1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/metadataOnStackMark.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "code/codeCache.hpp"
30#include "code/icBuffer.hpp"
31#include "gc/g1/bufferingOopClosure.hpp"
32#include "gc/g1/concurrentG1Refine.hpp"
33#include "gc/g1/concurrentG1RefineThread.hpp"
34#include "gc/g1/concurrentMarkThread.inline.hpp"
35#include "gc/g1/g1Allocator.inline.hpp"
36#include "gc/g1/g1CollectedHeap.inline.hpp"
37#include "gc/g1/g1CollectionSet.hpp"
38#include "gc/g1/g1CollectorPolicy.hpp"
39#include "gc/g1/g1CollectorState.hpp"
40#include "gc/g1/g1EvacStats.inline.hpp"
41#include "gc/g1/g1FullGCScope.hpp"
42#include "gc/g1/g1GCPhaseTimes.hpp"
43#include "gc/g1/g1HeapSizingPolicy.hpp"
44#include "gc/g1/g1HeapTransition.hpp"
45#include "gc/g1/g1HeapVerifier.hpp"
46#include "gc/g1/g1HotCardCache.hpp"
47#include "gc/g1/g1OopClosures.inline.hpp"
48#include "gc/g1/g1ParScanThreadState.inline.hpp"
49#include "gc/g1/g1Policy.hpp"
50#include "gc/g1/g1RegionToSpaceMapper.hpp"
51#include "gc/g1/g1RemSet.inline.hpp"
52#include "gc/g1/g1RootClosures.hpp"
53#include "gc/g1/g1RootProcessor.hpp"
54#include "gc/g1/g1SerialFullCollector.hpp"
55#include "gc/g1/g1StringDedup.hpp"
56#include "gc/g1/g1YCTypes.hpp"
57#include "gc/g1/heapRegion.inline.hpp"
58#include "gc/g1/heapRegionRemSet.hpp"
59#include "gc/g1/heapRegionSet.inline.hpp"
60#include "gc/g1/suspendibleThreadSet.hpp"
61#include "gc/g1/vm_operations_g1.hpp"
62#include "gc/shared/gcHeapSummary.hpp"
63#include "gc/shared/gcId.hpp"
64#include "gc/shared/gcLocker.inline.hpp"
65#include "gc/shared/gcTimer.hpp"
66#include "gc/shared/gcTrace.hpp"
67#include "gc/shared/gcTraceTime.inline.hpp"
68#include "gc/shared/generationSpec.hpp"
69#include "gc/shared/isGCActiveMark.hpp"
70#include "gc/shared/preservedMarks.inline.hpp"
71#include "gc/shared/referenceProcessor.inline.hpp"
72#include "gc/shared/taskqueue.inline.hpp"
73#include "logging/log.hpp"
74#include "memory/allocation.hpp"
75#include "memory/iterator.hpp"
76#include "memory/resourceArea.hpp"
77#include "oops/oop.inline.hpp"
78#include "prims/resolvedMethodTable.hpp"
79#include "runtime/atomic.hpp"
80#include "runtime/init.hpp"
81#include "runtime/orderAccess.inline.hpp"
82#include "runtime/vmThread.hpp"
83#include "utilities/align.hpp"
84#include "utilities/globalDefinitions.hpp"
85#include "utilities/stack.inline.hpp"
86
87size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
88
89// INVARIANTS/NOTES
90//
91// All allocation activity covered by the G1CollectedHeap interface is
92// serialized by acquiring the HeapLock.  This happens in mem_allocate
93// and allocate_new_tlab, which are the "entry" points to the
94// allocation code from the rest of the JVM.  (Note that this does not
95// apply to TLAB allocation, which is not part of this interface: it
96// is done by clients of this interface.)
97
98class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
99 private:
100  size_t _num_dirtied;
101  G1CollectedHeap* _g1h;
102  G1SATBCardTableLoggingModRefBS* _g1_bs;
103
104  HeapRegion* region_for_card(jbyte* card_ptr) const {
105    return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
106  }
107
108  bool will_become_free(HeapRegion* hr) const {
109    // A region will be freed by free_collection_set if the region is in the
110    // collection set and has not had an evacuation failure.
111    return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
112  }
113
114 public:
115  RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
116    _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
117
118  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
119    HeapRegion* hr = region_for_card(card_ptr);
120
121    // Should only dirty cards in regions that won't be freed.
122    if (!will_become_free(hr)) {
123      *card_ptr = CardTableModRefBS::dirty_card_val();
124      _num_dirtied++;
125    }
126
127    return true;
128  }
129
130  size_t num_dirtied()   const { return _num_dirtied; }
131};
132
133
134void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
135  HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
136}
137
138void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
139  // The from card cache is not the memory that is actually committed. So we cannot
140  // take advantage of the zero_filled parameter.
141  reset_from_card_cache(start_idx, num_regions);
142}
143
144// Returns true if the reference points to an object that
145// can move in an incremental collection.
146bool G1CollectedHeap::is_scavengable(const void* p) {
147  HeapRegion* hr = heap_region_containing(p);
148  return !hr->is_pinned();
149}
150
151// Private methods.
152
153HeapRegion*
154G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
155  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
156  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
157    if (!_secondary_free_list.is_empty()) {
158      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
159                                      "secondary_free_list has %u entries",
160                                      _secondary_free_list.length());
161      // It looks as if there are free regions available on the
162      // secondary_free_list. Let's move them to the free_list and try
163      // again to allocate from it.
164      append_secondary_free_list();
165
166      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
167             "empty we should have moved at least one entry to the free_list");
168      HeapRegion* res = _hrm.allocate_free_region(is_old);
169      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
170                                      "allocated " HR_FORMAT " from secondary_free_list",
171                                      HR_FORMAT_PARAMS(res));
172      return res;
173    }
174
175    // Wait here until we get notified either when (a) there are no
176    // more free regions coming or (b) some regions have been moved on
177    // the secondary_free_list.
178    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
179  }
180
181  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
182                                  "could not allocate from secondary_free_list");
183  return NULL;
184}
185
186HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
187  assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
188         "the only time we use this to allocate a humongous region is "
189         "when we are allocating a single humongous region");
190
191  HeapRegion* res;
192  if (G1StressConcRegionFreeing) {
193    if (!_secondary_free_list.is_empty()) {
194      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
195                                      "forced to look at the secondary_free_list");
196      res = new_region_try_secondary_free_list(is_old);
197      if (res != NULL) {
198        return res;
199      }
200    }
201  }
202
203  res = _hrm.allocate_free_region(is_old);
204
205  if (res == NULL) {
206    log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
207                                    "res == NULL, trying the secondary_free_list");
208    res = new_region_try_secondary_free_list(is_old);
209  }
210  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
211    // Currently, only attempts to allocate GC alloc regions set
212    // do_expand to true. So, we should only reach here during a
213    // safepoint. If this assumption changes we might have to
214    // reconsider the use of _expand_heap_after_alloc_failure.
215    assert(SafepointSynchronize::is_at_safepoint(), "invariant");
216
217    log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
218                              word_size * HeapWordSize);
219
220    if (expand(word_size * HeapWordSize)) {
221      // Given that expand() succeeded in expanding the heap, and we
222      // always expand the heap by an amount aligned to the heap
223      // region size, the free list should in theory not be empty.
224      // In either case allocate_free_region() will check for NULL.
225      res = _hrm.allocate_free_region(is_old);
226    } else {
227      _expand_heap_after_alloc_failure = false;
228    }
229  }
230  return res;
231}
232
233HeapWord*
234G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
235                                                           uint num_regions,
236                                                           size_t word_size,
237                                                           AllocationContext_t context) {
238  assert(first != G1_NO_HRM_INDEX, "pre-condition");
239  assert(is_humongous(word_size), "word_size should be humongous");
240  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
241
242  // Index of last region in the series.
243  uint last = first + num_regions - 1;
244
245  // We need to initialize the region(s) we just discovered. This is
246  // a bit tricky given that it can happen concurrently with
247  // refinement threads refining cards on these regions and
248  // potentially wanting to refine the BOT as they are scanning
249  // those cards (this can happen shortly after a cleanup; see CR
250  // 6991377). So we have to set up the region(s) carefully and in
251  // a specific order.
252
253  // The word size sum of all the regions we will allocate.
254  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
255  assert(word_size <= word_size_sum, "sanity");
256
257  // This will be the "starts humongous" region.
258  HeapRegion* first_hr = region_at(first);
259  // The header of the new object will be placed at the bottom of
260  // the first region.
261  HeapWord* new_obj = first_hr->bottom();
262  // This will be the new top of the new object.
263  HeapWord* obj_top = new_obj + word_size;
264
265  // First, we need to zero the header of the space that we will be
266  // allocating. When we update top further down, some refinement
267  // threads might try to scan the region. By zeroing the header we
268  // ensure that any thread that will try to scan the region will
269  // come across the zero klass word and bail out.
270  //
271  // NOTE: It would not have been correct to have used
272  // CollectedHeap::fill_with_object() and make the space look like
273  // an int array. The thread that is doing the allocation will
274  // later update the object header to a potentially different array
275  // type and, for a very short period of time, the klass and length
276  // fields will be inconsistent. This could cause a refinement
277  // thread to calculate the object size incorrectly.
278  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
279
280  // Next, pad out the unused tail of the last region with filler
281  // objects, for improved usage accounting.
282  // How many words we use for filler objects.
283  size_t word_fill_size = word_size_sum - word_size;
284
285  // How many words memory we "waste" which cannot hold a filler object.
286  size_t words_not_fillable = 0;
287
288  if (word_fill_size >= min_fill_size()) {
289    fill_with_objects(obj_top, word_fill_size);
290  } else if (word_fill_size > 0) {
291    // We have space to fill, but we cannot fit an object there.
292    words_not_fillable = word_fill_size;
293    word_fill_size = 0;
294  }
295
296  // We will set up the first region as "starts humongous". This
297  // will also update the BOT covering all the regions to reflect
298  // that there is a single object that starts at the bottom of the
299  // first region.
300  first_hr->set_starts_humongous(obj_top, word_fill_size);
301  first_hr->set_allocation_context(context);
302  // Then, if there are any, we will set up the "continues
303  // humongous" regions.
304  HeapRegion* hr = NULL;
305  for (uint i = first + 1; i <= last; ++i) {
306    hr = region_at(i);
307    hr->set_continues_humongous(first_hr);
308    hr->set_allocation_context(context);
309  }
310
311  // Up to this point no concurrent thread would have been able to
312  // do any scanning on any region in this series. All the top
313  // fields still point to bottom, so the intersection between
314  // [bottom,top] and [card_start,card_end] will be empty. Before we
315  // update the top fields, we'll do a storestore to make sure that
316  // no thread sees the update to top before the zeroing of the
317  // object header and the BOT initialization.
318  OrderAccess::storestore();
319
320  // Now, we will update the top fields of the "continues humongous"
321  // regions except the last one.
322  for (uint i = first; i < last; ++i) {
323    hr = region_at(i);
324    hr->set_top(hr->end());
325  }
326
327  hr = region_at(last);
328  // If we cannot fit a filler object, we must set top to the end
329  // of the humongous object, otherwise we cannot iterate the heap
330  // and the BOT will not be complete.
331  hr->set_top(hr->end() - words_not_fillable);
332
333  assert(hr->bottom() < obj_top && obj_top <= hr->end(),
334         "obj_top should be in last region");
335
336  _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
337
338  assert(words_not_fillable == 0 ||
339         first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
340         "Miscalculation in humongous allocation");
341
342  increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
343
344  for (uint i = first; i <= last; ++i) {
345    hr = region_at(i);
346    _humongous_set.add(hr);
347    _hr_printer.alloc(hr);
348  }
349
350  return new_obj;
351}
352
353size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
354  assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
355  return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
356}
357
358// If could fit into free regions w/o expansion, try.
359// Otherwise, if can expand, do so.
360// Otherwise, if using ex regions might help, try with ex given back.
361HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
362  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
363
364  _verifier->verify_region_sets_optional();
365
366  uint first = G1_NO_HRM_INDEX;
367  uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
368
369  if (obj_regions == 1) {
370    // Only one region to allocate, try to use a fast path by directly allocating
371    // from the free lists. Do not try to expand here, we will potentially do that
372    // later.
373    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
374    if (hr != NULL) {
375      first = hr->hrm_index();
376    }
377  } else {
378    // We can't allocate humongous regions spanning more than one region while
379    // cleanupComplete() is running, since some of the regions we find to be
380    // empty might not yet be added to the free list. It is not straightforward
381    // to know in which list they are on so that we can remove them. We only
382    // need to do this if we need to allocate more than one region to satisfy the
383    // current humongous allocation request. If we are only allocating one region
384    // we use the one-region region allocation code (see above), that already
385    // potentially waits for regions from the secondary free list.
386    wait_while_free_regions_coming();
387    append_secondary_free_list_if_not_empty_with_lock();
388
389    // Policy: Try only empty regions (i.e. already committed first). Maybe we
390    // are lucky enough to find some.
391    first = _hrm.find_contiguous_only_empty(obj_regions);
392    if (first != G1_NO_HRM_INDEX) {
393      _hrm.allocate_free_regions_starting_at(first, obj_regions);
394    }
395  }
396
397  if (first == G1_NO_HRM_INDEX) {
398    // Policy: We could not find enough regions for the humongous object in the
399    // free list. Look through the heap to find a mix of free and uncommitted regions.
400    // If so, try expansion.
401    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
402    if (first != G1_NO_HRM_INDEX) {
403      // We found something. Make sure these regions are committed, i.e. expand
404      // the heap. Alternatively we could do a defragmentation GC.
405      log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
406                                    word_size * HeapWordSize);
407
408      _hrm.expand_at(first, obj_regions, workers());
409      g1_policy()->record_new_heap_size(num_regions());
410
411#ifdef ASSERT
412      for (uint i = first; i < first + obj_regions; ++i) {
413        HeapRegion* hr = region_at(i);
414        assert(hr->is_free(), "sanity");
415        assert(hr->is_empty(), "sanity");
416        assert(is_on_master_free_list(hr), "sanity");
417      }
418#endif
419      _hrm.allocate_free_regions_starting_at(first, obj_regions);
420    } else {
421      // Policy: Potentially trigger a defragmentation GC.
422    }
423  }
424
425  HeapWord* result = NULL;
426  if (first != G1_NO_HRM_INDEX) {
427    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
428                                                       word_size, context);
429    assert(result != NULL, "it should always return a valid result");
430
431    // A successful humongous object allocation changes the used space
432    // information of the old generation so we need to recalculate the
433    // sizes and update the jstat counters here.
434    g1mm()->update_sizes();
435  }
436
437  _verifier->verify_region_sets_optional();
438
439  return result;
440}
441
442HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
443  assert_heap_not_locked_and_not_at_safepoint();
444  assert(!is_humongous(word_size), "we do not allow humongous TLABs");
445
446  uint dummy_gc_count_before;
447  uint dummy_gclocker_retry_count = 0;
448  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
449}
450
451HeapWord*
452G1CollectedHeap::mem_allocate(size_t word_size,
453                              bool*  gc_overhead_limit_was_exceeded) {
454  assert_heap_not_locked_and_not_at_safepoint();
455
456  // Loop until the allocation is satisfied, or unsatisfied after GC.
457  for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
458    uint gc_count_before;
459
460    HeapWord* result = NULL;
461    if (!is_humongous(word_size)) {
462      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
463    } else {
464      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
465    }
466    if (result != NULL) {
467      return result;
468    }
469
470    // Create the garbage collection operation...
471    VM_G1CollectForAllocation op(gc_count_before, word_size);
472    op.set_allocation_context(AllocationContext::current());
473
474    // ...and get the VM thread to execute it.
475    VMThread::execute(&op);
476
477    if (op.prologue_succeeded() && op.pause_succeeded()) {
478      // If the operation was successful we'll return the result even
479      // if it is NULL. If the allocation attempt failed immediately
480      // after a Full GC, it's unlikely we'll be able to allocate now.
481      HeapWord* result = op.result();
482      if (result != NULL && !is_humongous(word_size)) {
483        // Allocations that take place on VM operations do not do any
484        // card dirtying and we have to do it here. We only have to do
485        // this for non-humongous allocations, though.
486        dirty_young_block(result, word_size);
487      }
488      return result;
489    } else {
490      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
491        return NULL;
492      }
493      assert(op.result() == NULL,
494             "the result should be NULL if the VM op did not succeed");
495    }
496
497    // Give a warning if we seem to be looping forever.
498    if ((QueuedAllocationWarningCount > 0) &&
499        (try_count % QueuedAllocationWarningCount == 0)) {
500      log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
501    }
502  }
503
504  ShouldNotReachHere();
505  return NULL;
506}
507
508HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
509                                                   AllocationContext_t context,
510                                                   uint* gc_count_before_ret,
511                                                   uint* gclocker_retry_count_ret) {
512  // Make sure you read the note in attempt_allocation_humongous().
513
514  assert_heap_not_locked_and_not_at_safepoint();
515  assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
516         "be called for humongous allocation requests");
517
518  // We should only get here after the first-level allocation attempt
519  // (attempt_allocation()) failed to allocate.
520
521  // We will loop until a) we manage to successfully perform the
522  // allocation or b) we successfully schedule a collection which
523  // fails to perform the allocation. b) is the only case when we'll
524  // return NULL.
525  HeapWord* result = NULL;
526  for (int try_count = 1; /* we'll return */; try_count += 1) {
527    bool should_try_gc;
528    uint gc_count_before;
529
530    {
531      MutexLockerEx x(Heap_lock);
532      result = _allocator->attempt_allocation_locked(word_size, context);
533      if (result != NULL) {
534        return result;
535      }
536
537      if (GCLocker::is_active_and_needs_gc()) {
538        if (g1_policy()->can_expand_young_list()) {
539          // No need for an ergo verbose message here,
540          // can_expand_young_list() does this when it returns true.
541          result = _allocator->attempt_allocation_force(word_size, context);
542          if (result != NULL) {
543            return result;
544          }
545        }
546        should_try_gc = false;
547      } else {
548        // The GCLocker may not be active but the GCLocker initiated
549        // GC may not yet have been performed (GCLocker::needs_gc()
550        // returns true). In this case we do not try this GC and
551        // wait until the GCLocker initiated GC is performed, and
552        // then retry the allocation.
553        if (GCLocker::needs_gc()) {
554          should_try_gc = false;
555        } else {
556          // Read the GC count while still holding the Heap_lock.
557          gc_count_before = total_collections();
558          should_try_gc = true;
559        }
560      }
561    }
562
563    if (should_try_gc) {
564      bool succeeded;
565      result = do_collection_pause(word_size, gc_count_before, &succeeded,
566                                   GCCause::_g1_inc_collection_pause);
567      if (result != NULL) {
568        assert(succeeded, "only way to get back a non-NULL result");
569        return result;
570      }
571
572      if (succeeded) {
573        // If we get here we successfully scheduled a collection which
574        // failed to allocate. No point in trying to allocate
575        // further. We'll just return NULL.
576        MutexLockerEx x(Heap_lock);
577        *gc_count_before_ret = total_collections();
578        return NULL;
579      }
580    } else {
581      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
582        MutexLockerEx x(Heap_lock);
583        *gc_count_before_ret = total_collections();
584        return NULL;
585      }
586      // The GCLocker is either active or the GCLocker initiated
587      // GC has not yet been performed. Stall until it is and
588      // then retry the allocation.
589      GCLocker::stall_until_clear();
590      (*gclocker_retry_count_ret) += 1;
591    }
592
593    // We can reach here if we were unsuccessful in scheduling a
594    // collection (because another thread beat us to it) or if we were
595    // stalled due to the GC locker. In either can we should retry the
596    // allocation attempt in case another thread successfully
597    // performed a collection and reclaimed enough space. We do the
598    // first attempt (without holding the Heap_lock) here and the
599    // follow-on attempt will be at the start of the next loop
600    // iteration (after taking the Heap_lock).
601    result = _allocator->attempt_allocation(word_size, context);
602    if (result != NULL) {
603      return result;
604    }
605
606    // Give a warning if we seem to be looping forever.
607    if ((QueuedAllocationWarningCount > 0) &&
608        (try_count % QueuedAllocationWarningCount == 0)) {
609      log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
610                      "retries %d times", try_count);
611    }
612  }
613
614  ShouldNotReachHere();
615  return NULL;
616}
617
618void G1CollectedHeap::begin_archive_alloc_range(bool open) {
619  assert_at_safepoint(true /* should_be_vm_thread */);
620  if (_archive_allocator == NULL) {
621    _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
622  }
623}
624
625bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
626  // Allocations in archive regions cannot be of a size that would be considered
627  // humongous even for a minimum-sized region, because G1 region sizes/boundaries
628  // may be different at archive-restore time.
629  return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
630}
631
632HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
633  assert_at_safepoint(true /* should_be_vm_thread */);
634  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
635  if (is_archive_alloc_too_large(word_size)) {
636    return NULL;
637  }
638  return _archive_allocator->archive_mem_allocate(word_size);
639}
640
641void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
642                                              size_t end_alignment_in_bytes) {
643  assert_at_safepoint(true /* should_be_vm_thread */);
644  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
645
646  // Call complete_archive to do the real work, filling in the MemRegion
647  // array with the archive regions.
648  _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
649  delete _archive_allocator;
650  _archive_allocator = NULL;
651}
652
653bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
654  assert(ranges != NULL, "MemRegion array NULL");
655  assert(count != 0, "No MemRegions provided");
656  MemRegion reserved = _hrm.reserved();
657  for (size_t i = 0; i < count; i++) {
658    if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
659      return false;
660    }
661  }
662  return true;
663}
664
665bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
666                                            size_t count,
667                                            bool open) {
668  assert(!is_init_completed(), "Expect to be called at JVM init time");
669  assert(ranges != NULL, "MemRegion array NULL");
670  assert(count != 0, "No MemRegions provided");
671  MutexLockerEx x(Heap_lock);
672
673  MemRegion reserved = _hrm.reserved();
674  HeapWord* prev_last_addr = NULL;
675  HeapRegion* prev_last_region = NULL;
676
677  // Temporarily disable pretouching of heap pages. This interface is used
678  // when mmap'ing archived heap data in, so pre-touching is wasted.
679  FlagSetting fs(AlwaysPreTouch, false);
680
681  // Enable archive object checking used by G1MarkSweep. We have to let it know
682  // about each archive range, so that objects in those ranges aren't marked.
683  G1ArchiveAllocator::enable_archive_object_check();
684
685  // For each specified MemRegion range, allocate the corresponding G1
686  // regions and mark them as archive regions. We expect the ranges
687  // in ascending starting address order, without overlap.
688  for (size_t i = 0; i < count; i++) {
689    MemRegion curr_range = ranges[i];
690    HeapWord* start_address = curr_range.start();
691    size_t word_size = curr_range.word_size();
692    HeapWord* last_address = curr_range.last();
693    size_t commits = 0;
694
695    guarantee(reserved.contains(start_address) && reserved.contains(last_address),
696              "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
697              p2i(start_address), p2i(last_address));
698    guarantee(start_address > prev_last_addr,
699              "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
700              p2i(start_address), p2i(prev_last_addr));
701    prev_last_addr = last_address;
702
703    // Check for ranges that start in the same G1 region in which the previous
704    // range ended, and adjust the start address so we don't try to allocate
705    // the same region again. If the current range is entirely within that
706    // region, skip it, just adjusting the recorded top.
707    HeapRegion* start_region = _hrm.addr_to_region(start_address);
708    if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
709      start_address = start_region->end();
710      if (start_address > last_address) {
711        increase_used(word_size * HeapWordSize);
712        start_region->set_top(last_address + 1);
713        continue;
714      }
715      start_region->set_top(start_address);
716      curr_range = MemRegion(start_address, last_address + 1);
717      start_region = _hrm.addr_to_region(start_address);
718    }
719
720    // Perform the actual region allocation, exiting if it fails.
721    // Then note how much new space we have allocated.
722    if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
723      return false;
724    }
725    increase_used(word_size * HeapWordSize);
726    if (commits != 0) {
727      log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
728                                HeapRegion::GrainWords * HeapWordSize * commits);
729
730    }
731
732    // Mark each G1 region touched by the range as archive, add it to
733    // the old set, and set the allocation context and top.
734    HeapRegion* curr_region = _hrm.addr_to_region(start_address);
735    HeapRegion* last_region = _hrm.addr_to_region(last_address);
736    prev_last_region = last_region;
737
738    while (curr_region != NULL) {
739      assert(curr_region->is_empty() && !curr_region->is_pinned(),
740             "Region already in use (index %u)", curr_region->hrm_index());
741      curr_region->set_allocation_context(AllocationContext::system());
742      if (open) {
743        curr_region->set_open_archive();
744      } else {
745        curr_region->set_closed_archive();
746      }
747      _hr_printer.alloc(curr_region);
748      _old_set.add(curr_region);
749      HeapWord* top;
750      HeapRegion* next_region;
751      if (curr_region != last_region) {
752        top = curr_region->end();
753        next_region = _hrm.next_region_in_heap(curr_region);
754      } else {
755        top = last_address + 1;
756        next_region = NULL;
757      }
758      curr_region->set_top(top);
759      curr_region->set_first_dead(top);
760      curr_region->set_end_of_live(top);
761      curr_region = next_region;
762    }
763
764    // Notify mark-sweep of the archive
765    G1ArchiveAllocator::set_range_archive(curr_range, open);
766  }
767  return true;
768}
769
770void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
771  assert(!is_init_completed(), "Expect to be called at JVM init time");
772  assert(ranges != NULL, "MemRegion array NULL");
773  assert(count != 0, "No MemRegions provided");
774  MemRegion reserved = _hrm.reserved();
775  HeapWord *prev_last_addr = NULL;
776  HeapRegion* prev_last_region = NULL;
777
778  // For each MemRegion, create filler objects, if needed, in the G1 regions
779  // that contain the address range. The address range actually within the
780  // MemRegion will not be modified. That is assumed to have been initialized
781  // elsewhere, probably via an mmap of archived heap data.
782  MutexLockerEx x(Heap_lock);
783  for (size_t i = 0; i < count; i++) {
784    HeapWord* start_address = ranges[i].start();
785    HeapWord* last_address = ranges[i].last();
786
787    assert(reserved.contains(start_address) && reserved.contains(last_address),
788           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
789           p2i(start_address), p2i(last_address));
790    assert(start_address > prev_last_addr,
791           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
792           p2i(start_address), p2i(prev_last_addr));
793
794    HeapRegion* start_region = _hrm.addr_to_region(start_address);
795    HeapRegion* last_region = _hrm.addr_to_region(last_address);
796    HeapWord* bottom_address = start_region->bottom();
797
798    // Check for a range beginning in the same region in which the
799    // previous one ended.
800    if (start_region == prev_last_region) {
801      bottom_address = prev_last_addr + 1;
802    }
803
804    // Verify that the regions were all marked as archive regions by
805    // alloc_archive_regions.
806    HeapRegion* curr_region = start_region;
807    while (curr_region != NULL) {
808      guarantee(curr_region->is_archive(),
809                "Expected archive region at index %u", curr_region->hrm_index());
810      if (curr_region != last_region) {
811        curr_region = _hrm.next_region_in_heap(curr_region);
812      } else {
813        curr_region = NULL;
814      }
815    }
816
817    prev_last_addr = last_address;
818    prev_last_region = last_region;
819
820    // Fill the memory below the allocated range with dummy object(s),
821    // if the region bottom does not match the range start, or if the previous
822    // range ended within the same G1 region, and there is a gap.
823    if (start_address != bottom_address) {
824      size_t fill_size = pointer_delta(start_address, bottom_address);
825      G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
826      increase_used(fill_size * HeapWordSize);
827    }
828  }
829}
830
831inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
832                                                     uint* gc_count_before_ret,
833                                                     uint* gclocker_retry_count_ret) {
834  assert_heap_not_locked_and_not_at_safepoint();
835  assert(!is_humongous(word_size), "attempt_allocation() should not "
836         "be called for humongous allocation requests");
837
838  AllocationContext_t context = AllocationContext::current();
839  HeapWord* result = _allocator->attempt_allocation(word_size, context);
840
841  if (result == NULL) {
842    result = attempt_allocation_slow(word_size,
843                                     context,
844                                     gc_count_before_ret,
845                                     gclocker_retry_count_ret);
846  }
847  assert_heap_not_locked();
848  if (result != NULL) {
849    dirty_young_block(result, word_size);
850  }
851  return result;
852}
853
854void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
855  assert(!is_init_completed(), "Expect to be called at JVM init time");
856  assert(ranges != NULL, "MemRegion array NULL");
857  assert(count != 0, "No MemRegions provided");
858  MemRegion reserved = _hrm.reserved();
859  HeapWord* prev_last_addr = NULL;
860  HeapRegion* prev_last_region = NULL;
861  size_t size_used = 0;
862  size_t uncommitted_regions = 0;
863
864  // For each Memregion, free the G1 regions that constitute it, and
865  // notify mark-sweep that the range is no longer to be considered 'archive.'
866  MutexLockerEx x(Heap_lock);
867  for (size_t i = 0; i < count; i++) {
868    HeapWord* start_address = ranges[i].start();
869    HeapWord* last_address = ranges[i].last();
870
871    assert(reserved.contains(start_address) && reserved.contains(last_address),
872           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
873           p2i(start_address), p2i(last_address));
874    assert(start_address > prev_last_addr,
875           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
876           p2i(start_address), p2i(prev_last_addr));
877    size_used += ranges[i].byte_size();
878    prev_last_addr = last_address;
879
880    HeapRegion* start_region = _hrm.addr_to_region(start_address);
881    HeapRegion* last_region = _hrm.addr_to_region(last_address);
882
883    // Check for ranges that start in the same G1 region in which the previous
884    // range ended, and adjust the start address so we don't try to free
885    // the same region again. If the current range is entirely within that
886    // region, skip it.
887    if (start_region == prev_last_region) {
888      start_address = start_region->end();
889      if (start_address > last_address) {
890        continue;
891      }
892      start_region = _hrm.addr_to_region(start_address);
893    }
894    prev_last_region = last_region;
895
896    // After verifying that each region was marked as an archive region by
897    // alloc_archive_regions, set it free and empty and uncommit it.
898    HeapRegion* curr_region = start_region;
899    while (curr_region != NULL) {
900      guarantee(curr_region->is_archive(),
901                "Expected archive region at index %u", curr_region->hrm_index());
902      uint curr_index = curr_region->hrm_index();
903      _old_set.remove(curr_region);
904      curr_region->set_free();
905      curr_region->set_top(curr_region->bottom());
906      if (curr_region != last_region) {
907        curr_region = _hrm.next_region_in_heap(curr_region);
908      } else {
909        curr_region = NULL;
910      }
911      _hrm.shrink_at(curr_index, 1);
912      uncommitted_regions++;
913    }
914
915    // Notify mark-sweep that this is no longer an archive range.
916    G1ArchiveAllocator::set_range_archive(ranges[i], false);
917  }
918
919  if (uncommitted_regions != 0) {
920    log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
921                              HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
922  }
923  decrease_used(size_used);
924}
925
926HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
927                                                        uint* gc_count_before_ret,
928                                                        uint* gclocker_retry_count_ret) {
929  // The structure of this method has a lot of similarities to
930  // attempt_allocation_slow(). The reason these two were not merged
931  // into a single one is that such a method would require several "if
932  // allocation is not humongous do this, otherwise do that"
933  // conditional paths which would obscure its flow. In fact, an early
934  // version of this code did use a unified method which was harder to
935  // follow and, as a result, it had subtle bugs that were hard to
936  // track down. So keeping these two methods separate allows each to
937  // be more readable. It will be good to keep these two in sync as
938  // much as possible.
939
940  assert_heap_not_locked_and_not_at_safepoint();
941  assert(is_humongous(word_size), "attempt_allocation_humongous() "
942         "should only be called for humongous allocations");
943
944  // Humongous objects can exhaust the heap quickly, so we should check if we
945  // need to start a marking cycle at each humongous object allocation. We do
946  // the check before we do the actual allocation. The reason for doing it
947  // before the allocation is that we avoid having to keep track of the newly
948  // allocated memory while we do a GC.
949  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
950                                           word_size)) {
951    collect(GCCause::_g1_humongous_allocation);
952  }
953
954  // We will loop until a) we manage to successfully perform the
955  // allocation or b) we successfully schedule a collection which
956  // fails to perform the allocation. b) is the only case when we'll
957  // return NULL.
958  HeapWord* result = NULL;
959  for (int try_count = 1; /* we'll return */; try_count += 1) {
960    bool should_try_gc;
961    uint gc_count_before;
962
963    {
964      MutexLockerEx x(Heap_lock);
965
966      // Given that humongous objects are not allocated in young
967      // regions, we'll first try to do the allocation without doing a
968      // collection hoping that there's enough space in the heap.
969      result = humongous_obj_allocate(word_size, AllocationContext::current());
970      if (result != NULL) {
971        size_t size_in_regions = humongous_obj_size_in_regions(word_size);
972        g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
973        return result;
974      }
975
976      if (GCLocker::is_active_and_needs_gc()) {
977        should_try_gc = false;
978      } else {
979         // The GCLocker may not be active but the GCLocker initiated
980        // GC may not yet have been performed (GCLocker::needs_gc()
981        // returns true). In this case we do not try this GC and
982        // wait until the GCLocker initiated GC is performed, and
983        // then retry the allocation.
984        if (GCLocker::needs_gc()) {
985          should_try_gc = false;
986        } else {
987          // Read the GC count while still holding the Heap_lock.
988          gc_count_before = total_collections();
989          should_try_gc = true;
990        }
991      }
992    }
993
994    if (should_try_gc) {
995      // If we failed to allocate the humongous object, we should try to
996      // do a collection pause (if we're allowed) in case it reclaims
997      // enough space for the allocation to succeed after the pause.
998
999      bool succeeded;
1000      result = do_collection_pause(word_size, gc_count_before, &succeeded,
1001                                   GCCause::_g1_humongous_allocation);
1002      if (result != NULL) {
1003        assert(succeeded, "only way to get back a non-NULL result");
1004        return result;
1005      }
1006
1007      if (succeeded) {
1008        // If we get here we successfully scheduled a collection which
1009        // failed to allocate. No point in trying to allocate
1010        // further. We'll just return NULL.
1011        MutexLockerEx x(Heap_lock);
1012        *gc_count_before_ret = total_collections();
1013        return NULL;
1014      }
1015    } else {
1016      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1017        MutexLockerEx x(Heap_lock);
1018        *gc_count_before_ret = total_collections();
1019        return NULL;
1020      }
1021      // The GCLocker is either active or the GCLocker initiated
1022      // GC has not yet been performed. Stall until it is and
1023      // then retry the allocation.
1024      GCLocker::stall_until_clear();
1025      (*gclocker_retry_count_ret) += 1;
1026    }
1027
1028    // We can reach here if we were unsuccessful in scheduling a
1029    // collection (because another thread beat us to it) or if we were
1030    // stalled due to the GC locker. In either can we should retry the
1031    // allocation attempt in case another thread successfully
1032    // performed a collection and reclaimed enough space.  Give a
1033    // warning if we seem to be looping forever.
1034
1035    if ((QueuedAllocationWarningCount > 0) &&
1036        (try_count % QueuedAllocationWarningCount == 0)) {
1037      log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1038                      "retries %d times", try_count);
1039    }
1040  }
1041
1042  ShouldNotReachHere();
1043  return NULL;
1044}
1045
1046HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1047                                                           AllocationContext_t context,
1048                                                           bool expect_null_mutator_alloc_region) {
1049  assert_at_safepoint(true /* should_be_vm_thread */);
1050  assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1051         "the current alloc region was unexpectedly found to be non-NULL");
1052
1053  if (!is_humongous(word_size)) {
1054    return _allocator->attempt_allocation_locked(word_size, context);
1055  } else {
1056    HeapWord* result = humongous_obj_allocate(word_size, context);
1057    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1058      collector_state()->set_initiate_conc_mark_if_possible(true);
1059    }
1060    return result;
1061  }
1062
1063  ShouldNotReachHere();
1064}
1065
1066class PostCompactionPrinterClosure: public HeapRegionClosure {
1067private:
1068  G1HRPrinter* _hr_printer;
1069public:
1070  bool doHeapRegion(HeapRegion* hr) {
1071    assert(!hr->is_young(), "not expecting to find young regions");
1072    _hr_printer->post_compaction(hr);
1073    return false;
1074  }
1075
1076  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1077    : _hr_printer(hr_printer) { }
1078};
1079
1080void G1CollectedHeap::print_hrm_post_compaction() {
1081  if (_hr_printer.is_active()) {
1082    PostCompactionPrinterClosure cl(hr_printer());
1083    heap_region_iterate(&cl);
1084  }
1085
1086}
1087
1088void G1CollectedHeap::abort_concurrent_cycle() {
1089  // Note: When we have a more flexible GC logging framework that
1090  // allows us to add optional attributes to a GC log record we
1091  // could consider timing and reporting how long we wait in the
1092  // following two methods.
1093  wait_while_free_regions_coming();
1094  // If we start the compaction before the CM threads finish
1095  // scanning the root regions we might trip them over as we'll
1096  // be moving objects / updating references. So let's wait until
1097  // they are done. By telling them to abort, they should complete
1098  // early.
1099  _cm->root_regions()->abort();
1100  _cm->root_regions()->wait_until_scan_finished();
1101  append_secondary_free_list_if_not_empty_with_lock();
1102
1103  // Disable discovery and empty the discovered lists
1104  // for the CM ref processor.
1105  ref_processor_cm()->disable_discovery();
1106  ref_processor_cm()->abandon_partial_discovery();
1107  ref_processor_cm()->verify_no_references_recorded();
1108
1109  // Abandon current iterations of concurrent marking and concurrent
1110  // refinement, if any are in progress.
1111  concurrent_mark()->abort();
1112}
1113
1114void G1CollectedHeap::prepare_heap_for_full_collection() {
1115  // Make sure we'll choose a new allocation region afterwards.
1116  _allocator->release_mutator_alloc_region();
1117  _allocator->abandon_gc_alloc_regions();
1118  g1_rem_set()->cleanupHRRS();
1119
1120  // We may have added regions to the current incremental collection
1121  // set between the last GC or pause and now. We need to clear the
1122  // incremental collection set and then start rebuilding it afresh
1123  // after this full GC.
1124  abandon_collection_set(collection_set());
1125
1126  tear_down_region_sets(false /* free_list_only */);
1127  collector_state()->set_gcs_are_young(true);
1128}
1129
1130void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1131  assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1132  assert(used() == recalculate_used(), "Should be equal");
1133  _verifier->verify_region_sets_optional();
1134  _verifier->verify_before_gc();
1135  _verifier->check_bitmaps("Full GC Start");
1136}
1137
1138void G1CollectedHeap::prepare_heap_for_mutators() {
1139  // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1140  ClassLoaderDataGraph::purge();
1141  MetaspaceAux::verify_metrics();
1142
1143  // Prepare heap for normal collections.
1144  assert(num_free_regions() == 0, "we should not have added any free regions");
1145  rebuild_region_sets(false /* free_list_only */);
1146  abort_refinement();
1147  resize_if_necessary_after_full_collection();
1148
1149  // Rebuild the strong code root lists for each region
1150  rebuild_strong_code_roots();
1151
1152  // Start a new incremental collection set for the next pause
1153  start_new_collection_set();
1154
1155  _allocator->init_mutator_alloc_region();
1156
1157  // Post collection state updates.
1158  MetaspaceGC::compute_new_size();
1159}
1160
1161void G1CollectedHeap::abort_refinement() {
1162  if (_hot_card_cache->use_cache()) {
1163    _hot_card_cache->reset_card_counts();
1164    _hot_card_cache->reset_hot_cache();
1165  }
1166
1167  // Discard all remembered set updates.
1168  JavaThread::dirty_card_queue_set().abandon_logs();
1169  assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1170}
1171
1172void G1CollectedHeap::verify_after_full_collection() {
1173  check_gc_time_stamps();
1174  _hrm.verify_optional();
1175  _verifier->verify_region_sets_optional();
1176  _verifier->verify_after_gc();
1177  // Clear the previous marking bitmap, if needed for bitmap verification.
1178  // Note we cannot do this when we clear the next marking bitmap in
1179  // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1180  // objects marked during a full GC against the previous bitmap.
1181  // But we need to clear it before calling check_bitmaps below since
1182  // the full GC has compacted objects and updated TAMS but not updated
1183  // the prev bitmap.
1184  if (G1VerifyBitmaps) {
1185    GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1186    _cm->clear_prev_bitmap(workers());
1187  }
1188  _verifier->check_bitmaps("Full GC End");
1189
1190  // At this point there should be no regions in the
1191  // entire heap tagged as young.
1192  assert(check_young_list_empty(), "young list should be empty at this point");
1193
1194  // Note: since we've just done a full GC, concurrent
1195  // marking is no longer active. Therefore we need not
1196  // re-enable reference discovery for the CM ref processor.
1197  // That will be done at the start of the next marking cycle.
1198  // We also know that the STW processor should no longer
1199  // discover any new references.
1200  assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1201  assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1202  ref_processor_stw()->verify_no_references_recorded();
1203  ref_processor_cm()->verify_no_references_recorded();
1204}
1205
1206void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1207  print_hrm_post_compaction();
1208  heap_transition->print();
1209  print_heap_after_gc();
1210  print_heap_regions();
1211#ifdef TRACESPINNING
1212  ParallelTaskTerminator::print_termination_counts();
1213#endif
1214}
1215
1216void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1217  GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1218  g1_policy()->record_full_collection_start();
1219
1220  print_heap_before_gc();
1221  print_heap_regions();
1222
1223  abort_concurrent_cycle();
1224  verify_before_full_collection(scope->is_explicit_gc());
1225
1226  gc_prologue(true);
1227  prepare_heap_for_full_collection();
1228
1229  G1SerialFullCollector serial(scope, ref_processor_stw());
1230  serial.prepare_collection();
1231  serial.collect();
1232  serial.complete_collection();
1233
1234  prepare_heap_for_mutators();
1235
1236  g1_policy()->record_full_collection_end();
1237  gc_epilogue(true);
1238
1239  // Post collection verification.
1240  verify_after_full_collection();
1241
1242  // Post collection logging.
1243  // We should do this after we potentially resize the heap so
1244  // that all the COMMIT / UNCOMMIT events are generated before
1245  // the compaction events.
1246  print_heap_after_full_collection(scope->heap_transition());
1247}
1248
1249bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1250                                         bool clear_all_soft_refs) {
1251  assert_at_safepoint(true /* should_be_vm_thread */);
1252
1253  if (GCLocker::check_active_before_gc()) {
1254    // Full GC was not completed.
1255    return false;
1256  }
1257
1258  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1259      collector_policy()->should_clear_all_soft_refs();
1260
1261  G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1262  do_full_collection_inner(&scope);
1263
1264  // Full collection was successfully completed.
1265  return true;
1266}
1267
1268void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1269  // Currently, there is no facility in the do_full_collection(bool) API to notify
1270  // the caller that the collection did not succeed (e.g., because it was locked
1271  // out by the GC locker). So, right now, we'll ignore the return value.
1272  bool dummy = do_full_collection(true,                /* explicit_gc */
1273                                  clear_all_soft_refs);
1274}
1275
1276void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1277  // Include bytes that will be pre-allocated to support collections, as "used".
1278  const size_t used_after_gc = used();
1279  const size_t capacity_after_gc = capacity();
1280  const size_t free_after_gc = capacity_after_gc - used_after_gc;
1281
1282  // This is enforced in arguments.cpp.
1283  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1284         "otherwise the code below doesn't make sense");
1285
1286  // We don't have floating point command-line arguments
1287  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1288  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1289  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1290  const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1291
1292  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1293  const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1294
1295  // We have to be careful here as these two calculations can overflow
1296  // 32-bit size_t's.
1297  double used_after_gc_d = (double) used_after_gc;
1298  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1299  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1300
1301  // Let's make sure that they are both under the max heap size, which
1302  // by default will make them fit into a size_t.
1303  double desired_capacity_upper_bound = (double) max_heap_size;
1304  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1305                                    desired_capacity_upper_bound);
1306  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1307                                    desired_capacity_upper_bound);
1308
1309  // We can now safely turn them into size_t's.
1310  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1311  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1312
1313  // This assert only makes sense here, before we adjust them
1314  // with respect to the min and max heap size.
1315  assert(minimum_desired_capacity <= maximum_desired_capacity,
1316         "minimum_desired_capacity = " SIZE_FORMAT ", "
1317         "maximum_desired_capacity = " SIZE_FORMAT,
1318         minimum_desired_capacity, maximum_desired_capacity);
1319
1320  // Should not be greater than the heap max size. No need to adjust
1321  // it with respect to the heap min size as it's a lower bound (i.e.,
1322  // we'll try to make the capacity larger than it, not smaller).
1323  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1324  // Should not be less than the heap min size. No need to adjust it
1325  // with respect to the heap max size as it's an upper bound (i.e.,
1326  // we'll try to make the capacity smaller than it, not greater).
1327  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1328
1329  if (capacity_after_gc < minimum_desired_capacity) {
1330    // Don't expand unless it's significant
1331    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1332
1333    log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1334                              "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1335                              capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1336
1337    expand(expand_bytes, _workers);
1338
1339    // No expansion, now see if we want to shrink
1340  } else if (capacity_after_gc > maximum_desired_capacity) {
1341    // Capacity too large, compute shrinking size
1342    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1343
1344    log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1345                              "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1346                              capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1347
1348    shrink(shrink_bytes);
1349  }
1350}
1351
1352HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1353                                                            AllocationContext_t context,
1354                                                            bool do_gc,
1355                                                            bool clear_all_soft_refs,
1356                                                            bool expect_null_mutator_alloc_region,
1357                                                            bool* gc_succeeded) {
1358  *gc_succeeded = true;
1359  // Let's attempt the allocation first.
1360  HeapWord* result =
1361    attempt_allocation_at_safepoint(word_size,
1362                                    context,
1363                                    expect_null_mutator_alloc_region);
1364  if (result != NULL) {
1365    assert(*gc_succeeded, "sanity");
1366    return result;
1367  }
1368
1369  // In a G1 heap, we're supposed to keep allocation from failing by
1370  // incremental pauses.  Therefore, at least for now, we'll favor
1371  // expansion over collection.  (This might change in the future if we can
1372  // do something smarter than full collection to satisfy a failed alloc.)
1373  result = expand_and_allocate(word_size, context);
1374  if (result != NULL) {
1375    assert(*gc_succeeded, "sanity");
1376    return result;
1377  }
1378
1379  if (do_gc) {
1380    // Expansion didn't work, we'll try to do a Full GC.
1381    *gc_succeeded = do_full_collection(false, /* explicit_gc */
1382                                       clear_all_soft_refs);
1383  }
1384
1385  return NULL;
1386}
1387
1388HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1389                                                     AllocationContext_t context,
1390                                                     bool* succeeded) {
1391  assert_at_safepoint(true /* should_be_vm_thread */);
1392
1393  // Attempts to allocate followed by Full GC.
1394  HeapWord* result =
1395    satisfy_failed_allocation_helper(word_size,
1396                                     context,
1397                                     true,  /* do_gc */
1398                                     false, /* clear_all_soft_refs */
1399                                     false, /* expect_null_mutator_alloc_region */
1400                                     succeeded);
1401
1402  if (result != NULL || !*succeeded) {
1403    return result;
1404  }
1405
1406  // Attempts to allocate followed by Full GC that will collect all soft references.
1407  result = satisfy_failed_allocation_helper(word_size,
1408                                            context,
1409                                            true, /* do_gc */
1410                                            true, /* clear_all_soft_refs */
1411                                            true, /* expect_null_mutator_alloc_region */
1412                                            succeeded);
1413
1414  if (result != NULL || !*succeeded) {
1415    return result;
1416  }
1417
1418  // Attempts to allocate, no GC
1419  result = satisfy_failed_allocation_helper(word_size,
1420                                            context,
1421                                            false, /* do_gc */
1422                                            false, /* clear_all_soft_refs */
1423                                            true,  /* expect_null_mutator_alloc_region */
1424                                            succeeded);
1425
1426  if (result != NULL) {
1427    assert(*succeeded, "sanity");
1428    return result;
1429  }
1430
1431  assert(!collector_policy()->should_clear_all_soft_refs(),
1432         "Flag should have been handled and cleared prior to this point");
1433
1434  // What else?  We might try synchronous finalization later.  If the total
1435  // space available is large enough for the allocation, then a more
1436  // complete compaction phase than we've tried so far might be
1437  // appropriate.
1438  assert(*succeeded, "sanity");
1439  return NULL;
1440}
1441
1442// Attempting to expand the heap sufficiently
1443// to support an allocation of the given "word_size".  If
1444// successful, perform the allocation and return the address of the
1445// allocated block, or else "NULL".
1446
1447HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1448  assert_at_safepoint(true /* should_be_vm_thread */);
1449
1450  _verifier->verify_region_sets_optional();
1451
1452  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1453  log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1454                            word_size * HeapWordSize);
1455
1456
1457  if (expand(expand_bytes, _workers)) {
1458    _hrm.verify_optional();
1459    _verifier->verify_region_sets_optional();
1460    return attempt_allocation_at_safepoint(word_size,
1461                                           context,
1462                                           false /* expect_null_mutator_alloc_region */);
1463  }
1464  return NULL;
1465}
1466
1467bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1468  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1469  aligned_expand_bytes = align_up(aligned_expand_bytes,
1470                                       HeapRegion::GrainBytes);
1471
1472  log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1473                            expand_bytes, aligned_expand_bytes);
1474
1475  if (is_maximal_no_gc()) {
1476    log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1477    return false;
1478  }
1479
1480  double expand_heap_start_time_sec = os::elapsedTime();
1481  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1482  assert(regions_to_expand > 0, "Must expand by at least one region");
1483
1484  uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1485  if (expand_time_ms != NULL) {
1486    *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1487  }
1488
1489  if (expanded_by > 0) {
1490    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1491    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1492    g1_policy()->record_new_heap_size(num_regions());
1493  } else {
1494    log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1495
1496    // The expansion of the virtual storage space was unsuccessful.
1497    // Let's see if it was because we ran out of swap.
1498    if (G1ExitOnExpansionFailure &&
1499        _hrm.available() >= regions_to_expand) {
1500      // We had head room...
1501      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1502    }
1503  }
1504  return regions_to_expand > 0;
1505}
1506
1507void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1508  size_t aligned_shrink_bytes =
1509    ReservedSpace::page_align_size_down(shrink_bytes);
1510  aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1511                                         HeapRegion::GrainBytes);
1512  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1513
1514  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1515  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1516
1517
1518  log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1519                            shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1520  if (num_regions_removed > 0) {
1521    g1_policy()->record_new_heap_size(num_regions());
1522  } else {
1523    log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1524  }
1525}
1526
1527void G1CollectedHeap::shrink(size_t shrink_bytes) {
1528  _verifier->verify_region_sets_optional();
1529
1530  // We should only reach here at the end of a Full GC which means we
1531  // should not not be holding to any GC alloc regions. The method
1532  // below will make sure of that and do any remaining clean up.
1533  _allocator->abandon_gc_alloc_regions();
1534
1535  // Instead of tearing down / rebuilding the free lists here, we
1536  // could instead use the remove_all_pending() method on free_list to
1537  // remove only the ones that we need to remove.
1538  tear_down_region_sets(true /* free_list_only */);
1539  shrink_helper(shrink_bytes);
1540  rebuild_region_sets(true /* free_list_only */);
1541
1542  _hrm.verify_optional();
1543  _verifier->verify_region_sets_optional();
1544}
1545
1546// Public methods.
1547
1548G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1549  CollectedHeap(),
1550  _collector_policy(collector_policy),
1551  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1552  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1553  _g1_policy(create_g1_policy(_gc_timer_stw)),
1554  _collection_set(this, _g1_policy),
1555  _dirty_card_queue_set(false),
1556  _is_alive_closure_cm(this),
1557  _is_alive_closure_stw(this),
1558  _ref_processor_cm(NULL),
1559  _ref_processor_stw(NULL),
1560  _bot(NULL),
1561  _hot_card_cache(NULL),
1562  _g1_rem_set(NULL),
1563  _cg1r(NULL),
1564  _g1mm(NULL),
1565  _preserved_marks_set(true /* in_c_heap */),
1566  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1567  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1568  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1569  _humongous_reclaim_candidates(),
1570  _has_humongous_reclaim_candidates(false),
1571  _archive_allocator(NULL),
1572  _free_regions_coming(false),
1573  _gc_time_stamp(0),
1574  _summary_bytes_used(0),
1575  _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1576  _old_evac_stats("Old", OldPLABSize, PLABWeight),
1577  _expand_heap_after_alloc_failure(true),
1578  _old_marking_cycles_started(0),
1579  _old_marking_cycles_completed(0),
1580  _in_cset_fast_test() {
1581
1582  _workers = new WorkGang("GC Thread", ParallelGCThreads,
1583                          /* are_GC_task_threads */true,
1584                          /* are_ConcurrentGC_threads */false);
1585  _workers->initialize_workers();
1586  _verifier = new G1HeapVerifier(this);
1587
1588  _allocator = G1Allocator::create_allocator(this);
1589
1590  _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1591
1592  _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1593
1594  // Override the default _filler_array_max_size so that no humongous filler
1595  // objects are created.
1596  _filler_array_max_size = _humongous_object_threshold_in_words;
1597
1598  uint n_queues = ParallelGCThreads;
1599  _task_queues = new RefToScanQueueSet(n_queues);
1600
1601  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1602
1603  for (uint i = 0; i < n_queues; i++) {
1604    RefToScanQueue* q = new RefToScanQueue();
1605    q->initialize();
1606    _task_queues->register_queue(i, q);
1607    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1608  }
1609
1610  // Initialize the G1EvacuationFailureALot counters and flags.
1611  NOT_PRODUCT(reset_evacuation_should_fail();)
1612
1613  guarantee(_task_queues != NULL, "task_queues allocation failure.");
1614}
1615
1616G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1617                                                                 size_t size,
1618                                                                 size_t translation_factor) {
1619  size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1620  // Allocate a new reserved space, preferring to use large pages.
1621  ReservedSpace rs(size, preferred_page_size);
1622  G1RegionToSpaceMapper* result  =
1623    G1RegionToSpaceMapper::create_mapper(rs,
1624                                         size,
1625                                         rs.alignment(),
1626                                         HeapRegion::GrainBytes,
1627                                         translation_factor,
1628                                         mtGC);
1629
1630  os::trace_page_sizes_for_requested_size(description,
1631                                          size,
1632                                          preferred_page_size,
1633                                          rs.alignment(),
1634                                          rs.base(),
1635                                          rs.size());
1636
1637  return result;
1638}
1639
1640jint G1CollectedHeap::initialize_concurrent_refinement() {
1641  jint ecode = JNI_OK;
1642  _cg1r = ConcurrentG1Refine::create(&ecode);
1643  return ecode;
1644}
1645
1646jint G1CollectedHeap::initialize() {
1647  CollectedHeap::pre_initialize();
1648  os::enable_vtime();
1649
1650  // Necessary to satisfy locking discipline assertions.
1651
1652  MutexLocker x(Heap_lock);
1653
1654  // While there are no constraints in the GC code that HeapWordSize
1655  // be any particular value, there are multiple other areas in the
1656  // system which believe this to be true (e.g. oop->object_size in some
1657  // cases incorrectly returns the size in wordSize units rather than
1658  // HeapWordSize).
1659  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1660
1661  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1662  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1663  size_t heap_alignment = collector_policy()->heap_alignment();
1664
1665  // Ensure that the sizes are properly aligned.
1666  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1667  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1668  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1669
1670  // Reserve the maximum.
1671
1672  // When compressed oops are enabled, the preferred heap base
1673  // is calculated by subtracting the requested size from the
1674  // 32Gb boundary and using the result as the base address for
1675  // heap reservation. If the requested size is not aligned to
1676  // HeapRegion::GrainBytes (i.e. the alignment that is passed
1677  // into the ReservedHeapSpace constructor) then the actual
1678  // base of the reserved heap may end up differing from the
1679  // address that was requested (i.e. the preferred heap base).
1680  // If this happens then we could end up using a non-optimal
1681  // compressed oops mode.
1682
1683  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1684                                                 heap_alignment);
1685
1686  initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1687
1688  // Create the barrier set for the entire reserved region.
1689  G1SATBCardTableLoggingModRefBS* bs
1690    = new G1SATBCardTableLoggingModRefBS(reserved_region());
1691  bs->initialize();
1692  assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1693  set_barrier_set(bs);
1694
1695  // Create the hot card cache.
1696  _hot_card_cache = new G1HotCardCache(this);
1697
1698  // Carve out the G1 part of the heap.
1699  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1700  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1701  G1RegionToSpaceMapper* heap_storage =
1702    G1RegionToSpaceMapper::create_mapper(g1_rs,
1703                                         g1_rs.size(),
1704                                         page_size,
1705                                         HeapRegion::GrainBytes,
1706                                         1,
1707                                         mtJavaHeap);
1708  os::trace_page_sizes("Heap",
1709                       collector_policy()->min_heap_byte_size(),
1710                       max_byte_size,
1711                       page_size,
1712                       heap_rs.base(),
1713                       heap_rs.size());
1714  heap_storage->set_mapping_changed_listener(&_listener);
1715
1716  // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1717  G1RegionToSpaceMapper* bot_storage =
1718    create_aux_memory_mapper("Block Offset Table",
1719                             G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1720                             G1BlockOffsetTable::heap_map_factor());
1721
1722  G1RegionToSpaceMapper* cardtable_storage =
1723    create_aux_memory_mapper("Card Table",
1724                             G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1725                             G1SATBCardTableLoggingModRefBS::heap_map_factor());
1726
1727  G1RegionToSpaceMapper* card_counts_storage =
1728    create_aux_memory_mapper("Card Counts Table",
1729                             G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1730                             G1CardCounts::heap_map_factor());
1731
1732  size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1733  G1RegionToSpaceMapper* prev_bitmap_storage =
1734    create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1735  G1RegionToSpaceMapper* next_bitmap_storage =
1736    create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1737
1738  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1739  g1_barrier_set()->initialize(cardtable_storage);
1740  // Do later initialization work for concurrent refinement.
1741  _hot_card_cache->initialize(card_counts_storage);
1742
1743  // 6843694 - ensure that the maximum region index can fit
1744  // in the remembered set structures.
1745  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1746  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1747
1748  // Also create a G1 rem set.
1749  _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1750  _g1_rem_set->initialize(max_capacity(), max_regions());
1751
1752  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1753  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1754  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1755            "too many cards per region");
1756
1757  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1758
1759  _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1760
1761  {
1762    HeapWord* start = _hrm.reserved().start();
1763    HeapWord* end = _hrm.reserved().end();
1764    size_t granularity = HeapRegion::GrainBytes;
1765
1766    _in_cset_fast_test.initialize(start, end, granularity);
1767    _humongous_reclaim_candidates.initialize(start, end, granularity);
1768  }
1769
1770  // Create the G1ConcurrentMark data structure and thread.
1771  // (Must do this late, so that "max_regions" is defined.)
1772  _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1773  if (_cm == NULL || !_cm->completed_initialization()) {
1774    vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1775    return JNI_ENOMEM;
1776  }
1777  _cmThread = _cm->cmThread();
1778
1779  // Now expand into the initial heap size.
1780  if (!expand(init_byte_size, _workers)) {
1781    vm_shutdown_during_initialization("Failed to allocate initial heap.");
1782    return JNI_ENOMEM;
1783  }
1784
1785  // Perform any initialization actions delegated to the policy.
1786  g1_policy()->init(this, &_collection_set);
1787
1788  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1789                                               SATB_Q_FL_lock,
1790                                               G1SATBProcessCompletedThreshold,
1791                                               Shared_SATB_Q_lock);
1792
1793  jint ecode = initialize_concurrent_refinement();
1794  if (ecode != JNI_OK) {
1795    return ecode;
1796  }
1797
1798  JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1799                                                DirtyCardQ_FL_lock,
1800                                                (int)concurrent_g1_refine()->yellow_zone(),
1801                                                (int)concurrent_g1_refine()->red_zone(),
1802                                                Shared_DirtyCardQ_lock,
1803                                                NULL,  // fl_owner
1804                                                true); // init_free_ids
1805
1806  dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1807                                    DirtyCardQ_FL_lock,
1808                                    -1, // never trigger processing
1809                                    -1, // no limit on length
1810                                    Shared_DirtyCardQ_lock,
1811                                    &JavaThread::dirty_card_queue_set());
1812
1813  // Here we allocate the dummy HeapRegion that is required by the
1814  // G1AllocRegion class.
1815  HeapRegion* dummy_region = _hrm.get_dummy_region();
1816
1817  // We'll re-use the same region whether the alloc region will
1818  // require BOT updates or not and, if it doesn't, then a non-young
1819  // region will complain that it cannot support allocations without
1820  // BOT updates. So we'll tag the dummy region as eden to avoid that.
1821  dummy_region->set_eden();
1822  // Make sure it's full.
1823  dummy_region->set_top(dummy_region->end());
1824  G1AllocRegion::setup(this, dummy_region);
1825
1826  _allocator->init_mutator_alloc_region();
1827
1828  // Do create of the monitoring and management support so that
1829  // values in the heap have been properly initialized.
1830  _g1mm = new G1MonitoringSupport(this);
1831
1832  G1StringDedup::initialize();
1833
1834  _preserved_marks_set.init(ParallelGCThreads);
1835
1836  _collection_set.initialize(max_regions());
1837
1838  return JNI_OK;
1839}
1840
1841void G1CollectedHeap::stop() {
1842  // Stop all concurrent threads. We do this to make sure these threads
1843  // do not continue to execute and access resources (e.g. logging)
1844  // that are destroyed during shutdown.
1845  _cg1r->stop();
1846  _cmThread->stop();
1847  if (G1StringDedup::is_enabled()) {
1848    G1StringDedup::stop();
1849  }
1850}
1851
1852size_t G1CollectedHeap::conservative_max_heap_alignment() {
1853  return HeapRegion::max_region_size();
1854}
1855
1856void G1CollectedHeap::post_initialize() {
1857  ref_processing_init();
1858}
1859
1860void G1CollectedHeap::ref_processing_init() {
1861  // Reference processing in G1 currently works as follows:
1862  //
1863  // * There are two reference processor instances. One is
1864  //   used to record and process discovered references
1865  //   during concurrent marking; the other is used to
1866  //   record and process references during STW pauses
1867  //   (both full and incremental).
1868  // * Both ref processors need to 'span' the entire heap as
1869  //   the regions in the collection set may be dotted around.
1870  //
1871  // * For the concurrent marking ref processor:
1872  //   * Reference discovery is enabled at initial marking.
1873  //   * Reference discovery is disabled and the discovered
1874  //     references processed etc during remarking.
1875  //   * Reference discovery is MT (see below).
1876  //   * Reference discovery requires a barrier (see below).
1877  //   * Reference processing may or may not be MT
1878  //     (depending on the value of ParallelRefProcEnabled
1879  //     and ParallelGCThreads).
1880  //   * A full GC disables reference discovery by the CM
1881  //     ref processor and abandons any entries on it's
1882  //     discovered lists.
1883  //
1884  // * For the STW processor:
1885  //   * Non MT discovery is enabled at the start of a full GC.
1886  //   * Processing and enqueueing during a full GC is non-MT.
1887  //   * During a full GC, references are processed after marking.
1888  //
1889  //   * Discovery (may or may not be MT) is enabled at the start
1890  //     of an incremental evacuation pause.
1891  //   * References are processed near the end of a STW evacuation pause.
1892  //   * For both types of GC:
1893  //     * Discovery is atomic - i.e. not concurrent.
1894  //     * Reference discovery will not need a barrier.
1895
1896  MemRegion mr = reserved_region();
1897
1898  bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1899
1900  // Concurrent Mark ref processor
1901  _ref_processor_cm =
1902    new ReferenceProcessor(mr,    // span
1903                           mt_processing,
1904                                // mt processing
1905                           ParallelGCThreads,
1906                                // degree of mt processing
1907                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1908                                // mt discovery
1909                           MAX2(ParallelGCThreads, ConcGCThreads),
1910                                // degree of mt discovery
1911                           false,
1912                                // Reference discovery is not atomic
1913                           &_is_alive_closure_cm);
1914                                // is alive closure
1915                                // (for efficiency/performance)
1916
1917  // STW ref processor
1918  _ref_processor_stw =
1919    new ReferenceProcessor(mr,    // span
1920                           mt_processing,
1921                                // mt processing
1922                           ParallelGCThreads,
1923                                // degree of mt processing
1924                           (ParallelGCThreads > 1),
1925                                // mt discovery
1926                           ParallelGCThreads,
1927                                // degree of mt discovery
1928                           true,
1929                                // Reference discovery is atomic
1930                           &_is_alive_closure_stw);
1931                                // is alive closure
1932                                // (for efficiency/performance)
1933}
1934
1935CollectorPolicy* G1CollectedHeap::collector_policy() const {
1936  return _collector_policy;
1937}
1938
1939size_t G1CollectedHeap::capacity() const {
1940  return _hrm.length() * HeapRegion::GrainBytes;
1941}
1942
1943void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1944  hr->reset_gc_time_stamp();
1945}
1946
1947#ifndef PRODUCT
1948
1949class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1950private:
1951  unsigned _gc_time_stamp;
1952  bool _failures;
1953
1954public:
1955  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1956    _gc_time_stamp(gc_time_stamp), _failures(false) { }
1957
1958  virtual bool doHeapRegion(HeapRegion* hr) {
1959    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1960    if (_gc_time_stamp != region_gc_time_stamp) {
1961      log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1962                            region_gc_time_stamp, _gc_time_stamp);
1963      _failures = true;
1964    }
1965    return false;
1966  }
1967
1968  bool failures() { return _failures; }
1969};
1970
1971void G1CollectedHeap::check_gc_time_stamps() {
1972  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1973  heap_region_iterate(&cl);
1974  guarantee(!cl.failures(), "all GC time stamps should have been reset");
1975}
1976#endif // PRODUCT
1977
1978void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1979  _hot_card_cache->drain(cl, worker_i);
1980}
1981
1982void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1983  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1984  size_t n_completed_buffers = 0;
1985  while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1986    n_completed_buffers++;
1987  }
1988  g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1989  dcqs.clear_n_completed_buffers();
1990  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1991}
1992
1993// Computes the sum of the storage used by the various regions.
1994size_t G1CollectedHeap::used() const {
1995  size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1996  if (_archive_allocator != NULL) {
1997    result += _archive_allocator->used();
1998  }
1999  return result;
2000}
2001
2002size_t G1CollectedHeap::used_unlocked() const {
2003  return _summary_bytes_used;
2004}
2005
2006class SumUsedClosure: public HeapRegionClosure {
2007  size_t _used;
2008public:
2009  SumUsedClosure() : _used(0) {}
2010  bool doHeapRegion(HeapRegion* r) {
2011    _used += r->used();
2012    return false;
2013  }
2014  size_t result() { return _used; }
2015};
2016
2017size_t G1CollectedHeap::recalculate_used() const {
2018  double recalculate_used_start = os::elapsedTime();
2019
2020  SumUsedClosure blk;
2021  heap_region_iterate(&blk);
2022
2023  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2024  return blk.result();
2025}
2026
2027bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2028  switch (cause) {
2029    case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2030    case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2031    case GCCause::_update_allocation_context_stats_inc: return true;
2032    case GCCause::_wb_conc_mark:                        return true;
2033    default :                                           return false;
2034  }
2035}
2036
2037bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2038  switch (cause) {
2039    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2040    case GCCause::_g1_humongous_allocation: return true;
2041    default:                                return is_user_requested_concurrent_full_gc(cause);
2042  }
2043}
2044
2045#ifndef PRODUCT
2046void G1CollectedHeap::allocate_dummy_regions() {
2047  // Let's fill up most of the region
2048  size_t word_size = HeapRegion::GrainWords - 1024;
2049  // And as a result the region we'll allocate will be humongous.
2050  guarantee(is_humongous(word_size), "sanity");
2051
2052  // _filler_array_max_size is set to humongous object threshold
2053  // but temporarily change it to use CollectedHeap::fill_with_object().
2054  SizeTFlagSetting fs(_filler_array_max_size, word_size);
2055
2056  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2057    // Let's use the existing mechanism for the allocation
2058    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2059                                                 AllocationContext::system());
2060    if (dummy_obj != NULL) {
2061      MemRegion mr(dummy_obj, word_size);
2062      CollectedHeap::fill_with_object(mr);
2063    } else {
2064      // If we can't allocate once, we probably cannot allocate
2065      // again. Let's get out of the loop.
2066      break;
2067    }
2068  }
2069}
2070#endif // !PRODUCT
2071
2072void G1CollectedHeap::increment_old_marking_cycles_started() {
2073  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2074         _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2075         "Wrong marking cycle count (started: %d, completed: %d)",
2076         _old_marking_cycles_started, _old_marking_cycles_completed);
2077
2078  _old_marking_cycles_started++;
2079}
2080
2081void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2082  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2083
2084  // We assume that if concurrent == true, then the caller is a
2085  // concurrent thread that was joined the Suspendible Thread
2086  // Set. If there's ever a cheap way to check this, we should add an
2087  // assert here.
2088
2089  // Given that this method is called at the end of a Full GC or of a
2090  // concurrent cycle, and those can be nested (i.e., a Full GC can
2091  // interrupt a concurrent cycle), the number of full collections
2092  // completed should be either one (in the case where there was no
2093  // nesting) or two (when a Full GC interrupted a concurrent cycle)
2094  // behind the number of full collections started.
2095
2096  // This is the case for the inner caller, i.e. a Full GC.
2097  assert(concurrent ||
2098         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2099         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2100         "for inner caller (Full GC): _old_marking_cycles_started = %u "
2101         "is inconsistent with _old_marking_cycles_completed = %u",
2102         _old_marking_cycles_started, _old_marking_cycles_completed);
2103
2104  // This is the case for the outer caller, i.e. the concurrent cycle.
2105  assert(!concurrent ||
2106         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2107         "for outer caller (concurrent cycle): "
2108         "_old_marking_cycles_started = %u "
2109         "is inconsistent with _old_marking_cycles_completed = %u",
2110         _old_marking_cycles_started, _old_marking_cycles_completed);
2111
2112  _old_marking_cycles_completed += 1;
2113
2114  // We need to clear the "in_progress" flag in the CM thread before
2115  // we wake up any waiters (especially when ExplicitInvokesConcurrent
2116  // is set) so that if a waiter requests another System.gc() it doesn't
2117  // incorrectly see that a marking cycle is still in progress.
2118  if (concurrent) {
2119    _cmThread->set_idle();
2120  }
2121
2122  // This notify_all() will ensure that a thread that called
2123  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2124  // and it's waiting for a full GC to finish will be woken up. It is
2125  // waiting in VM_G1IncCollectionPause::doit_epilogue().
2126  FullGCCount_lock->notify_all();
2127}
2128
2129void G1CollectedHeap::collect(GCCause::Cause cause) {
2130  assert_heap_not_locked();
2131
2132  uint gc_count_before;
2133  uint old_marking_count_before;
2134  uint full_gc_count_before;
2135  bool retry_gc;
2136
2137  do {
2138    retry_gc = false;
2139
2140    {
2141      MutexLocker ml(Heap_lock);
2142
2143      // Read the GC count while holding the Heap_lock
2144      gc_count_before = total_collections();
2145      full_gc_count_before = total_full_collections();
2146      old_marking_count_before = _old_marking_cycles_started;
2147    }
2148
2149    if (should_do_concurrent_full_gc(cause)) {
2150      // Schedule an initial-mark evacuation pause that will start a
2151      // concurrent cycle. We're setting word_size to 0 which means that
2152      // we are not requesting a post-GC allocation.
2153      VM_G1IncCollectionPause op(gc_count_before,
2154                                 0,     /* word_size */
2155                                 true,  /* should_initiate_conc_mark */
2156                                 g1_policy()->max_pause_time_ms(),
2157                                 cause);
2158      op.set_allocation_context(AllocationContext::current());
2159
2160      VMThread::execute(&op);
2161      if (!op.pause_succeeded()) {
2162        if (old_marking_count_before == _old_marking_cycles_started) {
2163          retry_gc = op.should_retry_gc();
2164        } else {
2165          // A Full GC happened while we were trying to schedule the
2166          // initial-mark GC. No point in starting a new cycle given
2167          // that the whole heap was collected anyway.
2168        }
2169
2170        if (retry_gc) {
2171          if (GCLocker::is_active_and_needs_gc()) {
2172            GCLocker::stall_until_clear();
2173          }
2174        }
2175      }
2176    } else {
2177      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2178          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2179
2180        // Schedule a standard evacuation pause. We're setting word_size
2181        // to 0 which means that we are not requesting a post-GC allocation.
2182        VM_G1IncCollectionPause op(gc_count_before,
2183                                   0,     /* word_size */
2184                                   false, /* should_initiate_conc_mark */
2185                                   g1_policy()->max_pause_time_ms(),
2186                                   cause);
2187        VMThread::execute(&op);
2188      } else {
2189        // Schedule a Full GC.
2190        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2191        VMThread::execute(&op);
2192      }
2193    }
2194  } while (retry_gc);
2195}
2196
2197bool G1CollectedHeap::is_in(const void* p) const {
2198  if (_hrm.reserved().contains(p)) {
2199    // Given that we know that p is in the reserved space,
2200    // heap_region_containing() should successfully
2201    // return the containing region.
2202    HeapRegion* hr = heap_region_containing(p);
2203    return hr->is_in(p);
2204  } else {
2205    return false;
2206  }
2207}
2208
2209#ifdef ASSERT
2210bool G1CollectedHeap::is_in_exact(const void* p) const {
2211  bool contains = reserved_region().contains(p);
2212  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2213  if (contains && available) {
2214    return true;
2215  } else {
2216    return false;
2217  }
2218}
2219#endif
2220
2221// Iteration functions.
2222
2223// Iterates an ObjectClosure over all objects within a HeapRegion.
2224
2225class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2226  ObjectClosure* _cl;
2227public:
2228  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2229  bool doHeapRegion(HeapRegion* r) {
2230    if (!r->is_continues_humongous()) {
2231      r->object_iterate(_cl);
2232    }
2233    return false;
2234  }
2235};
2236
2237void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2238  IterateObjectClosureRegionClosure blk(cl);
2239  heap_region_iterate(&blk);
2240}
2241
2242void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2243  _hrm.iterate(cl);
2244}
2245
2246void G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2247                                              uint worker_id,
2248                                              HeapRegionClaimer *hrclaimer) const {
2249  _hrm.par_iterate(cl, worker_id, hrclaimer);
2250}
2251
2252void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2253  _collection_set.iterate(cl);
2254}
2255
2256void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2257  _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2258}
2259
2260HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2261  HeapRegion* result = _hrm.next_region_in_heap(from);
2262  while (result != NULL && result->is_pinned()) {
2263    result = _hrm.next_region_in_heap(result);
2264  }
2265  return result;
2266}
2267
2268HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2269  HeapRegion* hr = heap_region_containing(addr);
2270  return hr->block_start(addr);
2271}
2272
2273size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2274  HeapRegion* hr = heap_region_containing(addr);
2275  return hr->block_size(addr);
2276}
2277
2278bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2279  HeapRegion* hr = heap_region_containing(addr);
2280  return hr->block_is_obj(addr);
2281}
2282
2283bool G1CollectedHeap::supports_tlab_allocation() const {
2284  return true;
2285}
2286
2287size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2288  return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2289}
2290
2291size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2292  return _eden.length() * HeapRegion::GrainBytes;
2293}
2294
2295// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2296// must be equal to the humongous object limit.
2297size_t G1CollectedHeap::max_tlab_size() const {
2298  return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2299}
2300
2301size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2302  AllocationContext_t context = AllocationContext::current();
2303  return _allocator->unsafe_max_tlab_alloc(context);
2304}
2305
2306size_t G1CollectedHeap::max_capacity() const {
2307  return _hrm.reserved().byte_size();
2308}
2309
2310jlong G1CollectedHeap::millis_since_last_gc() {
2311  // See the notes in GenCollectedHeap::millis_since_last_gc()
2312  // for more information about the implementation.
2313  jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2314    _g1_policy->collection_pause_end_millis();
2315  if (ret_val < 0) {
2316    log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2317      ". returning zero instead.", ret_val);
2318    return 0;
2319  }
2320  return ret_val;
2321}
2322
2323void G1CollectedHeap::prepare_for_verify() {
2324  _verifier->prepare_for_verify();
2325}
2326
2327void G1CollectedHeap::verify(VerifyOption vo) {
2328  _verifier->verify(vo);
2329}
2330
2331bool G1CollectedHeap::supports_concurrent_phase_control() const {
2332  return true;
2333}
2334
2335const char* const* G1CollectedHeap::concurrent_phases() const {
2336  return _cmThread->concurrent_phases();
2337}
2338
2339bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2340  return _cmThread->request_concurrent_phase(phase);
2341}
2342
2343class PrintRegionClosure: public HeapRegionClosure {
2344  outputStream* _st;
2345public:
2346  PrintRegionClosure(outputStream* st) : _st(st) {}
2347  bool doHeapRegion(HeapRegion* r) {
2348    r->print_on(_st);
2349    return false;
2350  }
2351};
2352
2353bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2354                                       const HeapRegion* hr,
2355                                       const VerifyOption vo) const {
2356  switch (vo) {
2357  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2358  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2359  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2360  default:                            ShouldNotReachHere();
2361  }
2362  return false; // keep some compilers happy
2363}
2364
2365bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2366                                       const VerifyOption vo) const {
2367  switch (vo) {
2368  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2369  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2370  case VerifyOption_G1UseMarkWord: {
2371    HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2372    return !obj->is_gc_marked() && !hr->is_archive();
2373  }
2374  default:                            ShouldNotReachHere();
2375  }
2376  return false; // keep some compilers happy
2377}
2378
2379void G1CollectedHeap::print_heap_regions() const {
2380  LogTarget(Trace, gc, heap, region) lt;
2381  if (lt.is_enabled()) {
2382    LogStream ls(lt);
2383    print_regions_on(&ls);
2384  }
2385}
2386
2387void G1CollectedHeap::print_on(outputStream* st) const {
2388  st->print(" %-20s", "garbage-first heap");
2389  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2390            capacity()/K, used_unlocked()/K);
2391  st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2392            p2i(_hrm.reserved().start()),
2393            p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2394            p2i(_hrm.reserved().end()));
2395  st->cr();
2396  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2397  uint young_regions = young_regions_count();
2398  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2399            (size_t) young_regions * HeapRegion::GrainBytes / K);
2400  uint survivor_regions = survivor_regions_count();
2401  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2402            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2403  st->cr();
2404  MetaspaceAux::print_on(st);
2405}
2406
2407void G1CollectedHeap::print_regions_on(outputStream* st) const {
2408  st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2409               "HS=humongous(starts), HC=humongous(continues), "
2410               "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2411               "AC=allocation context, "
2412               "TAMS=top-at-mark-start (previous, next)");
2413  PrintRegionClosure blk(st);
2414  heap_region_iterate(&blk);
2415}
2416
2417void G1CollectedHeap::print_extended_on(outputStream* st) const {
2418  print_on(st);
2419
2420  // Print the per-region information.
2421  print_regions_on(st);
2422}
2423
2424void G1CollectedHeap::print_on_error(outputStream* st) const {
2425  this->CollectedHeap::print_on_error(st);
2426
2427  if (_cm != NULL) {
2428    st->cr();
2429    _cm->print_on_error(st);
2430  }
2431}
2432
2433void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2434  workers()->print_worker_threads_on(st);
2435  _cmThread->print_on(st);
2436  st->cr();
2437  _cm->print_worker_threads_on(st);
2438  _cg1r->print_worker_threads_on(st); // also prints the sample thread
2439  if (G1StringDedup::is_enabled()) {
2440    G1StringDedup::print_worker_threads_on(st);
2441  }
2442}
2443
2444void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2445  workers()->threads_do(tc);
2446  tc->do_thread(_cmThread);
2447  _cm->threads_do(tc);
2448  _cg1r->threads_do(tc); // also iterates over the sample thread
2449  if (G1StringDedup::is_enabled()) {
2450    G1StringDedup::threads_do(tc);
2451  }
2452}
2453
2454void G1CollectedHeap::print_tracing_info() const {
2455  g1_rem_set()->print_summary_info();
2456  concurrent_mark()->print_summary_info();
2457}
2458
2459#ifndef PRODUCT
2460// Helpful for debugging RSet issues.
2461
2462class PrintRSetsClosure : public HeapRegionClosure {
2463private:
2464  const char* _msg;
2465  size_t _occupied_sum;
2466
2467public:
2468  bool doHeapRegion(HeapRegion* r) {
2469    HeapRegionRemSet* hrrs = r->rem_set();
2470    size_t occupied = hrrs->occupied();
2471    _occupied_sum += occupied;
2472
2473    tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2474    if (occupied == 0) {
2475      tty->print_cr("  RSet is empty");
2476    } else {
2477      hrrs->print();
2478    }
2479    tty->print_cr("----------");
2480    return false;
2481  }
2482
2483  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2484    tty->cr();
2485    tty->print_cr("========================================");
2486    tty->print_cr("%s", msg);
2487    tty->cr();
2488  }
2489
2490  ~PrintRSetsClosure() {
2491    tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2492    tty->print_cr("========================================");
2493    tty->cr();
2494  }
2495};
2496
2497void G1CollectedHeap::print_cset_rsets() {
2498  PrintRSetsClosure cl("Printing CSet RSets");
2499  collection_set_iterate(&cl);
2500}
2501
2502void G1CollectedHeap::print_all_rsets() {
2503  PrintRSetsClosure cl("Printing All RSets");;
2504  heap_region_iterate(&cl);
2505}
2506#endif // PRODUCT
2507
2508G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2509
2510  size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2511  size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2512  size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2513
2514  size_t eden_capacity_bytes =
2515    (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2516
2517  VirtualSpaceSummary heap_summary = create_heap_space_summary();
2518  return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2519                       eden_capacity_bytes, survivor_used_bytes, num_regions());
2520}
2521
2522G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2523  return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2524                       stats->unused(), stats->used(), stats->region_end_waste(),
2525                       stats->regions_filled(), stats->direct_allocated(),
2526                       stats->failure_used(), stats->failure_waste());
2527}
2528
2529void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2530  const G1HeapSummary& heap_summary = create_g1_heap_summary();
2531  gc_tracer->report_gc_heap_summary(when, heap_summary);
2532
2533  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2534  gc_tracer->report_metaspace_summary(when, metaspace_summary);
2535}
2536
2537G1CollectedHeap* G1CollectedHeap::heap() {
2538  CollectedHeap* heap = Universe::heap();
2539  assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2540  assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2541  return (G1CollectedHeap*)heap;
2542}
2543
2544void G1CollectedHeap::gc_prologue(bool full) {
2545  // always_do_update_barrier = false;
2546  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2547
2548  // This summary needs to be printed before incrementing total collections.
2549  g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2550
2551  // Update common counters.
2552  increment_total_collections(full /* full gc */);
2553  if (full) {
2554    increment_old_marking_cycles_started();
2555    reset_gc_time_stamp();
2556  } else {
2557    increment_gc_time_stamp();
2558  }
2559
2560  // Fill TLAB's and such
2561  double start = os::elapsedTime();
2562  accumulate_statistics_all_tlabs();
2563  ensure_parsability(true);
2564  g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2565}
2566
2567void G1CollectedHeap::gc_epilogue(bool full) {
2568  // Update common counters.
2569  if (full) {
2570    // Update the number of full collections that have been completed.
2571    increment_old_marking_cycles_completed(false /* concurrent */);
2572  }
2573
2574  // We are at the end of the GC. Total collections has already been increased.
2575  g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2576
2577  // FIXME: what is this about?
2578  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2579  // is set.
2580#if defined(COMPILER2) || INCLUDE_JVMCI
2581  assert(DerivedPointerTable::is_empty(), "derived pointer present");
2582#endif
2583  // always_do_update_barrier = true;
2584
2585  double start = os::elapsedTime();
2586  resize_all_tlabs();
2587  g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2588
2589  allocation_context_stats().update(full);
2590
2591  MemoryService::track_memory_usage();
2592  // We have just completed a GC. Update the soft reference
2593  // policy with the new heap occupancy
2594  Universe::update_heap_info_at_gc();
2595}
2596
2597HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2598                                               uint gc_count_before,
2599                                               bool* succeeded,
2600                                               GCCause::Cause gc_cause) {
2601  assert_heap_not_locked_and_not_at_safepoint();
2602  VM_G1IncCollectionPause op(gc_count_before,
2603                             word_size,
2604                             false, /* should_initiate_conc_mark */
2605                             g1_policy()->max_pause_time_ms(),
2606                             gc_cause);
2607
2608  op.set_allocation_context(AllocationContext::current());
2609  VMThread::execute(&op);
2610
2611  HeapWord* result = op.result();
2612  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2613  assert(result == NULL || ret_succeeded,
2614         "the result should be NULL if the VM did not succeed");
2615  *succeeded = ret_succeeded;
2616
2617  assert_heap_not_locked();
2618  return result;
2619}
2620
2621void
2622G1CollectedHeap::doConcurrentMark() {
2623  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2624  if (!_cmThread->in_progress()) {
2625    _cmThread->set_started();
2626    CGC_lock->notify();
2627  }
2628}
2629
2630size_t G1CollectedHeap::pending_card_num() {
2631  size_t extra_cards = 0;
2632  JavaThread *curr = Threads::first();
2633  while (curr != NULL) {
2634    DirtyCardQueue& dcq = curr->dirty_card_queue();
2635    extra_cards += dcq.size();
2636    curr = curr->next();
2637  }
2638  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2639  size_t buffer_size = dcqs.buffer_size();
2640  size_t buffer_num = dcqs.completed_buffers_num();
2641
2642  return buffer_size * buffer_num + extra_cards;
2643}
2644
2645class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2646 private:
2647  size_t _total_humongous;
2648  size_t _candidate_humongous;
2649
2650  DirtyCardQueue _dcq;
2651
2652  // We don't nominate objects with many remembered set entries, on
2653  // the assumption that such objects are likely still live.
2654  bool is_remset_small(HeapRegion* region) const {
2655    HeapRegionRemSet* const rset = region->rem_set();
2656    return G1EagerReclaimHumongousObjectsWithStaleRefs
2657      ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2658      : rset->is_empty();
2659  }
2660
2661  bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2662    assert(region->is_starts_humongous(), "Must start a humongous object");
2663
2664    oop obj = oop(region->bottom());
2665
2666    // Dead objects cannot be eager reclaim candidates. Due to class
2667    // unloading it is unsafe to query their classes so we return early.
2668    if (heap->is_obj_dead(obj, region)) {
2669      return false;
2670    }
2671
2672    // Candidate selection must satisfy the following constraints
2673    // while concurrent marking is in progress:
2674    //
2675    // * In order to maintain SATB invariants, an object must not be
2676    // reclaimed if it was allocated before the start of marking and
2677    // has not had its references scanned.  Such an object must have
2678    // its references (including type metadata) scanned to ensure no
2679    // live objects are missed by the marking process.  Objects
2680    // allocated after the start of concurrent marking don't need to
2681    // be scanned.
2682    //
2683    // * An object must not be reclaimed if it is on the concurrent
2684    // mark stack.  Objects allocated after the start of concurrent
2685    // marking are never pushed on the mark stack.
2686    //
2687    // Nominating only objects allocated after the start of concurrent
2688    // marking is sufficient to meet both constraints.  This may miss
2689    // some objects that satisfy the constraints, but the marking data
2690    // structures don't support efficiently performing the needed
2691    // additional tests or scrubbing of the mark stack.
2692    //
2693    // However, we presently only nominate is_typeArray() objects.
2694    // A humongous object containing references induces remembered
2695    // set entries on other regions.  In order to reclaim such an
2696    // object, those remembered sets would need to be cleaned up.
2697    //
2698    // We also treat is_typeArray() objects specially, allowing them
2699    // to be reclaimed even if allocated before the start of
2700    // concurrent mark.  For this we rely on mark stack insertion to
2701    // exclude is_typeArray() objects, preventing reclaiming an object
2702    // that is in the mark stack.  We also rely on the metadata for
2703    // such objects to be built-in and so ensured to be kept live.
2704    // Frequent allocation and drop of large binary blobs is an
2705    // important use case for eager reclaim, and this special handling
2706    // may reduce needed headroom.
2707
2708    return obj->is_typeArray() && is_remset_small(region);
2709  }
2710
2711 public:
2712  RegisterHumongousWithInCSetFastTestClosure()
2713  : _total_humongous(0),
2714    _candidate_humongous(0),
2715    _dcq(&JavaThread::dirty_card_queue_set()) {
2716  }
2717
2718  virtual bool doHeapRegion(HeapRegion* r) {
2719    if (!r->is_starts_humongous()) {
2720      return false;
2721    }
2722    G1CollectedHeap* g1h = G1CollectedHeap::heap();
2723
2724    bool is_candidate = humongous_region_is_candidate(g1h, r);
2725    uint rindex = r->hrm_index();
2726    g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2727    if (is_candidate) {
2728      _candidate_humongous++;
2729      g1h->register_humongous_region_with_cset(rindex);
2730      // Is_candidate already filters out humongous object with large remembered sets.
2731      // If we have a humongous object with a few remembered sets, we simply flush these
2732      // remembered set entries into the DCQS. That will result in automatic
2733      // re-evaluation of their remembered set entries during the following evacuation
2734      // phase.
2735      if (!r->rem_set()->is_empty()) {
2736        guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2737                  "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2738        G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2739        HeapRegionRemSetIterator hrrs(r->rem_set());
2740        size_t card_index;
2741        while (hrrs.has_next(card_index)) {
2742          jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2743          // The remembered set might contain references to already freed
2744          // regions. Filter out such entries to avoid failing card table
2745          // verification.
2746          if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2747            if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2748              *card_ptr = CardTableModRefBS::dirty_card_val();
2749              _dcq.enqueue(card_ptr);
2750            }
2751          }
2752        }
2753        assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2754               "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2755               hrrs.n_yielded(), r->rem_set()->occupied());
2756        r->rem_set()->clear_locked();
2757      }
2758      assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2759    }
2760    _total_humongous++;
2761
2762    return false;
2763  }
2764
2765  size_t total_humongous() const { return _total_humongous; }
2766  size_t candidate_humongous() const { return _candidate_humongous; }
2767
2768  void flush_rem_set_entries() { _dcq.flush(); }
2769};
2770
2771void G1CollectedHeap::register_humongous_regions_with_cset() {
2772  if (!G1EagerReclaimHumongousObjects) {
2773    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2774    return;
2775  }
2776  double time = os::elapsed_counter();
2777
2778  // Collect reclaim candidate information and register candidates with cset.
2779  RegisterHumongousWithInCSetFastTestClosure cl;
2780  heap_region_iterate(&cl);
2781
2782  time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2783  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2784                                                                  cl.total_humongous(),
2785                                                                  cl.candidate_humongous());
2786  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2787
2788  // Finally flush all remembered set entries to re-check into the global DCQS.
2789  cl.flush_rem_set_entries();
2790}
2791
2792class VerifyRegionRemSetClosure : public HeapRegionClosure {
2793  public:
2794    bool doHeapRegion(HeapRegion* hr) {
2795      if (!hr->is_archive() && !hr->is_continues_humongous()) {
2796        hr->verify_rem_set();
2797      }
2798      return false;
2799    }
2800};
2801
2802uint G1CollectedHeap::num_task_queues() const {
2803  return _task_queues->size();
2804}
2805
2806#if TASKQUEUE_STATS
2807void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2808  st->print_raw_cr("GC Task Stats");
2809  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2810  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2811}
2812
2813void G1CollectedHeap::print_taskqueue_stats() const {
2814  if (!log_is_enabled(Trace, gc, task, stats)) {
2815    return;
2816  }
2817  Log(gc, task, stats) log;
2818  ResourceMark rm;
2819  LogStream ls(log.trace());
2820  outputStream* st = &ls;
2821
2822  print_taskqueue_stats_hdr(st);
2823
2824  TaskQueueStats totals;
2825  const uint n = num_task_queues();
2826  for (uint i = 0; i < n; ++i) {
2827    st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2828    totals += task_queue(i)->stats;
2829  }
2830  st->print_raw("tot "); totals.print(st); st->cr();
2831
2832  DEBUG_ONLY(totals.verify());
2833}
2834
2835void G1CollectedHeap::reset_taskqueue_stats() {
2836  const uint n = num_task_queues();
2837  for (uint i = 0; i < n; ++i) {
2838    task_queue(i)->stats.reset();
2839  }
2840}
2841#endif // TASKQUEUE_STATS
2842
2843void G1CollectedHeap::wait_for_root_region_scanning() {
2844  double scan_wait_start = os::elapsedTime();
2845  // We have to wait until the CM threads finish scanning the
2846  // root regions as it's the only way to ensure that all the
2847  // objects on them have been correctly scanned before we start
2848  // moving them during the GC.
2849  bool waited = _cm->root_regions()->wait_until_scan_finished();
2850  double wait_time_ms = 0.0;
2851  if (waited) {
2852    double scan_wait_end = os::elapsedTime();
2853    wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2854  }
2855  g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2856}
2857
2858class G1PrintCollectionSetClosure : public HeapRegionClosure {
2859private:
2860  G1HRPrinter* _hr_printer;
2861public:
2862  G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2863
2864  virtual bool doHeapRegion(HeapRegion* r) {
2865    _hr_printer->cset(r);
2866    return false;
2867  }
2868};
2869
2870void G1CollectedHeap::start_new_collection_set() {
2871  collection_set()->start_incremental_building();
2872
2873  clear_cset_fast_test();
2874
2875  guarantee(_eden.length() == 0, "eden should have been cleared");
2876  g1_policy()->transfer_survivors_to_cset(survivor());
2877}
2878
2879bool
2880G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2881  assert_at_safepoint(true /* should_be_vm_thread */);
2882  guarantee(!is_gc_active(), "collection is not reentrant");
2883
2884  if (GCLocker::check_active_before_gc()) {
2885    return false;
2886  }
2887
2888  _gc_timer_stw->register_gc_start();
2889
2890  GCIdMark gc_id_mark;
2891  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2892
2893  SvcGCMarker sgcm(SvcGCMarker::MINOR);
2894  ResourceMark rm;
2895
2896  g1_policy()->note_gc_start();
2897
2898  wait_for_root_region_scanning();
2899
2900  print_heap_before_gc();
2901  print_heap_regions();
2902  trace_heap_before_gc(_gc_tracer_stw);
2903
2904  _verifier->verify_region_sets_optional();
2905  _verifier->verify_dirty_young_regions();
2906
2907  // We should not be doing initial mark unless the conc mark thread is running
2908  if (!_cmThread->should_terminate()) {
2909    // This call will decide whether this pause is an initial-mark
2910    // pause. If it is, during_initial_mark_pause() will return true
2911    // for the duration of this pause.
2912    g1_policy()->decide_on_conc_mark_initiation();
2913  }
2914
2915  // We do not allow initial-mark to be piggy-backed on a mixed GC.
2916  assert(!collector_state()->during_initial_mark_pause() ||
2917          collector_state()->gcs_are_young(), "sanity");
2918
2919  // We also do not allow mixed GCs during marking.
2920  assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2921
2922  // Record whether this pause is an initial mark. When the current
2923  // thread has completed its logging output and it's safe to signal
2924  // the CM thread, the flag's value in the policy has been reset.
2925  bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2926
2927  // Inner scope for scope based logging, timers, and stats collection
2928  {
2929    EvacuationInfo evacuation_info;
2930
2931    if (collector_state()->during_initial_mark_pause()) {
2932      // We are about to start a marking cycle, so we increment the
2933      // full collection counter.
2934      increment_old_marking_cycles_started();
2935      _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2936    }
2937
2938    _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2939
2940    GCTraceCPUTime tcpu;
2941
2942    FormatBuffer<> gc_string("Pause ");
2943    if (collector_state()->during_initial_mark_pause()) {
2944      gc_string.append("Initial Mark");
2945    } else if (collector_state()->gcs_are_young()) {
2946      gc_string.append("Young");
2947    } else {
2948      gc_string.append("Mixed");
2949    }
2950    GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2951
2952    uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2953                                                                  workers()->active_workers(),
2954                                                                  Threads::number_of_non_daemon_threads());
2955    workers()->update_active_workers(active_workers);
2956    log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2957
2958    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2959    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2960
2961    // If the secondary_free_list is not empty, append it to the
2962    // free_list. No need to wait for the cleanup operation to finish;
2963    // the region allocation code will check the secondary_free_list
2964    // and wait if necessary. If the G1StressConcRegionFreeing flag is
2965    // set, skip this step so that the region allocation code has to
2966    // get entries from the secondary_free_list.
2967    if (!G1StressConcRegionFreeing) {
2968      append_secondary_free_list_if_not_empty_with_lock();
2969    }
2970
2971    G1HeapTransition heap_transition(this);
2972    size_t heap_used_bytes_before_gc = used();
2973
2974    // Don't dynamically change the number of GC threads this early.  A value of
2975    // 0 is used to indicate serial work.  When parallel work is done,
2976    // it will be set.
2977
2978    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2979      IsGCActiveMark x;
2980
2981      gc_prologue(false);
2982
2983      if (VerifyRememberedSets) {
2984        log_info(gc, verify)("[Verifying RemSets before GC]");
2985        VerifyRegionRemSetClosure v_cl;
2986        heap_region_iterate(&v_cl);
2987      }
2988
2989      _verifier->verify_before_gc();
2990
2991      _verifier->check_bitmaps("GC Start");
2992
2993#if defined(COMPILER2) || INCLUDE_JVMCI
2994      DerivedPointerTable::clear();
2995#endif
2996
2997      // Please see comment in g1CollectedHeap.hpp and
2998      // G1CollectedHeap::ref_processing_init() to see how
2999      // reference processing currently works in G1.
3000
3001      // Enable discovery in the STW reference processor
3002      if (g1_policy()->should_process_references()) {
3003        ref_processor_stw()->enable_discovery();
3004      } else {
3005        ref_processor_stw()->disable_discovery();
3006      }
3007
3008      {
3009        // We want to temporarily turn off discovery by the
3010        // CM ref processor, if necessary, and turn it back on
3011        // on again later if we do. Using a scoped
3012        // NoRefDiscovery object will do this.
3013        NoRefDiscovery no_cm_discovery(ref_processor_cm());
3014
3015        // Forget the current alloc region (we might even choose it to be part
3016        // of the collection set!).
3017        _allocator->release_mutator_alloc_region();
3018
3019        // This timing is only used by the ergonomics to handle our pause target.
3020        // It is unclear why this should not include the full pause. We will
3021        // investigate this in CR 7178365.
3022        //
3023        // Preserving the old comment here if that helps the investigation:
3024        //
3025        // The elapsed time induced by the start time below deliberately elides
3026        // the possible verification above.
3027        double sample_start_time_sec = os::elapsedTime();
3028
3029        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3030
3031        if (collector_state()->during_initial_mark_pause()) {
3032          concurrent_mark()->checkpointRootsInitialPre();
3033        }
3034
3035        g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3036
3037        evacuation_info.set_collectionset_regions(collection_set()->region_length());
3038
3039        // Make sure the remembered sets are up to date. This needs to be
3040        // done before register_humongous_regions_with_cset(), because the
3041        // remembered sets are used there to choose eager reclaim candidates.
3042        // If the remembered sets are not up to date we might miss some
3043        // entries that need to be handled.
3044        g1_rem_set()->cleanupHRRS();
3045
3046        register_humongous_regions_with_cset();
3047
3048        assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3049
3050        // We call this after finalize_cset() to
3051        // ensure that the CSet has been finalized.
3052        _cm->verify_no_cset_oops();
3053
3054        if (_hr_printer.is_active()) {
3055          G1PrintCollectionSetClosure cl(&_hr_printer);
3056          _collection_set.iterate(&cl);
3057        }
3058
3059        // Initialize the GC alloc regions.
3060        _allocator->init_gc_alloc_regions(evacuation_info);
3061
3062        G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3063        pre_evacuate_collection_set();
3064
3065        // Actually do the work...
3066        evacuate_collection_set(evacuation_info, &per_thread_states);
3067
3068        post_evacuate_collection_set(evacuation_info, &per_thread_states);
3069
3070        const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3071        free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3072
3073        eagerly_reclaim_humongous_regions();
3074
3075        record_obj_copy_mem_stats();
3076        _survivor_evac_stats.adjust_desired_plab_sz();
3077        _old_evac_stats.adjust_desired_plab_sz();
3078
3079        double start = os::elapsedTime();
3080        start_new_collection_set();
3081        g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3082
3083        if (evacuation_failed()) {
3084          set_used(recalculate_used());
3085          if (_archive_allocator != NULL) {
3086            _archive_allocator->clear_used();
3087          }
3088          for (uint i = 0; i < ParallelGCThreads; i++) {
3089            if (_evacuation_failed_info_array[i].has_failed()) {
3090              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3091            }
3092          }
3093        } else {
3094          // The "used" of the the collection set have already been subtracted
3095          // when they were freed.  Add in the bytes evacuated.
3096          increase_used(g1_policy()->bytes_copied_during_gc());
3097        }
3098
3099        if (collector_state()->during_initial_mark_pause()) {
3100          // We have to do this before we notify the CM threads that
3101          // they can start working to make sure that all the
3102          // appropriate initialization is done on the CM object.
3103          concurrent_mark()->checkpointRootsInitialPost();
3104          collector_state()->set_mark_in_progress(true);
3105          // Note that we don't actually trigger the CM thread at
3106          // this point. We do that later when we're sure that
3107          // the current thread has completed its logging output.
3108        }
3109
3110        allocate_dummy_regions();
3111
3112        _allocator->init_mutator_alloc_region();
3113
3114        {
3115          size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3116          if (expand_bytes > 0) {
3117            size_t bytes_before = capacity();
3118            // No need for an ergo logging here,
3119            // expansion_amount() does this when it returns a value > 0.
3120            double expand_ms;
3121            if (!expand(expand_bytes, _workers, &expand_ms)) {
3122              // We failed to expand the heap. Cannot do anything about it.
3123            }
3124            g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3125          }
3126        }
3127
3128        // We redo the verification but now wrt to the new CSet which
3129        // has just got initialized after the previous CSet was freed.
3130        _cm->verify_no_cset_oops();
3131
3132        // This timing is only used by the ergonomics to handle our pause target.
3133        // It is unclear why this should not include the full pause. We will
3134        // investigate this in CR 7178365.
3135        double sample_end_time_sec = os::elapsedTime();
3136        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3137        size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3138        g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3139
3140        evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3141        evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3142
3143        if (VerifyRememberedSets) {
3144          log_info(gc, verify)("[Verifying RemSets after GC]");
3145          VerifyRegionRemSetClosure v_cl;
3146          heap_region_iterate(&v_cl);
3147        }
3148
3149        _verifier->verify_after_gc();
3150        _verifier->check_bitmaps("GC End");
3151
3152        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3153        ref_processor_stw()->verify_no_references_recorded();
3154
3155        // CM reference discovery will be re-enabled if necessary.
3156      }
3157
3158#ifdef TRACESPINNING
3159      ParallelTaskTerminator::print_termination_counts();
3160#endif
3161
3162      gc_epilogue(false);
3163    }
3164
3165    // Print the remainder of the GC log output.
3166    if (evacuation_failed()) {
3167      log_info(gc)("To-space exhausted");
3168    }
3169
3170    g1_policy()->print_phases();
3171    heap_transition.print();
3172
3173    // It is not yet to safe to tell the concurrent mark to
3174    // start as we have some optional output below. We don't want the
3175    // output from the concurrent mark thread interfering with this
3176    // logging output either.
3177
3178    _hrm.verify_optional();
3179    _verifier->verify_region_sets_optional();
3180
3181    TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3182    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3183
3184    print_heap_after_gc();
3185    print_heap_regions();
3186    trace_heap_after_gc(_gc_tracer_stw);
3187
3188    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3189    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3190    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3191    // before any GC notifications are raised.
3192    g1mm()->update_sizes();
3193
3194    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3195    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3196    _gc_timer_stw->register_gc_end();
3197    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3198  }
3199  // It should now be safe to tell the concurrent mark thread to start
3200  // without its logging output interfering with the logging output
3201  // that came from the pause.
3202
3203  if (should_start_conc_mark) {
3204    // CAUTION: after the doConcurrentMark() call below,
3205    // the concurrent marking thread(s) could be running
3206    // concurrently with us. Make sure that anything after
3207    // this point does not assume that we are the only GC thread
3208    // running. Note: of course, the actual marking work will
3209    // not start until the safepoint itself is released in
3210    // SuspendibleThreadSet::desynchronize().
3211    doConcurrentMark();
3212  }
3213
3214  return true;
3215}
3216
3217void G1CollectedHeap::remove_self_forwarding_pointers() {
3218  G1ParRemoveSelfForwardPtrsTask rsfp_task;
3219  workers()->run_task(&rsfp_task);
3220}
3221
3222void G1CollectedHeap::restore_after_evac_failure() {
3223  double remove_self_forwards_start = os::elapsedTime();
3224
3225  remove_self_forwarding_pointers();
3226  SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3227  _preserved_marks_set.restore(&task_executor);
3228
3229  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3230}
3231
3232void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3233  if (!_evacuation_failed) {
3234    _evacuation_failed = true;
3235  }
3236
3237  _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3238  _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3239}
3240
3241bool G1ParEvacuateFollowersClosure::offer_termination() {
3242  G1ParScanThreadState* const pss = par_scan_state();
3243  start_term_time();
3244  const bool res = terminator()->offer_termination();
3245  end_term_time();
3246  return res;
3247}
3248
3249void G1ParEvacuateFollowersClosure::do_void() {
3250  G1ParScanThreadState* const pss = par_scan_state();
3251  pss->trim_queue();
3252  do {
3253    pss->steal_and_trim_queue(queues());
3254  } while (!offer_termination());
3255}
3256
3257class G1ParTask : public AbstractGangTask {
3258protected:
3259  G1CollectedHeap*         _g1h;
3260  G1ParScanThreadStateSet* _pss;
3261  RefToScanQueueSet*       _queues;
3262  G1RootProcessor*         _root_processor;
3263  ParallelTaskTerminator   _terminator;
3264  uint                     _n_workers;
3265
3266public:
3267  G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3268    : AbstractGangTask("G1 collection"),
3269      _g1h(g1h),
3270      _pss(per_thread_states),
3271      _queues(task_queues),
3272      _root_processor(root_processor),
3273      _terminator(n_workers, _queues),
3274      _n_workers(n_workers)
3275  {}
3276
3277  void work(uint worker_id) {
3278    if (worker_id >= _n_workers) return;  // no work needed this round
3279
3280    double start_sec = os::elapsedTime();
3281    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3282
3283    {
3284      ResourceMark rm;
3285      HandleMark   hm;
3286
3287      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3288
3289      G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3290      pss->set_ref_processor(rp);
3291
3292      double start_strong_roots_sec = os::elapsedTime();
3293
3294      _root_processor->evacuate_roots(pss->closures(), worker_id);
3295
3296      // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3297      // treating the nmethods visited to act as roots for concurrent marking.
3298      // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3299      // objects copied by the current evacuation.
3300      _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3301                                                      pss->closures()->weak_codeblobs(),
3302                                                      worker_id);
3303
3304      double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3305
3306      double term_sec = 0.0;
3307      size_t evac_term_attempts = 0;
3308      {
3309        double start = os::elapsedTime();
3310        G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3311        evac.do_void();
3312
3313        evac_term_attempts = evac.term_attempts();
3314        term_sec = evac.term_time();
3315        double elapsed_sec = os::elapsedTime() - start;
3316        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3317        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3318        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3319      }
3320
3321      assert(pss->queue_is_empty(), "should be empty");
3322
3323      if (log_is_enabled(Debug, gc, task, stats)) {
3324        MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3325        size_t lab_waste;
3326        size_t lab_undo_waste;
3327        pss->waste(lab_waste, lab_undo_waste);
3328        _g1h->print_termination_stats(worker_id,
3329                                      (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3330                                      strong_roots_sec * 1000.0,                  /* strong roots time */
3331                                      term_sec * 1000.0,                          /* evac term time */
3332                                      evac_term_attempts,                         /* evac term attempts */
3333                                      lab_waste,                                  /* alloc buffer waste */
3334                                      lab_undo_waste                              /* undo waste */
3335                                      );
3336      }
3337
3338      // Close the inner scope so that the ResourceMark and HandleMark
3339      // destructors are executed here and are included as part of the
3340      // "GC Worker Time".
3341    }
3342    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3343  }
3344};
3345
3346void G1CollectedHeap::print_termination_stats_hdr() {
3347  log_debug(gc, task, stats)("GC Termination Stats");
3348  log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3349  log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3350  log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3351}
3352
3353void G1CollectedHeap::print_termination_stats(uint worker_id,
3354                                              double elapsed_ms,
3355                                              double strong_roots_ms,
3356                                              double term_ms,
3357                                              size_t term_attempts,
3358                                              size_t alloc_buffer_waste,
3359                                              size_t undo_waste) const {
3360  log_debug(gc, task, stats)
3361              ("%3d %9.2f %9.2f %6.2f "
3362               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3363               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3364               worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3365               term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3366               (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3367               alloc_buffer_waste * HeapWordSize / K,
3368               undo_waste * HeapWordSize / K);
3369}
3370
3371class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3372private:
3373  BoolObjectClosure* _is_alive;
3374  G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3375
3376  int _initial_string_table_size;
3377  int _initial_symbol_table_size;
3378
3379  bool  _process_strings;
3380  int _strings_processed;
3381  int _strings_removed;
3382
3383  bool  _process_symbols;
3384  int _symbols_processed;
3385  int _symbols_removed;
3386
3387  bool _process_string_dedup;
3388
3389public:
3390  G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3391    AbstractGangTask("String/Symbol Unlinking"),
3392    _is_alive(is_alive),
3393    _dedup_closure(is_alive, NULL, false),
3394    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3395    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3396    _process_string_dedup(process_string_dedup) {
3397
3398    _initial_string_table_size = StringTable::the_table()->table_size();
3399    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3400    if (process_strings) {
3401      StringTable::clear_parallel_claimed_index();
3402    }
3403    if (process_symbols) {
3404      SymbolTable::clear_parallel_claimed_index();
3405    }
3406  }
3407
3408  ~G1StringAndSymbolCleaningTask() {
3409    guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3410              "claim value %d after unlink less than initial string table size %d",
3411              StringTable::parallel_claimed_index(), _initial_string_table_size);
3412    guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3413              "claim value %d after unlink less than initial symbol table size %d",
3414              SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3415
3416    log_info(gc, stringtable)(
3417        "Cleaned string and symbol table, "
3418        "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3419        "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3420        strings_processed(), strings_removed(),
3421        symbols_processed(), symbols_removed());
3422  }
3423
3424  void work(uint worker_id) {
3425    int strings_processed = 0;
3426    int strings_removed = 0;
3427    int symbols_processed = 0;
3428    int symbols_removed = 0;
3429    if (_process_strings) {
3430      StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3431      Atomic::add(strings_processed, &_strings_processed);
3432      Atomic::add(strings_removed, &_strings_removed);
3433    }
3434    if (_process_symbols) {
3435      SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3436      Atomic::add(symbols_processed, &_symbols_processed);
3437      Atomic::add(symbols_removed, &_symbols_removed);
3438    }
3439    if (_process_string_dedup) {
3440      G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3441    }
3442  }
3443
3444  size_t strings_processed() const { return (size_t)_strings_processed; }
3445  size_t strings_removed()   const { return (size_t)_strings_removed; }
3446
3447  size_t symbols_processed() const { return (size_t)_symbols_processed; }
3448  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3449};
3450
3451class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3452private:
3453  static Monitor* _lock;
3454
3455  BoolObjectClosure* const _is_alive;
3456  const bool               _unloading_occurred;
3457  const uint               _num_workers;
3458
3459  // Variables used to claim nmethods.
3460  CompiledMethod* _first_nmethod;
3461  volatile CompiledMethod* _claimed_nmethod;
3462
3463  // The list of nmethods that need to be processed by the second pass.
3464  volatile CompiledMethod* _postponed_list;
3465  volatile uint            _num_entered_barrier;
3466
3467 public:
3468  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3469      _is_alive(is_alive),
3470      _unloading_occurred(unloading_occurred),
3471      _num_workers(num_workers),
3472      _first_nmethod(NULL),
3473      _claimed_nmethod(NULL),
3474      _postponed_list(NULL),
3475      _num_entered_barrier(0)
3476  {
3477    CompiledMethod::increase_unloading_clock();
3478    // Get first alive nmethod
3479    CompiledMethodIterator iter = CompiledMethodIterator();
3480    if(iter.next_alive()) {
3481      _first_nmethod = iter.method();
3482    }
3483    _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3484  }
3485
3486  ~G1CodeCacheUnloadingTask() {
3487    CodeCache::verify_clean_inline_caches();
3488
3489    CodeCache::set_needs_cache_clean(false);
3490    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3491
3492    CodeCache::verify_icholder_relocations();
3493  }
3494
3495 private:
3496  void add_to_postponed_list(CompiledMethod* nm) {
3497      CompiledMethod* old;
3498      do {
3499        old = (CompiledMethod*)_postponed_list;
3500        nm->set_unloading_next(old);
3501      } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3502  }
3503
3504  void clean_nmethod(CompiledMethod* nm) {
3505    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3506
3507    if (postponed) {
3508      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3509      add_to_postponed_list(nm);
3510    }
3511
3512    // Mark that this thread has been cleaned/unloaded.
3513    // After this call, it will be safe to ask if this nmethod was unloaded or not.
3514    nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3515  }
3516
3517  void clean_nmethod_postponed(CompiledMethod* nm) {
3518    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3519  }
3520
3521  static const int MaxClaimNmethods = 16;
3522
3523  void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3524    CompiledMethod* first;
3525    CompiledMethodIterator last;
3526
3527    do {
3528      *num_claimed_nmethods = 0;
3529
3530      first = (CompiledMethod*)_claimed_nmethod;
3531      last = CompiledMethodIterator(first);
3532
3533      if (first != NULL) {
3534
3535        for (int i = 0; i < MaxClaimNmethods; i++) {
3536          if (!last.next_alive()) {
3537            break;
3538          }
3539          claimed_nmethods[i] = last.method();
3540          (*num_claimed_nmethods)++;
3541        }
3542      }
3543
3544    } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3545  }
3546
3547  CompiledMethod* claim_postponed_nmethod() {
3548    CompiledMethod* claim;
3549    CompiledMethod* next;
3550
3551    do {
3552      claim = (CompiledMethod*)_postponed_list;
3553      if (claim == NULL) {
3554        return NULL;
3555      }
3556
3557      next = claim->unloading_next();
3558
3559    } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3560
3561    return claim;
3562  }
3563
3564 public:
3565  // Mark that we're done with the first pass of nmethod cleaning.
3566  void barrier_mark(uint worker_id) {
3567    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3568    _num_entered_barrier++;
3569    if (_num_entered_barrier == _num_workers) {
3570      ml.notify_all();
3571    }
3572  }
3573
3574  // See if we have to wait for the other workers to
3575  // finish their first-pass nmethod cleaning work.
3576  void barrier_wait(uint worker_id) {
3577    if (_num_entered_barrier < _num_workers) {
3578      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3579      while (_num_entered_barrier < _num_workers) {
3580          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3581      }
3582    }
3583  }
3584
3585  // Cleaning and unloading of nmethods. Some work has to be postponed
3586  // to the second pass, when we know which nmethods survive.
3587  void work_first_pass(uint worker_id) {
3588    // The first nmethods is claimed by the first worker.
3589    if (worker_id == 0 && _first_nmethod != NULL) {
3590      clean_nmethod(_first_nmethod);
3591      _first_nmethod = NULL;
3592    }
3593
3594    int num_claimed_nmethods;
3595    CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3596
3597    while (true) {
3598      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3599
3600      if (num_claimed_nmethods == 0) {
3601        break;
3602      }
3603
3604      for (int i = 0; i < num_claimed_nmethods; i++) {
3605        clean_nmethod(claimed_nmethods[i]);
3606      }
3607    }
3608  }
3609
3610  void work_second_pass(uint worker_id) {
3611    CompiledMethod* nm;
3612    // Take care of postponed nmethods.
3613    while ((nm = claim_postponed_nmethod()) != NULL) {
3614      clean_nmethod_postponed(nm);
3615    }
3616  }
3617};
3618
3619Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3620
3621class G1KlassCleaningTask : public StackObj {
3622  BoolObjectClosure*                      _is_alive;
3623  volatile jint                           _clean_klass_tree_claimed;
3624  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3625
3626 public:
3627  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3628      _is_alive(is_alive),
3629      _clean_klass_tree_claimed(0),
3630      _klass_iterator() {
3631  }
3632
3633 private:
3634  bool claim_clean_klass_tree_task() {
3635    if (_clean_klass_tree_claimed) {
3636      return false;
3637    }
3638
3639    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3640  }
3641
3642  InstanceKlass* claim_next_klass() {
3643    Klass* klass;
3644    do {
3645      klass =_klass_iterator.next_klass();
3646    } while (klass != NULL && !klass->is_instance_klass());
3647
3648    // this can be null so don't call InstanceKlass::cast
3649    return static_cast<InstanceKlass*>(klass);
3650  }
3651
3652public:
3653
3654  void clean_klass(InstanceKlass* ik) {
3655    ik->clean_weak_instanceklass_links(_is_alive);
3656  }
3657
3658  void work() {
3659    ResourceMark rm;
3660
3661    // One worker will clean the subklass/sibling klass tree.
3662    if (claim_clean_klass_tree_task()) {
3663      Klass::clean_subklass_tree(_is_alive);
3664    }
3665
3666    // All workers will help cleaning the classes,
3667    InstanceKlass* klass;
3668    while ((klass = claim_next_klass()) != NULL) {
3669      clean_klass(klass);
3670    }
3671  }
3672};
3673
3674class G1ResolvedMethodCleaningTask : public StackObj {
3675  BoolObjectClosure* _is_alive;
3676  volatile jint      _resolved_method_task_claimed;
3677public:
3678  G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3679      _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3680
3681  bool claim_resolved_method_task() {
3682    if (_resolved_method_task_claimed) {
3683      return false;
3684    }
3685    return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3686  }
3687
3688  // These aren't big, one thread can do it all.
3689  void work() {
3690    if (claim_resolved_method_task()) {
3691      ResolvedMethodTable::unlink(_is_alive);
3692    }
3693  }
3694};
3695
3696
3697// To minimize the remark pause times, the tasks below are done in parallel.
3698class G1ParallelCleaningTask : public AbstractGangTask {
3699private:
3700  G1StringAndSymbolCleaningTask _string_symbol_task;
3701  G1CodeCacheUnloadingTask      _code_cache_task;
3702  G1KlassCleaningTask           _klass_cleaning_task;
3703  G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3704
3705public:
3706  // The constructor is run in the VMThread.
3707  G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3708      AbstractGangTask("Parallel Cleaning"),
3709      _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3710      _code_cache_task(num_workers, is_alive, unloading_occurred),
3711      _klass_cleaning_task(is_alive),
3712      _resolved_method_cleaning_task(is_alive) {
3713  }
3714
3715  // The parallel work done by all worker threads.
3716  void work(uint worker_id) {
3717    // Do first pass of code cache cleaning.
3718    _code_cache_task.work_first_pass(worker_id);
3719
3720    // Let the threads mark that the first pass is done.
3721    _code_cache_task.barrier_mark(worker_id);
3722
3723    // Clean the Strings and Symbols.
3724    _string_symbol_task.work(worker_id);
3725
3726    // Clean unreferenced things in the ResolvedMethodTable
3727    _resolved_method_cleaning_task.work();
3728
3729    // Wait for all workers to finish the first code cache cleaning pass.
3730    _code_cache_task.barrier_wait(worker_id);
3731
3732    // Do the second code cache cleaning work, which realize on
3733    // the liveness information gathered during the first pass.
3734    _code_cache_task.work_second_pass(worker_id);
3735
3736    // Clean all klasses that were not unloaded.
3737    _klass_cleaning_task.work();
3738  }
3739};
3740
3741
3742void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3743                                        bool class_unloading_occurred) {
3744  uint n_workers = workers()->active_workers();
3745
3746  G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3747  workers()->run_task(&g1_unlink_task);
3748}
3749
3750void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3751                                       bool process_strings,
3752                                       bool process_symbols,
3753                                       bool process_string_dedup) {
3754  if (!process_strings && !process_symbols && !process_string_dedup) {
3755    // Nothing to clean.
3756    return;
3757  }
3758
3759  G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3760  workers()->run_task(&g1_unlink_task);
3761
3762}
3763
3764class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3765 private:
3766  DirtyCardQueueSet* _queue;
3767  G1CollectedHeap* _g1h;
3768 public:
3769  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3770    _queue(queue), _g1h(g1h) { }
3771
3772  virtual void work(uint worker_id) {
3773    G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3774    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3775
3776    RedirtyLoggedCardTableEntryClosure cl(_g1h);
3777    _queue->par_apply_closure_to_all_completed_buffers(&cl);
3778
3779    phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3780  }
3781};
3782
3783void G1CollectedHeap::redirty_logged_cards() {
3784  double redirty_logged_cards_start = os::elapsedTime();
3785
3786  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3787  dirty_card_queue_set().reset_for_par_iteration();
3788  workers()->run_task(&redirty_task);
3789
3790  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3791  dcq.merge_bufferlists(&dirty_card_queue_set());
3792  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3793
3794  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3795}
3796
3797// Weak Reference Processing support
3798
3799// An always "is_alive" closure that is used to preserve referents.
3800// If the object is non-null then it's alive.  Used in the preservation
3801// of referent objects that are pointed to by reference objects
3802// discovered by the CM ref processor.
3803class G1AlwaysAliveClosure: public BoolObjectClosure {
3804  G1CollectedHeap* _g1;
3805public:
3806  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3807  bool do_object_b(oop p) {
3808    if (p != NULL) {
3809      return true;
3810    }
3811    return false;
3812  }
3813};
3814
3815bool G1STWIsAliveClosure::do_object_b(oop p) {
3816  // An object is reachable if it is outside the collection set,
3817  // or is inside and copied.
3818  return !_g1->is_in_cset(p) || p->is_forwarded();
3819}
3820
3821// Non Copying Keep Alive closure
3822class G1KeepAliveClosure: public OopClosure {
3823  G1CollectedHeap* _g1;
3824public:
3825  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3826  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3827  void do_oop(oop* p) {
3828    oop obj = *p;
3829    assert(obj != NULL, "the caller should have filtered out NULL values");
3830
3831    const InCSetState cset_state = _g1->in_cset_state(obj);
3832    if (!cset_state.is_in_cset_or_humongous()) {
3833      return;
3834    }
3835    if (cset_state.is_in_cset()) {
3836      assert( obj->is_forwarded(), "invariant" );
3837      *p = obj->forwardee();
3838    } else {
3839      assert(!obj->is_forwarded(), "invariant" );
3840      assert(cset_state.is_humongous(),
3841             "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3842      _g1->set_humongous_is_live(obj);
3843    }
3844  }
3845};
3846
3847// Copying Keep Alive closure - can be called from both
3848// serial and parallel code as long as different worker
3849// threads utilize different G1ParScanThreadState instances
3850// and different queues.
3851
3852class G1CopyingKeepAliveClosure: public OopClosure {
3853  G1CollectedHeap*         _g1h;
3854  OopClosure*              _copy_non_heap_obj_cl;
3855  G1ParScanThreadState*    _par_scan_state;
3856
3857public:
3858  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3859                            OopClosure* non_heap_obj_cl,
3860                            G1ParScanThreadState* pss):
3861    _g1h(g1h),
3862    _copy_non_heap_obj_cl(non_heap_obj_cl),
3863    _par_scan_state(pss)
3864  {}
3865
3866  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3867  virtual void do_oop(      oop* p) { do_oop_work(p); }
3868
3869  template <class T> void do_oop_work(T* p) {
3870    oop obj = oopDesc::load_decode_heap_oop(p);
3871
3872    if (_g1h->is_in_cset_or_humongous(obj)) {
3873      // If the referent object has been forwarded (either copied
3874      // to a new location or to itself in the event of an
3875      // evacuation failure) then we need to update the reference
3876      // field and, if both reference and referent are in the G1
3877      // heap, update the RSet for the referent.
3878      //
3879      // If the referent has not been forwarded then we have to keep
3880      // it alive by policy. Therefore we have copy the referent.
3881      //
3882      // If the reference field is in the G1 heap then we can push
3883      // on the PSS queue. When the queue is drained (after each
3884      // phase of reference processing) the object and it's followers
3885      // will be copied, the reference field set to point to the
3886      // new location, and the RSet updated. Otherwise we need to
3887      // use the the non-heap or metadata closures directly to copy
3888      // the referent object and update the pointer, while avoiding
3889      // updating the RSet.
3890
3891      if (_g1h->is_in_g1_reserved(p)) {
3892        _par_scan_state->push_on_queue(p);
3893      } else {
3894        assert(!Metaspace::contains((const void*)p),
3895               "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3896        _copy_non_heap_obj_cl->do_oop(p);
3897      }
3898    }
3899  }
3900};
3901
3902// Serial drain queue closure. Called as the 'complete_gc'
3903// closure for each discovered list in some of the
3904// reference processing phases.
3905
3906class G1STWDrainQueueClosure: public VoidClosure {
3907protected:
3908  G1CollectedHeap* _g1h;
3909  G1ParScanThreadState* _par_scan_state;
3910
3911  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3912
3913public:
3914  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3915    _g1h(g1h),
3916    _par_scan_state(pss)
3917  { }
3918
3919  void do_void() {
3920    G1ParScanThreadState* const pss = par_scan_state();
3921    pss->trim_queue();
3922  }
3923};
3924
3925// Parallel Reference Processing closures
3926
3927// Implementation of AbstractRefProcTaskExecutor for parallel reference
3928// processing during G1 evacuation pauses.
3929
3930class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3931private:
3932  G1CollectedHeap*          _g1h;
3933  G1ParScanThreadStateSet*  _pss;
3934  RefToScanQueueSet*        _queues;
3935  WorkGang*                 _workers;
3936  uint                      _active_workers;
3937
3938public:
3939  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3940                           G1ParScanThreadStateSet* per_thread_states,
3941                           WorkGang* workers,
3942                           RefToScanQueueSet *task_queues,
3943                           uint n_workers) :
3944    _g1h(g1h),
3945    _pss(per_thread_states),
3946    _queues(task_queues),
3947    _workers(workers),
3948    _active_workers(n_workers)
3949  {
3950    g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3951  }
3952
3953  // Executes the given task using concurrent marking worker threads.
3954  virtual void execute(ProcessTask& task);
3955  virtual void execute(EnqueueTask& task);
3956};
3957
3958// Gang task for possibly parallel reference processing
3959
3960class G1STWRefProcTaskProxy: public AbstractGangTask {
3961  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3962  ProcessTask&     _proc_task;
3963  G1CollectedHeap* _g1h;
3964  G1ParScanThreadStateSet* _pss;
3965  RefToScanQueueSet* _task_queues;
3966  ParallelTaskTerminator* _terminator;
3967
3968public:
3969  G1STWRefProcTaskProxy(ProcessTask& proc_task,
3970                        G1CollectedHeap* g1h,
3971                        G1ParScanThreadStateSet* per_thread_states,
3972                        RefToScanQueueSet *task_queues,
3973                        ParallelTaskTerminator* terminator) :
3974    AbstractGangTask("Process reference objects in parallel"),
3975    _proc_task(proc_task),
3976    _g1h(g1h),
3977    _pss(per_thread_states),
3978    _task_queues(task_queues),
3979    _terminator(terminator)
3980  {}
3981
3982  virtual void work(uint worker_id) {
3983    // The reference processing task executed by a single worker.
3984    ResourceMark rm;
3985    HandleMark   hm;
3986
3987    G1STWIsAliveClosure is_alive(_g1h);
3988
3989    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3990    pss->set_ref_processor(NULL);
3991
3992    // Keep alive closure.
3993    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3994
3995    // Complete GC closure
3996    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3997
3998    // Call the reference processing task's work routine.
3999    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4000
4001    // Note we cannot assert that the refs array is empty here as not all
4002    // of the processing tasks (specifically phase2 - pp2_work) execute
4003    // the complete_gc closure (which ordinarily would drain the queue) so
4004    // the queue may not be empty.
4005  }
4006};
4007
4008// Driver routine for parallel reference processing.
4009// Creates an instance of the ref processing gang
4010// task and has the worker threads execute it.
4011void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4012  assert(_workers != NULL, "Need parallel worker threads.");
4013
4014  ParallelTaskTerminator terminator(_active_workers, _queues);
4015  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4016
4017  _workers->run_task(&proc_task_proxy);
4018}
4019
4020// Gang task for parallel reference enqueueing.
4021
4022class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4023  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4024  EnqueueTask& _enq_task;
4025
4026public:
4027  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4028    AbstractGangTask("Enqueue reference objects in parallel"),
4029    _enq_task(enq_task)
4030  { }
4031
4032  virtual void work(uint worker_id) {
4033    _enq_task.work(worker_id);
4034  }
4035};
4036
4037// Driver routine for parallel reference enqueueing.
4038// Creates an instance of the ref enqueueing gang
4039// task and has the worker threads execute it.
4040
4041void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4042  assert(_workers != NULL, "Need parallel worker threads.");
4043
4044  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4045
4046  _workers->run_task(&enq_task_proxy);
4047}
4048
4049// End of weak reference support closures
4050
4051// Abstract task used to preserve (i.e. copy) any referent objects
4052// that are in the collection set and are pointed to by reference
4053// objects discovered by the CM ref processor.
4054
4055class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4056protected:
4057  G1CollectedHeap*         _g1h;
4058  G1ParScanThreadStateSet* _pss;
4059  RefToScanQueueSet*       _queues;
4060  ParallelTaskTerminator   _terminator;
4061  uint                     _n_workers;
4062
4063public:
4064  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4065    AbstractGangTask("ParPreserveCMReferents"),
4066    _g1h(g1h),
4067    _pss(per_thread_states),
4068    _queues(task_queues),
4069    _terminator(workers, _queues),
4070    _n_workers(workers)
4071  {
4072    g1h->ref_processor_cm()->set_active_mt_degree(workers);
4073  }
4074
4075  void work(uint worker_id) {
4076    G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4077
4078    ResourceMark rm;
4079    HandleMark   hm;
4080
4081    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4082    pss->set_ref_processor(NULL);
4083    assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4084
4085    // Is alive closure
4086    G1AlwaysAliveClosure always_alive(_g1h);
4087
4088    // Copying keep alive closure. Applied to referent objects that need
4089    // to be copied.
4090    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4091
4092    ReferenceProcessor* rp = _g1h->ref_processor_cm();
4093
4094    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4095    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4096
4097    // limit is set using max_num_q() - which was set using ParallelGCThreads.
4098    // So this must be true - but assert just in case someone decides to
4099    // change the worker ids.
4100    assert(worker_id < limit, "sanity");
4101    assert(!rp->discovery_is_atomic(), "check this code");
4102
4103    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4104    for (uint idx = worker_id; idx < limit; idx += stride) {
4105      DiscoveredList& ref_list = rp->discovered_refs()[idx];
4106
4107      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4108      while (iter.has_next()) {
4109        // Since discovery is not atomic for the CM ref processor, we
4110        // can see some null referent objects.
4111        iter.load_ptrs(DEBUG_ONLY(true));
4112        oop ref = iter.obj();
4113
4114        // This will filter nulls.
4115        if (iter.is_referent_alive()) {
4116          iter.make_referent_alive();
4117        }
4118        iter.move_to_next();
4119      }
4120    }
4121
4122    // Drain the queue - which may cause stealing
4123    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4124    drain_queue.do_void();
4125    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4126    assert(pss->queue_is_empty(), "should be");
4127  }
4128};
4129
4130void G1CollectedHeap::process_weak_jni_handles() {
4131  double ref_proc_start = os::elapsedTime();
4132
4133  G1STWIsAliveClosure is_alive(this);
4134  G1KeepAliveClosure keep_alive(this);
4135  JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4136
4137  double ref_proc_time = os::elapsedTime() - ref_proc_start;
4138  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4139}
4140
4141void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4142  // Any reference objects, in the collection set, that were 'discovered'
4143  // by the CM ref processor should have already been copied (either by
4144  // applying the external root copy closure to the discovered lists, or
4145  // by following an RSet entry).
4146  //
4147  // But some of the referents, that are in the collection set, that these
4148  // reference objects point to may not have been copied: the STW ref
4149  // processor would have seen that the reference object had already
4150  // been 'discovered' and would have skipped discovering the reference,
4151  // but would not have treated the reference object as a regular oop.
4152  // As a result the copy closure would not have been applied to the
4153  // referent object.
4154  //
4155  // We need to explicitly copy these referent objects - the references
4156  // will be processed at the end of remarking.
4157  //
4158  // We also need to do this copying before we process the reference
4159  // objects discovered by the STW ref processor in case one of these
4160  // referents points to another object which is also referenced by an
4161  // object discovered by the STW ref processor.
4162  double preserve_cm_referents_time = 0.0;
4163
4164  // To avoid spawning task when there is no work to do, check that
4165  // a concurrent cycle is active and that some references have been
4166  // discovered.
4167  if (concurrent_mark()->cmThread()->during_cycle() &&
4168      ref_processor_cm()->has_discovered_references()) {
4169    double preserve_cm_referents_start = os::elapsedTime();
4170    uint no_of_gc_workers = workers()->active_workers();
4171    G1ParPreserveCMReferentsTask keep_cm_referents(this,
4172                                                   per_thread_states,
4173                                                   no_of_gc_workers,
4174                                                   _task_queues);
4175    workers()->run_task(&keep_cm_referents);
4176    preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4177  }
4178
4179  g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4180}
4181
4182// Weak Reference processing during an evacuation pause (part 1).
4183void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4184  double ref_proc_start = os::elapsedTime();
4185
4186  ReferenceProcessor* rp = _ref_processor_stw;
4187  assert(rp->discovery_enabled(), "should have been enabled");
4188
4189  // Closure to test whether a referent is alive.
4190  G1STWIsAliveClosure is_alive(this);
4191
4192  // Even when parallel reference processing is enabled, the processing
4193  // of JNI refs is serial and performed serially by the current thread
4194  // rather than by a worker. The following PSS will be used for processing
4195  // JNI refs.
4196
4197  // Use only a single queue for this PSS.
4198  G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4199  pss->set_ref_processor(NULL);
4200  assert(pss->queue_is_empty(), "pre-condition");
4201
4202  // Keep alive closure.
4203  G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4204
4205  // Serial Complete GC closure
4206  G1STWDrainQueueClosure drain_queue(this, pss);
4207
4208  // Setup the soft refs policy...
4209  rp->setup_policy(false);
4210
4211  ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4212
4213  ReferenceProcessorStats stats;
4214  if (!rp->processing_is_mt()) {
4215    // Serial reference processing...
4216    stats = rp->process_discovered_references(&is_alive,
4217                                              &keep_alive,
4218                                              &drain_queue,
4219                                              NULL,
4220                                              pt);
4221  } else {
4222    uint no_of_gc_workers = workers()->active_workers();
4223
4224    // Parallel reference processing
4225    assert(no_of_gc_workers <= rp->max_num_q(),
4226           "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4227           no_of_gc_workers,  rp->max_num_q());
4228
4229    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4230    stats = rp->process_discovered_references(&is_alive,
4231                                              &keep_alive,
4232                                              &drain_queue,
4233                                              &par_task_executor,
4234                                              pt);
4235  }
4236
4237  _gc_tracer_stw->report_gc_reference_stats(stats);
4238
4239  // We have completed copying any necessary live referent objects.
4240  assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4241
4242  double ref_proc_time = os::elapsedTime() - ref_proc_start;
4243  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4244}
4245
4246// Weak Reference processing during an evacuation pause (part 2).
4247void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4248  double ref_enq_start = os::elapsedTime();
4249
4250  ReferenceProcessor* rp = _ref_processor_stw;
4251  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4252
4253  ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4254
4255  // Now enqueue any remaining on the discovered lists on to
4256  // the pending list.
4257  if (!rp->processing_is_mt()) {
4258    // Serial reference processing...
4259    rp->enqueue_discovered_references(NULL, pt);
4260  } else {
4261    // Parallel reference enqueueing
4262
4263    uint n_workers = workers()->active_workers();
4264
4265    assert(n_workers <= rp->max_num_q(),
4266           "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4267           n_workers,  rp->max_num_q());
4268
4269    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4270    rp->enqueue_discovered_references(&par_task_executor, pt);
4271  }
4272
4273  rp->verify_no_references_recorded();
4274  assert(!rp->discovery_enabled(), "should have been disabled");
4275
4276  // If during an initial mark pause we install a pending list head which is not otherwise reachable
4277  // ensure that it is marked in the bitmap for concurrent marking to discover.
4278  if (collector_state()->during_initial_mark_pause()) {
4279    oop pll_head = Universe::reference_pending_list();
4280    if (pll_head != NULL) {
4281      _cm->mark_in_next_bitmap(pll_head);
4282    }
4283  }
4284
4285  // FIXME
4286  // CM's reference processing also cleans up the string and symbol tables.
4287  // Should we do that here also? We could, but it is a serial operation
4288  // and could significantly increase the pause time.
4289
4290  double ref_enq_time = os::elapsedTime() - ref_enq_start;
4291  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4292}
4293
4294void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4295  double merge_pss_time_start = os::elapsedTime();
4296  per_thread_states->flush();
4297  g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4298}
4299
4300void G1CollectedHeap::pre_evacuate_collection_set() {
4301  _expand_heap_after_alloc_failure = true;
4302  _evacuation_failed = false;
4303
4304  // Disable the hot card cache.
4305  _hot_card_cache->reset_hot_cache_claimed_index();
4306  _hot_card_cache->set_use_cache(false);
4307
4308  g1_rem_set()->prepare_for_oops_into_collection_set_do();
4309  _preserved_marks_set.assert_empty();
4310
4311  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4312
4313  // InitialMark needs claim bits to keep track of the marked-through CLDs.
4314  if (collector_state()->during_initial_mark_pause()) {
4315    double start_clear_claimed_marks = os::elapsedTime();
4316
4317    ClassLoaderDataGraph::clear_claimed_marks();
4318
4319    double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4320    phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4321  }
4322}
4323
4324void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4325  // Should G1EvacuationFailureALot be in effect for this GC?
4326  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4327
4328  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4329
4330  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4331
4332  double start_par_time_sec = os::elapsedTime();
4333  double end_par_time_sec;
4334
4335  {
4336    const uint n_workers = workers()->active_workers();
4337    G1RootProcessor root_processor(this, n_workers);
4338    G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4339
4340    print_termination_stats_hdr();
4341
4342    workers()->run_task(&g1_par_task);
4343    end_par_time_sec = os::elapsedTime();
4344
4345    // Closing the inner scope will execute the destructor
4346    // for the G1RootProcessor object. We record the current
4347    // elapsed time before closing the scope so that time
4348    // taken for the destructor is NOT included in the
4349    // reported parallel time.
4350  }
4351
4352  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4353  phase_times->record_par_time(par_time_ms);
4354
4355  double code_root_fixup_time_ms =
4356        (os::elapsedTime() - end_par_time_sec) * 1000.0;
4357  phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4358}
4359
4360void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4361  // Process any discovered reference objects - we have
4362  // to do this _before_ we retire the GC alloc regions
4363  // as we may have to copy some 'reachable' referent
4364  // objects (and their reachable sub-graphs) that were
4365  // not copied during the pause.
4366  if (g1_policy()->should_process_references()) {
4367    preserve_cm_referents(per_thread_states);
4368    process_discovered_references(per_thread_states);
4369  } else {
4370    ref_processor_stw()->verify_no_references_recorded();
4371    process_weak_jni_handles();
4372  }
4373
4374  if (G1StringDedup::is_enabled()) {
4375    double fixup_start = os::elapsedTime();
4376
4377    G1STWIsAliveClosure is_alive(this);
4378    G1KeepAliveClosure keep_alive(this);
4379    G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4380
4381    double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4382    g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4383  }
4384
4385  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4386
4387  if (evacuation_failed()) {
4388    restore_after_evac_failure();
4389
4390    // Reset the G1EvacuationFailureALot counters and flags
4391    // Note: the values are reset only when an actual
4392    // evacuation failure occurs.
4393    NOT_PRODUCT(reset_evacuation_should_fail();)
4394  }
4395
4396  _preserved_marks_set.assert_empty();
4397
4398  // Enqueue any remaining references remaining on the STW
4399  // reference processor's discovered lists. We need to do
4400  // this after the card table is cleaned (and verified) as
4401  // the act of enqueueing entries on to the pending list
4402  // will log these updates (and dirty their associated
4403  // cards). We need these updates logged to update any
4404  // RSets.
4405  if (g1_policy()->should_process_references()) {
4406    enqueue_discovered_references(per_thread_states);
4407  } else {
4408    g1_policy()->phase_times()->record_ref_enq_time(0);
4409  }
4410
4411  _allocator->release_gc_alloc_regions(evacuation_info);
4412
4413  merge_per_thread_state_info(per_thread_states);
4414
4415  // Reset and re-enable the hot card cache.
4416  // Note the counts for the cards in the regions in the
4417  // collection set are reset when the collection set is freed.
4418  _hot_card_cache->reset_hot_cache();
4419  _hot_card_cache->set_use_cache(true);
4420
4421  purge_code_root_memory();
4422
4423  redirty_logged_cards();
4424#if defined(COMPILER2) || INCLUDE_JVMCI
4425  double start = os::elapsedTime();
4426  DerivedPointerTable::update_pointers();
4427  g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4428#endif
4429  g1_policy()->print_age_table();
4430}
4431
4432void G1CollectedHeap::record_obj_copy_mem_stats() {
4433  g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4434
4435  _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4436                                               create_g1_evac_summary(&_old_evac_stats));
4437}
4438
4439void G1CollectedHeap::free_region(HeapRegion* hr,
4440                                  FreeRegionList* free_list,
4441                                  bool skip_remset,
4442                                  bool skip_hot_card_cache,
4443                                  bool locked) {
4444  assert(!hr->is_free(), "the region should not be free");
4445  assert(!hr->is_empty(), "the region should not be empty");
4446  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4447  assert(free_list != NULL, "pre-condition");
4448
4449  if (G1VerifyBitmaps) {
4450    MemRegion mr(hr->bottom(), hr->end());
4451    concurrent_mark()->clearRangePrevBitmap(mr);
4452  }
4453
4454  // Clear the card counts for this region.
4455  // Note: we only need to do this if the region is not young
4456  // (since we don't refine cards in young regions).
4457  if (!skip_hot_card_cache && !hr->is_young()) {
4458    _hot_card_cache->reset_card_counts(hr);
4459  }
4460  hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4461  free_list->add_ordered(hr);
4462}
4463
4464void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4465                                            FreeRegionList* free_list,
4466                                            bool skip_remset) {
4467  assert(hr->is_humongous(), "this is only for humongous regions");
4468  assert(free_list != NULL, "pre-condition");
4469  hr->clear_humongous();
4470  free_region(hr, free_list, skip_remset);
4471}
4472
4473void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4474                                           const uint humongous_regions_removed) {
4475  if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4476    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4477    _old_set.bulk_remove(old_regions_removed);
4478    _humongous_set.bulk_remove(humongous_regions_removed);
4479  }
4480
4481}
4482
4483void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4484  assert(list != NULL, "list can't be null");
4485  if (!list->is_empty()) {
4486    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4487    _hrm.insert_list_into_free_list(list);
4488  }
4489}
4490
4491void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4492  decrease_used(bytes);
4493}
4494
4495class G1ParScrubRemSetTask: public AbstractGangTask {
4496protected:
4497  G1RemSet* _g1rs;
4498  HeapRegionClaimer _hrclaimer;
4499
4500public:
4501  G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4502    AbstractGangTask("G1 ScrubRS"),
4503    _g1rs(g1_rs),
4504    _hrclaimer(num_workers) {
4505  }
4506
4507  void work(uint worker_id) {
4508    _g1rs->scrub(worker_id, &_hrclaimer);
4509  }
4510};
4511
4512void G1CollectedHeap::scrub_rem_set() {
4513  uint num_workers = workers()->active_workers();
4514  G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4515  workers()->run_task(&g1_par_scrub_rs_task);
4516}
4517
4518class G1FreeCollectionSetTask : public AbstractGangTask {
4519private:
4520
4521  // Closure applied to all regions in the collection set to do work that needs to
4522  // be done serially in a single thread.
4523  class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4524  private:
4525    EvacuationInfo* _evacuation_info;
4526    const size_t* _surviving_young_words;
4527
4528    // Bytes used in successfully evacuated regions before the evacuation.
4529    size_t _before_used_bytes;
4530    // Bytes used in unsucessfully evacuated regions before the evacuation
4531    size_t _after_used_bytes;
4532
4533    size_t _bytes_allocated_in_old_since_last_gc;
4534
4535    size_t _failure_used_words;
4536    size_t _failure_waste_words;
4537
4538    FreeRegionList _local_free_list;
4539  public:
4540    G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4541      HeapRegionClosure(),
4542      _evacuation_info(evacuation_info),
4543      _surviving_young_words(surviving_young_words),
4544      _before_used_bytes(0),
4545      _after_used_bytes(0),
4546      _bytes_allocated_in_old_since_last_gc(0),
4547      _failure_used_words(0),
4548      _failure_waste_words(0),
4549      _local_free_list("Local Region List for CSet Freeing") {
4550    }
4551
4552    virtual bool doHeapRegion(HeapRegion* r) {
4553      G1CollectedHeap* g1h = G1CollectedHeap::heap();
4554
4555      assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4556      g1h->clear_in_cset(r);
4557
4558      if (r->is_young()) {
4559        assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4560               "Young index %d is wrong for region %u of type %s with %u young regions",
4561               r->young_index_in_cset(),
4562               r->hrm_index(),
4563               r->get_type_str(),
4564               g1h->collection_set()->young_region_length());
4565        size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4566        r->record_surv_words_in_group(words_survived);
4567      }
4568
4569      if (!r->evacuation_failed()) {
4570        assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4571        _before_used_bytes += r->used();
4572        g1h->free_region(r,
4573                         &_local_free_list,
4574                         true, /* skip_remset */
4575                         true, /* skip_hot_card_cache */
4576                         true  /* locked */);
4577      } else {
4578        r->uninstall_surv_rate_group();
4579        r->set_young_index_in_cset(-1);
4580        r->set_evacuation_failed(false);
4581        // When moving a young gen region to old gen, we "allocate" that whole region
4582        // there. This is in addition to any already evacuated objects. Notify the
4583        // policy about that.
4584        // Old gen regions do not cause an additional allocation: both the objects
4585        // still in the region and the ones already moved are accounted for elsewhere.
4586        if (r->is_young()) {
4587          _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4588        }
4589        // The region is now considered to be old.
4590        r->set_old();
4591        // Do some allocation statistics accounting. Regions that failed evacuation
4592        // are always made old, so there is no need to update anything in the young
4593        // gen statistics, but we need to update old gen statistics.
4594        size_t used_words = r->marked_bytes() / HeapWordSize;
4595
4596        _failure_used_words += used_words;
4597        _failure_waste_words += HeapRegion::GrainWords - used_words;
4598
4599        g1h->old_set_add(r);
4600        _after_used_bytes += r->used();
4601      }
4602      return false;
4603    }
4604
4605    void complete_work() {
4606      G1CollectedHeap* g1h = G1CollectedHeap::heap();
4607
4608      _evacuation_info->set_regions_freed(_local_free_list.length());
4609      _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4610
4611      g1h->prepend_to_freelist(&_local_free_list);
4612      g1h->decrement_summary_bytes(_before_used_bytes);
4613
4614      G1Policy* policy = g1h->g1_policy();
4615      policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4616
4617      g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4618    }
4619  };
4620
4621  G1CollectionSet* _collection_set;
4622  G1SerialFreeCollectionSetClosure _cl;
4623  const size_t* _surviving_young_words;
4624
4625  size_t _rs_lengths;
4626
4627  volatile jint _serial_work_claim;
4628
4629  struct WorkItem {
4630    uint region_idx;
4631    bool is_young;
4632    bool evacuation_failed;
4633
4634    WorkItem(HeapRegion* r) {
4635      region_idx = r->hrm_index();
4636      is_young = r->is_young();
4637      evacuation_failed = r->evacuation_failed();
4638    }
4639  };
4640
4641  volatile size_t _parallel_work_claim;
4642  size_t _num_work_items;
4643  WorkItem* _work_items;
4644
4645  void do_serial_work() {
4646    // Need to grab the lock to be allowed to modify the old region list.
4647    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4648    _collection_set->iterate(&_cl);
4649  }
4650
4651  void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4652    G1CollectedHeap* g1h = G1CollectedHeap::heap();
4653
4654    HeapRegion* r = g1h->region_at(region_idx);
4655    assert(!g1h->is_on_master_free_list(r), "sanity");
4656
4657    Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4658
4659    if (!is_young) {
4660      g1h->_hot_card_cache->reset_card_counts(r);
4661    }
4662
4663    if (!evacuation_failed) {
4664      r->rem_set()->clear_locked();
4665    }
4666  }
4667
4668  class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4669  private:
4670    size_t _cur_idx;
4671    WorkItem* _work_items;
4672  public:
4673    G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4674
4675    virtual bool doHeapRegion(HeapRegion* r) {
4676      _work_items[_cur_idx++] = WorkItem(r);
4677      return false;
4678    }
4679  };
4680
4681  void prepare_work() {
4682    G1PrepareFreeCollectionSetClosure cl(_work_items);
4683    _collection_set->iterate(&cl);
4684  }
4685
4686  void complete_work() {
4687    _cl.complete_work();
4688
4689    G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4690    policy->record_max_rs_lengths(_rs_lengths);
4691    policy->cset_regions_freed();
4692  }
4693public:
4694  G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4695    AbstractGangTask("G1 Free Collection Set"),
4696    _cl(evacuation_info, surviving_young_words),
4697    _collection_set(collection_set),
4698    _surviving_young_words(surviving_young_words),
4699    _serial_work_claim(0),
4700    _rs_lengths(0),
4701    _parallel_work_claim(0),
4702    _num_work_items(collection_set->region_length()),
4703    _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4704    prepare_work();
4705  }
4706
4707  ~G1FreeCollectionSetTask() {
4708    complete_work();
4709    FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4710  }
4711
4712  // Chunk size for work distribution. The chosen value has been determined experimentally
4713  // to be a good tradeoff between overhead and achievable parallelism.
4714  static uint chunk_size() { return 32; }
4715
4716  virtual void work(uint worker_id) {
4717    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4718
4719    // Claim serial work.
4720    if (_serial_work_claim == 0) {
4721      jint value = Atomic::add(1, &_serial_work_claim) - 1;
4722      if (value == 0) {
4723        double serial_time = os::elapsedTime();
4724        do_serial_work();
4725        timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4726      }
4727    }
4728
4729    // Start parallel work.
4730    double young_time = 0.0;
4731    bool has_young_time = false;
4732    double non_young_time = 0.0;
4733    bool has_non_young_time = false;
4734
4735    while (true) {
4736      size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4737      size_t cur = end - chunk_size();
4738
4739      if (cur >= _num_work_items) {
4740        break;
4741      }
4742
4743      double start_time = os::elapsedTime();
4744
4745      end = MIN2(end, _num_work_items);
4746
4747      for (; cur < end; cur++) {
4748        bool is_young = _work_items[cur].is_young;
4749
4750        do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4751
4752        double end_time = os::elapsedTime();
4753        double time_taken = end_time - start_time;
4754        if (is_young) {
4755          young_time += time_taken;
4756          has_young_time = true;
4757        } else {
4758          non_young_time += time_taken;
4759          has_non_young_time = true;
4760        }
4761        start_time = end_time;
4762      }
4763    }
4764
4765    if (has_young_time) {
4766      timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4767    }
4768    if (has_non_young_time) {
4769      timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4770    }
4771  }
4772};
4773
4774void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4775  _eden.clear();
4776
4777  double free_cset_start_time = os::elapsedTime();
4778
4779  {
4780    uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4781    uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4782
4783    G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4784
4785    log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4786                        cl.name(),
4787                        num_workers,
4788                        _collection_set.region_length());
4789    workers()->run_task(&cl, num_workers);
4790  }
4791  g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4792
4793  collection_set->clear();
4794}
4795
4796class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4797 private:
4798  FreeRegionList* _free_region_list;
4799  HeapRegionSet* _proxy_set;
4800  uint _humongous_objects_reclaimed;
4801  uint _humongous_regions_reclaimed;
4802  size_t _freed_bytes;
4803 public:
4804
4805  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4806    _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4807  }
4808
4809  virtual bool doHeapRegion(HeapRegion* r) {
4810    if (!r->is_starts_humongous()) {
4811      return false;
4812    }
4813
4814    G1CollectedHeap* g1h = G1CollectedHeap::heap();
4815
4816    oop obj = (oop)r->bottom();
4817    G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4818
4819    // The following checks whether the humongous object is live are sufficient.
4820    // The main additional check (in addition to having a reference from the roots
4821    // or the young gen) is whether the humongous object has a remembered set entry.
4822    //
4823    // A humongous object cannot be live if there is no remembered set for it
4824    // because:
4825    // - there can be no references from within humongous starts regions referencing
4826    // the object because we never allocate other objects into them.
4827    // (I.e. there are no intra-region references that may be missed by the
4828    // remembered set)
4829    // - as soon there is a remembered set entry to the humongous starts region
4830    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4831    // until the end of a concurrent mark.
4832    //
4833    // It is not required to check whether the object has been found dead by marking
4834    // or not, in fact it would prevent reclamation within a concurrent cycle, as
4835    // all objects allocated during that time are considered live.
4836    // SATB marking is even more conservative than the remembered set.
4837    // So if at this point in the collection there is no remembered set entry,
4838    // nobody has a reference to it.
4839    // At the start of collection we flush all refinement logs, and remembered sets
4840    // are completely up-to-date wrt to references to the humongous object.
4841    //
4842    // Other implementation considerations:
4843    // - never consider object arrays at this time because they would pose
4844    // considerable effort for cleaning up the the remembered sets. This is
4845    // required because stale remembered sets might reference locations that
4846    // are currently allocated into.
4847    uint region_idx = r->hrm_index();
4848    if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4849        !r->rem_set()->is_empty()) {
4850      log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4851                               region_idx,
4852                               (size_t)obj->size() * HeapWordSize,
4853                               p2i(r->bottom()),
4854                               r->rem_set()->occupied(),
4855                               r->rem_set()->strong_code_roots_list_length(),
4856                               next_bitmap->is_marked(r->bottom()),
4857                               g1h->is_humongous_reclaim_candidate(region_idx),
4858                               obj->is_typeArray()
4859                              );
4860      return false;
4861    }
4862
4863    guarantee(obj->is_typeArray(),
4864              "Only eagerly reclaiming type arrays is supported, but the object "
4865              PTR_FORMAT " is not.", p2i(r->bottom()));
4866
4867    log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4868                             region_idx,
4869                             (size_t)obj->size() * HeapWordSize,
4870                             p2i(r->bottom()),
4871                             r->rem_set()->occupied(),
4872                             r->rem_set()->strong_code_roots_list_length(),
4873                             next_bitmap->is_marked(r->bottom()),
4874                             g1h->is_humongous_reclaim_candidate(region_idx),
4875                             obj->is_typeArray()
4876                            );
4877
4878    // Need to clear mark bit of the humongous object if already set.
4879    if (next_bitmap->is_marked(r->bottom())) {
4880      next_bitmap->clear(r->bottom());
4881    }
4882    _humongous_objects_reclaimed++;
4883    do {
4884      HeapRegion* next = g1h->next_region_in_humongous(r);
4885      _freed_bytes += r->used();
4886      r->set_containing_set(NULL);
4887      _humongous_regions_reclaimed++;
4888      g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4889      r = next;
4890    } while (r != NULL);
4891
4892    return false;
4893  }
4894
4895  uint humongous_objects_reclaimed() {
4896    return _humongous_objects_reclaimed;
4897  }
4898
4899  uint humongous_regions_reclaimed() {
4900    return _humongous_regions_reclaimed;
4901  }
4902
4903  size_t bytes_freed() const {
4904    return _freed_bytes;
4905  }
4906};
4907
4908void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4909  assert_at_safepoint(true);
4910
4911  if (!G1EagerReclaimHumongousObjects ||
4912      (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4913    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4914    return;
4915  }
4916
4917  double start_time = os::elapsedTime();
4918
4919  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4920
4921  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4922  heap_region_iterate(&cl);
4923
4924  remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4925
4926  G1HRPrinter* hrp = hr_printer();
4927  if (hrp->is_active()) {
4928    FreeRegionListIterator iter(&local_cleanup_list);
4929    while (iter.more_available()) {
4930      HeapRegion* hr = iter.get_next();
4931      hrp->cleanup(hr);
4932    }
4933  }
4934
4935  prepend_to_freelist(&local_cleanup_list);
4936  decrement_summary_bytes(cl.bytes_freed());
4937
4938  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4939                                                                    cl.humongous_objects_reclaimed());
4940}
4941
4942class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4943public:
4944  virtual bool doHeapRegion(HeapRegion* r) {
4945    assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4946    G1CollectedHeap::heap()->clear_in_cset(r);
4947    r->set_young_index_in_cset(-1);
4948    return false;
4949  }
4950};
4951
4952void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4953  G1AbandonCollectionSetClosure cl;
4954  collection_set->iterate(&cl);
4955
4956  collection_set->clear();
4957  collection_set->stop_incremental_building();
4958}
4959
4960void G1CollectedHeap::set_free_regions_coming() {
4961  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4962
4963  assert(!free_regions_coming(), "pre-condition");
4964  _free_regions_coming = true;
4965}
4966
4967void G1CollectedHeap::reset_free_regions_coming() {
4968  assert(free_regions_coming(), "pre-condition");
4969
4970  {
4971    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4972    _free_regions_coming = false;
4973    SecondaryFreeList_lock->notify_all();
4974  }
4975
4976  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4977}
4978
4979void G1CollectedHeap::wait_while_free_regions_coming() {
4980  // Most of the time we won't have to wait, so let's do a quick test
4981  // first before we take the lock.
4982  if (!free_regions_coming()) {
4983    return;
4984  }
4985
4986  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4987
4988  {
4989    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4990    while (free_regions_coming()) {
4991      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4992    }
4993  }
4994
4995  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4996}
4997
4998bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4999  return _allocator->is_retained_old_region(hr);
5000}
5001
5002void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5003  _eden.add(hr);
5004  _g1_policy->set_region_eden(hr);
5005}
5006
5007#ifdef ASSERT
5008
5009class NoYoungRegionsClosure: public HeapRegionClosure {
5010private:
5011  bool _success;
5012public:
5013  NoYoungRegionsClosure() : _success(true) { }
5014  bool doHeapRegion(HeapRegion* r) {
5015    if (r->is_young()) {
5016      log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5017                            p2i(r->bottom()), p2i(r->end()));
5018      _success = false;
5019    }
5020    return false;
5021  }
5022  bool success() { return _success; }
5023};
5024
5025bool G1CollectedHeap::check_young_list_empty() {
5026  bool ret = (young_regions_count() == 0);
5027
5028  NoYoungRegionsClosure closure;
5029  heap_region_iterate(&closure);
5030  ret = ret && closure.success();
5031
5032  return ret;
5033}
5034
5035#endif // ASSERT
5036
5037class TearDownRegionSetsClosure : public HeapRegionClosure {
5038private:
5039  HeapRegionSet *_old_set;
5040
5041public:
5042  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5043
5044  bool doHeapRegion(HeapRegion* r) {
5045    if (r->is_old()) {
5046      _old_set->remove(r);
5047    } else if(r->is_young()) {
5048      r->uninstall_surv_rate_group();
5049    } else {
5050      // We ignore free regions, we'll empty the free list afterwards.
5051      // We ignore humongous regions, we're not tearing down the
5052      // humongous regions set.
5053      assert(r->is_free() || r->is_humongous(),
5054             "it cannot be another type");
5055    }
5056    return false;
5057  }
5058
5059  ~TearDownRegionSetsClosure() {
5060    assert(_old_set->is_empty(), "post-condition");
5061  }
5062};
5063
5064void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5065  assert_at_safepoint(true /* should_be_vm_thread */);
5066
5067  if (!free_list_only) {
5068    TearDownRegionSetsClosure cl(&_old_set);
5069    heap_region_iterate(&cl);
5070
5071    // Note that emptying the _young_list is postponed and instead done as
5072    // the first step when rebuilding the regions sets again. The reason for
5073    // this is that during a full GC string deduplication needs to know if
5074    // a collected region was young or old when the full GC was initiated.
5075  }
5076  _hrm.remove_all_free_regions();
5077}
5078
5079void G1CollectedHeap::increase_used(size_t bytes) {
5080  _summary_bytes_used += bytes;
5081}
5082
5083void G1CollectedHeap::decrease_used(size_t bytes) {
5084  assert(_summary_bytes_used >= bytes,
5085         "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5086         _summary_bytes_used, bytes);
5087  _summary_bytes_used -= bytes;
5088}
5089
5090void G1CollectedHeap::set_used(size_t bytes) {
5091  _summary_bytes_used = bytes;
5092}
5093
5094class RebuildRegionSetsClosure : public HeapRegionClosure {
5095private:
5096  bool            _free_list_only;
5097  HeapRegionSet*   _old_set;
5098  HeapRegionManager*   _hrm;
5099  size_t          _total_used;
5100
5101public:
5102  RebuildRegionSetsClosure(bool free_list_only,
5103                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
5104    _free_list_only(free_list_only),
5105    _old_set(old_set), _hrm(hrm), _total_used(0) {
5106    assert(_hrm->num_free_regions() == 0, "pre-condition");
5107    if (!free_list_only) {
5108      assert(_old_set->is_empty(), "pre-condition");
5109    }
5110  }
5111
5112  bool doHeapRegion(HeapRegion* r) {
5113    if (r->is_empty()) {
5114      // Add free regions to the free list
5115      r->set_free();
5116      r->set_allocation_context(AllocationContext::system());
5117      _hrm->insert_into_free_list(r);
5118    } else if (!_free_list_only) {
5119
5120      if (r->is_humongous()) {
5121        // We ignore humongous regions. We left the humongous set unchanged.
5122      } else {
5123        assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5124        // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5125        r->move_to_old();
5126        _old_set->add(r);
5127      }
5128      _total_used += r->used();
5129    }
5130
5131    return false;
5132  }
5133
5134  size_t total_used() {
5135    return _total_used;
5136  }
5137};
5138
5139void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5140  assert_at_safepoint(true /* should_be_vm_thread */);
5141
5142  if (!free_list_only) {
5143    _eden.clear();
5144    _survivor.clear();
5145  }
5146
5147  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5148  heap_region_iterate(&cl);
5149
5150  if (!free_list_only) {
5151    set_used(cl.total_used());
5152    if (_archive_allocator != NULL) {
5153      _archive_allocator->clear_used();
5154    }
5155  }
5156  assert(used_unlocked() == recalculate_used(),
5157         "inconsistent used_unlocked(), "
5158         "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5159         used_unlocked(), recalculate_used());
5160}
5161
5162bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5163  HeapRegion* hr = heap_region_containing(p);
5164  return hr->is_in(p);
5165}
5166
5167// Methods for the mutator alloc region
5168
5169HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5170                                                      bool force) {
5171  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5172  bool should_allocate = g1_policy()->should_allocate_mutator_region();
5173  if (force || should_allocate) {
5174    HeapRegion* new_alloc_region = new_region(word_size,
5175                                              false /* is_old */,
5176                                              false /* do_expand */);
5177    if (new_alloc_region != NULL) {
5178      set_region_short_lived_locked(new_alloc_region);
5179      _hr_printer.alloc(new_alloc_region, !should_allocate);
5180      _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5181      return new_alloc_region;
5182    }
5183  }
5184  return NULL;
5185}
5186
5187void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5188                                                  size_t allocated_bytes) {
5189  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5190  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5191
5192  collection_set()->add_eden_region(alloc_region);
5193  increase_used(allocated_bytes);
5194  _hr_printer.retire(alloc_region);
5195  // We update the eden sizes here, when the region is retired,
5196  // instead of when it's allocated, since this is the point that its
5197  // used space has been recored in _summary_bytes_used.
5198  g1mm()->update_eden_size();
5199}
5200
5201// Methods for the GC alloc regions
5202
5203bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5204  if (dest.is_old()) {
5205    return true;
5206  } else {
5207    return survivor_regions_count() < g1_policy()->max_survivor_regions();
5208  }
5209}
5210
5211HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5212  assert(FreeList_lock->owned_by_self(), "pre-condition");
5213
5214  if (!has_more_regions(dest)) {
5215    return NULL;
5216  }
5217
5218  const bool is_survivor = dest.is_young();
5219
5220  HeapRegion* new_alloc_region = new_region(word_size,
5221                                            !is_survivor,
5222                                            true /* do_expand */);
5223  if (new_alloc_region != NULL) {
5224    // We really only need to do this for old regions given that we
5225    // should never scan survivors. But it doesn't hurt to do it
5226    // for survivors too.
5227    new_alloc_region->record_timestamp();
5228    if (is_survivor) {
5229      new_alloc_region->set_survivor();
5230      _survivor.add(new_alloc_region);
5231      _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5232    } else {
5233      new_alloc_region->set_old();
5234      _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5235    }
5236    _hr_printer.alloc(new_alloc_region);
5237    bool during_im = collector_state()->during_initial_mark_pause();
5238    new_alloc_region->note_start_of_copying(during_im);
5239    return new_alloc_region;
5240  }
5241  return NULL;
5242}
5243
5244void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5245                                             size_t allocated_bytes,
5246                                             InCSetState dest) {
5247  bool during_im = collector_state()->during_initial_mark_pause();
5248  alloc_region->note_end_of_copying(during_im);
5249  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5250  if (dest.is_old()) {
5251    _old_set.add(alloc_region);
5252  }
5253  _hr_printer.retire(alloc_region);
5254}
5255
5256HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5257  bool expanded = false;
5258  uint index = _hrm.find_highest_free(&expanded);
5259
5260  if (index != G1_NO_HRM_INDEX) {
5261    if (expanded) {
5262      log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5263                                HeapRegion::GrainWords * HeapWordSize);
5264    }
5265    _hrm.allocate_free_regions_starting_at(index, 1);
5266    return region_at(index);
5267  }
5268  return NULL;
5269}
5270
5271// Optimized nmethod scanning
5272
5273class RegisterNMethodOopClosure: public OopClosure {
5274  G1CollectedHeap* _g1h;
5275  nmethod* _nm;
5276
5277  template <class T> void do_oop_work(T* p) {
5278    T heap_oop = oopDesc::load_heap_oop(p);
5279    if (!oopDesc::is_null(heap_oop)) {
5280      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5281      HeapRegion* hr = _g1h->heap_region_containing(obj);
5282      assert(!hr->is_continues_humongous(),
5283             "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5284             " starting at " HR_FORMAT,
5285             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5286
5287      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5288      hr->add_strong_code_root_locked(_nm);
5289    }
5290  }
5291
5292public:
5293  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5294    _g1h(g1h), _nm(nm) {}
5295
5296  void do_oop(oop* p)       { do_oop_work(p); }
5297  void do_oop(narrowOop* p) { do_oop_work(p); }
5298};
5299
5300class UnregisterNMethodOopClosure: public OopClosure {
5301  G1CollectedHeap* _g1h;
5302  nmethod* _nm;
5303
5304  template <class T> void do_oop_work(T* p) {
5305    T heap_oop = oopDesc::load_heap_oop(p);
5306    if (!oopDesc::is_null(heap_oop)) {
5307      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5308      HeapRegion* hr = _g1h->heap_region_containing(obj);
5309      assert(!hr->is_continues_humongous(),
5310             "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5311             " starting at " HR_FORMAT,
5312             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5313
5314      hr->remove_strong_code_root(_nm);
5315    }
5316  }
5317
5318public:
5319  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5320    _g1h(g1h), _nm(nm) {}
5321
5322  void do_oop(oop* p)       { do_oop_work(p); }
5323  void do_oop(narrowOop* p) { do_oop_work(p); }
5324};
5325
5326void G1CollectedHeap::register_nmethod(nmethod* nm) {
5327  CollectedHeap::register_nmethod(nm);
5328
5329  guarantee(nm != NULL, "sanity");
5330  RegisterNMethodOopClosure reg_cl(this, nm);
5331  nm->oops_do(&reg_cl);
5332}
5333
5334void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5335  CollectedHeap::unregister_nmethod(nm);
5336
5337  guarantee(nm != NULL, "sanity");
5338  UnregisterNMethodOopClosure reg_cl(this, nm);
5339  nm->oops_do(&reg_cl, true);
5340}
5341
5342void G1CollectedHeap::purge_code_root_memory() {
5343  double purge_start = os::elapsedTime();
5344  G1CodeRootSet::purge();
5345  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5346  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5347}
5348
5349class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5350  G1CollectedHeap* _g1h;
5351
5352public:
5353  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5354    _g1h(g1h) {}
5355
5356  void do_code_blob(CodeBlob* cb) {
5357    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5358    if (nm == NULL) {
5359      return;
5360    }
5361
5362    if (ScavengeRootsInCode) {
5363      _g1h->register_nmethod(nm);
5364    }
5365  }
5366};
5367
5368void G1CollectedHeap::rebuild_strong_code_roots() {
5369  RebuildStrongCodeRootClosure blob_cl(this);
5370  CodeCache::blobs_do(&blob_cl);
5371}
5372