1/*
2 * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/cardTableModRefBS.hpp"
27#include "gc/shared/cardTableRS.hpp"
28#include "gc/shared/collectedHeap.hpp"
29#include "gc/shared/genCollectedHeap.hpp"
30#include "gc/shared/space.inline.hpp"
31#include "memory/allocation.inline.hpp"
32#include "memory/virtualspace.hpp"
33#include "oops/oop.inline.hpp"
34#include "runtime/java.hpp"
35#include "runtime/mutexLocker.hpp"
36#include "runtime/orderAccess.inline.hpp"
37#include "runtime/vmThread.hpp"
38
39void CardTableModRefBSForCTRS::
40non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
41                                     OopsInGenClosure* cl,
42                                     CardTableRS* ct,
43                                     uint n_threads) {
44  assert(n_threads > 0, "expected n_threads > 0");
45  assert(n_threads <= ParallelGCThreads,
46         "n_threads: %u > ParallelGCThreads: %u", n_threads, ParallelGCThreads);
47
48  // Make sure the LNC array is valid for the space.
49  jbyte**   lowest_non_clean;
50  uintptr_t lowest_non_clean_base_chunk_index;
51  size_t    lowest_non_clean_chunk_size;
52  get_LNC_array_for_space(sp, lowest_non_clean,
53                          lowest_non_clean_base_chunk_index,
54                          lowest_non_clean_chunk_size);
55
56  uint n_strides = n_threads * ParGCStridesPerThread;
57  SequentialSubTasksDone* pst = sp->par_seq_tasks();
58  // Sets the condition for completion of the subtask (how many threads
59  // need to finish in order to be done).
60  pst->set_n_threads(n_threads);
61  pst->set_n_tasks(n_strides);
62
63  uint stride = 0;
64  while (!pst->is_task_claimed(/* reference */ stride)) {
65    process_stride(sp, mr, stride, n_strides,
66                   cl, ct,
67                   lowest_non_clean,
68                   lowest_non_clean_base_chunk_index,
69                   lowest_non_clean_chunk_size);
70  }
71  if (pst->all_tasks_completed()) {
72    // Clear lowest_non_clean array for next time.
73    intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
74    uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
75    for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
76      intptr_t ind = ch - lowest_non_clean_base_chunk_index;
77      assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
78             "Bounds error");
79      lowest_non_clean[ind] = NULL;
80    }
81  }
82}
83
84void
85CardTableModRefBSForCTRS::
86process_stride(Space* sp,
87               MemRegion used,
88               jint stride, int n_strides,
89               OopsInGenClosure* cl,
90               CardTableRS* ct,
91               jbyte** lowest_non_clean,
92               uintptr_t lowest_non_clean_base_chunk_index,
93               size_t    lowest_non_clean_chunk_size) {
94  // We go from higher to lower addresses here; it wouldn't help that much
95  // because of the strided parallelism pattern used here.
96
97  // Find the first card address of the first chunk in the stride that is
98  // at least "bottom" of the used region.
99  jbyte*    start_card  = byte_for(used.start());
100  jbyte*    end_card    = byte_after(used.last());
101  uintptr_t start_chunk = addr_to_chunk_index(used.start());
102  uintptr_t start_chunk_stride_num = start_chunk % n_strides;
103  jbyte* chunk_card_start;
104
105  if ((uintptr_t)stride >= start_chunk_stride_num) {
106    chunk_card_start = (jbyte*)(start_card +
107                                (stride - start_chunk_stride_num) *
108                                ParGCCardsPerStrideChunk);
109  } else {
110    // Go ahead to the next chunk group boundary, then to the requested stride.
111    chunk_card_start = (jbyte*)(start_card +
112                                (n_strides - start_chunk_stride_num + stride) *
113                                ParGCCardsPerStrideChunk);
114  }
115
116  while (chunk_card_start < end_card) {
117    // Even though we go from lower to higher addresses below, the
118    // strided parallelism can interleave the actual processing of the
119    // dirty pages in various ways. For a specific chunk within this
120    // stride, we take care to avoid double scanning or missing a card
121    // by suitably initializing the "min_done" field in process_chunk_boundaries()
122    // below, together with the dirty region extension accomplished in
123    // DirtyCardToOopClosure::do_MemRegion().
124    jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
125    // Invariant: chunk_mr should be fully contained within the "used" region.
126    MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
127                                         chunk_card_end >= end_card ?
128                                           used.end() : addr_for(chunk_card_end));
129    assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
130    assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
131
132    // This function is used by the parallel card table iteration.
133    const bool parallel = true;
134
135    DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
136                                                     cl->gen_boundary(),
137                                                     parallel);
138    ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
139
140
141    // Process the chunk.
142    process_chunk_boundaries(sp,
143                             dcto_cl,
144                             chunk_mr,
145                             used,
146                             lowest_non_clean,
147                             lowest_non_clean_base_chunk_index,
148                             lowest_non_clean_chunk_size);
149
150    // We want the LNC array updates above in process_chunk_boundaries
151    // to be visible before any of the card table value changes as a
152    // result of the dirty card iteration below.
153    OrderAccess::storestore();
154
155    // We want to clear the cards: clear_cl here does the work of finding
156    // contiguous dirty ranges of cards to process and clear.
157    clear_cl.do_MemRegion(chunk_mr);
158
159    // Find the next chunk of the stride.
160    chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
161  }
162}
163
164void
165CardTableModRefBSForCTRS::
166process_chunk_boundaries(Space* sp,
167                         DirtyCardToOopClosure* dcto_cl,
168                         MemRegion chunk_mr,
169                         MemRegion used,
170                         jbyte** lowest_non_clean,
171                         uintptr_t lowest_non_clean_base_chunk_index,
172                         size_t    lowest_non_clean_chunk_size)
173{
174  // We must worry about non-array objects that cross chunk boundaries,
175  // because such objects are both precisely and imprecisely marked:
176  // .. if the head of such an object is dirty, the entire object
177  //    needs to be scanned, under the interpretation that this
178  //    was an imprecise mark
179  // .. if the head of such an object is not dirty, we can assume
180  //    precise marking and it's efficient to scan just the dirty
181  //    cards.
182  // In either case, each scanned reference must be scanned precisely
183  // once so as to avoid cloning of a young referent. For efficiency,
184  // our closures depend on this property and do not protect against
185  // double scans.
186
187  uintptr_t start_chunk_index = addr_to_chunk_index(chunk_mr.start());
188  assert(start_chunk_index >= lowest_non_clean_base_chunk_index, "Bounds error.");
189  uintptr_t cur_chunk_index   = start_chunk_index - lowest_non_clean_base_chunk_index;
190
191  // First, set "our" lowest_non_clean entry, which would be
192  // used by the thread scanning an adjoining left chunk with
193  // a non-array object straddling the mutual boundary.
194  // Find the object that spans our boundary, if one exists.
195  // first_block is the block possibly straddling our left boundary.
196  HeapWord* first_block = sp->block_start(chunk_mr.start());
197  assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
198         "First chunk should always have a co-initial block");
199  // Does the block straddle the chunk's left boundary, and is it
200  // a non-array object?
201  if (first_block < chunk_mr.start()        // first block straddles left bdry
202      && sp->block_is_obj(first_block)      // first block is an object
203      && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
204           || oop(first_block)->is_typeArray())) {
205    // Find our least non-clean card, so that a left neighbor
206    // does not scan an object straddling the mutual boundary
207    // too far to the right, and attempt to scan a portion of
208    // that object twice.
209    jbyte* first_dirty_card = NULL;
210    jbyte* last_card_of_first_obj =
211        byte_for(first_block + sp->block_size(first_block) - 1);
212    jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
213    jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
214    jbyte* last_card_to_check =
215      (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
216                    (intptr_t) last_card_of_first_obj);
217    // Note that this does not need to go beyond our last card
218    // if our first object completely straddles this chunk.
219    for (jbyte* cur = first_card_of_cur_chunk;
220         cur <= last_card_to_check; cur++) {
221      jbyte val = *cur;
222      if (card_will_be_scanned(val)) {
223        first_dirty_card = cur; break;
224      } else {
225        assert(!card_may_have_been_dirty(val), "Error");
226      }
227    }
228    if (first_dirty_card != NULL) {
229      assert(cur_chunk_index < lowest_non_clean_chunk_size, "Bounds error.");
230      assert(lowest_non_clean[cur_chunk_index] == NULL,
231             "Write exactly once : value should be stable hereafter for this round");
232      lowest_non_clean[cur_chunk_index] = first_dirty_card;
233    }
234  } else {
235    // In this case we can help our neighbor by just asking them
236    // to stop at our first card (even though it may not be dirty).
237    assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
238    jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
239    lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
240  }
241
242  // Next, set our own max_to_do, which will strictly/exclusively bound
243  // the highest address that we will scan past the right end of our chunk.
244  HeapWord* max_to_do = NULL;
245  if (chunk_mr.end() < used.end()) {
246    // This is not the last chunk in the used region.
247    // What is our last block? We check the first block of
248    // the next (right) chunk rather than strictly check our last block
249    // because it's potentially more efficient to do so.
250    HeapWord* const last_block = sp->block_start(chunk_mr.end());
251    assert(last_block <= chunk_mr.end(), "In case this property changes.");
252    if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
253        || !sp->block_is_obj(last_block)   // last_block isn't an object
254        || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
255        || oop(last_block)->is_typeArray()) {
256      max_to_do = chunk_mr.end();
257    } else {
258      assert(last_block < chunk_mr.end(), "Tautology");
259      // It is a non-array object that straddles the right boundary of this chunk.
260      // last_obj_card is the card corresponding to the start of the last object
261      // in the chunk.  Note that the last object may not start in
262      // the chunk.
263      jbyte* const last_obj_card = byte_for(last_block);
264      const jbyte val = *last_obj_card;
265      if (!card_will_be_scanned(val)) {
266        assert(!card_may_have_been_dirty(val), "Error");
267        // The card containing the head is not dirty.  Any marks on
268        // subsequent cards still in this chunk must have been made
269        // precisely; we can cap processing at the end of our chunk.
270        max_to_do = chunk_mr.end();
271      } else {
272        // The last object must be considered dirty, and extends onto the
273        // following chunk.  Look for a dirty card in that chunk that will
274        // bound our processing.
275        jbyte* limit_card = NULL;
276        const size_t last_block_size = sp->block_size(last_block);
277        jbyte* const last_card_of_last_obj =
278          byte_for(last_block + last_block_size - 1);
279        jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
280        // This search potentially goes a long distance looking
281        // for the next card that will be scanned, terminating
282        // at the end of the last_block, if no earlier dirty card
283        // is found.
284        assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
285               "last card of next chunk may be wrong");
286        for (jbyte* cur = first_card_of_next_chunk;
287             cur <= last_card_of_last_obj; cur++) {
288          const jbyte val = *cur;
289          if (card_will_be_scanned(val)) {
290            limit_card = cur; break;
291          } else {
292            assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
293          }
294        }
295        if (limit_card != NULL) {
296          max_to_do = addr_for(limit_card);
297          assert(limit_card != NULL && max_to_do != NULL, "Error");
298        } else {
299          // The following is a pessimistic value, because it's possible
300          // that a dirty card on a subsequent chunk has been cleared by
301          // the time we get to look at it; we'll correct for that further below,
302          // using the LNC array which records the least non-clean card
303          // before cards were cleared in a particular chunk.
304          limit_card = last_card_of_last_obj;
305          max_to_do = last_block + last_block_size;
306          assert(limit_card != NULL && max_to_do != NULL, "Error");
307        }
308        assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
309               "Bounds error.");
310        // It is possible that a dirty card for the last object may have been
311        // cleared before we had a chance to examine it. In that case, the value
312        // will have been logged in the LNC for that chunk.
313        // We need to examine as many chunks to the right as this object
314        // covers. However, we need to bound this checking to the largest
315        // entry in the LNC array: this is because the heap may expand
316        // after the LNC array has been created but before we reach this point,
317        // and the last block in our chunk may have been expanded to include
318        // the expansion delta (and possibly subsequently allocated from, so
319        // it wouldn't be sufficient to check whether that last block was
320        // or was not an object at this point).
321        uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
322                                              - lowest_non_clean_base_chunk_index;
323        const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
324                                              - lowest_non_clean_base_chunk_index;
325        if (last_chunk_index_to_check > last_chunk_index) {
326          assert(last_block + last_block_size > used.end(),
327                 "Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
328                 " does not exceed used.end() = " PTR_FORMAT ","
329                 " yet last_chunk_index_to_check " INTPTR_FORMAT
330                 " exceeds last_chunk_index " INTPTR_FORMAT,
331                 p2i(last_block), p2i(last_block + last_block_size),
332                 p2i(used.end()),
333                 last_chunk_index_to_check, last_chunk_index);
334          assert(sp->used_region().end() > used.end(),
335                 "Expansion did not happen: "
336                 "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
337                 p2i(sp->used_region().start()), p2i(sp->used_region().end()),
338                 p2i(used.start()), p2i(used.end()));
339          last_chunk_index_to_check = last_chunk_index;
340        }
341        for (uintptr_t lnc_index = cur_chunk_index + 1;
342             lnc_index <= last_chunk_index_to_check;
343             lnc_index++) {
344          jbyte* lnc_card = lowest_non_clean[lnc_index];
345          if (lnc_card != NULL) {
346            // we can stop at the first non-NULL entry we find
347            if (lnc_card <= limit_card) {
348              limit_card = lnc_card;
349              max_to_do = addr_for(limit_card);
350              assert(limit_card != NULL && max_to_do != NULL, "Error");
351            }
352            // In any case, we break now
353            break;
354          }  // else continue to look for a non-NULL entry if any
355        }
356        assert(limit_card != NULL && max_to_do != NULL, "Error");
357      }
358      assert(max_to_do != NULL, "OOPS 1 !");
359    }
360    assert(max_to_do != NULL, "OOPS 2!");
361  } else {
362    max_to_do = used.end();
363  }
364  assert(max_to_do != NULL, "OOPS 3!");
365  // Now we can set the closure we're using so it doesn't to beyond
366  // max_to_do.
367  dcto_cl->set_min_done(max_to_do);
368#ifndef PRODUCT
369  dcto_cl->set_last_bottom(max_to_do);
370#endif
371}
372
373void
374CardTableModRefBSForCTRS::
375get_LNC_array_for_space(Space* sp,
376                        jbyte**& lowest_non_clean,
377                        uintptr_t& lowest_non_clean_base_chunk_index,
378                        size_t& lowest_non_clean_chunk_size) {
379
380  int       i        = find_covering_region_containing(sp->bottom());
381  MemRegion covered  = _covered[i];
382  size_t    n_chunks = chunks_to_cover(covered);
383
384  // Only the first thread to obtain the lock will resize the
385  // LNC array for the covered region.  Any later expansion can't affect
386  // the used_at_save_marks region.
387  // (I observed a bug in which the first thread to execute this would
388  // resize, and then it would cause "expand_and_allocate" that would
389  // increase the number of chunks in the covered region.  Then a second
390  // thread would come and execute this, see that the size didn't match,
391  // and free and allocate again.  So the first thread would be using a
392  // freed "_lowest_non_clean" array.)
393
394  // Do a dirty read here. If we pass the conditional then take the rare
395  // event lock and do the read again in case some other thread had already
396  // succeeded and done the resize.
397  int cur_collection = GenCollectedHeap::heap()->total_collections();
398  // Updated _last_LNC_resizing_collection[i] must not be visible before
399  // _lowest_non_clean and friends are visible. Therefore use acquire/release
400  // to guarantee this on non TSO architecures.
401  if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
402    MutexLocker x(ParGCRareEvent_lock);
403    // This load_acquire is here for clarity only. The MutexLocker already fences.
404    if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
405      if (_lowest_non_clean[i] == NULL ||
406          n_chunks != _lowest_non_clean_chunk_size[i]) {
407
408        // Should we delete the old?
409        if (_lowest_non_clean[i] != NULL) {
410          assert(n_chunks != _lowest_non_clean_chunk_size[i],
411                 "logical consequence");
412          FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
413          _lowest_non_clean[i] = NULL;
414        }
415        // Now allocate a new one if necessary.
416        if (_lowest_non_clean[i] == NULL) {
417          _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
418          _lowest_non_clean_chunk_size[i]       = n_chunks;
419          _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
420          for (int j = 0; j < (int)n_chunks; j++)
421            _lowest_non_clean[i][j] = NULL;
422        }
423      }
424      // Make sure this gets visible only after _lowest_non_clean* was initialized
425      OrderAccess::release_store(&_last_LNC_resizing_collection[i], cur_collection);
426    }
427  }
428  // In any case, now do the initialization.
429  lowest_non_clean                  = _lowest_non_clean[i];
430  lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
431  lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
432}
433