g1CollectedHeap.cpp revision 13129:da4c9eef4316
1/*
2 * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/metadataOnStackMark.hpp"
27#include "classfile/stringTable.hpp"
28#include "classfile/symbolTable.hpp"
29#include "code/codeCache.hpp"
30#include "code/icBuffer.hpp"
31#include "gc/g1/bufferingOopClosure.hpp"
32#include "gc/g1/concurrentG1Refine.hpp"
33#include "gc/g1/concurrentG1RefineThread.hpp"
34#include "gc/g1/concurrentMarkThread.inline.hpp"
35#include "gc/g1/g1Allocator.inline.hpp"
36#include "gc/g1/g1CollectedHeap.inline.hpp"
37#include "gc/g1/g1CollectionSet.hpp"
38#include "gc/g1/g1CollectorPolicy.hpp"
39#include "gc/g1/g1CollectorState.hpp"
40#include "gc/g1/g1EvacStats.inline.hpp"
41#include "gc/g1/g1GCPhaseTimes.hpp"
42#include "gc/g1/g1HeapSizingPolicy.hpp"
43#include "gc/g1/g1HeapTransition.hpp"
44#include "gc/g1/g1HeapVerifier.hpp"
45#include "gc/g1/g1HotCardCache.hpp"
46#include "gc/g1/g1MarkSweep.hpp"
47#include "gc/g1/g1OopClosures.inline.hpp"
48#include "gc/g1/g1ParScanThreadState.inline.hpp"
49#include "gc/g1/g1Policy.hpp"
50#include "gc/g1/g1RegionToSpaceMapper.hpp"
51#include "gc/g1/g1RemSet.inline.hpp"
52#include "gc/g1/g1RootClosures.hpp"
53#include "gc/g1/g1RootProcessor.hpp"
54#include "gc/g1/g1StringDedup.hpp"
55#include "gc/g1/g1YCTypes.hpp"
56#include "gc/g1/heapRegion.inline.hpp"
57#include "gc/g1/heapRegionRemSet.hpp"
58#include "gc/g1/heapRegionSet.inline.hpp"
59#include "gc/g1/suspendibleThreadSet.hpp"
60#include "gc/g1/vm_operations_g1.hpp"
61#include "gc/shared/gcHeapSummary.hpp"
62#include "gc/shared/gcId.hpp"
63#include "gc/shared/gcLocker.inline.hpp"
64#include "gc/shared/gcTimer.hpp"
65#include "gc/shared/gcTrace.hpp"
66#include "gc/shared/gcTraceTime.inline.hpp"
67#include "gc/shared/generationSpec.hpp"
68#include "gc/shared/isGCActiveMark.hpp"
69#include "gc/shared/preservedMarks.inline.hpp"
70#include "gc/shared/referenceProcessor.inline.hpp"
71#include "gc/shared/taskqueue.inline.hpp"
72#include "logging/log.hpp"
73#include "memory/allocation.hpp"
74#include "memory/iterator.hpp"
75#include "memory/resourceArea.hpp"
76#include "oops/oop.inline.hpp"
77#include "prims/resolvedMethodTable.hpp"
78#include "runtime/atomic.hpp"
79#include "runtime/init.hpp"
80#include "runtime/orderAccess.inline.hpp"
81#include "runtime/vmThread.hpp"
82#include "utilities/globalDefinitions.hpp"
83#include "utilities/stack.inline.hpp"
84
85size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
86
87// INVARIANTS/NOTES
88//
89// All allocation activity covered by the G1CollectedHeap interface is
90// serialized by acquiring the HeapLock.  This happens in mem_allocate
91// and allocate_new_tlab, which are the "entry" points to the
92// allocation code from the rest of the JVM.  (Note that this does not
93// apply to TLAB allocation, which is not part of this interface: it
94// is done by clients of this interface.)
95
96// Local to this file.
97
98class RefineCardTableEntryClosure: public CardTableEntryClosure {
99  bool _concurrent;
100public:
101  RefineCardTableEntryClosure() : _concurrent(true) { }
102
103  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
104    bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
105    // This path is executed by the concurrent refine or mutator threads,
106    // concurrently, and so we do not care if card_ptr contains references
107    // that point into the collection set.
108    assert(!oops_into_cset, "should be");
109
110    if (_concurrent && SuspendibleThreadSet::should_yield()) {
111      // Caller will actually yield.
112      return false;
113    }
114    // Otherwise, we finished successfully; return true.
115    return true;
116  }
117
118  void set_concurrent(bool b) { _concurrent = b; }
119};
120
121
122class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
123 private:
124  size_t _num_dirtied;
125  G1CollectedHeap* _g1h;
126  G1SATBCardTableLoggingModRefBS* _g1_bs;
127
128  HeapRegion* region_for_card(jbyte* card_ptr) const {
129    return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
130  }
131
132  bool will_become_free(HeapRegion* hr) const {
133    // A region will be freed by free_collection_set if the region is in the
134    // collection set and has not had an evacuation failure.
135    return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
136  }
137
138 public:
139  RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
140    _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
141
142  bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
143    HeapRegion* hr = region_for_card(card_ptr);
144
145    // Should only dirty cards in regions that won't be freed.
146    if (!will_become_free(hr)) {
147      *card_ptr = CardTableModRefBS::dirty_card_val();
148      _num_dirtied++;
149    }
150
151    return true;
152  }
153
154  size_t num_dirtied()   const { return _num_dirtied; }
155};
156
157
158void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
159  HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
160}
161
162void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
163  // The from card cache is not the memory that is actually committed. So we cannot
164  // take advantage of the zero_filled parameter.
165  reset_from_card_cache(start_idx, num_regions);
166}
167
168// Returns true if the reference points to an object that
169// can move in an incremental collection.
170bool G1CollectedHeap::is_scavengable(const void* p) {
171  HeapRegion* hr = heap_region_containing(p);
172  return !hr->is_pinned();
173}
174
175// Private methods.
176
177HeapRegion*
178G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
179  MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
180  while (!_secondary_free_list.is_empty() || free_regions_coming()) {
181    if (!_secondary_free_list.is_empty()) {
182      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
183                                      "secondary_free_list has %u entries",
184                                      _secondary_free_list.length());
185      // It looks as if there are free regions available on the
186      // secondary_free_list. Let's move them to the free_list and try
187      // again to allocate from it.
188      append_secondary_free_list();
189
190      assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
191             "empty we should have moved at least one entry to the free_list");
192      HeapRegion* res = _hrm.allocate_free_region(is_old);
193      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
194                                      "allocated " HR_FORMAT " from secondary_free_list",
195                                      HR_FORMAT_PARAMS(res));
196      return res;
197    }
198
199    // Wait here until we get notified either when (a) there are no
200    // more free regions coming or (b) some regions have been moved on
201    // the secondary_free_list.
202    SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
203  }
204
205  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
206                                  "could not allocate from secondary_free_list");
207  return NULL;
208}
209
210HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
211  assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
212         "the only time we use this to allocate a humongous region is "
213         "when we are allocating a single humongous region");
214
215  HeapRegion* res;
216  if (G1StressConcRegionFreeing) {
217    if (!_secondary_free_list.is_empty()) {
218      log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
219                                      "forced to look at the secondary_free_list");
220      res = new_region_try_secondary_free_list(is_old);
221      if (res != NULL) {
222        return res;
223      }
224    }
225  }
226
227  res = _hrm.allocate_free_region(is_old);
228
229  if (res == NULL) {
230    log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
231                                    "res == NULL, trying the secondary_free_list");
232    res = new_region_try_secondary_free_list(is_old);
233  }
234  if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
235    // Currently, only attempts to allocate GC alloc regions set
236    // do_expand to true. So, we should only reach here during a
237    // safepoint. If this assumption changes we might have to
238    // reconsider the use of _expand_heap_after_alloc_failure.
239    assert(SafepointSynchronize::is_at_safepoint(), "invariant");
240
241    log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
242                              word_size * HeapWordSize);
243
244    if (expand(word_size * HeapWordSize)) {
245      // Given that expand() succeeded in expanding the heap, and we
246      // always expand the heap by an amount aligned to the heap
247      // region size, the free list should in theory not be empty.
248      // In either case allocate_free_region() will check for NULL.
249      res = _hrm.allocate_free_region(is_old);
250    } else {
251      _expand_heap_after_alloc_failure = false;
252    }
253  }
254  return res;
255}
256
257HeapWord*
258G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
259                                                           uint num_regions,
260                                                           size_t word_size,
261                                                           AllocationContext_t context) {
262  assert(first != G1_NO_HRM_INDEX, "pre-condition");
263  assert(is_humongous(word_size), "word_size should be humongous");
264  assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
265
266  // Index of last region in the series.
267  uint last = first + num_regions - 1;
268
269  // We need to initialize the region(s) we just discovered. This is
270  // a bit tricky given that it can happen concurrently with
271  // refinement threads refining cards on these regions and
272  // potentially wanting to refine the BOT as they are scanning
273  // those cards (this can happen shortly after a cleanup; see CR
274  // 6991377). So we have to set up the region(s) carefully and in
275  // a specific order.
276
277  // The word size sum of all the regions we will allocate.
278  size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
279  assert(word_size <= word_size_sum, "sanity");
280
281  // This will be the "starts humongous" region.
282  HeapRegion* first_hr = region_at(first);
283  // The header of the new object will be placed at the bottom of
284  // the first region.
285  HeapWord* new_obj = first_hr->bottom();
286  // This will be the new top of the new object.
287  HeapWord* obj_top = new_obj + word_size;
288
289  // First, we need to zero the header of the space that we will be
290  // allocating. When we update top further down, some refinement
291  // threads might try to scan the region. By zeroing the header we
292  // ensure that any thread that will try to scan the region will
293  // come across the zero klass word and bail out.
294  //
295  // NOTE: It would not have been correct to have used
296  // CollectedHeap::fill_with_object() and make the space look like
297  // an int array. The thread that is doing the allocation will
298  // later update the object header to a potentially different array
299  // type and, for a very short period of time, the klass and length
300  // fields will be inconsistent. This could cause a refinement
301  // thread to calculate the object size incorrectly.
302  Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
303
304  // Next, pad out the unused tail of the last region with filler
305  // objects, for improved usage accounting.
306  // How many words we use for filler objects.
307  size_t word_fill_size = word_size_sum - word_size;
308
309  // How many words memory we "waste" which cannot hold a filler object.
310  size_t words_not_fillable = 0;
311
312  if (word_fill_size >= min_fill_size()) {
313    fill_with_objects(obj_top, word_fill_size);
314  } else if (word_fill_size > 0) {
315    // We have space to fill, but we cannot fit an object there.
316    words_not_fillable = word_fill_size;
317    word_fill_size = 0;
318  }
319
320  // We will set up the first region as "starts humongous". This
321  // will also update the BOT covering all the regions to reflect
322  // that there is a single object that starts at the bottom of the
323  // first region.
324  first_hr->set_starts_humongous(obj_top, word_fill_size);
325  first_hr->set_allocation_context(context);
326  // Then, if there are any, we will set up the "continues
327  // humongous" regions.
328  HeapRegion* hr = NULL;
329  for (uint i = first + 1; i <= last; ++i) {
330    hr = region_at(i);
331    hr->set_continues_humongous(first_hr);
332    hr->set_allocation_context(context);
333  }
334
335  // Up to this point no concurrent thread would have been able to
336  // do any scanning on any region in this series. All the top
337  // fields still point to bottom, so the intersection between
338  // [bottom,top] and [card_start,card_end] will be empty. Before we
339  // update the top fields, we'll do a storestore to make sure that
340  // no thread sees the update to top before the zeroing of the
341  // object header and the BOT initialization.
342  OrderAccess::storestore();
343
344  // Now, we will update the top fields of the "continues humongous"
345  // regions except the last one.
346  for (uint i = first; i < last; ++i) {
347    hr = region_at(i);
348    hr->set_top(hr->end());
349  }
350
351  hr = region_at(last);
352  // If we cannot fit a filler object, we must set top to the end
353  // of the humongous object, otherwise we cannot iterate the heap
354  // and the BOT will not be complete.
355  hr->set_top(hr->end() - words_not_fillable);
356
357  assert(hr->bottom() < obj_top && obj_top <= hr->end(),
358         "obj_top should be in last region");
359
360  _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
361
362  assert(words_not_fillable == 0 ||
363         first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
364         "Miscalculation in humongous allocation");
365
366  increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
367
368  for (uint i = first; i <= last; ++i) {
369    hr = region_at(i);
370    _humongous_set.add(hr);
371    _hr_printer.alloc(hr);
372  }
373
374  return new_obj;
375}
376
377size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
378  assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
379  return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
380}
381
382// If could fit into free regions w/o expansion, try.
383// Otherwise, if can expand, do so.
384// Otherwise, if using ex regions might help, try with ex given back.
385HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
386  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
387
388  _verifier->verify_region_sets_optional();
389
390  uint first = G1_NO_HRM_INDEX;
391  uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
392
393  if (obj_regions == 1) {
394    // Only one region to allocate, try to use a fast path by directly allocating
395    // from the free lists. Do not try to expand here, we will potentially do that
396    // later.
397    HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
398    if (hr != NULL) {
399      first = hr->hrm_index();
400    }
401  } else {
402    // We can't allocate humongous regions spanning more than one region while
403    // cleanupComplete() is running, since some of the regions we find to be
404    // empty might not yet be added to the free list. It is not straightforward
405    // to know in which list they are on so that we can remove them. We only
406    // need to do this if we need to allocate more than one region to satisfy the
407    // current humongous allocation request. If we are only allocating one region
408    // we use the one-region region allocation code (see above), that already
409    // potentially waits for regions from the secondary free list.
410    wait_while_free_regions_coming();
411    append_secondary_free_list_if_not_empty_with_lock();
412
413    // Policy: Try only empty regions (i.e. already committed first). Maybe we
414    // are lucky enough to find some.
415    first = _hrm.find_contiguous_only_empty(obj_regions);
416    if (first != G1_NO_HRM_INDEX) {
417      _hrm.allocate_free_regions_starting_at(first, obj_regions);
418    }
419  }
420
421  if (first == G1_NO_HRM_INDEX) {
422    // Policy: We could not find enough regions for the humongous object in the
423    // free list. Look through the heap to find a mix of free and uncommitted regions.
424    // If so, try expansion.
425    first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
426    if (first != G1_NO_HRM_INDEX) {
427      // We found something. Make sure these regions are committed, i.e. expand
428      // the heap. Alternatively we could do a defragmentation GC.
429      log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
430                                    word_size * HeapWordSize);
431
432      _hrm.expand_at(first, obj_regions, workers());
433      g1_policy()->record_new_heap_size(num_regions());
434
435#ifdef ASSERT
436      for (uint i = first; i < first + obj_regions; ++i) {
437        HeapRegion* hr = region_at(i);
438        assert(hr->is_free(), "sanity");
439        assert(hr->is_empty(), "sanity");
440        assert(is_on_master_free_list(hr), "sanity");
441      }
442#endif
443      _hrm.allocate_free_regions_starting_at(first, obj_regions);
444    } else {
445      // Policy: Potentially trigger a defragmentation GC.
446    }
447  }
448
449  HeapWord* result = NULL;
450  if (first != G1_NO_HRM_INDEX) {
451    result = humongous_obj_allocate_initialize_regions(first, obj_regions,
452                                                       word_size, context);
453    assert(result != NULL, "it should always return a valid result");
454
455    // A successful humongous object allocation changes the used space
456    // information of the old generation so we need to recalculate the
457    // sizes and update the jstat counters here.
458    g1mm()->update_sizes();
459  }
460
461  _verifier->verify_region_sets_optional();
462
463  return result;
464}
465
466HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
467  assert_heap_not_locked_and_not_at_safepoint();
468  assert(!is_humongous(word_size), "we do not allow humongous TLABs");
469
470  uint dummy_gc_count_before;
471  uint dummy_gclocker_retry_count = 0;
472  return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
473}
474
475HeapWord*
476G1CollectedHeap::mem_allocate(size_t word_size,
477                              bool*  gc_overhead_limit_was_exceeded) {
478  assert_heap_not_locked_and_not_at_safepoint();
479
480  // Loop until the allocation is satisfied, or unsatisfied after GC.
481  for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
482    uint gc_count_before;
483
484    HeapWord* result = NULL;
485    if (!is_humongous(word_size)) {
486      result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
487    } else {
488      result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
489    }
490    if (result != NULL) {
491      return result;
492    }
493
494    // Create the garbage collection operation...
495    VM_G1CollectForAllocation op(gc_count_before, word_size);
496    op.set_allocation_context(AllocationContext::current());
497
498    // ...and get the VM thread to execute it.
499    VMThread::execute(&op);
500
501    if (op.prologue_succeeded() && op.pause_succeeded()) {
502      // If the operation was successful we'll return the result even
503      // if it is NULL. If the allocation attempt failed immediately
504      // after a Full GC, it's unlikely we'll be able to allocate now.
505      HeapWord* result = op.result();
506      if (result != NULL && !is_humongous(word_size)) {
507        // Allocations that take place on VM operations do not do any
508        // card dirtying and we have to do it here. We only have to do
509        // this for non-humongous allocations, though.
510        dirty_young_block(result, word_size);
511      }
512      return result;
513    } else {
514      if (gclocker_retry_count > GCLockerRetryAllocationCount) {
515        return NULL;
516      }
517      assert(op.result() == NULL,
518             "the result should be NULL if the VM op did not succeed");
519    }
520
521    // Give a warning if we seem to be looping forever.
522    if ((QueuedAllocationWarningCount > 0) &&
523        (try_count % QueuedAllocationWarningCount == 0)) {
524      log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
525    }
526  }
527
528  ShouldNotReachHere();
529  return NULL;
530}
531
532HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
533                                                   AllocationContext_t context,
534                                                   uint* gc_count_before_ret,
535                                                   uint* gclocker_retry_count_ret) {
536  // Make sure you read the note in attempt_allocation_humongous().
537
538  assert_heap_not_locked_and_not_at_safepoint();
539  assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
540         "be called for humongous allocation requests");
541
542  // We should only get here after the first-level allocation attempt
543  // (attempt_allocation()) failed to allocate.
544
545  // We will loop until a) we manage to successfully perform the
546  // allocation or b) we successfully schedule a collection which
547  // fails to perform the allocation. b) is the only case when we'll
548  // return NULL.
549  HeapWord* result = NULL;
550  for (int try_count = 1; /* we'll return */; try_count += 1) {
551    bool should_try_gc;
552    uint gc_count_before;
553
554    {
555      MutexLockerEx x(Heap_lock);
556      result = _allocator->attempt_allocation_locked(word_size, context);
557      if (result != NULL) {
558        return result;
559      }
560
561      if (GCLocker::is_active_and_needs_gc()) {
562        if (g1_policy()->can_expand_young_list()) {
563          // No need for an ergo verbose message here,
564          // can_expand_young_list() does this when it returns true.
565          result = _allocator->attempt_allocation_force(word_size, context);
566          if (result != NULL) {
567            return result;
568          }
569        }
570        should_try_gc = false;
571      } else {
572        // The GCLocker may not be active but the GCLocker initiated
573        // GC may not yet have been performed (GCLocker::needs_gc()
574        // returns true). In this case we do not try this GC and
575        // wait until the GCLocker initiated GC is performed, and
576        // then retry the allocation.
577        if (GCLocker::needs_gc()) {
578          should_try_gc = false;
579        } else {
580          // Read the GC count while still holding the Heap_lock.
581          gc_count_before = total_collections();
582          should_try_gc = true;
583        }
584      }
585    }
586
587    if (should_try_gc) {
588      bool succeeded;
589      result = do_collection_pause(word_size, gc_count_before, &succeeded,
590                                   GCCause::_g1_inc_collection_pause);
591      if (result != NULL) {
592        assert(succeeded, "only way to get back a non-NULL result");
593        return result;
594      }
595
596      if (succeeded) {
597        // If we get here we successfully scheduled a collection which
598        // failed to allocate. No point in trying to allocate
599        // further. We'll just return NULL.
600        MutexLockerEx x(Heap_lock);
601        *gc_count_before_ret = total_collections();
602        return NULL;
603      }
604    } else {
605      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
606        MutexLockerEx x(Heap_lock);
607        *gc_count_before_ret = total_collections();
608        return NULL;
609      }
610      // The GCLocker is either active or the GCLocker initiated
611      // GC has not yet been performed. Stall until it is and
612      // then retry the allocation.
613      GCLocker::stall_until_clear();
614      (*gclocker_retry_count_ret) += 1;
615    }
616
617    // We can reach here if we were unsuccessful in scheduling a
618    // collection (because another thread beat us to it) or if we were
619    // stalled due to the GC locker. In either can we should retry the
620    // allocation attempt in case another thread successfully
621    // performed a collection and reclaimed enough space. We do the
622    // first attempt (without holding the Heap_lock) here and the
623    // follow-on attempt will be at the start of the next loop
624    // iteration (after taking the Heap_lock).
625    result = _allocator->attempt_allocation(word_size, context);
626    if (result != NULL) {
627      return result;
628    }
629
630    // Give a warning if we seem to be looping forever.
631    if ((QueuedAllocationWarningCount > 0) &&
632        (try_count % QueuedAllocationWarningCount == 0)) {
633      log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
634                      "retries %d times", try_count);
635    }
636  }
637
638  ShouldNotReachHere();
639  return NULL;
640}
641
642void G1CollectedHeap::begin_archive_alloc_range() {
643  assert_at_safepoint(true /* should_be_vm_thread */);
644  if (_archive_allocator == NULL) {
645    _archive_allocator = G1ArchiveAllocator::create_allocator(this);
646  }
647}
648
649bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
650  // Allocations in archive regions cannot be of a size that would be considered
651  // humongous even for a minimum-sized region, because G1 region sizes/boundaries
652  // may be different at archive-restore time.
653  return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
654}
655
656HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
657  assert_at_safepoint(true /* should_be_vm_thread */);
658  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
659  if (is_archive_alloc_too_large(word_size)) {
660    return NULL;
661  }
662  return _archive_allocator->archive_mem_allocate(word_size);
663}
664
665void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
666                                              size_t end_alignment_in_bytes) {
667  assert_at_safepoint(true /* should_be_vm_thread */);
668  assert(_archive_allocator != NULL, "_archive_allocator not initialized");
669
670  // Call complete_archive to do the real work, filling in the MemRegion
671  // array with the archive regions.
672  _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
673  delete _archive_allocator;
674  _archive_allocator = NULL;
675}
676
677bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
678  assert(ranges != NULL, "MemRegion array NULL");
679  assert(count != 0, "No MemRegions provided");
680  MemRegion reserved = _hrm.reserved();
681  for (size_t i = 0; i < count; i++) {
682    if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
683      return false;
684    }
685  }
686  return true;
687}
688
689bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
690  assert(!is_init_completed(), "Expect to be called at JVM init time");
691  assert(ranges != NULL, "MemRegion array NULL");
692  assert(count != 0, "No MemRegions provided");
693  MutexLockerEx x(Heap_lock);
694
695  MemRegion reserved = _hrm.reserved();
696  HeapWord* prev_last_addr = NULL;
697  HeapRegion* prev_last_region = NULL;
698
699  // Temporarily disable pretouching of heap pages. This interface is used
700  // when mmap'ing archived heap data in, so pre-touching is wasted.
701  FlagSetting fs(AlwaysPreTouch, false);
702
703  // Enable archive object checking used by G1MarkSweep. We have to let it know
704  // about each archive range, so that objects in those ranges aren't marked.
705  G1ArchiveAllocator::enable_archive_object_check();
706
707  // For each specified MemRegion range, allocate the corresponding G1
708  // regions and mark them as archive regions. We expect the ranges in
709  // ascending starting address order, without overlap.
710  for (size_t i = 0; i < count; i++) {
711    MemRegion curr_range = ranges[i];
712    HeapWord* start_address = curr_range.start();
713    size_t word_size = curr_range.word_size();
714    HeapWord* last_address = curr_range.last();
715    size_t commits = 0;
716
717    guarantee(reserved.contains(start_address) && reserved.contains(last_address),
718              "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
719              p2i(start_address), p2i(last_address));
720    guarantee(start_address > prev_last_addr,
721              "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
722              p2i(start_address), p2i(prev_last_addr));
723    prev_last_addr = last_address;
724
725    // Check for ranges that start in the same G1 region in which the previous
726    // range ended, and adjust the start address so we don't try to allocate
727    // the same region again. If the current range is entirely within that
728    // region, skip it, just adjusting the recorded top.
729    HeapRegion* start_region = _hrm.addr_to_region(start_address);
730    if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
731      start_address = start_region->end();
732      if (start_address > last_address) {
733        increase_used(word_size * HeapWordSize);
734        start_region->set_top(last_address + 1);
735        continue;
736      }
737      start_region->set_top(start_address);
738      curr_range = MemRegion(start_address, last_address + 1);
739      start_region = _hrm.addr_to_region(start_address);
740    }
741
742    // Perform the actual region allocation, exiting if it fails.
743    // Then note how much new space we have allocated.
744    if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
745      return false;
746    }
747    increase_used(word_size * HeapWordSize);
748    if (commits != 0) {
749      log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
750                                HeapRegion::GrainWords * HeapWordSize * commits);
751
752    }
753
754    // Mark each G1 region touched by the range as archive, add it to the old set,
755    // and set the allocation context and top.
756    HeapRegion* curr_region = _hrm.addr_to_region(start_address);
757    HeapRegion* last_region = _hrm.addr_to_region(last_address);
758    prev_last_region = last_region;
759
760    while (curr_region != NULL) {
761      assert(curr_region->is_empty() && !curr_region->is_pinned(),
762             "Region already in use (index %u)", curr_region->hrm_index());
763      curr_region->set_allocation_context(AllocationContext::system());
764      curr_region->set_archive();
765      _hr_printer.alloc(curr_region);
766      _old_set.add(curr_region);
767      if (curr_region != last_region) {
768        curr_region->set_top(curr_region->end());
769        curr_region = _hrm.next_region_in_heap(curr_region);
770      } else {
771        curr_region->set_top(last_address + 1);
772        curr_region = NULL;
773      }
774    }
775
776    // Notify mark-sweep of the archive range.
777    G1ArchiveAllocator::set_range_archive(curr_range, true);
778  }
779  return true;
780}
781
782void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
783  assert(!is_init_completed(), "Expect to be called at JVM init time");
784  assert(ranges != NULL, "MemRegion array NULL");
785  assert(count != 0, "No MemRegions provided");
786  MemRegion reserved = _hrm.reserved();
787  HeapWord *prev_last_addr = NULL;
788  HeapRegion* prev_last_region = NULL;
789
790  // For each MemRegion, create filler objects, if needed, in the G1 regions
791  // that contain the address range. The address range actually within the
792  // MemRegion will not be modified. That is assumed to have been initialized
793  // elsewhere, probably via an mmap of archived heap data.
794  MutexLockerEx x(Heap_lock);
795  for (size_t i = 0; i < count; i++) {
796    HeapWord* start_address = ranges[i].start();
797    HeapWord* last_address = ranges[i].last();
798
799    assert(reserved.contains(start_address) && reserved.contains(last_address),
800           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
801           p2i(start_address), p2i(last_address));
802    assert(start_address > prev_last_addr,
803           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
804           p2i(start_address), p2i(prev_last_addr));
805
806    HeapRegion* start_region = _hrm.addr_to_region(start_address);
807    HeapRegion* last_region = _hrm.addr_to_region(last_address);
808    HeapWord* bottom_address = start_region->bottom();
809
810    // Check for a range beginning in the same region in which the
811    // previous one ended.
812    if (start_region == prev_last_region) {
813      bottom_address = prev_last_addr + 1;
814    }
815
816    // Verify that the regions were all marked as archive regions by
817    // alloc_archive_regions.
818    HeapRegion* curr_region = start_region;
819    while (curr_region != NULL) {
820      guarantee(curr_region->is_archive(),
821                "Expected archive region at index %u", curr_region->hrm_index());
822      if (curr_region != last_region) {
823        curr_region = _hrm.next_region_in_heap(curr_region);
824      } else {
825        curr_region = NULL;
826      }
827    }
828
829    prev_last_addr = last_address;
830    prev_last_region = last_region;
831
832    // Fill the memory below the allocated range with dummy object(s),
833    // if the region bottom does not match the range start, or if the previous
834    // range ended within the same G1 region, and there is a gap.
835    if (start_address != bottom_address) {
836      size_t fill_size = pointer_delta(start_address, bottom_address);
837      G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
838      increase_used(fill_size * HeapWordSize);
839    }
840  }
841}
842
843inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
844                                                     uint* gc_count_before_ret,
845                                                     uint* gclocker_retry_count_ret) {
846  assert_heap_not_locked_and_not_at_safepoint();
847  assert(!is_humongous(word_size), "attempt_allocation() should not "
848         "be called for humongous allocation requests");
849
850  AllocationContext_t context = AllocationContext::current();
851  HeapWord* result = _allocator->attempt_allocation(word_size, context);
852
853  if (result == NULL) {
854    result = attempt_allocation_slow(word_size,
855                                     context,
856                                     gc_count_before_ret,
857                                     gclocker_retry_count_ret);
858  }
859  assert_heap_not_locked();
860  if (result != NULL) {
861    dirty_young_block(result, word_size);
862  }
863  return result;
864}
865
866void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
867  assert(!is_init_completed(), "Expect to be called at JVM init time");
868  assert(ranges != NULL, "MemRegion array NULL");
869  assert(count != 0, "No MemRegions provided");
870  MemRegion reserved = _hrm.reserved();
871  HeapWord* prev_last_addr = NULL;
872  HeapRegion* prev_last_region = NULL;
873  size_t size_used = 0;
874  size_t uncommitted_regions = 0;
875
876  // For each Memregion, free the G1 regions that constitute it, and
877  // notify mark-sweep that the range is no longer to be considered 'archive.'
878  MutexLockerEx x(Heap_lock);
879  for (size_t i = 0; i < count; i++) {
880    HeapWord* start_address = ranges[i].start();
881    HeapWord* last_address = ranges[i].last();
882
883    assert(reserved.contains(start_address) && reserved.contains(last_address),
884           "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
885           p2i(start_address), p2i(last_address));
886    assert(start_address > prev_last_addr,
887           "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
888           p2i(start_address), p2i(prev_last_addr));
889    size_used += ranges[i].byte_size();
890    prev_last_addr = last_address;
891
892    HeapRegion* start_region = _hrm.addr_to_region(start_address);
893    HeapRegion* last_region = _hrm.addr_to_region(last_address);
894
895    // Check for ranges that start in the same G1 region in which the previous
896    // range ended, and adjust the start address so we don't try to free
897    // the same region again. If the current range is entirely within that
898    // region, skip it.
899    if (start_region == prev_last_region) {
900      start_address = start_region->end();
901      if (start_address > last_address) {
902        continue;
903      }
904      start_region = _hrm.addr_to_region(start_address);
905    }
906    prev_last_region = last_region;
907
908    // After verifying that each region was marked as an archive region by
909    // alloc_archive_regions, set it free and empty and uncommit it.
910    HeapRegion* curr_region = start_region;
911    while (curr_region != NULL) {
912      guarantee(curr_region->is_archive(),
913                "Expected archive region at index %u", curr_region->hrm_index());
914      uint curr_index = curr_region->hrm_index();
915      _old_set.remove(curr_region);
916      curr_region->set_free();
917      curr_region->set_top(curr_region->bottom());
918      if (curr_region != last_region) {
919        curr_region = _hrm.next_region_in_heap(curr_region);
920      } else {
921        curr_region = NULL;
922      }
923      _hrm.shrink_at(curr_index, 1);
924      uncommitted_regions++;
925    }
926
927    // Notify mark-sweep that this is no longer an archive range.
928    G1ArchiveAllocator::set_range_archive(ranges[i], false);
929  }
930
931  if (uncommitted_regions != 0) {
932    log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
933                              HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
934  }
935  decrease_used(size_used);
936}
937
938HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
939                                                        uint* gc_count_before_ret,
940                                                        uint* gclocker_retry_count_ret) {
941  // The structure of this method has a lot of similarities to
942  // attempt_allocation_slow(). The reason these two were not merged
943  // into a single one is that such a method would require several "if
944  // allocation is not humongous do this, otherwise do that"
945  // conditional paths which would obscure its flow. In fact, an early
946  // version of this code did use a unified method which was harder to
947  // follow and, as a result, it had subtle bugs that were hard to
948  // track down. So keeping these two methods separate allows each to
949  // be more readable. It will be good to keep these two in sync as
950  // much as possible.
951
952  assert_heap_not_locked_and_not_at_safepoint();
953  assert(is_humongous(word_size), "attempt_allocation_humongous() "
954         "should only be called for humongous allocations");
955
956  // Humongous objects can exhaust the heap quickly, so we should check if we
957  // need to start a marking cycle at each humongous object allocation. We do
958  // the check before we do the actual allocation. The reason for doing it
959  // before the allocation is that we avoid having to keep track of the newly
960  // allocated memory while we do a GC.
961  if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
962                                           word_size)) {
963    collect(GCCause::_g1_humongous_allocation);
964  }
965
966  // We will loop until a) we manage to successfully perform the
967  // allocation or b) we successfully schedule a collection which
968  // fails to perform the allocation. b) is the only case when we'll
969  // return NULL.
970  HeapWord* result = NULL;
971  for (int try_count = 1; /* we'll return */; try_count += 1) {
972    bool should_try_gc;
973    uint gc_count_before;
974
975    {
976      MutexLockerEx x(Heap_lock);
977
978      // Given that humongous objects are not allocated in young
979      // regions, we'll first try to do the allocation without doing a
980      // collection hoping that there's enough space in the heap.
981      result = humongous_obj_allocate(word_size, AllocationContext::current());
982      if (result != NULL) {
983        size_t size_in_regions = humongous_obj_size_in_regions(word_size);
984        g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
985        return result;
986      }
987
988      if (GCLocker::is_active_and_needs_gc()) {
989        should_try_gc = false;
990      } else {
991         // The GCLocker may not be active but the GCLocker initiated
992        // GC may not yet have been performed (GCLocker::needs_gc()
993        // returns true). In this case we do not try this GC and
994        // wait until the GCLocker initiated GC is performed, and
995        // then retry the allocation.
996        if (GCLocker::needs_gc()) {
997          should_try_gc = false;
998        } else {
999          // Read the GC count while still holding the Heap_lock.
1000          gc_count_before = total_collections();
1001          should_try_gc = true;
1002        }
1003      }
1004    }
1005
1006    if (should_try_gc) {
1007      // If we failed to allocate the humongous object, we should try to
1008      // do a collection pause (if we're allowed) in case it reclaims
1009      // enough space for the allocation to succeed after the pause.
1010
1011      bool succeeded;
1012      result = do_collection_pause(word_size, gc_count_before, &succeeded,
1013                                   GCCause::_g1_humongous_allocation);
1014      if (result != NULL) {
1015        assert(succeeded, "only way to get back a non-NULL result");
1016        return result;
1017      }
1018
1019      if (succeeded) {
1020        // If we get here we successfully scheduled a collection which
1021        // failed to allocate. No point in trying to allocate
1022        // further. We'll just return NULL.
1023        MutexLockerEx x(Heap_lock);
1024        *gc_count_before_ret = total_collections();
1025        return NULL;
1026      }
1027    } else {
1028      if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1029        MutexLockerEx x(Heap_lock);
1030        *gc_count_before_ret = total_collections();
1031        return NULL;
1032      }
1033      // The GCLocker is either active or the GCLocker initiated
1034      // GC has not yet been performed. Stall until it is and
1035      // then retry the allocation.
1036      GCLocker::stall_until_clear();
1037      (*gclocker_retry_count_ret) += 1;
1038    }
1039
1040    // We can reach here if we were unsuccessful in scheduling a
1041    // collection (because another thread beat us to it) or if we were
1042    // stalled due to the GC locker. In either can we should retry the
1043    // allocation attempt in case another thread successfully
1044    // performed a collection and reclaimed enough space.  Give a
1045    // warning if we seem to be looping forever.
1046
1047    if ((QueuedAllocationWarningCount > 0) &&
1048        (try_count % QueuedAllocationWarningCount == 0)) {
1049      log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1050                      "retries %d times", try_count);
1051    }
1052  }
1053
1054  ShouldNotReachHere();
1055  return NULL;
1056}
1057
1058HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1059                                                           AllocationContext_t context,
1060                                                           bool expect_null_mutator_alloc_region) {
1061  assert_at_safepoint(true /* should_be_vm_thread */);
1062  assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1063         "the current alloc region was unexpectedly found to be non-NULL");
1064
1065  if (!is_humongous(word_size)) {
1066    return _allocator->attempt_allocation_locked(word_size, context);
1067  } else {
1068    HeapWord* result = humongous_obj_allocate(word_size, context);
1069    if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1070      collector_state()->set_initiate_conc_mark_if_possible(true);
1071    }
1072    return result;
1073  }
1074
1075  ShouldNotReachHere();
1076}
1077
1078class PostMCRemSetClearClosure: public HeapRegionClosure {
1079  G1CollectedHeap* _g1h;
1080  ModRefBarrierSet* _mr_bs;
1081public:
1082  PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1083    _g1h(g1h), _mr_bs(mr_bs) {}
1084
1085  bool doHeapRegion(HeapRegion* r) {
1086    HeapRegionRemSet* hrrs = r->rem_set();
1087
1088    _g1h->reset_gc_time_stamps(r);
1089
1090    if (r->is_continues_humongous()) {
1091      // We'll assert that the strong code root list and RSet is empty
1092      assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1093      assert(hrrs->occupied() == 0, "RSet should be empty");
1094    } else {
1095      hrrs->clear();
1096    }
1097    // You might think here that we could clear just the cards
1098    // corresponding to the used region.  But no: if we leave a dirty card
1099    // in a region we might allocate into, then it would prevent that card
1100    // from being enqueued, and cause it to be missed.
1101    // Re: the performance cost: we shouldn't be doing full GC anyway!
1102    _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1103
1104    return false;
1105  }
1106};
1107
1108void G1CollectedHeap::clear_rsets_post_compaction() {
1109  PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1110  heap_region_iterate(&rs_clear);
1111}
1112
1113class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1114  G1CollectedHeap*   _g1h;
1115  UpdateRSOopClosure _cl;
1116public:
1117  RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1118    _cl(g1->g1_rem_set(), worker_i),
1119    _g1h(g1)
1120  { }
1121
1122  bool doHeapRegion(HeapRegion* r) {
1123    if (!r->is_continues_humongous()) {
1124      _cl.set_from(r);
1125      r->oop_iterate(&_cl);
1126    }
1127    return false;
1128  }
1129};
1130
1131class ParRebuildRSTask: public AbstractGangTask {
1132  G1CollectedHeap* _g1;
1133  HeapRegionClaimer _hrclaimer;
1134
1135public:
1136  ParRebuildRSTask(G1CollectedHeap* g1) :
1137      AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1138
1139  void work(uint worker_id) {
1140    RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1141    _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1142  }
1143};
1144
1145class PostCompactionPrinterClosure: public HeapRegionClosure {
1146private:
1147  G1HRPrinter* _hr_printer;
1148public:
1149  bool doHeapRegion(HeapRegion* hr) {
1150    assert(!hr->is_young(), "not expecting to find young regions");
1151    _hr_printer->post_compaction(hr);
1152    return false;
1153  }
1154
1155  PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1156    : _hr_printer(hr_printer) { }
1157};
1158
1159void G1CollectedHeap::print_hrm_post_compaction() {
1160  if (_hr_printer.is_active()) {
1161    PostCompactionPrinterClosure cl(hr_printer());
1162    heap_region_iterate(&cl);
1163  }
1164
1165}
1166
1167bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1168                                         bool clear_all_soft_refs) {
1169  assert_at_safepoint(true /* should_be_vm_thread */);
1170
1171  if (GCLocker::check_active_before_gc()) {
1172    return false;
1173  }
1174
1175  STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1176  gc_timer->register_gc_start();
1177
1178  SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1179  GCIdMark gc_id_mark;
1180  gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1181
1182  SvcGCMarker sgcm(SvcGCMarker::FULL);
1183  ResourceMark rm;
1184
1185  print_heap_before_gc();
1186  print_heap_regions();
1187  trace_heap_before_gc(gc_tracer);
1188
1189  size_t metadata_prev_used = MetaspaceAux::used_bytes();
1190
1191  _verifier->verify_region_sets_optional();
1192
1193  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1194                           collector_policy()->should_clear_all_soft_refs();
1195
1196  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1197
1198  {
1199    IsGCActiveMark x;
1200
1201    // Timing
1202    assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1203    GCTraceCPUTime tcpu;
1204
1205    {
1206      GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1207      TraceCollectorStats tcs(g1mm()->full_collection_counters());
1208      TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1209
1210      G1HeapTransition heap_transition(this);
1211      g1_policy()->record_full_collection_start();
1212
1213      // Note: When we have a more flexible GC logging framework that
1214      // allows us to add optional attributes to a GC log record we
1215      // could consider timing and reporting how long we wait in the
1216      // following two methods.
1217      wait_while_free_regions_coming();
1218      // If we start the compaction before the CM threads finish
1219      // scanning the root regions we might trip them over as we'll
1220      // be moving objects / updating references. So let's wait until
1221      // they are done. By telling them to abort, they should complete
1222      // early.
1223      _cm->root_regions()->abort();
1224      _cm->root_regions()->wait_until_scan_finished();
1225      append_secondary_free_list_if_not_empty_with_lock();
1226
1227      gc_prologue(true);
1228      increment_total_collections(true /* full gc */);
1229      increment_old_marking_cycles_started();
1230
1231      assert(used() == recalculate_used(), "Should be equal");
1232
1233      _verifier->verify_before_gc();
1234
1235      _verifier->check_bitmaps("Full GC Start");
1236      pre_full_gc_dump(gc_timer);
1237
1238#if defined(COMPILER2) || INCLUDE_JVMCI
1239      DerivedPointerTable::clear();
1240#endif
1241
1242      // Disable discovery and empty the discovered lists
1243      // for the CM ref processor.
1244      ref_processor_cm()->disable_discovery();
1245      ref_processor_cm()->abandon_partial_discovery();
1246      ref_processor_cm()->verify_no_references_recorded();
1247
1248      // Abandon current iterations of concurrent marking and concurrent
1249      // refinement, if any are in progress.
1250      concurrent_mark()->abort();
1251
1252      // Make sure we'll choose a new allocation region afterwards.
1253      _allocator->release_mutator_alloc_region();
1254      _allocator->abandon_gc_alloc_regions();
1255      g1_rem_set()->cleanupHRRS();
1256
1257      // We may have added regions to the current incremental collection
1258      // set between the last GC or pause and now. We need to clear the
1259      // incremental collection set and then start rebuilding it afresh
1260      // after this full GC.
1261      abandon_collection_set(collection_set());
1262
1263      tear_down_region_sets(false /* free_list_only */);
1264      collector_state()->set_gcs_are_young(true);
1265
1266      // See the comments in g1CollectedHeap.hpp and
1267      // G1CollectedHeap::ref_processing_init() about
1268      // how reference processing currently works in G1.
1269
1270      // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1271      ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1272
1273      // Temporarily clear the STW ref processor's _is_alive_non_header field.
1274      ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1275
1276      ref_processor_stw()->enable_discovery();
1277      ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1278
1279      // Do collection work
1280      {
1281        HandleMark hm;  // Discard invalid handles created during gc
1282        G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1283      }
1284
1285      assert(num_free_regions() == 0, "we should not have added any free regions");
1286      rebuild_region_sets(false /* free_list_only */);
1287
1288      // Enqueue any discovered reference objects that have
1289      // not been removed from the discovered lists.
1290      ref_processor_stw()->enqueue_discovered_references();
1291
1292#if defined(COMPILER2) || INCLUDE_JVMCI
1293      DerivedPointerTable::update_pointers();
1294#endif
1295
1296      MemoryService::track_memory_usage();
1297
1298      assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1299      ref_processor_stw()->verify_no_references_recorded();
1300
1301      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1302      ClassLoaderDataGraph::purge();
1303      MetaspaceAux::verify_metrics();
1304
1305      // Note: since we've just done a full GC, concurrent
1306      // marking is no longer active. Therefore we need not
1307      // re-enable reference discovery for the CM ref processor.
1308      // That will be done at the start of the next marking cycle.
1309      assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1310      ref_processor_cm()->verify_no_references_recorded();
1311
1312      reset_gc_time_stamp();
1313      // Since everything potentially moved, we will clear all remembered
1314      // sets, and clear all cards.  Later we will rebuild remembered
1315      // sets. We will also reset the GC time stamps of the regions.
1316      clear_rsets_post_compaction();
1317      check_gc_time_stamps();
1318
1319      resize_if_necessary_after_full_collection();
1320
1321      // We should do this after we potentially resize the heap so
1322      // that all the COMMIT / UNCOMMIT events are generated before
1323      // the compaction events.
1324      print_hrm_post_compaction();
1325
1326      if (_hot_card_cache->use_cache()) {
1327        _hot_card_cache->reset_card_counts();
1328        _hot_card_cache->reset_hot_cache();
1329      }
1330
1331      // Rebuild remembered sets of all regions.
1332      uint n_workers =
1333        AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                workers()->active_workers(),
1335                                                Threads::number_of_non_daemon_threads());
1336      workers()->update_active_workers(n_workers);
1337      log_info(gc,task)("Using %u workers of %u to rebuild remembered set", n_workers, workers()->total_workers());
1338
1339      ParRebuildRSTask rebuild_rs_task(this);
1340      workers()->run_task(&rebuild_rs_task);
1341
1342      // Rebuild the strong code root lists for each region
1343      rebuild_strong_code_roots();
1344
1345      if (true) { // FIXME
1346        MetaspaceGC::compute_new_size();
1347      }
1348
1349#ifdef TRACESPINNING
1350      ParallelTaskTerminator::print_termination_counts();
1351#endif
1352
1353      // Discard all rset updates
1354      JavaThread::dirty_card_queue_set().abandon_logs();
1355      assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1356
1357      // At this point there should be no regions in the
1358      // entire heap tagged as young.
1359      assert(check_young_list_empty(), "young list should be empty at this point");
1360
1361      // Update the number of full collections that have been completed.
1362      increment_old_marking_cycles_completed(false /* concurrent */);
1363
1364      _hrm.verify_optional();
1365      _verifier->verify_region_sets_optional();
1366
1367      _verifier->verify_after_gc();
1368
1369      // Clear the previous marking bitmap, if needed for bitmap verification.
1370      // Note we cannot do this when we clear the next marking bitmap in
1371      // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1372      // objects marked during a full GC against the previous bitmap.
1373      // But we need to clear it before calling check_bitmaps below since
1374      // the full GC has compacted objects and updated TAMS but not updated
1375      // the prev bitmap.
1376      if (G1VerifyBitmaps) {
1377        GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1378        _cm->clear_prev_bitmap(workers());
1379      }
1380      _verifier->check_bitmaps("Full GC End");
1381
1382      start_new_collection_set();
1383
1384      _allocator->init_mutator_alloc_region();
1385
1386      g1_policy()->record_full_collection_end();
1387
1388      // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1389      // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1390      // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1391      // before any GC notifications are raised.
1392      g1mm()->update_sizes();
1393
1394      gc_epilogue(true);
1395
1396      heap_transition.print();
1397
1398      print_heap_after_gc();
1399      print_heap_regions();
1400      trace_heap_after_gc(gc_tracer);
1401
1402      post_full_gc_dump(gc_timer);
1403    }
1404
1405    gc_timer->register_gc_end();
1406    gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1407  }
1408
1409  return true;
1410}
1411
1412void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1413  // Currently, there is no facility in the do_full_collection(bool) API to notify
1414  // the caller that the collection did not succeed (e.g., because it was locked
1415  // out by the GC locker). So, right now, we'll ignore the return value.
1416  bool dummy = do_full_collection(true,                /* explicit_gc */
1417                                  clear_all_soft_refs);
1418}
1419
1420void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1421  // Include bytes that will be pre-allocated to support collections, as "used".
1422  const size_t used_after_gc = used();
1423  const size_t capacity_after_gc = capacity();
1424  const size_t free_after_gc = capacity_after_gc - used_after_gc;
1425
1426  // This is enforced in arguments.cpp.
1427  assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1428         "otherwise the code below doesn't make sense");
1429
1430  // We don't have floating point command-line arguments
1431  const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1432  const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1433  const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1434  const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1435
1436  const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1437  const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1438
1439  // We have to be careful here as these two calculations can overflow
1440  // 32-bit size_t's.
1441  double used_after_gc_d = (double) used_after_gc;
1442  double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1443  double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1444
1445  // Let's make sure that they are both under the max heap size, which
1446  // by default will make them fit into a size_t.
1447  double desired_capacity_upper_bound = (double) max_heap_size;
1448  minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1449                                    desired_capacity_upper_bound);
1450  maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1451                                    desired_capacity_upper_bound);
1452
1453  // We can now safely turn them into size_t's.
1454  size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1455  size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1456
1457  // This assert only makes sense here, before we adjust them
1458  // with respect to the min and max heap size.
1459  assert(minimum_desired_capacity <= maximum_desired_capacity,
1460         "minimum_desired_capacity = " SIZE_FORMAT ", "
1461         "maximum_desired_capacity = " SIZE_FORMAT,
1462         minimum_desired_capacity, maximum_desired_capacity);
1463
1464  // Should not be greater than the heap max size. No need to adjust
1465  // it with respect to the heap min size as it's a lower bound (i.e.,
1466  // we'll try to make the capacity larger than it, not smaller).
1467  minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1468  // Should not be less than the heap min size. No need to adjust it
1469  // with respect to the heap max size as it's an upper bound (i.e.,
1470  // we'll try to make the capacity smaller than it, not greater).
1471  maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1472
1473  if (capacity_after_gc < minimum_desired_capacity) {
1474    // Don't expand unless it's significant
1475    size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1476
1477    log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1478                              "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1479                              capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1480
1481    expand(expand_bytes, _workers);
1482
1483    // No expansion, now see if we want to shrink
1484  } else if (capacity_after_gc > maximum_desired_capacity) {
1485    // Capacity too large, compute shrinking size
1486    size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1487
1488    log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1489                              "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1490                              capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1491
1492    shrink(shrink_bytes);
1493  }
1494}
1495
1496HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1497                                                            AllocationContext_t context,
1498                                                            bool do_gc,
1499                                                            bool clear_all_soft_refs,
1500                                                            bool expect_null_mutator_alloc_region,
1501                                                            bool* gc_succeeded) {
1502  *gc_succeeded = true;
1503  // Let's attempt the allocation first.
1504  HeapWord* result =
1505    attempt_allocation_at_safepoint(word_size,
1506                                    context,
1507                                    expect_null_mutator_alloc_region);
1508  if (result != NULL) {
1509    assert(*gc_succeeded, "sanity");
1510    return result;
1511  }
1512
1513  // In a G1 heap, we're supposed to keep allocation from failing by
1514  // incremental pauses.  Therefore, at least for now, we'll favor
1515  // expansion over collection.  (This might change in the future if we can
1516  // do something smarter than full collection to satisfy a failed alloc.)
1517  result = expand_and_allocate(word_size, context);
1518  if (result != NULL) {
1519    assert(*gc_succeeded, "sanity");
1520    return result;
1521  }
1522
1523  if (do_gc) {
1524    // Expansion didn't work, we'll try to do a Full GC.
1525    *gc_succeeded = do_full_collection(false, /* explicit_gc */
1526                                       clear_all_soft_refs);
1527  }
1528
1529  return NULL;
1530}
1531
1532HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1533                                                     AllocationContext_t context,
1534                                                     bool* succeeded) {
1535  assert_at_safepoint(true /* should_be_vm_thread */);
1536
1537  // Attempts to allocate followed by Full GC.
1538  HeapWord* result =
1539    satisfy_failed_allocation_helper(word_size,
1540                                     context,
1541                                     true,  /* do_gc */
1542                                     false, /* clear_all_soft_refs */
1543                                     false, /* expect_null_mutator_alloc_region */
1544                                     succeeded);
1545
1546  if (result != NULL || !*succeeded) {
1547    return result;
1548  }
1549
1550  // Attempts to allocate followed by Full GC that will collect all soft references.
1551  result = satisfy_failed_allocation_helper(word_size,
1552                                            context,
1553                                            true, /* do_gc */
1554                                            true, /* clear_all_soft_refs */
1555                                            true, /* expect_null_mutator_alloc_region */
1556                                            succeeded);
1557
1558  if (result != NULL || !*succeeded) {
1559    return result;
1560  }
1561
1562  // Attempts to allocate, no GC
1563  result = satisfy_failed_allocation_helper(word_size,
1564                                            context,
1565                                            false, /* do_gc */
1566                                            false, /* clear_all_soft_refs */
1567                                            true,  /* expect_null_mutator_alloc_region */
1568                                            succeeded);
1569
1570  if (result != NULL) {
1571    assert(*succeeded, "sanity");
1572    return result;
1573  }
1574
1575  assert(!collector_policy()->should_clear_all_soft_refs(),
1576         "Flag should have been handled and cleared prior to this point");
1577
1578  // What else?  We might try synchronous finalization later.  If the total
1579  // space available is large enough for the allocation, then a more
1580  // complete compaction phase than we've tried so far might be
1581  // appropriate.
1582  assert(*succeeded, "sanity");
1583  return NULL;
1584}
1585
1586// Attempting to expand the heap sufficiently
1587// to support an allocation of the given "word_size".  If
1588// successful, perform the allocation and return the address of the
1589// allocated block, or else "NULL".
1590
1591HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1592  assert_at_safepoint(true /* should_be_vm_thread */);
1593
1594  _verifier->verify_region_sets_optional();
1595
1596  size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1597  log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1598                            word_size * HeapWordSize);
1599
1600
1601  if (expand(expand_bytes, _workers)) {
1602    _hrm.verify_optional();
1603    _verifier->verify_region_sets_optional();
1604    return attempt_allocation_at_safepoint(word_size,
1605                                           context,
1606                                           false /* expect_null_mutator_alloc_region */);
1607  }
1608  return NULL;
1609}
1610
1611bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1612  size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1613  aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1614                                       HeapRegion::GrainBytes);
1615
1616  log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1617                            expand_bytes, aligned_expand_bytes);
1618
1619  if (is_maximal_no_gc()) {
1620    log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1621    return false;
1622  }
1623
1624  double expand_heap_start_time_sec = os::elapsedTime();
1625  uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1626  assert(regions_to_expand > 0, "Must expand by at least one region");
1627
1628  uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1629  if (expand_time_ms != NULL) {
1630    *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1631  }
1632
1633  if (expanded_by > 0) {
1634    size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1635    assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1636    g1_policy()->record_new_heap_size(num_regions());
1637  } else {
1638    log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1639
1640    // The expansion of the virtual storage space was unsuccessful.
1641    // Let's see if it was because we ran out of swap.
1642    if (G1ExitOnExpansionFailure &&
1643        _hrm.available() >= regions_to_expand) {
1644      // We had head room...
1645      vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1646    }
1647  }
1648  return regions_to_expand > 0;
1649}
1650
1651void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1652  size_t aligned_shrink_bytes =
1653    ReservedSpace::page_align_size_down(shrink_bytes);
1654  aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1655                                         HeapRegion::GrainBytes);
1656  uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1657
1658  uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1659  size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1660
1661
1662  log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1663                            shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1664  if (num_regions_removed > 0) {
1665    g1_policy()->record_new_heap_size(num_regions());
1666  } else {
1667    log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1668  }
1669}
1670
1671void G1CollectedHeap::shrink(size_t shrink_bytes) {
1672  _verifier->verify_region_sets_optional();
1673
1674  // We should only reach here at the end of a Full GC which means we
1675  // should not not be holding to any GC alloc regions. The method
1676  // below will make sure of that and do any remaining clean up.
1677  _allocator->abandon_gc_alloc_regions();
1678
1679  // Instead of tearing down / rebuilding the free lists here, we
1680  // could instead use the remove_all_pending() method on free_list to
1681  // remove only the ones that we need to remove.
1682  tear_down_region_sets(true /* free_list_only */);
1683  shrink_helper(shrink_bytes);
1684  rebuild_region_sets(true /* free_list_only */);
1685
1686  _hrm.verify_optional();
1687  _verifier->verify_region_sets_optional();
1688}
1689
1690// Public methods.
1691
1692G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1693  CollectedHeap(),
1694  _collector_policy(collector_policy),
1695  _g1_policy(create_g1_policy()),
1696  _collection_set(this, _g1_policy),
1697  _dirty_card_queue_set(false),
1698  _is_alive_closure_cm(this),
1699  _is_alive_closure_stw(this),
1700  _ref_processor_cm(NULL),
1701  _ref_processor_stw(NULL),
1702  _bot(NULL),
1703  _hot_card_cache(NULL),
1704  _g1_rem_set(NULL),
1705  _cg1r(NULL),
1706  _g1mm(NULL),
1707  _refine_cte_cl(NULL),
1708  _preserved_marks_set(true /* in_c_heap */),
1709  _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1710  _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1711  _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1712  _humongous_reclaim_candidates(),
1713  _has_humongous_reclaim_candidates(false),
1714  _archive_allocator(NULL),
1715  _free_regions_coming(false),
1716  _gc_time_stamp(0),
1717  _summary_bytes_used(0),
1718  _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1719  _old_evac_stats("Old", OldPLABSize, PLABWeight),
1720  _expand_heap_after_alloc_failure(true),
1721  _old_marking_cycles_started(0),
1722  _old_marking_cycles_completed(0),
1723  _in_cset_fast_test(),
1724  _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1725  _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1726
1727  _workers = new WorkGang("GC Thread", ParallelGCThreads,
1728                          /* are_GC_task_threads */true,
1729                          /* are_ConcurrentGC_threads */false);
1730  _workers->initialize_workers();
1731  _verifier = new G1HeapVerifier(this);
1732
1733  _allocator = G1Allocator::create_allocator(this);
1734
1735  _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1736
1737  _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1738
1739  // Override the default _filler_array_max_size so that no humongous filler
1740  // objects are created.
1741  _filler_array_max_size = _humongous_object_threshold_in_words;
1742
1743  uint n_queues = ParallelGCThreads;
1744  _task_queues = new RefToScanQueueSet(n_queues);
1745
1746  _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1747
1748  for (uint i = 0; i < n_queues; i++) {
1749    RefToScanQueue* q = new RefToScanQueue();
1750    q->initialize();
1751    _task_queues->register_queue(i, q);
1752    ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1753  }
1754
1755  // Initialize the G1EvacuationFailureALot counters and flags.
1756  NOT_PRODUCT(reset_evacuation_should_fail();)
1757
1758  guarantee(_task_queues != NULL, "task_queues allocation failure.");
1759}
1760
1761G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1762                                                                 size_t size,
1763                                                                 size_t translation_factor) {
1764  size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1765  // Allocate a new reserved space, preferring to use large pages.
1766  ReservedSpace rs(size, preferred_page_size);
1767  G1RegionToSpaceMapper* result  =
1768    G1RegionToSpaceMapper::create_mapper(rs,
1769                                         size,
1770                                         rs.alignment(),
1771                                         HeapRegion::GrainBytes,
1772                                         translation_factor,
1773                                         mtGC);
1774
1775  os::trace_page_sizes_for_requested_size(description,
1776                                          size,
1777                                          preferred_page_size,
1778                                          rs.alignment(),
1779                                          rs.base(),
1780                                          rs.size());
1781
1782  return result;
1783}
1784
1785jint G1CollectedHeap::initialize() {
1786  CollectedHeap::pre_initialize();
1787  os::enable_vtime();
1788
1789  // Necessary to satisfy locking discipline assertions.
1790
1791  MutexLocker x(Heap_lock);
1792
1793  // While there are no constraints in the GC code that HeapWordSize
1794  // be any particular value, there are multiple other areas in the
1795  // system which believe this to be true (e.g. oop->object_size in some
1796  // cases incorrectly returns the size in wordSize units rather than
1797  // HeapWordSize).
1798  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1799
1800  size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1801  size_t max_byte_size = collector_policy()->max_heap_byte_size();
1802  size_t heap_alignment = collector_policy()->heap_alignment();
1803
1804  // Ensure that the sizes are properly aligned.
1805  Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1806  Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1807  Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1808
1809  _refine_cte_cl = new RefineCardTableEntryClosure();
1810
1811  jint ecode = JNI_OK;
1812  _cg1r = ConcurrentG1Refine::create(_refine_cte_cl, &ecode);
1813  if (_cg1r == NULL) {
1814    return ecode;
1815  }
1816
1817  // Reserve the maximum.
1818
1819  // When compressed oops are enabled, the preferred heap base
1820  // is calculated by subtracting the requested size from the
1821  // 32Gb boundary and using the result as the base address for
1822  // heap reservation. If the requested size is not aligned to
1823  // HeapRegion::GrainBytes (i.e. the alignment that is passed
1824  // into the ReservedHeapSpace constructor) then the actual
1825  // base of the reserved heap may end up differing from the
1826  // address that was requested (i.e. the preferred heap base).
1827  // If this happens then we could end up using a non-optimal
1828  // compressed oops mode.
1829
1830  ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1831                                                 heap_alignment);
1832
1833  initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1834
1835  // Create the barrier set for the entire reserved region.
1836  G1SATBCardTableLoggingModRefBS* bs
1837    = new G1SATBCardTableLoggingModRefBS(reserved_region());
1838  bs->initialize();
1839  assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1840  set_barrier_set(bs);
1841
1842  // Create the hot card cache.
1843  _hot_card_cache = new G1HotCardCache(this);
1844
1845  // Also create a G1 rem set.
1846  _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1847
1848  // Carve out the G1 part of the heap.
1849  ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1850  size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1851  G1RegionToSpaceMapper* heap_storage =
1852    G1RegionToSpaceMapper::create_mapper(g1_rs,
1853                                         g1_rs.size(),
1854                                         page_size,
1855                                         HeapRegion::GrainBytes,
1856                                         1,
1857                                         mtJavaHeap);
1858  os::trace_page_sizes("Heap",
1859                       collector_policy()->min_heap_byte_size(),
1860                       max_byte_size,
1861                       page_size,
1862                       heap_rs.base(),
1863                       heap_rs.size());
1864  heap_storage->set_mapping_changed_listener(&_listener);
1865
1866  // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1867  G1RegionToSpaceMapper* bot_storage =
1868    create_aux_memory_mapper("Block Offset Table",
1869                             G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1870                             G1BlockOffsetTable::heap_map_factor());
1871
1872  ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1873  G1RegionToSpaceMapper* cardtable_storage =
1874    create_aux_memory_mapper("Card Table",
1875                             G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1876                             G1SATBCardTableLoggingModRefBS::heap_map_factor());
1877
1878  G1RegionToSpaceMapper* card_counts_storage =
1879    create_aux_memory_mapper("Card Counts Table",
1880                             G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1881                             G1CardCounts::heap_map_factor());
1882
1883  size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1884  G1RegionToSpaceMapper* prev_bitmap_storage =
1885    create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1886  G1RegionToSpaceMapper* next_bitmap_storage =
1887    create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1888
1889  _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1890  g1_barrier_set()->initialize(cardtable_storage);
1891  // Do later initialization work for concurrent refinement.
1892  _hot_card_cache->initialize(card_counts_storage);
1893
1894  // 6843694 - ensure that the maximum region index can fit
1895  // in the remembered set structures.
1896  const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1897  guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1898
1899  g1_rem_set()->initialize(max_capacity(), max_regions());
1900
1901  size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1902  guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1903  guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1904            "too many cards per region");
1905
1906  FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1907
1908  _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1909
1910  {
1911    HeapWord* start = _hrm.reserved().start();
1912    HeapWord* end = _hrm.reserved().end();
1913    size_t granularity = HeapRegion::GrainBytes;
1914
1915    _in_cset_fast_test.initialize(start, end, granularity);
1916    _humongous_reclaim_candidates.initialize(start, end, granularity);
1917  }
1918
1919  // Create the G1ConcurrentMark data structure and thread.
1920  // (Must do this late, so that "max_regions" is defined.)
1921  _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1922  if (_cm == NULL || !_cm->completed_initialization()) {
1923    vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1924    return JNI_ENOMEM;
1925  }
1926  _cmThread = _cm->cmThread();
1927
1928  // Now expand into the initial heap size.
1929  if (!expand(init_byte_size, _workers)) {
1930    vm_shutdown_during_initialization("Failed to allocate initial heap.");
1931    return JNI_ENOMEM;
1932  }
1933
1934  // Perform any initialization actions delegated to the policy.
1935  g1_policy()->init(this, &_collection_set);
1936
1937  JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1938                                               SATB_Q_FL_lock,
1939                                               G1SATBProcessCompletedThreshold,
1940                                               Shared_SATB_Q_lock);
1941
1942  JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1943                                                DirtyCardQ_CBL_mon,
1944                                                DirtyCardQ_FL_lock,
1945                                                (int)concurrent_g1_refine()->yellow_zone(),
1946                                                (int)concurrent_g1_refine()->red_zone(),
1947                                                Shared_DirtyCardQ_lock,
1948                                                NULL,  // fl_owner
1949                                                true); // init_free_ids
1950
1951  dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1952                                    DirtyCardQ_CBL_mon,
1953                                    DirtyCardQ_FL_lock,
1954                                    -1, // never trigger processing
1955                                    -1, // no limit on length
1956                                    Shared_DirtyCardQ_lock,
1957                                    &JavaThread::dirty_card_queue_set());
1958
1959  // Here we allocate the dummy HeapRegion that is required by the
1960  // G1AllocRegion class.
1961  HeapRegion* dummy_region = _hrm.get_dummy_region();
1962
1963  // We'll re-use the same region whether the alloc region will
1964  // require BOT updates or not and, if it doesn't, then a non-young
1965  // region will complain that it cannot support allocations without
1966  // BOT updates. So we'll tag the dummy region as eden to avoid that.
1967  dummy_region->set_eden();
1968  // Make sure it's full.
1969  dummy_region->set_top(dummy_region->end());
1970  G1AllocRegion::setup(this, dummy_region);
1971
1972  _allocator->init_mutator_alloc_region();
1973
1974  // Do create of the monitoring and management support so that
1975  // values in the heap have been properly initialized.
1976  _g1mm = new G1MonitoringSupport(this);
1977
1978  G1StringDedup::initialize();
1979
1980  _preserved_marks_set.init(ParallelGCThreads);
1981
1982  _collection_set.initialize(max_regions());
1983
1984  return JNI_OK;
1985}
1986
1987void G1CollectedHeap::stop() {
1988  // Stop all concurrent threads. We do this to make sure these threads
1989  // do not continue to execute and access resources (e.g. logging)
1990  // that are destroyed during shutdown.
1991  _cg1r->stop();
1992  _cmThread->stop();
1993  if (G1StringDedup::is_enabled()) {
1994    G1StringDedup::stop();
1995  }
1996}
1997
1998size_t G1CollectedHeap::conservative_max_heap_alignment() {
1999  return HeapRegion::max_region_size();
2000}
2001
2002void G1CollectedHeap::post_initialize() {
2003  ref_processing_init();
2004}
2005
2006void G1CollectedHeap::ref_processing_init() {
2007  // Reference processing in G1 currently works as follows:
2008  //
2009  // * There are two reference processor instances. One is
2010  //   used to record and process discovered references
2011  //   during concurrent marking; the other is used to
2012  //   record and process references during STW pauses
2013  //   (both full and incremental).
2014  // * Both ref processors need to 'span' the entire heap as
2015  //   the regions in the collection set may be dotted around.
2016  //
2017  // * For the concurrent marking ref processor:
2018  //   * Reference discovery is enabled at initial marking.
2019  //   * Reference discovery is disabled and the discovered
2020  //     references processed etc during remarking.
2021  //   * Reference discovery is MT (see below).
2022  //   * Reference discovery requires a barrier (see below).
2023  //   * Reference processing may or may not be MT
2024  //     (depending on the value of ParallelRefProcEnabled
2025  //     and ParallelGCThreads).
2026  //   * A full GC disables reference discovery by the CM
2027  //     ref processor and abandons any entries on it's
2028  //     discovered lists.
2029  //
2030  // * For the STW processor:
2031  //   * Non MT discovery is enabled at the start of a full GC.
2032  //   * Processing and enqueueing during a full GC is non-MT.
2033  //   * During a full GC, references are processed after marking.
2034  //
2035  //   * Discovery (may or may not be MT) is enabled at the start
2036  //     of an incremental evacuation pause.
2037  //   * References are processed near the end of a STW evacuation pause.
2038  //   * For both types of GC:
2039  //     * Discovery is atomic - i.e. not concurrent.
2040  //     * Reference discovery will not need a barrier.
2041
2042  MemRegion mr = reserved_region();
2043
2044  // Concurrent Mark ref processor
2045  _ref_processor_cm =
2046    new ReferenceProcessor(mr,    // span
2047                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
2048                                // mt processing
2049                           ParallelGCThreads,
2050                                // degree of mt processing
2051                           (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2052                                // mt discovery
2053                           MAX2(ParallelGCThreads, ConcGCThreads),
2054                                // degree of mt discovery
2055                           false,
2056                                // Reference discovery is not atomic
2057                           &_is_alive_closure_cm);
2058                                // is alive closure
2059                                // (for efficiency/performance)
2060
2061  // STW ref processor
2062  _ref_processor_stw =
2063    new ReferenceProcessor(mr,    // span
2064                           ParallelRefProcEnabled && (ParallelGCThreads > 1),
2065                                // mt processing
2066                           ParallelGCThreads,
2067                                // degree of mt processing
2068                           (ParallelGCThreads > 1),
2069                                // mt discovery
2070                           ParallelGCThreads,
2071                                // degree of mt discovery
2072                           true,
2073                                // Reference discovery is atomic
2074                           &_is_alive_closure_stw);
2075                                // is alive closure
2076                                // (for efficiency/performance)
2077}
2078
2079CollectorPolicy* G1CollectedHeap::collector_policy() const {
2080  return _collector_policy;
2081}
2082
2083size_t G1CollectedHeap::capacity() const {
2084  return _hrm.length() * HeapRegion::GrainBytes;
2085}
2086
2087void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2088  hr->reset_gc_time_stamp();
2089}
2090
2091#ifndef PRODUCT
2092
2093class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2094private:
2095  unsigned _gc_time_stamp;
2096  bool _failures;
2097
2098public:
2099  CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2100    _gc_time_stamp(gc_time_stamp), _failures(false) { }
2101
2102  virtual bool doHeapRegion(HeapRegion* hr) {
2103    unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2104    if (_gc_time_stamp != region_gc_time_stamp) {
2105      log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2106                            region_gc_time_stamp, _gc_time_stamp);
2107      _failures = true;
2108    }
2109    return false;
2110  }
2111
2112  bool failures() { return _failures; }
2113};
2114
2115void G1CollectedHeap::check_gc_time_stamps() {
2116  CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2117  heap_region_iterate(&cl);
2118  guarantee(!cl.failures(), "all GC time stamps should have been reset");
2119}
2120#endif // PRODUCT
2121
2122void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2123  _hot_card_cache->drain(cl, worker_i);
2124}
2125
2126void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2127  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2128  size_t n_completed_buffers = 0;
2129  while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2130    n_completed_buffers++;
2131  }
2132  g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2133  dcqs.clear_n_completed_buffers();
2134  assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2135}
2136
2137// Computes the sum of the storage used by the various regions.
2138size_t G1CollectedHeap::used() const {
2139  size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2140  if (_archive_allocator != NULL) {
2141    result += _archive_allocator->used();
2142  }
2143  return result;
2144}
2145
2146size_t G1CollectedHeap::used_unlocked() const {
2147  return _summary_bytes_used;
2148}
2149
2150class SumUsedClosure: public HeapRegionClosure {
2151  size_t _used;
2152public:
2153  SumUsedClosure() : _used(0) {}
2154  bool doHeapRegion(HeapRegion* r) {
2155    _used += r->used();
2156    return false;
2157  }
2158  size_t result() { return _used; }
2159};
2160
2161size_t G1CollectedHeap::recalculate_used() const {
2162  double recalculate_used_start = os::elapsedTime();
2163
2164  SumUsedClosure blk;
2165  heap_region_iterate(&blk);
2166
2167  g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2168  return blk.result();
2169}
2170
2171bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2172  switch (cause) {
2173    case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2174    case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2175    case GCCause::_update_allocation_context_stats_inc: return true;
2176    case GCCause::_wb_conc_mark:                        return true;
2177    default :                                           return false;
2178  }
2179}
2180
2181bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2182  switch (cause) {
2183    case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2184    case GCCause::_g1_humongous_allocation: return true;
2185    default:                                return is_user_requested_concurrent_full_gc(cause);
2186  }
2187}
2188
2189#ifndef PRODUCT
2190void G1CollectedHeap::allocate_dummy_regions() {
2191  // Let's fill up most of the region
2192  size_t word_size = HeapRegion::GrainWords - 1024;
2193  // And as a result the region we'll allocate will be humongous.
2194  guarantee(is_humongous(word_size), "sanity");
2195
2196  // _filler_array_max_size is set to humongous object threshold
2197  // but temporarily change it to use CollectedHeap::fill_with_object().
2198  SizeTFlagSetting fs(_filler_array_max_size, word_size);
2199
2200  for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2201    // Let's use the existing mechanism for the allocation
2202    HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2203                                                 AllocationContext::system());
2204    if (dummy_obj != NULL) {
2205      MemRegion mr(dummy_obj, word_size);
2206      CollectedHeap::fill_with_object(mr);
2207    } else {
2208      // If we can't allocate once, we probably cannot allocate
2209      // again. Let's get out of the loop.
2210      break;
2211    }
2212  }
2213}
2214#endif // !PRODUCT
2215
2216void G1CollectedHeap::increment_old_marking_cycles_started() {
2217  assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2218         _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2219         "Wrong marking cycle count (started: %d, completed: %d)",
2220         _old_marking_cycles_started, _old_marking_cycles_completed);
2221
2222  _old_marking_cycles_started++;
2223}
2224
2225void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2226  MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2227
2228  // We assume that if concurrent == true, then the caller is a
2229  // concurrent thread that was joined the Suspendible Thread
2230  // Set. If there's ever a cheap way to check this, we should add an
2231  // assert here.
2232
2233  // Given that this method is called at the end of a Full GC or of a
2234  // concurrent cycle, and those can be nested (i.e., a Full GC can
2235  // interrupt a concurrent cycle), the number of full collections
2236  // completed should be either one (in the case where there was no
2237  // nesting) or two (when a Full GC interrupted a concurrent cycle)
2238  // behind the number of full collections started.
2239
2240  // This is the case for the inner caller, i.e. a Full GC.
2241  assert(concurrent ||
2242         (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2243         (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2244         "for inner caller (Full GC): _old_marking_cycles_started = %u "
2245         "is inconsistent with _old_marking_cycles_completed = %u",
2246         _old_marking_cycles_started, _old_marking_cycles_completed);
2247
2248  // This is the case for the outer caller, i.e. the concurrent cycle.
2249  assert(!concurrent ||
2250         (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2251         "for outer caller (concurrent cycle): "
2252         "_old_marking_cycles_started = %u "
2253         "is inconsistent with _old_marking_cycles_completed = %u",
2254         _old_marking_cycles_started, _old_marking_cycles_completed);
2255
2256  _old_marking_cycles_completed += 1;
2257
2258  // We need to clear the "in_progress" flag in the CM thread before
2259  // we wake up any waiters (especially when ExplicitInvokesConcurrent
2260  // is set) so that if a waiter requests another System.gc() it doesn't
2261  // incorrectly see that a marking cycle is still in progress.
2262  if (concurrent) {
2263    _cmThread->set_idle();
2264  }
2265
2266  // This notify_all() will ensure that a thread that called
2267  // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2268  // and it's waiting for a full GC to finish will be woken up. It is
2269  // waiting in VM_G1IncCollectionPause::doit_epilogue().
2270  FullGCCount_lock->notify_all();
2271}
2272
2273void G1CollectedHeap::collect(GCCause::Cause cause) {
2274  assert_heap_not_locked();
2275
2276  uint gc_count_before;
2277  uint old_marking_count_before;
2278  uint full_gc_count_before;
2279  bool retry_gc;
2280
2281  do {
2282    retry_gc = false;
2283
2284    {
2285      MutexLocker ml(Heap_lock);
2286
2287      // Read the GC count while holding the Heap_lock
2288      gc_count_before = total_collections();
2289      full_gc_count_before = total_full_collections();
2290      old_marking_count_before = _old_marking_cycles_started;
2291    }
2292
2293    if (should_do_concurrent_full_gc(cause)) {
2294      // Schedule an initial-mark evacuation pause that will start a
2295      // concurrent cycle. We're setting word_size to 0 which means that
2296      // we are not requesting a post-GC allocation.
2297      VM_G1IncCollectionPause op(gc_count_before,
2298                                 0,     /* word_size */
2299                                 true,  /* should_initiate_conc_mark */
2300                                 g1_policy()->max_pause_time_ms(),
2301                                 cause);
2302      op.set_allocation_context(AllocationContext::current());
2303
2304      VMThread::execute(&op);
2305      if (!op.pause_succeeded()) {
2306        if (old_marking_count_before == _old_marking_cycles_started) {
2307          retry_gc = op.should_retry_gc();
2308        } else {
2309          // A Full GC happened while we were trying to schedule the
2310          // initial-mark GC. No point in starting a new cycle given
2311          // that the whole heap was collected anyway.
2312        }
2313
2314        if (retry_gc) {
2315          if (GCLocker::is_active_and_needs_gc()) {
2316            GCLocker::stall_until_clear();
2317          }
2318        }
2319      }
2320    } else {
2321      if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2322          DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2323
2324        // Schedule a standard evacuation pause. We're setting word_size
2325        // to 0 which means that we are not requesting a post-GC allocation.
2326        VM_G1IncCollectionPause op(gc_count_before,
2327                                   0,     /* word_size */
2328                                   false, /* should_initiate_conc_mark */
2329                                   g1_policy()->max_pause_time_ms(),
2330                                   cause);
2331        VMThread::execute(&op);
2332      } else {
2333        // Schedule a Full GC.
2334        VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2335        VMThread::execute(&op);
2336      }
2337    }
2338  } while (retry_gc);
2339}
2340
2341bool G1CollectedHeap::is_in(const void* p) const {
2342  if (_hrm.reserved().contains(p)) {
2343    // Given that we know that p is in the reserved space,
2344    // heap_region_containing() should successfully
2345    // return the containing region.
2346    HeapRegion* hr = heap_region_containing(p);
2347    return hr->is_in(p);
2348  } else {
2349    return false;
2350  }
2351}
2352
2353#ifdef ASSERT
2354bool G1CollectedHeap::is_in_exact(const void* p) const {
2355  bool contains = reserved_region().contains(p);
2356  bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2357  if (contains && available) {
2358    return true;
2359  } else {
2360    return false;
2361  }
2362}
2363#endif
2364
2365// Iteration functions.
2366
2367// Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2368
2369class IterateOopClosureRegionClosure: public HeapRegionClosure {
2370  ExtendedOopClosure* _cl;
2371public:
2372  IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2373  bool doHeapRegion(HeapRegion* r) {
2374    if (!r->is_continues_humongous()) {
2375      r->oop_iterate(_cl);
2376    }
2377    return false;
2378  }
2379};
2380
2381// Iterates an ObjectClosure over all objects within a HeapRegion.
2382
2383class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2384  ObjectClosure* _cl;
2385public:
2386  IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2387  bool doHeapRegion(HeapRegion* r) {
2388    if (!r->is_continues_humongous()) {
2389      r->object_iterate(_cl);
2390    }
2391    return false;
2392  }
2393};
2394
2395void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2396  IterateObjectClosureRegionClosure blk(cl);
2397  heap_region_iterate(&blk);
2398}
2399
2400void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2401  _hrm.iterate(cl);
2402}
2403
2404void
2405G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2406                                         uint worker_id,
2407                                         HeapRegionClaimer *hrclaimer,
2408                                         bool concurrent) const {
2409  _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2410}
2411
2412void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2413  _collection_set.iterate(cl);
2414}
2415
2416void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2417  _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2418}
2419
2420HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2421  HeapRegion* result = _hrm.next_region_in_heap(from);
2422  while (result != NULL && result->is_pinned()) {
2423    result = _hrm.next_region_in_heap(result);
2424  }
2425  return result;
2426}
2427
2428HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2429  HeapRegion* hr = heap_region_containing(addr);
2430  return hr->block_start(addr);
2431}
2432
2433size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2434  HeapRegion* hr = heap_region_containing(addr);
2435  return hr->block_size(addr);
2436}
2437
2438bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2439  HeapRegion* hr = heap_region_containing(addr);
2440  return hr->block_is_obj(addr);
2441}
2442
2443bool G1CollectedHeap::supports_tlab_allocation() const {
2444  return true;
2445}
2446
2447size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2448  return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2449}
2450
2451size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2452  return _eden.length() * HeapRegion::GrainBytes;
2453}
2454
2455// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2456// must be equal to the humongous object limit.
2457size_t G1CollectedHeap::max_tlab_size() const {
2458  return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2459}
2460
2461size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2462  AllocationContext_t context = AllocationContext::current();
2463  return _allocator->unsafe_max_tlab_alloc(context);
2464}
2465
2466size_t G1CollectedHeap::max_capacity() const {
2467  return _hrm.reserved().byte_size();
2468}
2469
2470jlong G1CollectedHeap::millis_since_last_gc() {
2471  // See the notes in GenCollectedHeap::millis_since_last_gc()
2472  // for more information about the implementation.
2473  jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2474    _g1_policy->collection_pause_end_millis();
2475  if (ret_val < 0) {
2476    log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2477      ". returning zero instead.", ret_val);
2478    return 0;
2479  }
2480  return ret_val;
2481}
2482
2483void G1CollectedHeap::prepare_for_verify() {
2484  _verifier->prepare_for_verify();
2485}
2486
2487void G1CollectedHeap::verify(VerifyOption vo) {
2488  _verifier->verify(vo);
2489}
2490
2491bool G1CollectedHeap::supports_concurrent_phase_control() const {
2492  return true;
2493}
2494
2495const char* const* G1CollectedHeap::concurrent_phases() const {
2496  return _cmThread->concurrent_phases();
2497}
2498
2499bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2500  return _cmThread->request_concurrent_phase(phase);
2501}
2502
2503class PrintRegionClosure: public HeapRegionClosure {
2504  outputStream* _st;
2505public:
2506  PrintRegionClosure(outputStream* st) : _st(st) {}
2507  bool doHeapRegion(HeapRegion* r) {
2508    r->print_on(_st);
2509    return false;
2510  }
2511};
2512
2513bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2514                                       const HeapRegion* hr,
2515                                       const VerifyOption vo) const {
2516  switch (vo) {
2517  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2518  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2519  case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2520  default:                            ShouldNotReachHere();
2521  }
2522  return false; // keep some compilers happy
2523}
2524
2525bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2526                                       const VerifyOption vo) const {
2527  switch (vo) {
2528  case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2529  case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2530  case VerifyOption_G1UseMarkWord: {
2531    HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2532    return !obj->is_gc_marked() && !hr->is_archive();
2533  }
2534  default:                            ShouldNotReachHere();
2535  }
2536  return false; // keep some compilers happy
2537}
2538
2539void G1CollectedHeap::print_heap_regions() const {
2540  Log(gc, heap, region) log;
2541  if (log.is_trace()) {
2542    ResourceMark rm;
2543    print_regions_on(log.trace_stream());
2544  }
2545}
2546
2547void G1CollectedHeap::print_on(outputStream* st) const {
2548  st->print(" %-20s", "garbage-first heap");
2549  st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2550            capacity()/K, used_unlocked()/K);
2551  st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2552            p2i(_hrm.reserved().start()),
2553            p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2554            p2i(_hrm.reserved().end()));
2555  st->cr();
2556  st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2557  uint young_regions = young_regions_count();
2558  st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2559            (size_t) young_regions * HeapRegion::GrainBytes / K);
2560  uint survivor_regions = survivor_regions_count();
2561  st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2562            (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2563  st->cr();
2564  MetaspaceAux::print_on(st);
2565}
2566
2567void G1CollectedHeap::print_regions_on(outputStream* st) const {
2568  st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2569               "HS=humongous(starts), HC=humongous(continues), "
2570               "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2571               "AC=allocation context, "
2572               "TAMS=top-at-mark-start (previous, next)");
2573  PrintRegionClosure blk(st);
2574  heap_region_iterate(&blk);
2575}
2576
2577void G1CollectedHeap::print_extended_on(outputStream* st) const {
2578  print_on(st);
2579
2580  // Print the per-region information.
2581  print_regions_on(st);
2582}
2583
2584void G1CollectedHeap::print_on_error(outputStream* st) const {
2585  this->CollectedHeap::print_on_error(st);
2586
2587  if (_cm != NULL) {
2588    st->cr();
2589    _cm->print_on_error(st);
2590  }
2591}
2592
2593void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2594  workers()->print_worker_threads_on(st);
2595  _cmThread->print_on(st);
2596  st->cr();
2597  _cm->print_worker_threads_on(st);
2598  _cg1r->print_worker_threads_on(st); // also prints the sample thread
2599  if (G1StringDedup::is_enabled()) {
2600    G1StringDedup::print_worker_threads_on(st);
2601  }
2602}
2603
2604void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2605  workers()->threads_do(tc);
2606  tc->do_thread(_cmThread);
2607  _cm->threads_do(tc);
2608  _cg1r->threads_do(tc); // also iterates over the sample thread
2609  if (G1StringDedup::is_enabled()) {
2610    G1StringDedup::threads_do(tc);
2611  }
2612}
2613
2614void G1CollectedHeap::print_tracing_info() const {
2615  g1_rem_set()->print_summary_info();
2616  concurrent_mark()->print_summary_info();
2617}
2618
2619#ifndef PRODUCT
2620// Helpful for debugging RSet issues.
2621
2622class PrintRSetsClosure : public HeapRegionClosure {
2623private:
2624  const char* _msg;
2625  size_t _occupied_sum;
2626
2627public:
2628  bool doHeapRegion(HeapRegion* r) {
2629    HeapRegionRemSet* hrrs = r->rem_set();
2630    size_t occupied = hrrs->occupied();
2631    _occupied_sum += occupied;
2632
2633    tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2634    if (occupied == 0) {
2635      tty->print_cr("  RSet is empty");
2636    } else {
2637      hrrs->print();
2638    }
2639    tty->print_cr("----------");
2640    return false;
2641  }
2642
2643  PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2644    tty->cr();
2645    tty->print_cr("========================================");
2646    tty->print_cr("%s", msg);
2647    tty->cr();
2648  }
2649
2650  ~PrintRSetsClosure() {
2651    tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2652    tty->print_cr("========================================");
2653    tty->cr();
2654  }
2655};
2656
2657void G1CollectedHeap::print_cset_rsets() {
2658  PrintRSetsClosure cl("Printing CSet RSets");
2659  collection_set_iterate(&cl);
2660}
2661
2662void G1CollectedHeap::print_all_rsets() {
2663  PrintRSetsClosure cl("Printing All RSets");;
2664  heap_region_iterate(&cl);
2665}
2666#endif // PRODUCT
2667
2668G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2669
2670  size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2671  size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2672  size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2673
2674  size_t eden_capacity_bytes =
2675    (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2676
2677  VirtualSpaceSummary heap_summary = create_heap_space_summary();
2678  return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2679                       eden_capacity_bytes, survivor_used_bytes, num_regions());
2680}
2681
2682G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2683  return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2684                       stats->unused(), stats->used(), stats->region_end_waste(),
2685                       stats->regions_filled(), stats->direct_allocated(),
2686                       stats->failure_used(), stats->failure_waste());
2687}
2688
2689void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2690  const G1HeapSummary& heap_summary = create_g1_heap_summary();
2691  gc_tracer->report_gc_heap_summary(when, heap_summary);
2692
2693  const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2694  gc_tracer->report_metaspace_summary(when, metaspace_summary);
2695}
2696
2697G1CollectedHeap* G1CollectedHeap::heap() {
2698  CollectedHeap* heap = Universe::heap();
2699  assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2700  assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2701  return (G1CollectedHeap*)heap;
2702}
2703
2704void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2705  // always_do_update_barrier = false;
2706  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2707
2708  double start = os::elapsedTime();
2709  // Fill TLAB's and such
2710  accumulate_statistics_all_tlabs();
2711  ensure_parsability(true);
2712  g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2713
2714  g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2715}
2716
2717void G1CollectedHeap::gc_epilogue(bool full) {
2718  // we are at the end of the GC. Total collections has already been increased.
2719  g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2720
2721  // FIXME: what is this about?
2722  // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2723  // is set.
2724#if defined(COMPILER2) || INCLUDE_JVMCI
2725  assert(DerivedPointerTable::is_empty(), "derived pointer present");
2726#endif
2727  // always_do_update_barrier = true;
2728
2729  double start = os::elapsedTime();
2730  resize_all_tlabs();
2731  g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2732
2733  allocation_context_stats().update(full);
2734
2735  // We have just completed a GC. Update the soft reference
2736  // policy with the new heap occupancy
2737  Universe::update_heap_info_at_gc();
2738}
2739
2740HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2741                                               uint gc_count_before,
2742                                               bool* succeeded,
2743                                               GCCause::Cause gc_cause) {
2744  assert_heap_not_locked_and_not_at_safepoint();
2745  VM_G1IncCollectionPause op(gc_count_before,
2746                             word_size,
2747                             false, /* should_initiate_conc_mark */
2748                             g1_policy()->max_pause_time_ms(),
2749                             gc_cause);
2750
2751  op.set_allocation_context(AllocationContext::current());
2752  VMThread::execute(&op);
2753
2754  HeapWord* result = op.result();
2755  bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2756  assert(result == NULL || ret_succeeded,
2757         "the result should be NULL if the VM did not succeed");
2758  *succeeded = ret_succeeded;
2759
2760  assert_heap_not_locked();
2761  return result;
2762}
2763
2764void
2765G1CollectedHeap::doConcurrentMark() {
2766  MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2767  if (!_cmThread->in_progress()) {
2768    _cmThread->set_started();
2769    CGC_lock->notify();
2770  }
2771}
2772
2773size_t G1CollectedHeap::pending_card_num() {
2774  size_t extra_cards = 0;
2775  JavaThread *curr = Threads::first();
2776  while (curr != NULL) {
2777    DirtyCardQueue& dcq = curr->dirty_card_queue();
2778    extra_cards += dcq.size();
2779    curr = curr->next();
2780  }
2781  DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2782  size_t buffer_size = dcqs.buffer_size();
2783  size_t buffer_num = dcqs.completed_buffers_num();
2784
2785  return buffer_size * buffer_num + extra_cards;
2786}
2787
2788class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2789 private:
2790  size_t _total_humongous;
2791  size_t _candidate_humongous;
2792
2793  DirtyCardQueue _dcq;
2794
2795  // We don't nominate objects with many remembered set entries, on
2796  // the assumption that such objects are likely still live.
2797  bool is_remset_small(HeapRegion* region) const {
2798    HeapRegionRemSet* const rset = region->rem_set();
2799    return G1EagerReclaimHumongousObjectsWithStaleRefs
2800      ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2801      : rset->is_empty();
2802  }
2803
2804  bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2805    assert(region->is_starts_humongous(), "Must start a humongous object");
2806
2807    oop obj = oop(region->bottom());
2808
2809    // Dead objects cannot be eager reclaim candidates. Due to class
2810    // unloading it is unsafe to query their classes so we return early.
2811    if (heap->is_obj_dead(obj, region)) {
2812      return false;
2813    }
2814
2815    // Candidate selection must satisfy the following constraints
2816    // while concurrent marking is in progress:
2817    //
2818    // * In order to maintain SATB invariants, an object must not be
2819    // reclaimed if it was allocated before the start of marking and
2820    // has not had its references scanned.  Such an object must have
2821    // its references (including type metadata) scanned to ensure no
2822    // live objects are missed by the marking process.  Objects
2823    // allocated after the start of concurrent marking don't need to
2824    // be scanned.
2825    //
2826    // * An object must not be reclaimed if it is on the concurrent
2827    // mark stack.  Objects allocated after the start of concurrent
2828    // marking are never pushed on the mark stack.
2829    //
2830    // Nominating only objects allocated after the start of concurrent
2831    // marking is sufficient to meet both constraints.  This may miss
2832    // some objects that satisfy the constraints, but the marking data
2833    // structures don't support efficiently performing the needed
2834    // additional tests or scrubbing of the mark stack.
2835    //
2836    // However, we presently only nominate is_typeArray() objects.
2837    // A humongous object containing references induces remembered
2838    // set entries on other regions.  In order to reclaim such an
2839    // object, those remembered sets would need to be cleaned up.
2840    //
2841    // We also treat is_typeArray() objects specially, allowing them
2842    // to be reclaimed even if allocated before the start of
2843    // concurrent mark.  For this we rely on mark stack insertion to
2844    // exclude is_typeArray() objects, preventing reclaiming an object
2845    // that is in the mark stack.  We also rely on the metadata for
2846    // such objects to be built-in and so ensured to be kept live.
2847    // Frequent allocation and drop of large binary blobs is an
2848    // important use case for eager reclaim, and this special handling
2849    // may reduce needed headroom.
2850
2851    return obj->is_typeArray() && is_remset_small(region);
2852  }
2853
2854 public:
2855  RegisterHumongousWithInCSetFastTestClosure()
2856  : _total_humongous(0),
2857    _candidate_humongous(0),
2858    _dcq(&JavaThread::dirty_card_queue_set()) {
2859  }
2860
2861  virtual bool doHeapRegion(HeapRegion* r) {
2862    if (!r->is_starts_humongous()) {
2863      return false;
2864    }
2865    G1CollectedHeap* g1h = G1CollectedHeap::heap();
2866
2867    bool is_candidate = humongous_region_is_candidate(g1h, r);
2868    uint rindex = r->hrm_index();
2869    g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2870    if (is_candidate) {
2871      _candidate_humongous++;
2872      g1h->register_humongous_region_with_cset(rindex);
2873      // Is_candidate already filters out humongous object with large remembered sets.
2874      // If we have a humongous object with a few remembered sets, we simply flush these
2875      // remembered set entries into the DCQS. That will result in automatic
2876      // re-evaluation of their remembered set entries during the following evacuation
2877      // phase.
2878      if (!r->rem_set()->is_empty()) {
2879        guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2880                  "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2881        G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2882        HeapRegionRemSetIterator hrrs(r->rem_set());
2883        size_t card_index;
2884        while (hrrs.has_next(card_index)) {
2885          jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2886          // The remembered set might contain references to already freed
2887          // regions. Filter out such entries to avoid failing card table
2888          // verification.
2889          if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2890            if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2891              *card_ptr = CardTableModRefBS::dirty_card_val();
2892              _dcq.enqueue(card_ptr);
2893            }
2894          }
2895        }
2896        assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2897               "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2898               hrrs.n_yielded(), r->rem_set()->occupied());
2899        r->rem_set()->clear_locked();
2900      }
2901      assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2902    }
2903    _total_humongous++;
2904
2905    return false;
2906  }
2907
2908  size_t total_humongous() const { return _total_humongous; }
2909  size_t candidate_humongous() const { return _candidate_humongous; }
2910
2911  void flush_rem_set_entries() { _dcq.flush(); }
2912};
2913
2914void G1CollectedHeap::register_humongous_regions_with_cset() {
2915  if (!G1EagerReclaimHumongousObjects) {
2916    g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2917    return;
2918  }
2919  double time = os::elapsed_counter();
2920
2921  // Collect reclaim candidate information and register candidates with cset.
2922  RegisterHumongousWithInCSetFastTestClosure cl;
2923  heap_region_iterate(&cl);
2924
2925  time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2926  g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2927                                                                  cl.total_humongous(),
2928                                                                  cl.candidate_humongous());
2929  _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2930
2931  // Finally flush all remembered set entries to re-check into the global DCQS.
2932  cl.flush_rem_set_entries();
2933}
2934
2935class VerifyRegionRemSetClosure : public HeapRegionClosure {
2936  public:
2937    bool doHeapRegion(HeapRegion* hr) {
2938      if (!hr->is_archive() && !hr->is_continues_humongous()) {
2939        hr->verify_rem_set();
2940      }
2941      return false;
2942    }
2943};
2944
2945uint G1CollectedHeap::num_task_queues() const {
2946  return _task_queues->size();
2947}
2948
2949#if TASKQUEUE_STATS
2950void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2951  st->print_raw_cr("GC Task Stats");
2952  st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2953  st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2954}
2955
2956void G1CollectedHeap::print_taskqueue_stats() const {
2957  if (!log_is_enabled(Trace, gc, task, stats)) {
2958    return;
2959  }
2960  Log(gc, task, stats) log;
2961  ResourceMark rm;
2962  outputStream* st = log.trace_stream();
2963
2964  print_taskqueue_stats_hdr(st);
2965
2966  TaskQueueStats totals;
2967  const uint n = num_task_queues();
2968  for (uint i = 0; i < n; ++i) {
2969    st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2970    totals += task_queue(i)->stats;
2971  }
2972  st->print_raw("tot "); totals.print(st); st->cr();
2973
2974  DEBUG_ONLY(totals.verify());
2975}
2976
2977void G1CollectedHeap::reset_taskqueue_stats() {
2978  const uint n = num_task_queues();
2979  for (uint i = 0; i < n; ++i) {
2980    task_queue(i)->stats.reset();
2981  }
2982}
2983#endif // TASKQUEUE_STATS
2984
2985void G1CollectedHeap::wait_for_root_region_scanning() {
2986  double scan_wait_start = os::elapsedTime();
2987  // We have to wait until the CM threads finish scanning the
2988  // root regions as it's the only way to ensure that all the
2989  // objects on them have been correctly scanned before we start
2990  // moving them during the GC.
2991  bool waited = _cm->root_regions()->wait_until_scan_finished();
2992  double wait_time_ms = 0.0;
2993  if (waited) {
2994    double scan_wait_end = os::elapsedTime();
2995    wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2996  }
2997  g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2998}
2999
3000class G1PrintCollectionSetClosure : public HeapRegionClosure {
3001private:
3002  G1HRPrinter* _hr_printer;
3003public:
3004  G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
3005
3006  virtual bool doHeapRegion(HeapRegion* r) {
3007    _hr_printer->cset(r);
3008    return false;
3009  }
3010};
3011
3012void G1CollectedHeap::start_new_collection_set() {
3013  collection_set()->start_incremental_building();
3014
3015  clear_cset_fast_test();
3016
3017  guarantee(_eden.length() == 0, "eden should have been cleared");
3018  g1_policy()->transfer_survivors_to_cset(survivor());
3019}
3020
3021bool
3022G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3023  assert_at_safepoint(true /* should_be_vm_thread */);
3024  guarantee(!is_gc_active(), "collection is not reentrant");
3025
3026  if (GCLocker::check_active_before_gc()) {
3027    return false;
3028  }
3029
3030  _gc_timer_stw->register_gc_start();
3031
3032  GCIdMark gc_id_mark;
3033  _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3034
3035  SvcGCMarker sgcm(SvcGCMarker::MINOR);
3036  ResourceMark rm;
3037
3038  g1_policy()->note_gc_start();
3039
3040  wait_for_root_region_scanning();
3041
3042  print_heap_before_gc();
3043  print_heap_regions();
3044  trace_heap_before_gc(_gc_tracer_stw);
3045
3046  _verifier->verify_region_sets_optional();
3047  _verifier->verify_dirty_young_regions();
3048
3049  // We should not be doing initial mark unless the conc mark thread is running
3050  if (!_cmThread->should_terminate()) {
3051    // This call will decide whether this pause is an initial-mark
3052    // pause. If it is, during_initial_mark_pause() will return true
3053    // for the duration of this pause.
3054    g1_policy()->decide_on_conc_mark_initiation();
3055  }
3056
3057  // We do not allow initial-mark to be piggy-backed on a mixed GC.
3058  assert(!collector_state()->during_initial_mark_pause() ||
3059          collector_state()->gcs_are_young(), "sanity");
3060
3061  // We also do not allow mixed GCs during marking.
3062  assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3063
3064  // Record whether this pause is an initial mark. When the current
3065  // thread has completed its logging output and it's safe to signal
3066  // the CM thread, the flag's value in the policy has been reset.
3067  bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3068
3069  // Inner scope for scope based logging, timers, and stats collection
3070  {
3071    EvacuationInfo evacuation_info;
3072
3073    if (collector_state()->during_initial_mark_pause()) {
3074      // We are about to start a marking cycle, so we increment the
3075      // full collection counter.
3076      increment_old_marking_cycles_started();
3077      _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3078    }
3079
3080    _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3081
3082    GCTraceCPUTime tcpu;
3083
3084    FormatBuffer<> gc_string("Pause ");
3085    if (collector_state()->during_initial_mark_pause()) {
3086      gc_string.append("Initial Mark");
3087    } else if (collector_state()->gcs_are_young()) {
3088      gc_string.append("Young");
3089    } else {
3090      gc_string.append("Mixed");
3091    }
3092    GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3093
3094    uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3095                                                                  workers()->active_workers(),
3096                                                                  Threads::number_of_non_daemon_threads());
3097    workers()->update_active_workers(active_workers);
3098    log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3099
3100    TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3101    TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3102
3103    // If the secondary_free_list is not empty, append it to the
3104    // free_list. No need to wait for the cleanup operation to finish;
3105    // the region allocation code will check the secondary_free_list
3106    // and wait if necessary. If the G1StressConcRegionFreeing flag is
3107    // set, skip this step so that the region allocation code has to
3108    // get entries from the secondary_free_list.
3109    if (!G1StressConcRegionFreeing) {
3110      append_secondary_free_list_if_not_empty_with_lock();
3111    }
3112
3113    G1HeapTransition heap_transition(this);
3114    size_t heap_used_bytes_before_gc = used();
3115
3116    // Don't dynamically change the number of GC threads this early.  A value of
3117    // 0 is used to indicate serial work.  When parallel work is done,
3118    // it will be set.
3119
3120    { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3121      IsGCActiveMark x;
3122
3123      gc_prologue(false);
3124      increment_total_collections(false /* full gc */);
3125      increment_gc_time_stamp();
3126
3127      if (VerifyRememberedSets) {
3128        log_info(gc, verify)("[Verifying RemSets before GC]");
3129        VerifyRegionRemSetClosure v_cl;
3130        heap_region_iterate(&v_cl);
3131      }
3132
3133      _verifier->verify_before_gc();
3134
3135      _verifier->check_bitmaps("GC Start");
3136
3137#if defined(COMPILER2) || INCLUDE_JVMCI
3138      DerivedPointerTable::clear();
3139#endif
3140
3141      // Please see comment in g1CollectedHeap.hpp and
3142      // G1CollectedHeap::ref_processing_init() to see how
3143      // reference processing currently works in G1.
3144
3145      // Enable discovery in the STW reference processor
3146      if (g1_policy()->should_process_references()) {
3147        ref_processor_stw()->enable_discovery();
3148      } else {
3149        ref_processor_stw()->disable_discovery();
3150      }
3151
3152      {
3153        // We want to temporarily turn off discovery by the
3154        // CM ref processor, if necessary, and turn it back on
3155        // on again later if we do. Using a scoped
3156        // NoRefDiscovery object will do this.
3157        NoRefDiscovery no_cm_discovery(ref_processor_cm());
3158
3159        // Forget the current alloc region (we might even choose it to be part
3160        // of the collection set!).
3161        _allocator->release_mutator_alloc_region();
3162
3163        // This timing is only used by the ergonomics to handle our pause target.
3164        // It is unclear why this should not include the full pause. We will
3165        // investigate this in CR 7178365.
3166        //
3167        // Preserving the old comment here if that helps the investigation:
3168        //
3169        // The elapsed time induced by the start time below deliberately elides
3170        // the possible verification above.
3171        double sample_start_time_sec = os::elapsedTime();
3172
3173        g1_policy()->record_collection_pause_start(sample_start_time_sec);
3174
3175        if (collector_state()->during_initial_mark_pause()) {
3176          concurrent_mark()->checkpointRootsInitialPre();
3177        }
3178
3179        g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3180
3181        evacuation_info.set_collectionset_regions(collection_set()->region_length());
3182
3183        // Make sure the remembered sets are up to date. This needs to be
3184        // done before register_humongous_regions_with_cset(), because the
3185        // remembered sets are used there to choose eager reclaim candidates.
3186        // If the remembered sets are not up to date we might miss some
3187        // entries that need to be handled.
3188        g1_rem_set()->cleanupHRRS();
3189
3190        register_humongous_regions_with_cset();
3191
3192        assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3193
3194        // We call this after finalize_cset() to
3195        // ensure that the CSet has been finalized.
3196        _cm->verify_no_cset_oops();
3197
3198        if (_hr_printer.is_active()) {
3199          G1PrintCollectionSetClosure cl(&_hr_printer);
3200          _collection_set.iterate(&cl);
3201        }
3202
3203        // Initialize the GC alloc regions.
3204        _allocator->init_gc_alloc_regions(evacuation_info);
3205
3206        G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3207        pre_evacuate_collection_set();
3208
3209        // Actually do the work...
3210        evacuate_collection_set(evacuation_info, &per_thread_states);
3211
3212        post_evacuate_collection_set(evacuation_info, &per_thread_states);
3213
3214        const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3215        free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3216
3217        eagerly_reclaim_humongous_regions();
3218
3219        record_obj_copy_mem_stats();
3220        _survivor_evac_stats.adjust_desired_plab_sz();
3221        _old_evac_stats.adjust_desired_plab_sz();
3222
3223        double start = os::elapsedTime();
3224        start_new_collection_set();
3225        g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3226
3227        if (evacuation_failed()) {
3228          set_used(recalculate_used());
3229          if (_archive_allocator != NULL) {
3230            _archive_allocator->clear_used();
3231          }
3232          for (uint i = 0; i < ParallelGCThreads; i++) {
3233            if (_evacuation_failed_info_array[i].has_failed()) {
3234              _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3235            }
3236          }
3237        } else {
3238          // The "used" of the the collection set have already been subtracted
3239          // when they were freed.  Add in the bytes evacuated.
3240          increase_used(g1_policy()->bytes_copied_during_gc());
3241        }
3242
3243        if (collector_state()->during_initial_mark_pause()) {
3244          // We have to do this before we notify the CM threads that
3245          // they can start working to make sure that all the
3246          // appropriate initialization is done on the CM object.
3247          concurrent_mark()->checkpointRootsInitialPost();
3248          collector_state()->set_mark_in_progress(true);
3249          // Note that we don't actually trigger the CM thread at
3250          // this point. We do that later when we're sure that
3251          // the current thread has completed its logging output.
3252        }
3253
3254        allocate_dummy_regions();
3255
3256        _allocator->init_mutator_alloc_region();
3257
3258        {
3259          size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3260          if (expand_bytes > 0) {
3261            size_t bytes_before = capacity();
3262            // No need for an ergo logging here,
3263            // expansion_amount() does this when it returns a value > 0.
3264            double expand_ms;
3265            if (!expand(expand_bytes, _workers, &expand_ms)) {
3266              // We failed to expand the heap. Cannot do anything about it.
3267            }
3268            g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3269          }
3270        }
3271
3272        // We redo the verification but now wrt to the new CSet which
3273        // has just got initialized after the previous CSet was freed.
3274        _cm->verify_no_cset_oops();
3275
3276        // This timing is only used by the ergonomics to handle our pause target.
3277        // It is unclear why this should not include the full pause. We will
3278        // investigate this in CR 7178365.
3279        double sample_end_time_sec = os::elapsedTime();
3280        double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3281        size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3282        g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3283
3284        evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3285        evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3286
3287        MemoryService::track_memory_usage();
3288
3289        // In prepare_for_verify() below we'll need to scan the deferred
3290        // update buffers to bring the RSets up-to-date if
3291        // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3292        // the update buffers we'll probably need to scan cards on the
3293        // regions we just allocated to (i.e., the GC alloc
3294        // regions). However, during the last GC we called
3295        // set_saved_mark() on all the GC alloc regions, so card
3296        // scanning might skip the [saved_mark_word()...top()] area of
3297        // those regions (i.e., the area we allocated objects into
3298        // during the last GC). But it shouldn't. Given that
3299        // saved_mark_word() is conditional on whether the GC time stamp
3300        // on the region is current or not, by incrementing the GC time
3301        // stamp here we invalidate all the GC time stamps on all the
3302        // regions and saved_mark_word() will simply return top() for
3303        // all the regions. This is a nicer way of ensuring this rather
3304        // than iterating over the regions and fixing them. In fact, the
3305        // GC time stamp increment here also ensures that
3306        // saved_mark_word() will return top() between pauses, i.e.,
3307        // during concurrent refinement. So we don't need the
3308        // is_gc_active() check to decided which top to use when
3309        // scanning cards (see CR 7039627).
3310        increment_gc_time_stamp();
3311
3312        if (VerifyRememberedSets) {
3313          log_info(gc, verify)("[Verifying RemSets after GC]");
3314          VerifyRegionRemSetClosure v_cl;
3315          heap_region_iterate(&v_cl);
3316        }
3317
3318        _verifier->verify_after_gc();
3319        _verifier->check_bitmaps("GC End");
3320
3321        assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3322        ref_processor_stw()->verify_no_references_recorded();
3323
3324        // CM reference discovery will be re-enabled if necessary.
3325      }
3326
3327#ifdef TRACESPINNING
3328      ParallelTaskTerminator::print_termination_counts();
3329#endif
3330
3331      gc_epilogue(false);
3332    }
3333
3334    // Print the remainder of the GC log output.
3335    if (evacuation_failed()) {
3336      log_info(gc)("To-space exhausted");
3337    }
3338
3339    g1_policy()->print_phases();
3340    heap_transition.print();
3341
3342    // It is not yet to safe to tell the concurrent mark to
3343    // start as we have some optional output below. We don't want the
3344    // output from the concurrent mark thread interfering with this
3345    // logging output either.
3346
3347    _hrm.verify_optional();
3348    _verifier->verify_region_sets_optional();
3349
3350    TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3351    TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3352
3353    print_heap_after_gc();
3354    print_heap_regions();
3355    trace_heap_after_gc(_gc_tracer_stw);
3356
3357    // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3358    // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3359    // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3360    // before any GC notifications are raised.
3361    g1mm()->update_sizes();
3362
3363    _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3364    _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3365    _gc_timer_stw->register_gc_end();
3366    _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3367  }
3368  // It should now be safe to tell the concurrent mark thread to start
3369  // without its logging output interfering with the logging output
3370  // that came from the pause.
3371
3372  if (should_start_conc_mark) {
3373    // CAUTION: after the doConcurrentMark() call below,
3374    // the concurrent marking thread(s) could be running
3375    // concurrently with us. Make sure that anything after
3376    // this point does not assume that we are the only GC thread
3377    // running. Note: of course, the actual marking work will
3378    // not start until the safepoint itself is released in
3379    // SuspendibleThreadSet::desynchronize().
3380    doConcurrentMark();
3381  }
3382
3383  return true;
3384}
3385
3386void G1CollectedHeap::remove_self_forwarding_pointers() {
3387  G1ParRemoveSelfForwardPtrsTask rsfp_task;
3388  workers()->run_task(&rsfp_task);
3389}
3390
3391void G1CollectedHeap::restore_after_evac_failure() {
3392  double remove_self_forwards_start = os::elapsedTime();
3393
3394  remove_self_forwarding_pointers();
3395  SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3396  _preserved_marks_set.restore(&task_executor);
3397
3398  g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3399}
3400
3401void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3402  if (!_evacuation_failed) {
3403    _evacuation_failed = true;
3404  }
3405
3406  _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3407  _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3408}
3409
3410bool G1ParEvacuateFollowersClosure::offer_termination() {
3411  G1ParScanThreadState* const pss = par_scan_state();
3412  start_term_time();
3413  const bool res = terminator()->offer_termination();
3414  end_term_time();
3415  return res;
3416}
3417
3418void G1ParEvacuateFollowersClosure::do_void() {
3419  G1ParScanThreadState* const pss = par_scan_state();
3420  pss->trim_queue();
3421  do {
3422    pss->steal_and_trim_queue(queues());
3423  } while (!offer_termination());
3424}
3425
3426class G1ParTask : public AbstractGangTask {
3427protected:
3428  G1CollectedHeap*         _g1h;
3429  G1ParScanThreadStateSet* _pss;
3430  RefToScanQueueSet*       _queues;
3431  G1RootProcessor*         _root_processor;
3432  ParallelTaskTerminator   _terminator;
3433  uint                     _n_workers;
3434
3435public:
3436  G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3437    : AbstractGangTask("G1 collection"),
3438      _g1h(g1h),
3439      _pss(per_thread_states),
3440      _queues(task_queues),
3441      _root_processor(root_processor),
3442      _terminator(n_workers, _queues),
3443      _n_workers(n_workers)
3444  {}
3445
3446  void work(uint worker_id) {
3447    if (worker_id >= _n_workers) return;  // no work needed this round
3448
3449    double start_sec = os::elapsedTime();
3450    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3451
3452    {
3453      ResourceMark rm;
3454      HandleMark   hm;
3455
3456      ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3457
3458      G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3459      pss->set_ref_processor(rp);
3460
3461      double start_strong_roots_sec = os::elapsedTime();
3462
3463      _root_processor->evacuate_roots(pss->closures(), worker_id);
3464
3465      G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3466
3467      // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3468      // treating the nmethods visited to act as roots for concurrent marking.
3469      // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3470      // objects copied by the current evacuation.
3471      size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3472                                                                             pss->closures()->weak_codeblobs(),
3473                                                                             worker_id);
3474
3475      _pss->add_cards_scanned(worker_id, cards_scanned);
3476
3477      double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3478
3479      double term_sec = 0.0;
3480      size_t evac_term_attempts = 0;
3481      {
3482        double start = os::elapsedTime();
3483        G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3484        evac.do_void();
3485
3486        evac_term_attempts = evac.term_attempts();
3487        term_sec = evac.term_time();
3488        double elapsed_sec = os::elapsedTime() - start;
3489        _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3490        _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3491        _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3492      }
3493
3494      assert(pss->queue_is_empty(), "should be empty");
3495
3496      if (log_is_enabled(Debug, gc, task, stats)) {
3497        MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3498        size_t lab_waste;
3499        size_t lab_undo_waste;
3500        pss->waste(lab_waste, lab_undo_waste);
3501        _g1h->print_termination_stats(worker_id,
3502                                      (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3503                                      strong_roots_sec * 1000.0,                  /* strong roots time */
3504                                      term_sec * 1000.0,                          /* evac term time */
3505                                      evac_term_attempts,                         /* evac term attempts */
3506                                      lab_waste,                                  /* alloc buffer waste */
3507                                      lab_undo_waste                              /* undo waste */
3508                                      );
3509      }
3510
3511      // Close the inner scope so that the ResourceMark and HandleMark
3512      // destructors are executed here and are included as part of the
3513      // "GC Worker Time".
3514    }
3515    _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3516  }
3517};
3518
3519void G1CollectedHeap::print_termination_stats_hdr() {
3520  log_debug(gc, task, stats)("GC Termination Stats");
3521  log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3522  log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3523  log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3524}
3525
3526void G1CollectedHeap::print_termination_stats(uint worker_id,
3527                                              double elapsed_ms,
3528                                              double strong_roots_ms,
3529                                              double term_ms,
3530                                              size_t term_attempts,
3531                                              size_t alloc_buffer_waste,
3532                                              size_t undo_waste) const {
3533  log_debug(gc, task, stats)
3534              ("%3d %9.2f %9.2f %6.2f "
3535               "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3536               SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3537               worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3538               term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3539               (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3540               alloc_buffer_waste * HeapWordSize / K,
3541               undo_waste * HeapWordSize / K);
3542}
3543
3544class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3545private:
3546  BoolObjectClosure* _is_alive;
3547  G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3548
3549  int _initial_string_table_size;
3550  int _initial_symbol_table_size;
3551
3552  bool  _process_strings;
3553  int _strings_processed;
3554  int _strings_removed;
3555
3556  bool  _process_symbols;
3557  int _symbols_processed;
3558  int _symbols_removed;
3559
3560  bool _process_string_dedup;
3561
3562public:
3563  G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3564    AbstractGangTask("String/Symbol Unlinking"),
3565    _is_alive(is_alive),
3566    _dedup_closure(is_alive, NULL, false),
3567    _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3568    _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3569    _process_string_dedup(process_string_dedup) {
3570
3571    _initial_string_table_size = StringTable::the_table()->table_size();
3572    _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3573    if (process_strings) {
3574      StringTable::clear_parallel_claimed_index();
3575    }
3576    if (process_symbols) {
3577      SymbolTable::clear_parallel_claimed_index();
3578    }
3579  }
3580
3581  ~G1StringAndSymbolCleaningTask() {
3582    guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3583              "claim value %d after unlink less than initial string table size %d",
3584              StringTable::parallel_claimed_index(), _initial_string_table_size);
3585    guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3586              "claim value %d after unlink less than initial symbol table size %d",
3587              SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3588
3589    log_info(gc, stringtable)(
3590        "Cleaned string and symbol table, "
3591        "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3592        "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3593        strings_processed(), strings_removed(),
3594        symbols_processed(), symbols_removed());
3595  }
3596
3597  void work(uint worker_id) {
3598    int strings_processed = 0;
3599    int strings_removed = 0;
3600    int symbols_processed = 0;
3601    int symbols_removed = 0;
3602    if (_process_strings) {
3603      StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3604      Atomic::add(strings_processed, &_strings_processed);
3605      Atomic::add(strings_removed, &_strings_removed);
3606    }
3607    if (_process_symbols) {
3608      SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3609      Atomic::add(symbols_processed, &_symbols_processed);
3610      Atomic::add(symbols_removed, &_symbols_removed);
3611    }
3612    if (_process_string_dedup) {
3613      G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3614    }
3615  }
3616
3617  size_t strings_processed() const { return (size_t)_strings_processed; }
3618  size_t strings_removed()   const { return (size_t)_strings_removed; }
3619
3620  size_t symbols_processed() const { return (size_t)_symbols_processed; }
3621  size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3622};
3623
3624class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3625private:
3626  static Monitor* _lock;
3627
3628  BoolObjectClosure* const _is_alive;
3629  const bool               _unloading_occurred;
3630  const uint               _num_workers;
3631
3632  // Variables used to claim nmethods.
3633  CompiledMethod* _first_nmethod;
3634  volatile CompiledMethod* _claimed_nmethod;
3635
3636  // The list of nmethods that need to be processed by the second pass.
3637  volatile CompiledMethod* _postponed_list;
3638  volatile uint            _num_entered_barrier;
3639
3640 public:
3641  G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3642      _is_alive(is_alive),
3643      _unloading_occurred(unloading_occurred),
3644      _num_workers(num_workers),
3645      _first_nmethod(NULL),
3646      _claimed_nmethod(NULL),
3647      _postponed_list(NULL),
3648      _num_entered_barrier(0)
3649  {
3650    CompiledMethod::increase_unloading_clock();
3651    // Get first alive nmethod
3652    CompiledMethodIterator iter = CompiledMethodIterator();
3653    if(iter.next_alive()) {
3654      _first_nmethod = iter.method();
3655    }
3656    _claimed_nmethod = (volatile CompiledMethod*)_first_nmethod;
3657  }
3658
3659  ~G1CodeCacheUnloadingTask() {
3660    CodeCache::verify_clean_inline_caches();
3661
3662    CodeCache::set_needs_cache_clean(false);
3663    guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3664
3665    CodeCache::verify_icholder_relocations();
3666  }
3667
3668 private:
3669  void add_to_postponed_list(CompiledMethod* nm) {
3670      CompiledMethod* old;
3671      do {
3672        old = (CompiledMethod*)_postponed_list;
3673        nm->set_unloading_next(old);
3674      } while ((CompiledMethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3675  }
3676
3677  void clean_nmethod(CompiledMethod* nm) {
3678    bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3679
3680    if (postponed) {
3681      // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3682      add_to_postponed_list(nm);
3683    }
3684
3685    // Mark that this thread has been cleaned/unloaded.
3686    // After this call, it will be safe to ask if this nmethod was unloaded or not.
3687    nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3688  }
3689
3690  void clean_nmethod_postponed(CompiledMethod* nm) {
3691    nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3692  }
3693
3694  static const int MaxClaimNmethods = 16;
3695
3696  void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3697    CompiledMethod* first;
3698    CompiledMethodIterator last;
3699
3700    do {
3701      *num_claimed_nmethods = 0;
3702
3703      first = (CompiledMethod*)_claimed_nmethod;
3704      last = CompiledMethodIterator(first);
3705
3706      if (first != NULL) {
3707
3708        for (int i = 0; i < MaxClaimNmethods; i++) {
3709          if (!last.next_alive()) {
3710            break;
3711          }
3712          claimed_nmethods[i] = last.method();
3713          (*num_claimed_nmethods)++;
3714        }
3715      }
3716
3717    } while ((CompiledMethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3718  }
3719
3720  CompiledMethod* claim_postponed_nmethod() {
3721    CompiledMethod* claim;
3722    CompiledMethod* next;
3723
3724    do {
3725      claim = (CompiledMethod*)_postponed_list;
3726      if (claim == NULL) {
3727        return NULL;
3728      }
3729
3730      next = claim->unloading_next();
3731
3732    } while ((CompiledMethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3733
3734    return claim;
3735  }
3736
3737 public:
3738  // Mark that we're done with the first pass of nmethod cleaning.
3739  void barrier_mark(uint worker_id) {
3740    MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3741    _num_entered_barrier++;
3742    if (_num_entered_barrier == _num_workers) {
3743      ml.notify_all();
3744    }
3745  }
3746
3747  // See if we have to wait for the other workers to
3748  // finish their first-pass nmethod cleaning work.
3749  void barrier_wait(uint worker_id) {
3750    if (_num_entered_barrier < _num_workers) {
3751      MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3752      while (_num_entered_barrier < _num_workers) {
3753          ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3754      }
3755    }
3756  }
3757
3758  // Cleaning and unloading of nmethods. Some work has to be postponed
3759  // to the second pass, when we know which nmethods survive.
3760  void work_first_pass(uint worker_id) {
3761    // The first nmethods is claimed by the first worker.
3762    if (worker_id == 0 && _first_nmethod != NULL) {
3763      clean_nmethod(_first_nmethod);
3764      _first_nmethod = NULL;
3765    }
3766
3767    int num_claimed_nmethods;
3768    CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3769
3770    while (true) {
3771      claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3772
3773      if (num_claimed_nmethods == 0) {
3774        break;
3775      }
3776
3777      for (int i = 0; i < num_claimed_nmethods; i++) {
3778        clean_nmethod(claimed_nmethods[i]);
3779      }
3780    }
3781  }
3782
3783  void work_second_pass(uint worker_id) {
3784    CompiledMethod* nm;
3785    // Take care of postponed nmethods.
3786    while ((nm = claim_postponed_nmethod()) != NULL) {
3787      clean_nmethod_postponed(nm);
3788    }
3789  }
3790};
3791
3792Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3793
3794class G1KlassCleaningTask : public StackObj {
3795  BoolObjectClosure*                      _is_alive;
3796  volatile jint                           _clean_klass_tree_claimed;
3797  ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3798
3799 public:
3800  G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3801      _is_alive(is_alive),
3802      _clean_klass_tree_claimed(0),
3803      _klass_iterator() {
3804  }
3805
3806 private:
3807  bool claim_clean_klass_tree_task() {
3808    if (_clean_klass_tree_claimed) {
3809      return false;
3810    }
3811
3812    return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3813  }
3814
3815  InstanceKlass* claim_next_klass() {
3816    Klass* klass;
3817    do {
3818      klass =_klass_iterator.next_klass();
3819    } while (klass != NULL && !klass->is_instance_klass());
3820
3821    // this can be null so don't call InstanceKlass::cast
3822    return static_cast<InstanceKlass*>(klass);
3823  }
3824
3825public:
3826
3827  void clean_klass(InstanceKlass* ik) {
3828    ik->clean_weak_instanceklass_links(_is_alive);
3829  }
3830
3831  void work() {
3832    ResourceMark rm;
3833
3834    // One worker will clean the subklass/sibling klass tree.
3835    if (claim_clean_klass_tree_task()) {
3836      Klass::clean_subklass_tree(_is_alive);
3837    }
3838
3839    // All workers will help cleaning the classes,
3840    InstanceKlass* klass;
3841    while ((klass = claim_next_klass()) != NULL) {
3842      clean_klass(klass);
3843    }
3844  }
3845};
3846
3847class G1ResolvedMethodCleaningTask : public StackObj {
3848  BoolObjectClosure* _is_alive;
3849  volatile jint      _resolved_method_task_claimed;
3850public:
3851  G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3852      _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3853
3854  bool claim_resolved_method_task() {
3855    if (_resolved_method_task_claimed) {
3856      return false;
3857    }
3858    return Atomic::cmpxchg(1, (jint*)&_resolved_method_task_claimed, 0) == 0;
3859  }
3860
3861  // These aren't big, one thread can do it all.
3862  void work() {
3863    if (claim_resolved_method_task()) {
3864      ResolvedMethodTable::unlink(_is_alive);
3865    }
3866  }
3867};
3868
3869
3870// To minimize the remark pause times, the tasks below are done in parallel.
3871class G1ParallelCleaningTask : public AbstractGangTask {
3872private:
3873  G1StringAndSymbolCleaningTask _string_symbol_task;
3874  G1CodeCacheUnloadingTask      _code_cache_task;
3875  G1KlassCleaningTask           _klass_cleaning_task;
3876  G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3877
3878public:
3879  // The constructor is run in the VMThread.
3880  G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3881      AbstractGangTask("Parallel Cleaning"),
3882      _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3883      _code_cache_task(num_workers, is_alive, unloading_occurred),
3884      _klass_cleaning_task(is_alive),
3885      _resolved_method_cleaning_task(is_alive) {
3886  }
3887
3888  // The parallel work done by all worker threads.
3889  void work(uint worker_id) {
3890    // Do first pass of code cache cleaning.
3891    _code_cache_task.work_first_pass(worker_id);
3892
3893    // Let the threads mark that the first pass is done.
3894    _code_cache_task.barrier_mark(worker_id);
3895
3896    // Clean the Strings and Symbols.
3897    _string_symbol_task.work(worker_id);
3898
3899    // Clean unreferenced things in the ResolvedMethodTable
3900    _resolved_method_cleaning_task.work();
3901
3902    // Wait for all workers to finish the first code cache cleaning pass.
3903    _code_cache_task.barrier_wait(worker_id);
3904
3905    // Do the second code cache cleaning work, which realize on
3906    // the liveness information gathered during the first pass.
3907    _code_cache_task.work_second_pass(worker_id);
3908
3909    // Clean all klasses that were not unloaded.
3910    _klass_cleaning_task.work();
3911  }
3912};
3913
3914
3915void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3916                                        bool class_unloading_occurred) {
3917  uint n_workers = workers()->active_workers();
3918
3919  G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3920  workers()->run_task(&g1_unlink_task);
3921}
3922
3923void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3924                                       bool process_strings,
3925                                       bool process_symbols,
3926                                       bool process_string_dedup) {
3927  if (!process_strings && !process_symbols && !process_string_dedup) {
3928    // Nothing to clean.
3929    return;
3930  }
3931
3932  G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3933  workers()->run_task(&g1_unlink_task);
3934
3935}
3936
3937class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3938 private:
3939  DirtyCardQueueSet* _queue;
3940  G1CollectedHeap* _g1h;
3941 public:
3942  G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3943    _queue(queue), _g1h(g1h) { }
3944
3945  virtual void work(uint worker_id) {
3946    G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3947    G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3948
3949    RedirtyLoggedCardTableEntryClosure cl(_g1h);
3950    _queue->par_apply_closure_to_all_completed_buffers(&cl);
3951
3952    phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3953  }
3954};
3955
3956void G1CollectedHeap::redirty_logged_cards() {
3957  double redirty_logged_cards_start = os::elapsedTime();
3958
3959  G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3960  dirty_card_queue_set().reset_for_par_iteration();
3961  workers()->run_task(&redirty_task);
3962
3963  DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3964  dcq.merge_bufferlists(&dirty_card_queue_set());
3965  assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3966
3967  g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3968}
3969
3970// Weak Reference Processing support
3971
3972// An always "is_alive" closure that is used to preserve referents.
3973// If the object is non-null then it's alive.  Used in the preservation
3974// of referent objects that are pointed to by reference objects
3975// discovered by the CM ref processor.
3976class G1AlwaysAliveClosure: public BoolObjectClosure {
3977  G1CollectedHeap* _g1;
3978public:
3979  G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3980  bool do_object_b(oop p) {
3981    if (p != NULL) {
3982      return true;
3983    }
3984    return false;
3985  }
3986};
3987
3988bool G1STWIsAliveClosure::do_object_b(oop p) {
3989  // An object is reachable if it is outside the collection set,
3990  // or is inside and copied.
3991  return !_g1->is_in_cset(p) || p->is_forwarded();
3992}
3993
3994// Non Copying Keep Alive closure
3995class G1KeepAliveClosure: public OopClosure {
3996  G1CollectedHeap* _g1;
3997public:
3998  G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3999  void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4000  void do_oop(oop* p) {
4001    oop obj = *p;
4002    assert(obj != NULL, "the caller should have filtered out NULL values");
4003
4004    const InCSetState cset_state = _g1->in_cset_state(obj);
4005    if (!cset_state.is_in_cset_or_humongous()) {
4006      return;
4007    }
4008    if (cset_state.is_in_cset()) {
4009      assert( obj->is_forwarded(), "invariant" );
4010      *p = obj->forwardee();
4011    } else {
4012      assert(!obj->is_forwarded(), "invariant" );
4013      assert(cset_state.is_humongous(),
4014             "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4015      _g1->set_humongous_is_live(obj);
4016    }
4017  }
4018};
4019
4020// Copying Keep Alive closure - can be called from both
4021// serial and parallel code as long as different worker
4022// threads utilize different G1ParScanThreadState instances
4023// and different queues.
4024
4025class G1CopyingKeepAliveClosure: public OopClosure {
4026  G1CollectedHeap*         _g1h;
4027  OopClosure*              _copy_non_heap_obj_cl;
4028  G1ParScanThreadState*    _par_scan_state;
4029
4030public:
4031  G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4032                            OopClosure* non_heap_obj_cl,
4033                            G1ParScanThreadState* pss):
4034    _g1h(g1h),
4035    _copy_non_heap_obj_cl(non_heap_obj_cl),
4036    _par_scan_state(pss)
4037  {}
4038
4039  virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4040  virtual void do_oop(      oop* p) { do_oop_work(p); }
4041
4042  template <class T> void do_oop_work(T* p) {
4043    oop obj = oopDesc::load_decode_heap_oop(p);
4044
4045    if (_g1h->is_in_cset_or_humongous(obj)) {
4046      // If the referent object has been forwarded (either copied
4047      // to a new location or to itself in the event of an
4048      // evacuation failure) then we need to update the reference
4049      // field and, if both reference and referent are in the G1
4050      // heap, update the RSet for the referent.
4051      //
4052      // If the referent has not been forwarded then we have to keep
4053      // it alive by policy. Therefore we have copy the referent.
4054      //
4055      // If the reference field is in the G1 heap then we can push
4056      // on the PSS queue. When the queue is drained (after each
4057      // phase of reference processing) the object and it's followers
4058      // will be copied, the reference field set to point to the
4059      // new location, and the RSet updated. Otherwise we need to
4060      // use the the non-heap or metadata closures directly to copy
4061      // the referent object and update the pointer, while avoiding
4062      // updating the RSet.
4063
4064      if (_g1h->is_in_g1_reserved(p)) {
4065        _par_scan_state->push_on_queue(p);
4066      } else {
4067        assert(!Metaspace::contains((const void*)p),
4068               "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4069        _copy_non_heap_obj_cl->do_oop(p);
4070      }
4071    }
4072  }
4073};
4074
4075// Serial drain queue closure. Called as the 'complete_gc'
4076// closure for each discovered list in some of the
4077// reference processing phases.
4078
4079class G1STWDrainQueueClosure: public VoidClosure {
4080protected:
4081  G1CollectedHeap* _g1h;
4082  G1ParScanThreadState* _par_scan_state;
4083
4084  G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4085
4086public:
4087  G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4088    _g1h(g1h),
4089    _par_scan_state(pss)
4090  { }
4091
4092  void do_void() {
4093    G1ParScanThreadState* const pss = par_scan_state();
4094    pss->trim_queue();
4095  }
4096};
4097
4098// Parallel Reference Processing closures
4099
4100// Implementation of AbstractRefProcTaskExecutor for parallel reference
4101// processing during G1 evacuation pauses.
4102
4103class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4104private:
4105  G1CollectedHeap*          _g1h;
4106  G1ParScanThreadStateSet*  _pss;
4107  RefToScanQueueSet*        _queues;
4108  WorkGang*                 _workers;
4109  uint                      _active_workers;
4110
4111public:
4112  G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4113                           G1ParScanThreadStateSet* per_thread_states,
4114                           WorkGang* workers,
4115                           RefToScanQueueSet *task_queues,
4116                           uint n_workers) :
4117    _g1h(g1h),
4118    _pss(per_thread_states),
4119    _queues(task_queues),
4120    _workers(workers),
4121    _active_workers(n_workers)
4122  {
4123    g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4124  }
4125
4126  // Executes the given task using concurrent marking worker threads.
4127  virtual void execute(ProcessTask& task);
4128  virtual void execute(EnqueueTask& task);
4129};
4130
4131// Gang task for possibly parallel reference processing
4132
4133class G1STWRefProcTaskProxy: public AbstractGangTask {
4134  typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4135  ProcessTask&     _proc_task;
4136  G1CollectedHeap* _g1h;
4137  G1ParScanThreadStateSet* _pss;
4138  RefToScanQueueSet* _task_queues;
4139  ParallelTaskTerminator* _terminator;
4140
4141public:
4142  G1STWRefProcTaskProxy(ProcessTask& proc_task,
4143                        G1CollectedHeap* g1h,
4144                        G1ParScanThreadStateSet* per_thread_states,
4145                        RefToScanQueueSet *task_queues,
4146                        ParallelTaskTerminator* terminator) :
4147    AbstractGangTask("Process reference objects in parallel"),
4148    _proc_task(proc_task),
4149    _g1h(g1h),
4150    _pss(per_thread_states),
4151    _task_queues(task_queues),
4152    _terminator(terminator)
4153  {}
4154
4155  virtual void work(uint worker_id) {
4156    // The reference processing task executed by a single worker.
4157    ResourceMark rm;
4158    HandleMark   hm;
4159
4160    G1STWIsAliveClosure is_alive(_g1h);
4161
4162    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4163    pss->set_ref_processor(NULL);
4164
4165    // Keep alive closure.
4166    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4167
4168    // Complete GC closure
4169    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4170
4171    // Call the reference processing task's work routine.
4172    _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4173
4174    // Note we cannot assert that the refs array is empty here as not all
4175    // of the processing tasks (specifically phase2 - pp2_work) execute
4176    // the complete_gc closure (which ordinarily would drain the queue) so
4177    // the queue may not be empty.
4178  }
4179};
4180
4181// Driver routine for parallel reference processing.
4182// Creates an instance of the ref processing gang
4183// task and has the worker threads execute it.
4184void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4185  assert(_workers != NULL, "Need parallel worker threads.");
4186
4187  ParallelTaskTerminator terminator(_active_workers, _queues);
4188  G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4189
4190  _workers->run_task(&proc_task_proxy);
4191}
4192
4193// Gang task for parallel reference enqueueing.
4194
4195class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4196  typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4197  EnqueueTask& _enq_task;
4198
4199public:
4200  G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4201    AbstractGangTask("Enqueue reference objects in parallel"),
4202    _enq_task(enq_task)
4203  { }
4204
4205  virtual void work(uint worker_id) {
4206    _enq_task.work(worker_id);
4207  }
4208};
4209
4210// Driver routine for parallel reference enqueueing.
4211// Creates an instance of the ref enqueueing gang
4212// task and has the worker threads execute it.
4213
4214void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4215  assert(_workers != NULL, "Need parallel worker threads.");
4216
4217  G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4218
4219  _workers->run_task(&enq_task_proxy);
4220}
4221
4222// End of weak reference support closures
4223
4224// Abstract task used to preserve (i.e. copy) any referent objects
4225// that are in the collection set and are pointed to by reference
4226// objects discovered by the CM ref processor.
4227
4228class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4229protected:
4230  G1CollectedHeap*         _g1h;
4231  G1ParScanThreadStateSet* _pss;
4232  RefToScanQueueSet*       _queues;
4233  ParallelTaskTerminator   _terminator;
4234  uint                     _n_workers;
4235
4236public:
4237  G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4238    AbstractGangTask("ParPreserveCMReferents"),
4239    _g1h(g1h),
4240    _pss(per_thread_states),
4241    _queues(task_queues),
4242    _terminator(workers, _queues),
4243    _n_workers(workers)
4244  {
4245    g1h->ref_processor_cm()->set_active_mt_degree(workers);
4246  }
4247
4248  void work(uint worker_id) {
4249    G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4250
4251    ResourceMark rm;
4252    HandleMark   hm;
4253
4254    G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4255    pss->set_ref_processor(NULL);
4256    assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4257
4258    // Is alive closure
4259    G1AlwaysAliveClosure always_alive(_g1h);
4260
4261    // Copying keep alive closure. Applied to referent objects that need
4262    // to be copied.
4263    G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4264
4265    ReferenceProcessor* rp = _g1h->ref_processor_cm();
4266
4267    uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4268    uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4269
4270    // limit is set using max_num_q() - which was set using ParallelGCThreads.
4271    // So this must be true - but assert just in case someone decides to
4272    // change the worker ids.
4273    assert(worker_id < limit, "sanity");
4274    assert(!rp->discovery_is_atomic(), "check this code");
4275
4276    // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4277    for (uint idx = worker_id; idx < limit; idx += stride) {
4278      DiscoveredList& ref_list = rp->discovered_refs()[idx];
4279
4280      DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4281      while (iter.has_next()) {
4282        // Since discovery is not atomic for the CM ref processor, we
4283        // can see some null referent objects.
4284        iter.load_ptrs(DEBUG_ONLY(true));
4285        oop ref = iter.obj();
4286
4287        // This will filter nulls.
4288        if (iter.is_referent_alive()) {
4289          iter.make_referent_alive();
4290        }
4291        iter.move_to_next();
4292      }
4293    }
4294
4295    // Drain the queue - which may cause stealing
4296    G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4297    drain_queue.do_void();
4298    // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4299    assert(pss->queue_is_empty(), "should be");
4300  }
4301};
4302
4303void G1CollectedHeap::process_weak_jni_handles() {
4304  double ref_proc_start = os::elapsedTime();
4305
4306  G1STWIsAliveClosure is_alive(this);
4307  G1KeepAliveClosure keep_alive(this);
4308  JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4309
4310  double ref_proc_time = os::elapsedTime() - ref_proc_start;
4311  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4312}
4313
4314void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4315  // Any reference objects, in the collection set, that were 'discovered'
4316  // by the CM ref processor should have already been copied (either by
4317  // applying the external root copy closure to the discovered lists, or
4318  // by following an RSet entry).
4319  //
4320  // But some of the referents, that are in the collection set, that these
4321  // reference objects point to may not have been copied: the STW ref
4322  // processor would have seen that the reference object had already
4323  // been 'discovered' and would have skipped discovering the reference,
4324  // but would not have treated the reference object as a regular oop.
4325  // As a result the copy closure would not have been applied to the
4326  // referent object.
4327  //
4328  // We need to explicitly copy these referent objects - the references
4329  // will be processed at the end of remarking.
4330  //
4331  // We also need to do this copying before we process the reference
4332  // objects discovered by the STW ref processor in case one of these
4333  // referents points to another object which is also referenced by an
4334  // object discovered by the STW ref processor.
4335  double preserve_cm_referents_time = 0.0;
4336
4337  // To avoid spawning task when there is no work to do, check that
4338  // a concurrent cycle is active and that some references have been
4339  // discovered.
4340  if (concurrent_mark()->cmThread()->during_cycle() &&
4341      ref_processor_cm()->has_discovered_references()) {
4342    double preserve_cm_referents_start = os::elapsedTime();
4343    uint no_of_gc_workers = workers()->active_workers();
4344    G1ParPreserveCMReferentsTask keep_cm_referents(this,
4345                                                   per_thread_states,
4346                                                   no_of_gc_workers,
4347                                                   _task_queues);
4348    workers()->run_task(&keep_cm_referents);
4349    preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4350  }
4351
4352  g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4353}
4354
4355// Weak Reference processing during an evacuation pause (part 1).
4356void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4357  double ref_proc_start = os::elapsedTime();
4358
4359  ReferenceProcessor* rp = _ref_processor_stw;
4360  assert(rp->discovery_enabled(), "should have been enabled");
4361
4362  // Closure to test whether a referent is alive.
4363  G1STWIsAliveClosure is_alive(this);
4364
4365  // Even when parallel reference processing is enabled, the processing
4366  // of JNI refs is serial and performed serially by the current thread
4367  // rather than by a worker. The following PSS will be used for processing
4368  // JNI refs.
4369
4370  // Use only a single queue for this PSS.
4371  G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4372  pss->set_ref_processor(NULL);
4373  assert(pss->queue_is_empty(), "pre-condition");
4374
4375  // Keep alive closure.
4376  G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4377
4378  // Serial Complete GC closure
4379  G1STWDrainQueueClosure drain_queue(this, pss);
4380
4381  // Setup the soft refs policy...
4382  rp->setup_policy(false);
4383
4384  ReferenceProcessorStats stats;
4385  if (!rp->processing_is_mt()) {
4386    // Serial reference processing...
4387    stats = rp->process_discovered_references(&is_alive,
4388                                              &keep_alive,
4389                                              &drain_queue,
4390                                              NULL,
4391                                              _gc_timer_stw);
4392  } else {
4393    uint no_of_gc_workers = workers()->active_workers();
4394
4395    // Parallel reference processing
4396    assert(no_of_gc_workers <= rp->max_num_q(),
4397           "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4398           no_of_gc_workers,  rp->max_num_q());
4399
4400    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4401    stats = rp->process_discovered_references(&is_alive,
4402                                              &keep_alive,
4403                                              &drain_queue,
4404                                              &par_task_executor,
4405                                              _gc_timer_stw);
4406  }
4407
4408  _gc_tracer_stw->report_gc_reference_stats(stats);
4409
4410  // We have completed copying any necessary live referent objects.
4411  assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4412
4413  double ref_proc_time = os::elapsedTime() - ref_proc_start;
4414  g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4415}
4416
4417// Weak Reference processing during an evacuation pause (part 2).
4418void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4419  double ref_enq_start = os::elapsedTime();
4420
4421  ReferenceProcessor* rp = _ref_processor_stw;
4422  assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4423
4424  // Now enqueue any remaining on the discovered lists on to
4425  // the pending list.
4426  if (!rp->processing_is_mt()) {
4427    // Serial reference processing...
4428    rp->enqueue_discovered_references();
4429  } else {
4430    // Parallel reference enqueueing
4431
4432    uint n_workers = workers()->active_workers();
4433
4434    assert(n_workers <= rp->max_num_q(),
4435           "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4436           n_workers,  rp->max_num_q());
4437
4438    G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4439    rp->enqueue_discovered_references(&par_task_executor);
4440  }
4441
4442  rp->verify_no_references_recorded();
4443  assert(!rp->discovery_enabled(), "should have been disabled");
4444
4445  // FIXME
4446  // CM's reference processing also cleans up the string and symbol tables.
4447  // Should we do that here also? We could, but it is a serial operation
4448  // and could significantly increase the pause time.
4449
4450  double ref_enq_time = os::elapsedTime() - ref_enq_start;
4451  g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4452}
4453
4454void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4455  double merge_pss_time_start = os::elapsedTime();
4456  per_thread_states->flush();
4457  g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4458}
4459
4460void G1CollectedHeap::pre_evacuate_collection_set() {
4461  _expand_heap_after_alloc_failure = true;
4462  _evacuation_failed = false;
4463
4464  // Disable the hot card cache.
4465  _hot_card_cache->reset_hot_cache_claimed_index();
4466  _hot_card_cache->set_use_cache(false);
4467
4468  g1_rem_set()->prepare_for_oops_into_collection_set_do();
4469  _preserved_marks_set.assert_empty();
4470
4471  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4472
4473  // InitialMark needs claim bits to keep track of the marked-through CLDs.
4474  if (collector_state()->during_initial_mark_pause()) {
4475    double start_clear_claimed_marks = os::elapsedTime();
4476
4477    ClassLoaderDataGraph::clear_claimed_marks();
4478
4479    double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4480    phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4481  }
4482}
4483
4484void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4485  // Should G1EvacuationFailureALot be in effect for this GC?
4486  NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4487
4488  assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4489
4490  G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4491
4492  double start_par_time_sec = os::elapsedTime();
4493  double end_par_time_sec;
4494
4495  {
4496    const uint n_workers = workers()->active_workers();
4497    G1RootProcessor root_processor(this, n_workers);
4498    G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4499
4500    print_termination_stats_hdr();
4501
4502    workers()->run_task(&g1_par_task);
4503    end_par_time_sec = os::elapsedTime();
4504
4505    // Closing the inner scope will execute the destructor
4506    // for the G1RootProcessor object. We record the current
4507    // elapsed time before closing the scope so that time
4508    // taken for the destructor is NOT included in the
4509    // reported parallel time.
4510  }
4511
4512  double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4513  phase_times->record_par_time(par_time_ms);
4514
4515  double code_root_fixup_time_ms =
4516        (os::elapsedTime() - end_par_time_sec) * 1000.0;
4517  phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4518}
4519
4520void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4521  // Process any discovered reference objects - we have
4522  // to do this _before_ we retire the GC alloc regions
4523  // as we may have to copy some 'reachable' referent
4524  // objects (and their reachable sub-graphs) that were
4525  // not copied during the pause.
4526  if (g1_policy()->should_process_references()) {
4527    preserve_cm_referents(per_thread_states);
4528    process_discovered_references(per_thread_states);
4529  } else {
4530    ref_processor_stw()->verify_no_references_recorded();
4531    process_weak_jni_handles();
4532  }
4533
4534  if (G1StringDedup::is_enabled()) {
4535    double fixup_start = os::elapsedTime();
4536
4537    G1STWIsAliveClosure is_alive(this);
4538    G1KeepAliveClosure keep_alive(this);
4539    G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4540
4541    double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4542    g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4543  }
4544
4545  g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4546
4547  if (evacuation_failed()) {
4548    restore_after_evac_failure();
4549
4550    // Reset the G1EvacuationFailureALot counters and flags
4551    // Note: the values are reset only when an actual
4552    // evacuation failure occurs.
4553    NOT_PRODUCT(reset_evacuation_should_fail();)
4554  }
4555
4556  _preserved_marks_set.assert_empty();
4557
4558  // Enqueue any remaining references remaining on the STW
4559  // reference processor's discovered lists. We need to do
4560  // this after the card table is cleaned (and verified) as
4561  // the act of enqueueing entries on to the pending list
4562  // will log these updates (and dirty their associated
4563  // cards). We need these updates logged to update any
4564  // RSets.
4565  if (g1_policy()->should_process_references()) {
4566    enqueue_discovered_references(per_thread_states);
4567  } else {
4568    g1_policy()->phase_times()->record_ref_enq_time(0);
4569  }
4570
4571  _allocator->release_gc_alloc_regions(evacuation_info);
4572
4573  merge_per_thread_state_info(per_thread_states);
4574
4575  // Reset and re-enable the hot card cache.
4576  // Note the counts for the cards in the regions in the
4577  // collection set are reset when the collection set is freed.
4578  _hot_card_cache->reset_hot_cache();
4579  _hot_card_cache->set_use_cache(true);
4580
4581  purge_code_root_memory();
4582
4583  redirty_logged_cards();
4584#if defined(COMPILER2) || INCLUDE_JVMCI
4585  double start = os::elapsedTime();
4586  DerivedPointerTable::update_pointers();
4587  g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4588#endif
4589  g1_policy()->print_age_table();
4590}
4591
4592void G1CollectedHeap::record_obj_copy_mem_stats() {
4593  g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4594
4595  _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4596                                               create_g1_evac_summary(&_old_evac_stats));
4597}
4598
4599void G1CollectedHeap::free_region(HeapRegion* hr,
4600                                  FreeRegionList* free_list,
4601                                  bool skip_remset,
4602                                  bool skip_hot_card_cache,
4603                                  bool locked) {
4604  assert(!hr->is_free(), "the region should not be free");
4605  assert(!hr->is_empty(), "the region should not be empty");
4606  assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4607  assert(free_list != NULL, "pre-condition");
4608
4609  if (G1VerifyBitmaps) {
4610    MemRegion mr(hr->bottom(), hr->end());
4611    concurrent_mark()->clearRangePrevBitmap(mr);
4612  }
4613
4614  // Clear the card counts for this region.
4615  // Note: we only need to do this if the region is not young
4616  // (since we don't refine cards in young regions).
4617  if (!skip_hot_card_cache && !hr->is_young()) {
4618    _hot_card_cache->reset_card_counts(hr);
4619  }
4620  hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4621  free_list->add_ordered(hr);
4622}
4623
4624void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4625                                            FreeRegionList* free_list,
4626                                            bool skip_remset) {
4627  assert(hr->is_humongous(), "this is only for humongous regions");
4628  assert(free_list != NULL, "pre-condition");
4629  hr->clear_humongous();
4630  free_region(hr, free_list, skip_remset);
4631}
4632
4633void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4634                                           const uint humongous_regions_removed) {
4635  if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4636    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4637    _old_set.bulk_remove(old_regions_removed);
4638    _humongous_set.bulk_remove(humongous_regions_removed);
4639  }
4640
4641}
4642
4643void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4644  assert(list != NULL, "list can't be null");
4645  if (!list->is_empty()) {
4646    MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4647    _hrm.insert_list_into_free_list(list);
4648  }
4649}
4650
4651void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4652  decrease_used(bytes);
4653}
4654
4655class G1ParScrubRemSetTask: public AbstractGangTask {
4656protected:
4657  G1RemSet* _g1rs;
4658  HeapRegionClaimer _hrclaimer;
4659
4660public:
4661  G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4662    AbstractGangTask("G1 ScrubRS"),
4663    _g1rs(g1_rs),
4664    _hrclaimer(num_workers) {
4665  }
4666
4667  void work(uint worker_id) {
4668    _g1rs->scrub(worker_id, &_hrclaimer);
4669  }
4670};
4671
4672void G1CollectedHeap::scrub_rem_set() {
4673  uint num_workers = workers()->active_workers();
4674  G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4675  workers()->run_task(&g1_par_scrub_rs_task);
4676}
4677
4678class G1FreeCollectionSetTask : public AbstractGangTask {
4679private:
4680
4681  // Closure applied to all regions in the collection set to do work that needs to
4682  // be done serially in a single thread.
4683  class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4684  private:
4685    EvacuationInfo* _evacuation_info;
4686    const size_t* _surviving_young_words;
4687
4688    // Bytes used in successfully evacuated regions before the evacuation.
4689    size_t _before_used_bytes;
4690    // Bytes used in unsucessfully evacuated regions before the evacuation
4691    size_t _after_used_bytes;
4692
4693    size_t _bytes_allocated_in_old_since_last_gc;
4694
4695    size_t _failure_used_words;
4696    size_t _failure_waste_words;
4697
4698    FreeRegionList _local_free_list;
4699  public:
4700    G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4701      HeapRegionClosure(),
4702      _evacuation_info(evacuation_info),
4703      _surviving_young_words(surviving_young_words),
4704      _before_used_bytes(0),
4705      _after_used_bytes(0),
4706      _bytes_allocated_in_old_since_last_gc(0),
4707      _failure_used_words(0),
4708      _failure_waste_words(0),
4709      _local_free_list("Local Region List for CSet Freeing") {
4710    }
4711
4712    virtual bool doHeapRegion(HeapRegion* r) {
4713      G1CollectedHeap* g1h = G1CollectedHeap::heap();
4714
4715      assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4716      g1h->clear_in_cset(r);
4717
4718      if (r->is_young()) {
4719        assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4720               "Young index %d is wrong for region %u of type %s with %u young regions",
4721               r->young_index_in_cset(),
4722               r->hrm_index(),
4723               r->get_type_str(),
4724               g1h->collection_set()->young_region_length());
4725        size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4726        r->record_surv_words_in_group(words_survived);
4727      }
4728
4729      if (!r->evacuation_failed()) {
4730        assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4731        _before_used_bytes += r->used();
4732        g1h->free_region(r,
4733                         &_local_free_list,
4734                         true, /* skip_remset */
4735                         true, /* skip_hot_card_cache */
4736                         true  /* locked */);
4737      } else {
4738        r->uninstall_surv_rate_group();
4739        r->set_young_index_in_cset(-1);
4740        r->set_evacuation_failed(false);
4741        // When moving a young gen region to old gen, we "allocate" that whole region
4742        // there. This is in addition to any already evacuated objects. Notify the
4743        // policy about that.
4744        // Old gen regions do not cause an additional allocation: both the objects
4745        // still in the region and the ones already moved are accounted for elsewhere.
4746        if (r->is_young()) {
4747          _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4748        }
4749        // The region is now considered to be old.
4750        r->set_old();
4751        // Do some allocation statistics accounting. Regions that failed evacuation
4752        // are always made old, so there is no need to update anything in the young
4753        // gen statistics, but we need to update old gen statistics.
4754        size_t used_words = r->marked_bytes() / HeapWordSize;
4755
4756        _failure_used_words += used_words;
4757        _failure_waste_words += HeapRegion::GrainWords - used_words;
4758
4759        g1h->old_set_add(r);
4760        _after_used_bytes += r->used();
4761      }
4762      return false;
4763    }
4764
4765    void complete_work() {
4766      G1CollectedHeap* g1h = G1CollectedHeap::heap();
4767
4768      _evacuation_info->set_regions_freed(_local_free_list.length());
4769      _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4770
4771      g1h->prepend_to_freelist(&_local_free_list);
4772      g1h->decrement_summary_bytes(_before_used_bytes);
4773
4774      G1Policy* policy = g1h->g1_policy();
4775      policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4776
4777      g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4778    }
4779  };
4780
4781  G1CollectionSet* _collection_set;
4782  G1SerialFreeCollectionSetClosure _cl;
4783  const size_t* _surviving_young_words;
4784
4785  size_t _rs_lengths;
4786
4787  volatile jint _serial_work_claim;
4788
4789  struct WorkItem {
4790    uint region_idx;
4791    bool is_young;
4792    bool evacuation_failed;
4793
4794    WorkItem(HeapRegion* r) {
4795      region_idx = r->hrm_index();
4796      is_young = r->is_young();
4797      evacuation_failed = r->evacuation_failed();
4798    }
4799  };
4800
4801  volatile size_t _parallel_work_claim;
4802  size_t _num_work_items;
4803  WorkItem* _work_items;
4804
4805  void do_serial_work() {
4806    // Need to grab the lock to be allowed to modify the old region list.
4807    MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4808    _collection_set->iterate(&_cl);
4809  }
4810
4811  void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4812    G1CollectedHeap* g1h = G1CollectedHeap::heap();
4813
4814    HeapRegion* r = g1h->region_at(region_idx);
4815    assert(!g1h->is_on_master_free_list(r), "sanity");
4816
4817    Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4818
4819    if (!is_young) {
4820      g1h->_hot_card_cache->reset_card_counts(r);
4821    }
4822
4823    if (!evacuation_failed) {
4824      r->rem_set()->clear_locked();
4825    }
4826  }
4827
4828  class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4829  private:
4830    size_t _cur_idx;
4831    WorkItem* _work_items;
4832  public:
4833    G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4834
4835    virtual bool doHeapRegion(HeapRegion* r) {
4836      _work_items[_cur_idx++] = WorkItem(r);
4837      return false;
4838    }
4839  };
4840
4841  void prepare_work() {
4842    G1PrepareFreeCollectionSetClosure cl(_work_items);
4843    _collection_set->iterate(&cl);
4844  }
4845
4846  void complete_work() {
4847    _cl.complete_work();
4848
4849    G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4850    policy->record_max_rs_lengths(_rs_lengths);
4851    policy->cset_regions_freed();
4852  }
4853public:
4854  G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4855    AbstractGangTask("G1 Free Collection Set"),
4856    _cl(evacuation_info, surviving_young_words),
4857    _collection_set(collection_set),
4858    _surviving_young_words(surviving_young_words),
4859    _serial_work_claim(0),
4860    _rs_lengths(0),
4861    _parallel_work_claim(0),
4862    _num_work_items(collection_set->region_length()),
4863    _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4864    prepare_work();
4865  }
4866
4867  ~G1FreeCollectionSetTask() {
4868    complete_work();
4869    FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4870  }
4871
4872  // Chunk size for work distribution. The chosen value has been determined experimentally
4873  // to be a good tradeoff between overhead and achievable parallelism.
4874  static uint chunk_size() { return 32; }
4875
4876  virtual void work(uint worker_id) {
4877    G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4878
4879    // Claim serial work.
4880    if (_serial_work_claim == 0) {
4881      jint value = Atomic::add(1, &_serial_work_claim) - 1;
4882      if (value == 0) {
4883        double serial_time = os::elapsedTime();
4884        do_serial_work();
4885        timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4886      }
4887    }
4888
4889    // Start parallel work.
4890    double young_time = 0.0;
4891    bool has_young_time = false;
4892    double non_young_time = 0.0;
4893    bool has_non_young_time = false;
4894
4895    while (true) {
4896      size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4897      size_t cur = end - chunk_size();
4898
4899      if (cur >= _num_work_items) {
4900        break;
4901      }
4902
4903      double start_time = os::elapsedTime();
4904
4905      end = MIN2(end, _num_work_items);
4906
4907      for (; cur < end; cur++) {
4908        bool is_young = _work_items[cur].is_young;
4909
4910        do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4911
4912        double end_time = os::elapsedTime();
4913        double time_taken = end_time - start_time;
4914        if (is_young) {
4915          young_time += time_taken;
4916          has_young_time = true;
4917        } else {
4918          non_young_time += time_taken;
4919          has_non_young_time = true;
4920        }
4921        start_time = end_time;
4922      }
4923    }
4924
4925    if (has_young_time) {
4926      timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4927    }
4928    if (has_non_young_time) {
4929      timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4930    }
4931  }
4932};
4933
4934void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4935  _eden.clear();
4936
4937  double free_cset_start_time = os::elapsedTime();
4938
4939  {
4940    uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4941    uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4942
4943    G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4944
4945    log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4946                        cl.name(),
4947                        num_workers,
4948                        _collection_set.region_length());
4949    workers()->run_task(&cl, num_workers);
4950  }
4951  g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4952
4953  collection_set->clear();
4954}
4955
4956class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4957 private:
4958  FreeRegionList* _free_region_list;
4959  HeapRegionSet* _proxy_set;
4960  uint _humongous_objects_reclaimed;
4961  uint _humongous_regions_reclaimed;
4962  size_t _freed_bytes;
4963 public:
4964
4965  G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4966    _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4967  }
4968
4969  virtual bool doHeapRegion(HeapRegion* r) {
4970    if (!r->is_starts_humongous()) {
4971      return false;
4972    }
4973
4974    G1CollectedHeap* g1h = G1CollectedHeap::heap();
4975
4976    oop obj = (oop)r->bottom();
4977    G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4978
4979    // The following checks whether the humongous object is live are sufficient.
4980    // The main additional check (in addition to having a reference from the roots
4981    // or the young gen) is whether the humongous object has a remembered set entry.
4982    //
4983    // A humongous object cannot be live if there is no remembered set for it
4984    // because:
4985    // - there can be no references from within humongous starts regions referencing
4986    // the object because we never allocate other objects into them.
4987    // (I.e. there are no intra-region references that may be missed by the
4988    // remembered set)
4989    // - as soon there is a remembered set entry to the humongous starts region
4990    // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4991    // until the end of a concurrent mark.
4992    //
4993    // It is not required to check whether the object has been found dead by marking
4994    // or not, in fact it would prevent reclamation within a concurrent cycle, as
4995    // all objects allocated during that time are considered live.
4996    // SATB marking is even more conservative than the remembered set.
4997    // So if at this point in the collection there is no remembered set entry,
4998    // nobody has a reference to it.
4999    // At the start of collection we flush all refinement logs, and remembered sets
5000    // are completely up-to-date wrt to references to the humongous object.
5001    //
5002    // Other implementation considerations:
5003    // - never consider object arrays at this time because they would pose
5004    // considerable effort for cleaning up the the remembered sets. This is
5005    // required because stale remembered sets might reference locations that
5006    // are currently allocated into.
5007    uint region_idx = r->hrm_index();
5008    if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5009        !r->rem_set()->is_empty()) {
5010      log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5011                               region_idx,
5012                               (size_t)obj->size() * HeapWordSize,
5013                               p2i(r->bottom()),
5014                               r->rem_set()->occupied(),
5015                               r->rem_set()->strong_code_roots_list_length(),
5016                               next_bitmap->isMarked(r->bottom()),
5017                               g1h->is_humongous_reclaim_candidate(region_idx),
5018                               obj->is_typeArray()
5019                              );
5020      return false;
5021    }
5022
5023    guarantee(obj->is_typeArray(),
5024              "Only eagerly reclaiming type arrays is supported, but the object "
5025              PTR_FORMAT " is not.", p2i(r->bottom()));
5026
5027    log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5028                             region_idx,
5029                             (size_t)obj->size() * HeapWordSize,
5030                             p2i(r->bottom()),
5031                             r->rem_set()->occupied(),
5032                             r->rem_set()->strong_code_roots_list_length(),
5033                             next_bitmap->isMarked(r->bottom()),
5034                             g1h->is_humongous_reclaim_candidate(region_idx),
5035                             obj->is_typeArray()
5036                            );
5037
5038    // Need to clear mark bit of the humongous object if already set.
5039    if (next_bitmap->isMarked(r->bottom())) {
5040      next_bitmap->clear(r->bottom());
5041    }
5042    _humongous_objects_reclaimed++;
5043    do {
5044      HeapRegion* next = g1h->next_region_in_humongous(r);
5045      _freed_bytes += r->used();
5046      r->set_containing_set(NULL);
5047      _humongous_regions_reclaimed++;
5048      g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
5049      r = next;
5050    } while (r != NULL);
5051
5052    return false;
5053  }
5054
5055  uint humongous_objects_reclaimed() {
5056    return _humongous_objects_reclaimed;
5057  }
5058
5059  uint humongous_regions_reclaimed() {
5060    return _humongous_regions_reclaimed;
5061  }
5062
5063  size_t bytes_freed() const {
5064    return _freed_bytes;
5065  }
5066};
5067
5068void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5069  assert_at_safepoint(true);
5070
5071  if (!G1EagerReclaimHumongousObjects ||
5072      (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5073    g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5074    return;
5075  }
5076
5077  double start_time = os::elapsedTime();
5078
5079  FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5080
5081  G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5082  heap_region_iterate(&cl);
5083
5084  remove_from_old_sets(0, cl.humongous_regions_reclaimed());
5085
5086  G1HRPrinter* hrp = hr_printer();
5087  if (hrp->is_active()) {
5088    FreeRegionListIterator iter(&local_cleanup_list);
5089    while (iter.more_available()) {
5090      HeapRegion* hr = iter.get_next();
5091      hrp->cleanup(hr);
5092    }
5093  }
5094
5095  prepend_to_freelist(&local_cleanup_list);
5096  decrement_summary_bytes(cl.bytes_freed());
5097
5098  g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5099                                                                    cl.humongous_objects_reclaimed());
5100}
5101
5102class G1AbandonCollectionSetClosure : public HeapRegionClosure {
5103public:
5104  virtual bool doHeapRegion(HeapRegion* r) {
5105    assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
5106    G1CollectedHeap::heap()->clear_in_cset(r);
5107    r->set_young_index_in_cset(-1);
5108    return false;
5109  }
5110};
5111
5112void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
5113  G1AbandonCollectionSetClosure cl;
5114  collection_set->iterate(&cl);
5115
5116  collection_set->clear();
5117  collection_set->stop_incremental_building();
5118}
5119
5120void G1CollectedHeap::set_free_regions_coming() {
5121  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5122
5123  assert(!free_regions_coming(), "pre-condition");
5124  _free_regions_coming = true;
5125}
5126
5127void G1CollectedHeap::reset_free_regions_coming() {
5128  assert(free_regions_coming(), "pre-condition");
5129
5130  {
5131    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5132    _free_regions_coming = false;
5133    SecondaryFreeList_lock->notify_all();
5134  }
5135
5136  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5137}
5138
5139void G1CollectedHeap::wait_while_free_regions_coming() {
5140  // Most of the time we won't have to wait, so let's do a quick test
5141  // first before we take the lock.
5142  if (!free_regions_coming()) {
5143    return;
5144  }
5145
5146  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5147
5148  {
5149    MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5150    while (free_regions_coming()) {
5151      SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5152    }
5153  }
5154
5155  log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5156}
5157
5158bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5159  return _allocator->is_retained_old_region(hr);
5160}
5161
5162void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5163  _eden.add(hr);
5164  _g1_policy->set_region_eden(hr);
5165}
5166
5167#ifdef ASSERT
5168
5169class NoYoungRegionsClosure: public HeapRegionClosure {
5170private:
5171  bool _success;
5172public:
5173  NoYoungRegionsClosure() : _success(true) { }
5174  bool doHeapRegion(HeapRegion* r) {
5175    if (r->is_young()) {
5176      log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5177                            p2i(r->bottom()), p2i(r->end()));
5178      _success = false;
5179    }
5180    return false;
5181  }
5182  bool success() { return _success; }
5183};
5184
5185bool G1CollectedHeap::check_young_list_empty() {
5186  bool ret = (young_regions_count() == 0);
5187
5188  NoYoungRegionsClosure closure;
5189  heap_region_iterate(&closure);
5190  ret = ret && closure.success();
5191
5192  return ret;
5193}
5194
5195#endif // ASSERT
5196
5197class TearDownRegionSetsClosure : public HeapRegionClosure {
5198private:
5199  HeapRegionSet *_old_set;
5200
5201public:
5202  TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5203
5204  bool doHeapRegion(HeapRegion* r) {
5205    if (r->is_old()) {
5206      _old_set->remove(r);
5207    } else if(r->is_young()) {
5208      r->uninstall_surv_rate_group();
5209    } else {
5210      // We ignore free regions, we'll empty the free list afterwards.
5211      // We ignore humongous regions, we're not tearing down the
5212      // humongous regions set.
5213      assert(r->is_free() || r->is_humongous(),
5214             "it cannot be another type");
5215    }
5216    return false;
5217  }
5218
5219  ~TearDownRegionSetsClosure() {
5220    assert(_old_set->is_empty(), "post-condition");
5221  }
5222};
5223
5224void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5225  assert_at_safepoint(true /* should_be_vm_thread */);
5226
5227  if (!free_list_only) {
5228    TearDownRegionSetsClosure cl(&_old_set);
5229    heap_region_iterate(&cl);
5230
5231    // Note that emptying the _young_list is postponed and instead done as
5232    // the first step when rebuilding the regions sets again. The reason for
5233    // this is that during a full GC string deduplication needs to know if
5234    // a collected region was young or old when the full GC was initiated.
5235  }
5236  _hrm.remove_all_free_regions();
5237}
5238
5239void G1CollectedHeap::increase_used(size_t bytes) {
5240  _summary_bytes_used += bytes;
5241}
5242
5243void G1CollectedHeap::decrease_used(size_t bytes) {
5244  assert(_summary_bytes_used >= bytes,
5245         "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5246         _summary_bytes_used, bytes);
5247  _summary_bytes_used -= bytes;
5248}
5249
5250void G1CollectedHeap::set_used(size_t bytes) {
5251  _summary_bytes_used = bytes;
5252}
5253
5254class RebuildRegionSetsClosure : public HeapRegionClosure {
5255private:
5256  bool            _free_list_only;
5257  HeapRegionSet*   _old_set;
5258  HeapRegionManager*   _hrm;
5259  size_t          _total_used;
5260
5261public:
5262  RebuildRegionSetsClosure(bool free_list_only,
5263                           HeapRegionSet* old_set, HeapRegionManager* hrm) :
5264    _free_list_only(free_list_only),
5265    _old_set(old_set), _hrm(hrm), _total_used(0) {
5266    assert(_hrm->num_free_regions() == 0, "pre-condition");
5267    if (!free_list_only) {
5268      assert(_old_set->is_empty(), "pre-condition");
5269    }
5270  }
5271
5272  bool doHeapRegion(HeapRegion* r) {
5273    if (r->is_empty()) {
5274      // Add free regions to the free list
5275      r->set_free();
5276      r->set_allocation_context(AllocationContext::system());
5277      _hrm->insert_into_free_list(r);
5278    } else if (!_free_list_only) {
5279
5280      if (r->is_humongous()) {
5281        // We ignore humongous regions. We left the humongous set unchanged.
5282      } else {
5283        assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5284        // We now consider all regions old, so register as such. Leave
5285        // archive regions set that way, however, while still adding
5286        // them to the old set.
5287        if (!r->is_archive()) {
5288          r->set_old();
5289        }
5290        _old_set->add(r);
5291      }
5292      _total_used += r->used();
5293    }
5294
5295    return false;
5296  }
5297
5298  size_t total_used() {
5299    return _total_used;
5300  }
5301};
5302
5303void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5304  assert_at_safepoint(true /* should_be_vm_thread */);
5305
5306  if (!free_list_only) {
5307    _eden.clear();
5308    _survivor.clear();
5309  }
5310
5311  RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5312  heap_region_iterate(&cl);
5313
5314  if (!free_list_only) {
5315    set_used(cl.total_used());
5316    if (_archive_allocator != NULL) {
5317      _archive_allocator->clear_used();
5318    }
5319  }
5320  assert(used_unlocked() == recalculate_used(),
5321         "inconsistent used_unlocked(), "
5322         "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5323         used_unlocked(), recalculate_used());
5324}
5325
5326void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5327  _refine_cte_cl->set_concurrent(concurrent);
5328}
5329
5330bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5331  HeapRegion* hr = heap_region_containing(p);
5332  return hr->is_in(p);
5333}
5334
5335// Methods for the mutator alloc region
5336
5337HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5338                                                      bool force) {
5339  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5340  bool should_allocate = g1_policy()->should_allocate_mutator_region();
5341  if (force || should_allocate) {
5342    HeapRegion* new_alloc_region = new_region(word_size,
5343                                              false /* is_old */,
5344                                              false /* do_expand */);
5345    if (new_alloc_region != NULL) {
5346      set_region_short_lived_locked(new_alloc_region);
5347      _hr_printer.alloc(new_alloc_region, !should_allocate);
5348      _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5349      return new_alloc_region;
5350    }
5351  }
5352  return NULL;
5353}
5354
5355void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5356                                                  size_t allocated_bytes) {
5357  assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5358  assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5359
5360  collection_set()->add_eden_region(alloc_region);
5361  increase_used(allocated_bytes);
5362  _hr_printer.retire(alloc_region);
5363  // We update the eden sizes here, when the region is retired,
5364  // instead of when it's allocated, since this is the point that its
5365  // used space has been recored in _summary_bytes_used.
5366  g1mm()->update_eden_size();
5367}
5368
5369// Methods for the GC alloc regions
5370
5371bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5372  if (dest.is_old()) {
5373    return true;
5374  } else {
5375    return survivor_regions_count() < g1_policy()->max_survivor_regions();
5376  }
5377}
5378
5379HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5380  assert(FreeList_lock->owned_by_self(), "pre-condition");
5381
5382  if (!has_more_regions(dest)) {
5383    return NULL;
5384  }
5385
5386  const bool is_survivor = dest.is_young();
5387
5388  HeapRegion* new_alloc_region = new_region(word_size,
5389                                            !is_survivor,
5390                                            true /* do_expand */);
5391  if (new_alloc_region != NULL) {
5392    // We really only need to do this for old regions given that we
5393    // should never scan survivors. But it doesn't hurt to do it
5394    // for survivors too.
5395    new_alloc_region->record_timestamp();
5396    if (is_survivor) {
5397      new_alloc_region->set_survivor();
5398      _survivor.add(new_alloc_region);
5399      _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5400    } else {
5401      new_alloc_region->set_old();
5402      _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5403    }
5404    _hr_printer.alloc(new_alloc_region);
5405    bool during_im = collector_state()->during_initial_mark_pause();
5406    new_alloc_region->note_start_of_copying(during_im);
5407    return new_alloc_region;
5408  }
5409  return NULL;
5410}
5411
5412void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5413                                             size_t allocated_bytes,
5414                                             InCSetState dest) {
5415  bool during_im = collector_state()->during_initial_mark_pause();
5416  alloc_region->note_end_of_copying(during_im);
5417  g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5418  if (dest.is_old()) {
5419    _old_set.add(alloc_region);
5420  }
5421  _hr_printer.retire(alloc_region);
5422}
5423
5424HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5425  bool expanded = false;
5426  uint index = _hrm.find_highest_free(&expanded);
5427
5428  if (index != G1_NO_HRM_INDEX) {
5429    if (expanded) {
5430      log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5431                                HeapRegion::GrainWords * HeapWordSize);
5432    }
5433    _hrm.allocate_free_regions_starting_at(index, 1);
5434    return region_at(index);
5435  }
5436  return NULL;
5437}
5438
5439// Optimized nmethod scanning
5440
5441class RegisterNMethodOopClosure: public OopClosure {
5442  G1CollectedHeap* _g1h;
5443  nmethod* _nm;
5444
5445  template <class T> void do_oop_work(T* p) {
5446    T heap_oop = oopDesc::load_heap_oop(p);
5447    if (!oopDesc::is_null(heap_oop)) {
5448      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5449      HeapRegion* hr = _g1h->heap_region_containing(obj);
5450      assert(!hr->is_continues_humongous(),
5451             "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5452             " starting at " HR_FORMAT,
5453             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5454
5455      // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5456      hr->add_strong_code_root_locked(_nm);
5457    }
5458  }
5459
5460public:
5461  RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5462    _g1h(g1h), _nm(nm) {}
5463
5464  void do_oop(oop* p)       { do_oop_work(p); }
5465  void do_oop(narrowOop* p) { do_oop_work(p); }
5466};
5467
5468class UnregisterNMethodOopClosure: public OopClosure {
5469  G1CollectedHeap* _g1h;
5470  nmethod* _nm;
5471
5472  template <class T> void do_oop_work(T* p) {
5473    T heap_oop = oopDesc::load_heap_oop(p);
5474    if (!oopDesc::is_null(heap_oop)) {
5475      oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5476      HeapRegion* hr = _g1h->heap_region_containing(obj);
5477      assert(!hr->is_continues_humongous(),
5478             "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5479             " starting at " HR_FORMAT,
5480             p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5481
5482      hr->remove_strong_code_root(_nm);
5483    }
5484  }
5485
5486public:
5487  UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5488    _g1h(g1h), _nm(nm) {}
5489
5490  void do_oop(oop* p)       { do_oop_work(p); }
5491  void do_oop(narrowOop* p) { do_oop_work(p); }
5492};
5493
5494void G1CollectedHeap::register_nmethod(nmethod* nm) {
5495  CollectedHeap::register_nmethod(nm);
5496
5497  guarantee(nm != NULL, "sanity");
5498  RegisterNMethodOopClosure reg_cl(this, nm);
5499  nm->oops_do(&reg_cl);
5500}
5501
5502void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5503  CollectedHeap::unregister_nmethod(nm);
5504
5505  guarantee(nm != NULL, "sanity");
5506  UnregisterNMethodOopClosure reg_cl(this, nm);
5507  nm->oops_do(&reg_cl, true);
5508}
5509
5510void G1CollectedHeap::purge_code_root_memory() {
5511  double purge_start = os::elapsedTime();
5512  G1CodeRootSet::purge();
5513  double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5514  g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5515}
5516
5517class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5518  G1CollectedHeap* _g1h;
5519
5520public:
5521  RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5522    _g1h(g1h) {}
5523
5524  void do_code_blob(CodeBlob* cb) {
5525    nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5526    if (nm == NULL) {
5527      return;
5528    }
5529
5530    if (ScavengeRootsInCode) {
5531      _g1h->register_nmethod(nm);
5532    }
5533  }
5534};
5535
5536void G1CollectedHeap::rebuild_strong_code_roots() {
5537  RebuildStrongCodeRootClosure blob_cl(this);
5538  CodeCache::blobs_do(&blob_cl);
5539}
5540