but assert just in case someone decides to
4225    // change the worker ids.
4226    assert(worker_id < limit, "sanity");
4227    assert(!rp->discovery_is_atomic(), "check this code");
4228
4229    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4230    for (uint idx = worker_id; idx < limit; idx += stride) {
4231      DiscoveredList& ref_list = rp->discovered_refs()[idx];
4232
4233      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4234      while (iter.has_next()) {
4235        // Since discovery is not atomic for the CM ref processor, we
4236        // can see some null referent objects.
4237        iter.load_ptrs(DEBUG_ONLY(true));
4238        oop ref = iter.obj();
4239
4240        // This will filter nulls.
4241        if (iter.is_referent_alive()) {
4242          iter.make_referent_alive();
4243        }
4244        iter.move_to_next();
4245      }
4246    }
4247
4248    // Drain the queue - which may cause stealing
4249    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4250    drain_queue.do_void();
4251    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4252    assert(pss->queue_is_empty(), "should be");
4253  }
4254};
4255
4256void G1CollectedHeap::process_weak_jni_handles() {
4257  double ref_proc_start = os::elapsedTime();
4258
4259  G1STWIsAliveClosure is_alive(this);
4260  G1KeepAliveClosure keep_alive(this);
4261  JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4262
4263  double ref_proc_time = os::elapsedTime() - ref_proc_start;
4264  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4265}
4266
4267void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4268  // Any reference objects, in the collection set, that were 'discovered'
4269  // by the CM ref processor should have already been copied (either by
4270  // applying the external root copy closure to the discovered lists, or
4271  // by following an RSet entry).
4272  //
4273  // But some of the referents, that are in the collection set, that these
4274  // reference objects point to may not have been copied: the STW ref
4275  // processor would have seen that the reference object had already
4276  // been 'discovered' and would have skipped discovering the reference,
4277  // but would not have treated the reference object as a regular oop.
4278  // As a result the copy closure would not have been applied to the
4279  // referent object.
4280  //
4281  // We need to explicitly copy these referent objects - the references
4282  // will be processed at the end of remarking.
4283  //
4284  // We also need to do this copying before we process the reference
4285  // objects discovered by the STW ref processor in case one of these
4286  // referents points to another object which is also referenced by an
4287  // object discovered by the STW ref processor.
4288  double preserve_cm_referents_time = 0.0;
4289
4290  // To avoid spawning task when there is no work to do, check that
4291  // a concurrent cycle is active and that some references have been
4292  // discovered.
4293  if (concurrent_mark()->cmThread()->during_cycle() &&
4294      ref_processor_cm()->has_discovered_references()) {
4295    double preserve_cm_referents_start = os::elapsedTime();
4296    uint no_of_gc_workers = workers()->active_workers();
4297    G1ParPreserveCMReferentsTask keep_cm_referents(this,
4298                                                   per_thread_states,
4299                                                   no_of_gc_workers,
4300                                                   _task_queues);
4301    workers()->run_task(&keep_cm_referents);
4302    preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4303  }
4304
4305  g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4306}
4307
4308// Weak Reference processing during an evacuation pause (part 1).
4309void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4310  double ref_proc_start = os::elapsedTime();
4311
4312  ReferenceProcessor* rp = _ref_processor_stw;
4313  assert(rp->discovery_enabled(), "should have been enabled");
4314
4315  // Closure to test whether a referent is alive.
4316  G1STWIsAliveClosure is_alive(this);
4317
4318  // Even when parallel reference processing is enabled, the processing
4319  // of JNI refs is serial and performed serially by the current thread
4320  // rather than by a worker. The following PSS will be used for processing
4321  // JNI refs.
4322
4323  // Use only a single queue for this PSS.
4324  G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4325  pss->set_ref_processor(NULL);
4326  assert(pss->queue_is_empty(), "pre-condition");
4327
4328  // Keep alive closure.
4329  G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4330
4331  // Serial Complete GC closure
4332  G1STWDrainQueueClosure drain_queue(this, pss);
4333
4334  // Setup the soft refs policy...
4335  rp->setup_policy(false);
4336
4337  ReferenceProcessorStats stats;
4338  if (!rp->processing_is_mt()) {
4339    // Serial reference processing...
4340    stats = rp->process_discovered_references(&is_alive,
4341                                              &keep_alive,
4342                                              &drain_queue,
4343                                              NULL,
4344                                              _gc_timer_stw);
4345  } else {
4346    uint no_of_gc_workers = workers()->active_workers();
4347
4348    // Parallel reference processing
4349    assert(no_of_gc_workers <= rp->max_num_q(),
4350           "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4351           no_of_gc_workers,  rp->max_num_q());
4352
4353    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4354    stats = rp->process_discovered_references(&is_alive,
4355                                              &keep_alive,
4356                                              &drain_queue,
4357                                              &par_task_executor,
4358                                              _gc_timer_stw);
4359  }
4360
4361  _gc_tracer_stw->report_gc_reference_stats(stats);
4362
4363  // We have completed copying any necessary live referent objects.
4364  assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4365
4366  double ref_proc_time = os::elapsedTime() - ref_proc_start;
4367  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4368}
4369
4370// Weak Reference processing during an evacuation pause (part 2).
4371void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4372  double ref_enq_start = os::elapsedTime();
4373
4374  ReferenceProcessor* rp = _ref_processor_stw;
4375  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4376
4377  // Now enqueue any remaining on the discovered lists on to
4378  // the pending list.
4379  if (!rp->processing_is_mt()) {
4380    // Serial reference processing...
4381    rp->enqueue_discovered_references();
4382  } else {
4383    // Parallel reference enqueueing
4384
4385    uint n_workers = workers()->active_workers();
4386
4387    assert(n_workers <= rp->max_num_q(),
4388           "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4389           n_workers,  rp->max_num_q());
4390
4391    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4392    rp->enqueue_discovered_references(&par_task_executor);
4393  }
4394
4395  rp->verify_no_references_recorded();
4396  assert(!rp->discovery_enabled(), "should have been disabled");
4397
4398  // FIXME
4399  // CM's reference processing also cleans up the string and symbol tables.
4400  // Should we do that here also? We could, but it is a serial operation
4401  // and could significantly increase the pause time.
4402
4403  double ref_enq_time = os::elapsedTime() - ref_enq_start;
4404  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4405}
4406
4407void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4408  double merge_pss_time_start = os::elapsedTime();
4409  per_thread_states->flush();
4410  g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4411}
4412
4413void G1CollectedHeap::pre_evacuate_collection_set() {
4414  _expand_heap_after_alloc_failure = true;
4415  _evacuation_failed = false;
4416
4417  // Disable the hot card cache.
4418  _hot_card_cache->reset_hot_cache_claimed_index();
4419  _hot_card_cache->set_use_cache(false);
4420
4421  g1_rem_set()->prepare_for_oops_into_collection_set_do();
4422  _preserved_marks_set.assert_empty();
4423
4424  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4425
4426  // InitialMark needs claim bits to keep track of the marked-through CLDs.
4427  if (collector_state()->during_initial_mark_pause()) {
4428    double start_clear_claimed_marks = os::elapsedTime();
4429
4430    ClassLoaderDataGraph::clear_claimed_marks();
4431
4432    double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4433    phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4434  }
4435}
4436
4437void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4438  // Should G1EvacuationFailureALot be in effect for this GC?
4439  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4440
4441  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4442
4443  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4444
4445  double start_par_time_sec = os::elapsedTime();
4446  double end_par_time_sec;
4447
4448  {
4449    const uint n_workers = workers()->active_workers();
4450    G1RootProcessor root_processor(this, n_workers);
4451    G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4452
4453    print_termination_stats_hdr();
4454
4455    workers()->run_task(&g1_par_task);
4456    end_par_time_sec = os::elapsedTime();
4457
4458    // Closing the inner scope will execute the destructor
4459    // for the G1RootProcessor object. We record the current
4460    // elapsed time before closing the scope so that time
4461    // taken for the destructor is NOT included in the
4462    // reported parallel time.
4463  }
4464
4465  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4466  phase_times->record_par_time(par_time_ms);
4467
4468  double code_root_fixup_time_ms =
4469        (os::elapsedTime() - end_par_time_sec) * 1000.0;
4470  phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4471}
4472
4473void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4474  // Process any discovered reference objects - we have
4475  // to do this _before_ we retire the GC alloc regions
4476  // as we may have to copy some 'reachable' referent
4477  // objects (and their reachable sub-graphs) that were
4478  // not copied during the pause.
4479  if (g1_policy()->should_process_references()) {
4480    preserve_cm_referents(per_thread_states);
4481    process_discovered_references(per_thread_states);
4482  } else {
4483    ref_processor_stw()->verify_no_references_recorded();
4484    process_weak_jni_handles();
4485  }
4486
4487  if (G1StringDedup::is_enabled()) {
4488    double fixup_start = os::elapsedTime();
4489
4490    G1STWIsAliveClosure is_alive(this);
4491    G1KeepAliveClosure keep_alive(this);
4492    G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4493
4494    double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4495    g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4496  }
4497
4498  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4499
4500  if (evacuation_failed()) {
4501    restore_after_evac_failure();
4502
4503    // Reset the G1EvacuationFailureALot counters and flags
4504    // Note: the values are reset only when an actual
4505    // evacuation failure occurs.
4506    NOT_PRODUCT(reset_evacuation_should_fail();)
4507  }
4508
4509  _preserved_marks_set.assert_empty();
4510
4511  // Enqueue any remaining references remaining on the STW
4512  // reference processor's discovered lists. We need to do
4513  // this after the card table is cleaned (and verified) as
4514  // the act of enqueueing entries on to the pending list
4515  // will log these updates (and dirty their associated
4516  // cards). We need these updates logged to update any
4517  // RSets.
4518  if (g1_policy()->should_process_references()) {
4519    enqueue_discovered_references(per_thread_states);
4520  } else {
4521    g1_policy()->phase_times()->record_ref_enq_time(0);
4522  }
4523
4524  _allocator->release_gc_alloc_regions(evacuation_info);
4525
4526  merge_per_thread_state_info(per_thread_states);
4527
4528  // Reset and re-enable the hot card cache.
4529  // Note the counts for the cards in the regions in the
4530  // collection set are reset when the collection set is freed.
4531  _hot_card_cache->reset_hot_cache();
4532  _hot_card_cache->set_use_cache(true);
4533
4534  purge_code_root_memory();
4535
4536  redirty_logged_cards();
4537#if defined(COMPILER2) || INCLUDE_JVMCI
4538  double start = os::elapsedTime();
4539  DerivedPointerTable::update_pointers();
4540  g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4541#endif
4542  g1_policy()->print_age_table();
4543}
4544
4545void G1CollectedHeap::record_obj_copy_mem_stats() {
4546  g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4547
4548  _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4549                                               create_g1_evac_summary(&_old_evac_stats));
4550}
4551
4552void G1CollectedHeap::free_region(HeapRegion* hr,
4553                                  FreeRegionList* free_list,
4554                                  bool skip_remset,
4555                                  bool skip_hot_card_cache,
4556                                  bool locked) {
4557  assert(!hr->is_free(), "the region should not be free");
4558  assert(!hr->is_empty(), "the region should not be empty");
4559  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4560  assert(free_list != NULL, "pre-condition");
4561
4562  if (G1VerifyBitmaps) {
4563    MemRegion mr(hr->bottom(), hr->end());
4564    concurrent_mark()->clearRangePrevBitmap(mr);
4565  }
4566
4567  // Clear the card counts for this region.
4568  // Note: we only need to do this if the region is not young
4569  // (since we don't refine cards in young regions).
4570  if (!skip_hot_card_cache && !hr->is_young()) {
4571    _hot_card_cache->reset_card_counts(hr);
4572  }
4573  hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4574  free_list->add_ordered(hr);
4575}
4576
4577void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4578                                            FreeRegionList* free_list,
4579                                            bool skip_remset) {
4580  assert(hr->is_humongous(), "this is only for humongous regions");
4581  assert(free_list != NULL, "pre-condition");
4582  hr->clear_humongous();
4583  free_region(hr, free_list, skip_remset);
4584}
4585
4586void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4587                                           const uint humongous_regions_removed) {
4588  if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4589    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4590    _old_set.bulk_remove(old_regions_removed);
4591    _humongous_set.bulk_remove(humongous_regions_removed);
4592  }
4593
4594}
4595
4596void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4597  assert(list != NULL, "list can't be null");
4598  if (!list->is_empty()) {
4599    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4600    _hrm.insert_list_into_free_list(list);
4601  }
4602}
4603
4604void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4605  decrease_used(bytes);
4606}
4607
4608class G1ParScrubRemSetTask: public AbstractGangTask {
4609protected:
4610  G1RemSet* _g1rs;
4611  HeapRegionClaimer _hrclaimer;
4612
4613public:
4614  G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4615    AbstractGangTask("G1 ScrubRS"),
4616    _g1rs(g1_rs),
4617    _hrclaimer(num_workers) {
4618  }
4619
4620  void work(uint worker_id) {
4621    _g1rs->scrub(worker_id, &_hrclaimer);
4622  }
4623};
4624
4625void G1CollectedHeap::scrub_rem_set() {
4626  uint num_workers = workers()->active_workers();
4627  G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4628  workers()->run_task(&g1_par_scrub_rs_task);
4629}
4630
4631class G1FreeCollectionSetTask : public AbstractGangTask {
4632private:
4633
4634  // Closure applied to all regions in the collection set to do work that needs to
4635  // be done serially in a single thread.
4636  class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4637  private:
4638    EvacuationInfo* _evacuation_info;
4639    const size_t* _surviving_young_words;
4640
4641    // Bytes used in successfully evacuated regions before the evacuation.
4642    size_t _before_used_bytes;
4643    // Bytes used in unsucessfully evacuated regions before the evacuation
4644    size_t _after_used_bytes;
4645
4646    size_t _bytes_allocated_in_old_since_last_gc;
4647
4648    size_t _failure_used_words;
4649    size_t _failure_waste_words;
4650
4651    FreeRegionList _local_free_list;
4652  public:
4653    G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4654      HeapRegionClosure(),
4655      _evacuation_info(evacuation_info),
4656      _surviving_young_words(surviving_young_words),
4657      _before_used_bytes(0),
4658      _after_used_bytes(0),
4659      _bytes_allocated_in_old_since_last_gc(0),
4660      _failure_used_words(0),
4661      _failure_waste_words(0),
4662      _local_free_list("Local Region List for CSet Freeing") {
4663    }
4664
4665    virtual bool doHeapRegion(HeapRegion* r) {
4666      G1CollectedHeap* g1h = G1CollectedHeap::heap();
4667
4668      assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4669      g1h->clear_in_cset(r);
4670
4671      if (r->is_young()) {
4672        assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4673               "Young index %d is wrong for region %u of type %s with %u young regions",
4674               r->young_index_in_cset(),
4675               r->hrm_index(),
4676               r->get_type_str(),
4677               g1h->collection_set()->young_region_length());
4678        size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4679        r->record_surv_words_in_group(words_survived);
4680      }
4681
4682      if (!r->evacuation_failed()) {
4683        assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4684        _before_used_bytes += r->used();
4685        g1h->free_region(r,
4686                         &_local_free_list,
4687                         true, /* skip_remset */
4688                         true, /* skip_hot_card_cache */
4689                         true  /* locked */);
4690      } else {
4691        r->uninstall_surv_rate_group();
4692        r->set_young_index_in_cset(-1);
4693        r->set_evacuation_failed(false);
4694        // When moving a young gen region to old gen, we "allocate" that whole region
4695        // there. This is in addition to any already evacuated objects. Notify the
4696        // policy about that.
4697        // Old gen regions do not cause an additional allocation: both the objects
4698        // still in the region and the ones already moved are accounted for elsewhere.
4699        if (r->is_young()) {
4700          _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4701        }
4702        // The region is now considered to be old.
4703        r->set_old();
4704        // Do some allocation statistics accounting. Regions that failed evacuation
4705        // are always made old, so there is no need to update anything in the young
4706        // gen statistics, but we need to update old gen statistics.
4707        size_t used_words = r->marked_bytes() / HeapWordSize;
4708
4709        _failure_used_words += used_words;
4710        _failure_waste_words += HeapRegion::GrainWords - used_words;
4711
4712        g1h->old_set_add(r);
4713        _after_used_bytes += r->used();
4714      }
4715      return false;
4716    }
4717
4718    void complete_work() {
4719      G1CollectedHeap* g1h = G1CollectedHeap::heap();
4720
4721      _evacuation_info->set_regions_freed(_local_free_list.length());
4722      _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4723
4724      g1h->prepend_to_freelist(&_local_free_list);
4725      g1h->decrement_summary_bytes(_before_used_bytes);
4726
4727      G1Policy* policy = g1h->g1_policy();
4728      policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4729
4730      g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4731    }
4732  };
4733
4734  G1CollectionSet* _collection_set;
4735  G1SerialFreeCollectionSetClosure _cl;
4736  const size_t* _surviving_young_words;
4737
4738  size_t _rs_lengths;
4739
4740  volatile jint _serial_work_claim;
4741
4742  struct WorkItem {
4743    uint region_idx;
4744    bool is_young;
4745    bool evacuation_failed;
4746
4747    WorkItem(HeapRegion* r) {
4748      region_idx = r->hrm_index();
4749      is_young = r->is_young();
4750      evacuation_failed = r->evacuation_failed();
4751    }
4752  };
4753
4754  volatile size_t _parallel_work_claim;
4755  size_t _num_work_items;
4756  WorkItem* _work_items;
4757
4758  void do_serial_work() {
4759    // Need to grab the lock to be allowed to modify the old region list.
4760    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4761    _collection_set->iterate(&_cl);
4762  }
4763
4764  void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4765    G1CollectedHeap* g1h = G1CollectedHeap::heap();
4766
4767    HeapRegion* r = g1h->region_at(region_idx);
4768    assert(!g1h->is_on_master_free_list(r), "sanity");
4769
4770    Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4771
4772    if (!is_young) {
4773      g1h->_hot_card_cache->reset_card_counts(r);
4774    }
4775
4776    if (!evacuation_failed) {
4777      r->rem_set()->clear_locked();
4778    }
4779  }
4780
4781  class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4782  private:
4783    size_t _cur_idx;
4784    WorkItem* _work_items;
4785  public:
4786    G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4787
4788    virtual bool doHeapRegion(HeapRegion* r) {
4789      _work_items[_cur_idx++] = WorkItem(r);
4790      return false;
4791    }
4792  };
4793
4794  void prepare_work() {
4795    G1PrepareFreeCollectionSetClosure cl(_work_items);
4796    _collection_set->iterate(&cl);
4797  }
4798
4799  void complete_work() {
4800    _cl.complete_work();
4801
4802    G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4803    policy->record_max_rs_lengths(_rs_lengths);
4804    policy->cset_regions_freed();
4805  }
4806public:
4807  G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4808    AbstractGangTask("G1 Free Collection Set"),
4809    _cl(evacuation_info, surviving_young_words),
4810    _collection_set(collection_set),
4811    _surviving_young_words(surviving_young_words),
4812    _serial_work_claim(0),
4813    _rs_lengths(0),
4814    _parallel_work_claim(0),
4815    _num_work_items(collection_set->region_length()),
4816    _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4817    prepare_work();
4818  }
4819
4820  ~G1FreeCollectionSetTask() {
4821    complete_work();
4822    FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4823  }
4824
4825  // Chunk size for work distribution. The chosen value has been determined experimentally
4826  // to be a good tradeoff between overhead and achievable parallelism.
4827  static uint chunk_size() { return 32; }
4828
4829  virtual void work(uint worker_id) {
4830    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4831
4832    // Claim serial work.
4833    if (_serial_work_claim == 0) {
4834      jint value = Atomic::add(1, &_serial_work_claim) - 1;
4835      if (value == 0) {
4836        double serial_time = os::elapsedTime();
4837        do_serial_work();
4838        timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4839      }
4840    }
4841
4842    // Start parallel work.
4843    double young_time = 0.0;
4844    bool has_young_time = false;
4845    double non_young_time = 0.0;
4846    bool has_non_young_time = false;
4847
4848    while (true) {
4849      size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4850      size_t cur = end - chunk_size();
4851
4852      if (cur >= _num_work_items) {
4853        break;
4854      }
4855
4856      double start_time = os::elapsedTime();
4857
4858      end = MIN2(end, _num_work_items);
4859
4860      for (; cur < end; cur++) {
4861        bool is_young = _work_items[cur].is_young;
4862
4863        do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4864
4865        double end_time = os::elapsedTime();
4866        double time_taken = end_time - start_time;
4867        if (is_young) {
4868          young_time += time_taken;
4869          has_young_time = true;
4870        } else {
4871          non_young_time += time_taken;
4872          has_non_young_time = true;
4873        }
4874        start_time = end_time;
4875      }
4876    }
4877
4878    if (has_young_time) {
4879      timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4880    }
4881    if (has_non_young_time) {
4882      timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4883    }
4884  }
4885};
4886
4887void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4888  _eden.clear();
4889
4890  double free_cset_start_time = os::elapsedTime();
4891
4892  {
4893    uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4894    uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4895
4896    G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4897
4898    log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4899                        cl.name(),
4900                        num_workers,
4901                        _collection_set.region_length());
4902    workers()->run_task(&cl, num_workers);
4903  }
4904  g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4905
4906  collection_set->clear();
4907}
4908
4909class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4910 private:
4911  FreeRegionList* _free_region_list;
4912  HeapRegionSet* _proxy_set;
4913  uint _humongous_objects_reclaimed;
4914  uint _humongous_regions_reclaimed;
4915  size_t _freed_bytes;
4916 public:
4917
4918  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4919    _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4920  }
4921
4922  virtual bool doHeapRegion(HeapRegion* r) {
4923    if (!r->is_starts_humongous()) {
4924      return false;
4925    }
4926
4927    G1CollectedHeap* g1h = G1CollectedHeap::heap();
4928
4929    oop obj = (oop)r->bottom();
4930    G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4931
4932    // The following checks whether the humongous object is live are sufficient.
4933    // The main additional check (in addition to having a reference from the roots
4934    // or the young gen) is whether the humongous object has a remembered set entry.
4935    //
4936    // A humongous object cannot be live if there is no remembered set for it
4937    // because:
4938    // - there can be no references from within humongous starts regions referencing
4939    // the object because we never allocate other objects into them.
4940    // (I.e. there are no intra-region references that may be missed by the
4941    // remembered set)
4942    // - as soon there is a remembered set entry to the humongous starts region
4943    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4944    // until the end of a concurrent mark.
4945    //
4946    // It is not required to check whether the object has been found dead by marking
4947    // or not, in fact it would prevent reclamation within a concurrent cycle, as
4948    // all objects allocated during that time are considered live.
4949    // SATB marking is even more conservative than the remembered set.
4950    // So if at this point in the collection there is no remembered set entry,
4951    // nobody has a reference to it.
4952    // At the start of collection we flush all refinement logs, and remembered sets
4953    // are completely up-to-date wrt to references to the humongous object.
4954    //
4955    // Other implementation considerations:
4956    // - never consider object arrays at this time because they would pose
4957    // considerable effort for cleaning up the the remembered sets. This is
4958    // required because stale remembered sets might reference locations that
4959    // are currently allocated into.
4960    uint region_idx = r->hrm_index();
4961    if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4962        !r->rem_set()->is_empty()) {
4963      log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4964                               region_idx,
4965                               (size_t)obj->size() * HeapWordSize,
4966                               p2i(r->bottom()),
4967                               r->rem_set()->occupied(),
4968                               r->rem_set()->strong_code_roots_list_length(),
4969                               next_bitmap->isMarked(r->bottom()),
4970                               g1h->is_humongous_reclaim_candidate(region_idx),
4971                               obj->is_typeArray()
4972                              );
4973      return false;
4974    }
4975
4976    guarantee(obj->is_typeArray(),
4977              "Only eagerly reclaiming type arrays is supported, but the object "
4978              PTR_FORMAT " is not.", p2i(r->bottom()));
4979
4980    log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4981                             region_idx,
4982                             (size_t)obj->size() * HeapWordSize,
4983                             p2i(r->bottom()),
4984                             r->rem_set()->occupied(),
4985                             r->rem_set()->strong_code_roots_list_length(),
4986                             next_bitmap->isMarked(r->bottom()),
4987                             g1h->is_humongous_reclaim_candidate(region_idx),
4988                             obj->is_typeArray()
4989                            );
4990
4991    // Need to clear mark bit of the humongous object if already set.
4992    if (next_bitmap->isMarked(r->bottom())) {
4993      next_bitmap->clear(r->bottom());
4994    }
4995    _humongous_objects_reclaimed++;
4996    do {
4997      HeapRegion* next = g1h->next_region_in_humongous(r);
4998      _freed_bytes += r->used();
4999      r->set_containing_set(NULL);
5000      _humongous_regions_reclaimed++;
5001      g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5002      r = next;
5003    } while (r != NULL);
5004
5005    return false;
5006  }
5007
5008  uint humongous_objects_reclaimed() {
5009    return _humongous_objects_reclaimed;
5010  }
5011
5012  uint humongous_regions_reclaimed() {
5013    return _humongous_regions_reclaimed;
5014  }
5015
5016  size_t bytes_freed() const {
5017    return _freed_bytes;
5018  }
5019};
5020
5021void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5022  assert_at_safepoint(true);
5023
5024  if (!G1EagerReclaimHumongousObjects ||
5025      (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5026    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5027    return;
5028  }
5029
5030  double start_time = os::elapsedTime();
5031
5032  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5033
5034  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5035  heap_region_iterate(&cl);
5036
5037  remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5038
5039  G1HRPrinter* hrp = hr_printer();
5040  if (hrp->is_active()) {
5041    FreeRegionListIterator iter(&local_cleanup_list);
5042    while (iter.more_available()) {
5043      HeapRegion* hr = iter.get_next();
5044      hrp->cleanup(hr);
5045    }
5046  }
5047
5048  prepend_to_freelist(&local_cleanup_list);
5049  decrement_summary_bytes(cl.bytes_freed());
5050
5051  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5052                                                                    cl.humongous_objects_reclaimed());
5053}
5054
5055class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5056public:
5057  virtual bool doHeapRegion(HeapRegion* r) {
5058    assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5059    G1CollectedHeap::heap()->clear_in_cset(r);
5060    r->set_young_index_in_cset(-1);
5061    return false;
5062  }
5063};
5064
5065void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5066  G1AbandonCollectionSetClosure cl;
5067  collection_set->iterate(&cl);
5068
5069  collection_set->clear();
5070  collection_set->stop_incremental_building();
5071}
5072
5073void G1CollectedHeap::set_free_regions_coming() {
5074  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5075
5076  assert(!free_regions_coming(), "pre-condition");
5077  _free_regions_coming = true;
5078}
5079
5080void G1CollectedHeap::reset_free_regions_coming() {
5081  assert(free_regions_coming(), "pre-condition");
5082
5083  {
5084    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5085    _free_regions_coming = false;
5086    SecondaryFreeList_lock->notify_all();
5087  }
5088
5089  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5090}
5091
5092void G1CollectedHeap::wait_while_free_regions_coming() {
5093  // Most of the time we won't have to wait, so let's do a quick test
5094  // first before we take the lock.
5095  if (!free_regions_coming()) {
5096    return;
5097  }
5098
5099  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5100
5101  {
5102    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5103    while (free_regions_coming()) {
5104      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5105    }
5106  }
5107
5108  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5109}
5110
5111bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5112  return _allocator->is_retained_old_region(hr);
5113}
5114
5115void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5116  _eden.add(hr);
5117  _g1_policy->set_region_eden(hr);
5118}
5119
5120#ifdef ASSERT
5121
5122class NoYoungRegionsClosure: public HeapRegionClosure {
5123private:
5124  bool _success;
5125public:
5126  NoYoungRegionsClosure() : _success(true) { }
5127  bool doHeapRegion(HeapRegion* r) {
5128    if (r->is_young()) {
5129      log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5130                            p2i(r->bottom()), p2i(r->end()));
5131      _success = false;
5132    }
5133    return false;
5134  }
5135  bool success() { return _success; }
5136};
5137
5138bool G1CollectedHeap::check_young_list_empty() {
5139  bool ret = (young_regions_count() == 0);
5140
5141  NoYoungRegionsClosure closure;
5142  heap_region_iterate(&closure);
5143  ret = ret && closure.success();
5144
5145  return ret;
5146}
5147
5148#endif // ASSERT
5149
5150class TearDownRegionSetsClosure : public HeapRegionClosure {
5151private:
5152  HeapRegionSet *_old_set;
5153
5154public:
5155  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5156
5157  bool doHeapRegion(HeapRegion* r) {
5158    if (r->is_old()) {
5159      _old_set->remove(r);
5160    } else if(r->is_young()) {
5161      r->uninstall_surv_rate_group();
5162    } else {
5163      // We ignore free regions, we'll empty the free list afterwards.
5164      // We ignore humongous regions, we're not tearing down the
5165      // humongous regions set.
5166      assert(r->is_free() || r->is_humongous(),
5167             "it cannot be another type");
5168    }
5169    return false;
5170  }
5171
5172  ~TearDownRegionSetsClosure() {
5173    assert(_old_set->is_empty(), "post-condition");
5174  }
5175};
5176
5177void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5178  assert_at_safepoint(true /* should_be_vm_thread */);
5179
5180  if (!free_list_only) {
5181    TearDownRegionSetsClosure cl(&_old_set);
5182    heap_region_iterate(&cl);
5183
5184    // Note that emptying the _young_list is postponed and instead done as
5185    // the first step when rebuilding the regions sets again. The reason for
5186    // this is that during a full GC string deduplication needs to know if
5187    // a collected region was young or old when the full GC was initiated.
5188  }
5189  _hrm.remove_all_free_regions();
5190}
5191
5192void G1CollectedHeap::increase_used(size_t bytes) {
5193  _summary_bytes_used += bytes;
5194}
5195
5196void G1CollectedHeap::decrease_used(size_t bytes) {
5197  assert(_summary_bytes_used >= bytes,
5198         "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5199         _summary_bytes_used, bytes);
5200  _summary_bytes_used -= bytes;
5201}
5202
5203void G1CollectedHeap::set_used(size_t bytes) {
5204  _summary_bytes_used = bytes;
5205}
5206
5207class RebuildRegionSetsClosure : public HeapRegionClosure {
5208private:
5209  bool            _free_list_only;
5210  HeapRegionSet*   _old_set;
5211  HeapRegionManager*   _hrm;
5212  size_t          _total_used;
5213
5214public:
5215  RebuildRegionSetsClosure(bool free_list_only,
5216                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
5217    _free_list_only(free_list_only),
5218    _old_set(old_set), _hrm(hrm), _total_used(0) {
5219    assert(_hrm->num_free_regions() == 0, "pre-condition");
5220    if (!free_list_only) {
5221      assert(_old_set->is_empty(), "pre-condition");
5222    }
5223  }
5224
5225  bool doHeapRegion(HeapRegion* r) {
5226    if (r->is_empty()) {
5227      // Add free regions to the free list
5228      r->set_free();
5229      r->set_allocation_context(AllocationContext::system());
5230      _hrm->insert_into_free_list(r);
5231    } else if (!_free_list_only) {
5232
5233      if (r->is_humongous()) {
5234        // We ignore humongous regions. We left the humongous set unchanged.
5235      } else {
5236        assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5237        // We now consider all regions old, so register as such. Leave
5238        // archive regions set that way, however, while still adding
5239        // them to the old set.
5240        if (!r->is_archive()) {
5241          r->set_old();
5242        }
5243        _old_set->add(r);
5244      }
5245      _total_used += r->used();
5246    }
5247
5248    return false;
5249  }
5250
5251  size_t total_used() {
5252    return _total_used;
5253  }
5254};
5255
5256void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5257  assert_at_safepoint(true /* should_be_vm_thread */);
5258
5259  if (!free_list_only) {
5260    _eden.clear();
5261    _survivor.clear();
5262  }
5263
5264  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5265  heap_region_iterate(&cl);
5266
5267  if (!free_list_only) {
5268    set_used(cl.total_used());
5269    if (_archive_allocator != NULL) {
5270      _archive_allocator->clear_used();
5271    }
5272  }
5273  assert(used_unlocked() == recalculate_used(),
5274         "inconsistent used_unlocked(), "
5275         "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5276         used_unlocked(), recalculate_used());
5277}
5278
5279void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5280  _refine_cte_cl->set_concurrent(concurrent);
5281}
5282
5283bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5284  HeapRegion* hr = heap_region_containing(p);
5285  return hr->is_in(p);
5286}
5287
5288// Methods for the mutator alloc region
5289
5290HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5291                                                      bool force) {
5292  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5293  bool should_allocate = g1_policy()->should_allocate_mutator_region();
5294  if (force || should_allocate) {
5295    HeapRegion* new_alloc_region = new_region(word_size,
5296                                              false /* is_old */,
5297                                              false /* do_expand */);
5298    if (new_alloc_region != NULL) {
5299      set_region_short_lived_locked(new_alloc_region);
5300      _hr_printer.alloc(new_alloc_region, !should_allocate);
5301      _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5302      return new_alloc_region;
5303    }
5304  }
5305  return NULL;
5306}
5307
5308void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5309                                                  size_t allocated_bytes) {
5310  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5311  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5312
5313  collection_set()->add_eden_region(alloc_region);
5314  increase_used(allocated_bytes);
5315  _hr_printer.retire(alloc_region);
5316  // We update the eden sizes here, when the region is retired,
5317  // instead of when it's allocated, since this is the point that its
5318  // used space has been recored in _summary_bytes_used.
5319  g1mm()->update_eden_size();
5320}
5321
5322// Methods for the GC alloc regions
5323
5324bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5325  if (dest.is_old()) {
5326    return true;
5327  } else {
5328    return survivor_regions_count() < g1_policy()->max_survivor_regions();
5329  }
5330}
5331
5332HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5333  assert(FreeList_lock->owned_by_self(), "pre-condition");
5334
5335  if (!has_more_regions(dest)) {
5336    return NULL;
5337  }
5338
5339  const bool is_survivor = dest.is_young();
5340
5341  HeapRegion* new_alloc_region = new_region(word_size,
5342                                            !is_survivor,
5343                                            true /* do_expand */);
5344  if (new_alloc_region != NULL) {
5345    // We really only need to do this for old regions given that we
5346    // should never scan survivors. But it doesn't hurt to do it
5347    // for survivors too.
5348    new_alloc_region->record_timestamp();
5349    if (is_survivor) {
5350      new_alloc_region->set_survivor();
5351      _survivor.add(new_alloc_region);
5352      _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5353    } else {
5354      new_alloc_region->set_old();
5355      _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5356    }
5357    _hr_printer.alloc(new_alloc_region);
5358    bool during_im = collector_state()->during_initial_mark_pause();
5359    new_alloc_region->note_start_of_copying(during_im);
5360    return new_alloc_region;
5361  }
5362  return NULL;
5363}
5364
5365void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5366                                             size_t allocated_bytes,
5367                                             InCSetState dest) {
5368  bool during_im = collector_state()->during_initial_mark_pause();
5369  alloc_region->note_end_of_copying(during_im);
5370  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5371  if (dest.is_old()) {
5372    _old_set.add(alloc_region);
5373  }
5374  _hr_printer.retire(alloc_region);
5375}
5376
5377HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5378  bool expanded = false;
5379  uint index = _hrm.find_highest_free(&expanded);
5380
5381  if (index != G1_NO_HRM_INDEX) {
5382    if (expanded) {
5383      log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5384                                HeapRegion::GrainWords * HeapWordSize);
5385    }
5386    _hrm.allocate_free_regions_starting_at(index, 1);
5387    return region_at(index);
5388  }
5389  return NULL;
5390}
5391
5392// Optimized nmethod scanning
5393
5394class RegisterNMethodOopClosure: public OopClosure {
5395  G1CollectedHeap* _g1h;
5396  nmethod* _nm;
5397
5398  template <class T> void do_oop_work(T* p) {
5399    T heap_oop = oopDesc::load_heap_oop(p);
5400    if (!oopDesc::is_null(heap_oop)) {
5401      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5402      HeapRegion* hr = _g1h->heap_region_containing(obj);
5403      assert(!hr->is_continues_humongous(),
5404             "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5405             " starting at " HR_FORMAT,
5406             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5407
5408      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5409      hr->add_strong_code_root_locked(_nm);
5410    }
5411  }
5412
5413public:
5414  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5415    _g1h(g1h), _nm(nm) {}
5416
5417  void do_oop(oop* p)       { do_oop_work(p); }
5418  void do_oop(narrowOop* p) { do_oop_work(p); }
5419};
5420
5421class UnregisterNMethodOopClosure: public OopClosure {
5422  G1CollectedHeap* _g1h;
5423  nmethod* _nm;
5424
5425  template <class T> void do_oop_work(T* p) {
5426    T heap_oop = oopDesc::load_heap_oop(p);
5427    if (!oopDesc::is_null(heap_oop)) {
5428      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5429      HeapRegion* hr = _g1h->heap_region_containing(obj);
5430      assert(!hr->is_continues_humongous(),
5431             "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5432             " starting at " HR_FORMAT,
5433             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5434
5435      hr->remove_strong_code_root(_nm);
5436    }
5437  }
5438
5439public:
5440  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5441    _g1h(g1h), _nm(nm) {}
5442
5443  void do_oop(oop* p)       { do_oop_work(p); }
5444  void do_oop(narrowOop* p) { do_oop_work(p); }
5445};
5446
5447void G1CollectedHeap::register_nmethod(nmethod* nm) {
5448  CollectedHeap::register_nmethod(nm);
5449
5450  guarantee(nm != NULL, "sanity");
5451  RegisterNMethodOopClosure reg_cl(this, nm);
5452  nm->oops_do(&reg_cl);
5453}
5454
5455void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5456  CollectedHeap::unregister_nmethod(nm);
5457
5458  guarantee(nm != NULL, "sanity");
5459  UnregisterNMethodOopClosure reg_cl(this, nm);
5460  nm->oops_do(&reg_cl, true);
5461}
5462
5463void G1CollectedHeap::purge_code_root_memory() {
5464  double purge_start = os::elapsedTime();
5465  G1CodeRootSet::purge();
5466  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5467  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5468}
5469
5470class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5471  G1CollectedHeap* _g1h;
5472
5473public:
5474  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5475    _g1h(g1h) {}
5476
5477  void do_code_blob(CodeBlob* cb) {
5478    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5479    if (nm == NULL) {
5480      return;
5481    }
5482
5483    if (ScavengeRootsInCode) {
5484      _g1h->register_nmethod(nm);
5485    }
5486  }
5487};
5488
5489void G1CollectedHeap::rebuild_strong_code_roots() {
5490  RebuildStrongCodeRootClosure blob_cl(this);
5491  CodeCache::blobs_do(&blob_cl);
5492}
5493