relocInfo.hpp revision 7877:cc8363b030d5
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_CODE_RELOCINFO_HPP
26#define SHARE_VM_CODE_RELOCINFO_HPP
27
28#include "memory/allocation.hpp"
29#include "utilities/top.hpp"
30
31class NativeMovConstReg;
32
33// Types in this file:
34//    relocInfo
35//      One element of an array of halfwords encoding compressed relocations.
36//      Also, the source of relocation types (relocInfo::oop_type, ...).
37//    Relocation
38//      A flyweight object representing a single relocation.
39//      It is fully unpacked from the compressed relocation array.
40//    metadata_Relocation, ... (subclasses of Relocation)
41//      The location of some type-specific operations (metadata_addr, ...).
42//      Also, the source of relocation specs (metadata_Relocation::spec, ...).
43//    oop_Relocation, ... (subclasses of Relocation)
44//      oops in the code stream (strings, class loaders)
45//      Also, the source of relocation specs (oop_Relocation::spec, ...).
46//    RelocationHolder
47//      A ValueObj type which acts as a union holding a Relocation object.
48//      Represents a relocation spec passed into a CodeBuffer during assembly.
49//    RelocIterator
50//      A StackObj which iterates over the relocations associated with
51//      a range of code addresses.  Can be used to operate a copy of code.
52//    BoundRelocation
53//      An _internal_ type shared by packers and unpackers of relocations.
54//      It pastes together a RelocationHolder with some pointers into
55//      code and relocInfo streams.
56
57
58// Notes on relocType:
59//
60// These hold enough information to read or write a value embedded in
61// the instructions of an CodeBlob.  They're used to update:
62//
63//   1) embedded oops     (isOop()          == true)
64//   2) inline caches     (isIC()           == true)
65//   3) runtime calls     (isRuntimeCall()  == true)
66//   4) internal word ref (isInternalWord() == true)
67//   5) external word ref (isExternalWord() == true)
68//
69// when objects move (GC) or if code moves (compacting the code heap).
70// They are also used to patch the code (if a call site must change)
71//
72// A relocInfo is represented in 16 bits:
73//   4 bits indicating the relocation type
74//  12 bits indicating the offset from the previous relocInfo address
75//
76// The offsets accumulate along the relocInfo stream to encode the
77// address within the CodeBlob, which is named RelocIterator::addr().
78// The address of a particular relocInfo always points to the first
79// byte of the relevant instruction (and not to any of its subfields
80// or embedded immediate constants).
81//
82// The offset value is scaled appropriately for the target machine.
83// (See relocInfo_<arch>.hpp for the offset scaling.)
84//
85// On some machines, there may also be a "format" field which may provide
86// additional information about the format of the instruction stream
87// at the corresponding code address.  The format value is usually zero.
88// Any machine (such as Intel) whose instructions can sometimes contain
89// more than one relocatable constant needs format codes to distinguish
90// which operand goes with a given relocation.
91//
92// If the target machine needs N format bits, the offset has 12-N bits,
93// the format is encoded between the offset and the type, and the
94// relocInfo_<arch>.hpp file has manifest constants for the format codes.
95//
96// If the type is "data_prefix_tag" then the offset bits are further encoded,
97// and in fact represent not a code-stream offset but some inline data.
98// The data takes the form of a counted sequence of halfwords, which
99// precedes the actual relocation record.  (Clients never see it directly.)
100// The interpetation of this extra data depends on the relocation type.
101//
102// On machines that have 32-bit immediate fields, there is usually
103// little need for relocation "prefix" data, because the instruction stream
104// is a perfectly reasonable place to store the value.  On machines in
105// which 32-bit values must be "split" across instructions, the relocation
106// data is the "true" specification of the value, which is then applied
107// to some field of the instruction (22 or 13 bits, on SPARC).
108//
109// Whenever the location of the CodeBlob changes, any PC-relative
110// relocations, and any internal_word_type relocations, must be reapplied.
111// After the GC runs, oop_type relocations must be reapplied.
112//
113//
114// Here are meanings of the types:
115//
116// relocInfo::none -- a filler record
117//   Value:  none
118//   Instruction: The corresponding code address is ignored
119//   Data:  Any data prefix and format code are ignored
120//   (This means that any relocInfo can be disabled by setting
121//   its type to none.  See relocInfo::remove.)
122//
123// relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
124//   Value:  an oop, or else the address (handle) of an oop
125//   Instruction types: memory (load), set (load address)
126//   Data:  []       an oop stored in 4 bytes of instruction
127//          [n]      n is the index of an oop in the CodeBlob's oop pool
128//          [[N]n l] and l is a byte offset to be applied to the oop
129//          [Nn Ll]  both index and offset may be 32 bits if necessary
130//   Here is a special hack, used only by the old compiler:
131//          [[N]n 00] the value is the __address__ of the nth oop in the pool
132//   (Note that the offset allows optimal references to class variables.)
133//
134// relocInfo::internal_word_type -- an address within the same CodeBlob
135// relocInfo::section_word_type -- same, but can refer to another section
136//   Value:  an address in the CodeBlob's code or constants section
137//   Instruction types: memory (load), set (load address)
138//   Data:  []     stored in 4 bytes of instruction
139//          [[L]l] a relative offset (see [About Offsets] below)
140//   In the case of section_word_type, the offset is relative to a section
141//   base address, and the section number (e.g., SECT_INSTS) is encoded
142//   into the low two bits of the offset L.
143//
144// relocInfo::external_word_type -- a fixed address in the runtime system
145//   Value:  an address
146//   Instruction types: memory (load), set (load address)
147//   Data:  []   stored in 4 bytes of instruction
148//          [n]  the index of a "well-known" stub (usual case on RISC)
149//          [Ll] a 32-bit address
150//
151// relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
152//   Value:  an address
153//   Instruction types: PC-relative call (or a PC-relative branch)
154//   Data:  []   stored in 4 bytes of instruction
155//
156// relocInfo::static_call_type -- a static call
157//   Value:  an CodeBlob, a stub, or a fixup routine
158//   Instruction types: a call
159//   Data:  []
160//   The identity of the callee is extracted from debugging information.
161//   //%note reloc_3
162//
163// relocInfo::virtual_call_type -- a virtual call site (which includes an inline
164//                                 cache)
165//   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
166//   Instruction types: a call, plus some associated set-oop instructions
167//   Data:  []       the associated set-oops are adjacent to the call
168//          [n]      n is a relative offset to the first set-oop
169//          [[N]n l] and l is a limit within which the set-oops occur
170//          [Nn Ll]  both n and l may be 32 bits if necessary
171//   The identity of the callee is extracted from debugging information.
172//
173// relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
174//
175//    Same info as a static_call_type. We use a special type, so the handling of
176//    virtuals and statics are separated.
177//
178//
179//   The offset n points to the first set-oop.  (See [About Offsets] below.)
180//   In turn, the set-oop instruction specifies or contains an oop cell devoted
181//   exclusively to the IC call, which can be patched along with the call.
182//
183//   The locations of any other set-oops are found by searching the relocation
184//   information starting at the first set-oop, and continuing until all
185//   relocations up through l have been inspected.  The value l is another
186//   relative offset.  (Both n and l are relative to the call's first byte.)
187//
188//   The limit l of the search is exclusive.  However, if it points within
189//   the call (e.g., offset zero), it is adjusted to point after the call and
190//   any associated machine-specific delay slot.
191//
192//   Since the offsets could be as wide as 32-bits, these conventions
193//   put no restrictions whatever upon code reorganization.
194//
195//   The compiler is responsible for ensuring that transition from a clean
196//   state to a monomorphic compiled state is MP-safe.  This implies that
197//   the system must respond well to intermediate states where a random
198//   subset of the set-oops has been correctly from the clean state
199//   upon entry to the VEP of the compiled method.  In the case of a
200//   machine (Intel) with a single set-oop instruction, the 32-bit
201//   immediate field must not straddle a unit of memory coherence.
202//   //%note reloc_3
203//
204// relocInfo::static_stub_type -- an extra stub for each static_call_type
205//   Value:  none
206//   Instruction types: a virtual call:  { set_oop; jump; }
207//   Data:  [[N]n]  the offset of the associated static_call reloc
208//   This stub becomes the target of a static call which must be upgraded
209//   to a virtual call (because the callee is interpreted).
210//   See [About Offsets] below.
211//   //%note reloc_2
212//
213// For example:
214//
215//   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
216//   ------------                               ----    -----------
217// sethi      %hi(myObject),  R               oop_type [n(myObject)]
218// ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
219// add R2, 1, R2
220// st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
221//%note reloc_1
222//
223// This uses 4 instruction words, 8 relocation halfwords,
224// and an entry (which is sharable) in the CodeBlob's oop pool,
225// for a total of 36 bytes.
226//
227// Note that the compiler is responsible for ensuring the "fldOffset" when
228// added to "%lo(myObject)" does not overflow the immediate fields of the
229// memory instructions.
230//
231//
232// [About Offsets] Relative offsets are supplied to this module as
233// positive byte offsets, but they may be internally stored scaled
234// and/or negated, depending on what is most compact for the target
235// system.  Since the object pointed to by the offset typically
236// precedes the relocation address, it is profitable to store
237// these negative offsets as positive numbers, but this decision
238// is internal to the relocation information abstractions.
239//
240
241class Relocation;
242class CodeBuffer;
243class CodeSection;
244class RelocIterator;
245
246class relocInfo VALUE_OBJ_CLASS_SPEC {
247  friend class RelocIterator;
248 public:
249  enum relocType {
250    none                    =  0, // Used when no relocation should be generated
251    oop_type                =  1, // embedded oop
252    virtual_call_type       =  2, // a standard inline cache call for a virtual send
253    opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
254    static_call_type        =  4, // a static send
255    static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
256    runtime_call_type       =  6, // call to fixed external routine
257    external_word_type      =  7, // reference to fixed external address
258    internal_word_type      =  8, // reference within the current code blob
259    section_word_type       =  9, // internal, but a cross-section reference
260    poll_type               = 10, // polling instruction for safepoints
261    poll_return_type        = 11, // polling instruction for safepoints at return
262    metadata_type           = 12, // metadata that used to be oops
263    trampoline_stub_type    = 13, // stub-entry for trampoline
264    yet_unused_type_1       = 14, // Still unused
265    data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
266    type_mask               = 15  // A mask which selects only the above values
267  };
268
269 protected:
270  unsigned short _value;
271
272  enum RawBitsToken { RAW_BITS };
273  relocInfo(relocType type, RawBitsToken ignore, int bits)
274    : _value((type << nontype_width) + bits) { }
275
276  relocInfo(relocType type, RawBitsToken ignore, int off, int f)
277    : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
278
279 public:
280  // constructor
281  relocInfo(relocType type, int offset, int format = 0)
282#ifndef ASSERT
283  {
284    (*this) = relocInfo(type, RAW_BITS, offset, format);
285  }
286#else
287  // Put a bunch of assertions out-of-line.
288  ;
289#endif
290
291  #define APPLY_TO_RELOCATIONS(visitor) \
292    visitor(oop) \
293    visitor(metadata) \
294    visitor(virtual_call) \
295    visitor(opt_virtual_call) \
296    visitor(static_call) \
297    visitor(static_stub) \
298    visitor(runtime_call) \
299    visitor(external_word) \
300    visitor(internal_word) \
301    visitor(poll) \
302    visitor(poll_return) \
303    visitor(section_word) \
304    visitor(trampoline_stub) \
305
306
307 public:
308  enum {
309    value_width             = sizeof(unsigned short) * BitsPerByte,
310    type_width              = 4,   // == log2(type_mask+1)
311    nontype_width           = value_width - type_width,
312    datalen_width           = nontype_width-1,
313    datalen_tag             = 1 << datalen_width,  // or-ed into _value
314    datalen_limit           = 1 << datalen_width,
315    datalen_mask            = (1 << datalen_width)-1
316  };
317
318  // accessors
319 public:
320  relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
321  int  format()           const { return format_mask==0? 0: format_mask &
322                                         ((unsigned)_value >> offset_width); }
323  int  addr_offset()      const { assert(!is_prefix(), "must have offset");
324                                  return (_value & offset_mask)*offset_unit; }
325
326 protected:
327  const short* data()     const { assert(is_datalen(), "must have data");
328                                  return (const short*)(this + 1); }
329  int          datalen()  const { assert(is_datalen(), "must have data");
330                                  return (_value & datalen_mask); }
331  int         immediate() const { assert(is_immediate(), "must have immed");
332                                  return (_value & datalen_mask); }
333 public:
334  static int addr_unit()        { return offset_unit; }
335  static int offset_limit()     { return (1 << offset_width) * offset_unit; }
336
337  void set_type(relocType type);
338  void set_format(int format);
339
340  void remove() { set_type(none); }
341
342 protected:
343  bool is_none()                const { return type() == none; }
344  bool is_prefix()              const { return type() == data_prefix_tag; }
345  bool is_datalen()             const { assert(is_prefix(), "must be prefix");
346                                        return (_value & datalen_tag) != 0; }
347  bool is_immediate()           const { assert(is_prefix(), "must be prefix");
348                                        return (_value & datalen_tag) == 0; }
349
350 public:
351  // Occasionally records of type relocInfo::none will appear in the stream.
352  // We do not bother to filter these out, but clients should ignore them.
353  // These records serve as "filler" in three ways:
354  //  - to skip large spans of unrelocated code (this is rare)
355  //  - to pad out the relocInfo array to the required oop alignment
356  //  - to disable old relocation information which is no longer applicable
357
358  inline friend relocInfo filler_relocInfo();
359
360  // Every non-prefix relocation may be preceded by at most one prefix,
361  // which supplies 1 or more halfwords of associated data.  Conventionally,
362  // an int is represented by 0, 1, or 2 halfwords, depending on how
363  // many bits are required to represent the value.  (In addition,
364  // if the sole halfword is a 10-bit unsigned number, it is made
365  // "immediate" in the prefix header word itself.  This optimization
366  // is invisible outside this module.)
367
368  inline friend relocInfo prefix_relocInfo(int datalen);
369
370 protected:
371  // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
372  static relocInfo immediate_relocInfo(int data0) {
373    assert(fits_into_immediate(data0), "data0 in limits");
374    return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
375  }
376  static bool fits_into_immediate(int data0) {
377    return (data0 >= 0 && data0 < datalen_limit);
378  }
379
380 public:
381  // Support routines for compilers.
382
383  // This routine takes an infant relocInfo (unprefixed) and
384  // edits in its prefix, if any.  It also updates dest.locs_end.
385  void initialize(CodeSection* dest, Relocation* reloc);
386
387  // This routine updates a prefix and returns the limit pointer.
388  // It tries to compress the prefix from 32 to 16 bits, and if
389  // successful returns a reduced "prefix_limit" pointer.
390  relocInfo* finish_prefix(short* prefix_limit);
391
392  // bit-packers for the data array:
393
394  // As it happens, the bytes within the shorts are ordered natively,
395  // but the shorts within the word are ordered big-endian.
396  // This is an arbitrary choice, made this way mainly to ease debugging.
397  static int data0_from_int(jint x)         { return x >> value_width; }
398  static int data1_from_int(jint x)         { return (short)x; }
399  static jint jint_from_data(short* data) {
400    return (data[0] << value_width) + (unsigned short)data[1];
401  }
402
403  static jint short_data_at(int n, short* data, int datalen) {
404    return datalen > n ? data[n] : 0;
405  }
406
407  static jint jint_data_at(int n, short* data, int datalen) {
408    return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
409  }
410
411  // Update methods for relocation information
412  // (since code is dynamically patched, we also need to dynamically update the relocation info)
413  // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
414  static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
415  static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
416
417  // Machine dependent stuff
418#ifdef TARGET_ARCH_x86
419# include "relocInfo_x86.hpp"
420#endif
421#ifdef TARGET_ARCH_sparc
422# include "relocInfo_sparc.hpp"
423#endif
424#ifdef TARGET_ARCH_zero
425# include "relocInfo_zero.hpp"
426#endif
427#ifdef TARGET_ARCH_arm
428# include "relocInfo_arm.hpp"
429#endif
430#ifdef TARGET_ARCH_ppc
431# include "relocInfo_ppc.hpp"
432#endif
433#ifdef TARGET_ARCH_aarch64
434# include "relocInfo_aarch64.hpp"
435#endif
436
437 protected:
438  // Derived constant, based on format_width which is PD:
439  enum {
440    offset_width       = nontype_width - format_width,
441    offset_mask        = (1<<offset_width) - 1,
442    format_mask        = (1<<format_width) - 1
443  };
444 public:
445  enum {
446    // Conservatively large estimate of maximum length (in shorts)
447    // of any relocation record.
448    // Extended format is length prefix, data words, and tag/offset suffix.
449    length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
450    have_format        = format_width > 0
451  };
452};
453
454#define FORWARD_DECLARE_EACH_CLASS(name)              \
455class name##_Relocation;
456APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
457#undef FORWARD_DECLARE_EACH_CLASS
458
459
460
461inline relocInfo filler_relocInfo() {
462  return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
463}
464
465inline relocInfo prefix_relocInfo(int datalen = 0) {
466  assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
467  return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
468}
469
470
471// Holder for flyweight relocation objects.
472// Although the flyweight subclasses are of varying sizes,
473// the holder is "one size fits all".
474class RelocationHolder VALUE_OBJ_CLASS_SPEC {
475  friend class Relocation;
476  friend class CodeSection;
477
478 private:
479  // this preallocated memory must accommodate all subclasses of Relocation
480  // (this number is assertion-checked in Relocation::operator new)
481  enum { _relocbuf_size = 5 };
482  void* _relocbuf[ _relocbuf_size ];
483
484 public:
485  Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
486  inline relocInfo::relocType type() const;
487
488  // Add a constant offset to a relocation.  Helper for class Address.
489  RelocationHolder plus(int offset) const;
490
491  inline RelocationHolder();                // initializes type to none
492
493  inline RelocationHolder(Relocation* r);   // make a copy
494
495  static const RelocationHolder none;
496};
497
498// A RelocIterator iterates through the relocation information of a CodeBlob.
499// It is a variable BoundRelocation which is able to take on successive
500// values as it is advanced through a code stream.
501// Usage:
502//   RelocIterator iter(nm);
503//   while (iter.next()) {
504//     iter.reloc()->some_operation();
505//   }
506// or:
507//   RelocIterator iter(nm);
508//   while (iter.next()) {
509//     switch (iter.type()) {
510//      case relocInfo::oop_type          :
511//      case relocInfo::ic_type           :
512//      case relocInfo::prim_type         :
513//      case relocInfo::uncommon_type     :
514//      case relocInfo::runtime_call_type :
515//      case relocInfo::internal_word_type:
516//      case relocInfo::external_word_type:
517//      ...
518//     }
519//   }
520
521class RelocIterator : public StackObj {
522  enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
523  friend class Relocation;
524  friend class relocInfo;       // for change_reloc_info_for_address only
525  typedef relocInfo::relocType relocType;
526
527 private:
528  address    _limit;   // stop producing relocations after this _addr
529  relocInfo* _current; // the current relocation information
530  relocInfo* _end;     // end marker; we're done iterating when _current == _end
531  nmethod*   _code;    // compiled method containing _addr
532  address    _addr;    // instruction to which the relocation applies
533  short      _databuf; // spare buffer for compressed data
534  short*     _data;    // pointer to the relocation's data
535  short      _datalen; // number of halfwords in _data
536  char       _format;  // position within the instruction
537
538  // Base addresses needed to compute targets of section_word_type relocs.
539  address    _section_start[SECT_LIMIT];
540  address    _section_end  [SECT_LIMIT];
541
542  void set_has_current(bool b) {
543    _datalen = !b ? -1 : 0;
544    debug_only(_data = NULL);
545  }
546  void set_current(relocInfo& ri) {
547    _current = &ri;
548    set_has_current(true);
549  }
550
551  RelocationHolder _rh; // where the current relocation is allocated
552
553  relocInfo* current() const { assert(has_current(), "must have current");
554                               return _current; }
555
556  void set_limits(address begin, address limit);
557
558  void advance_over_prefix();    // helper method
559
560  void initialize_misc();
561
562  void initialize(nmethod* nm, address begin, address limit);
563
564  RelocIterator() { initialize_misc(); }
565
566 public:
567  // constructor
568  RelocIterator(nmethod* nm,     address begin = NULL, address limit = NULL);
569  RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
570
571  // get next reloc info, return !eos
572  bool next() {
573    _current++;
574    assert(_current <= _end, "must not overrun relocInfo");
575    if (_current == _end) {
576      set_has_current(false);
577      return false;
578    }
579    set_has_current(true);
580
581    if (_current->is_prefix()) {
582      advance_over_prefix();
583      assert(!current()->is_prefix(), "only one prefix at a time");
584    }
585
586    _addr += _current->addr_offset();
587
588    if (_limit != NULL && _addr >= _limit) {
589      set_has_current(false);
590      return false;
591    }
592
593    if (relocInfo::have_format)  _format = current()->format();
594    return true;
595  }
596
597  // accessors
598  address      limit()        const { return _limit; }
599  void     set_limit(address x);
600  relocType    type()         const { return current()->type(); }
601  int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
602  address      addr()         const { return _addr; }
603  nmethod*     code()         const { return _code; }
604  short*       data()         const { return _data; }
605  int          datalen()      const { return _datalen; }
606  bool     has_current()      const { return _datalen >= 0; }
607
608  void       set_addr(address addr) { _addr = addr; }
609  bool   addr_in_const()      const;
610
611  address section_start(int n) const {
612    assert(_section_start[n], "must be initialized");
613    return _section_start[n];
614  }
615  address section_end(int n) const {
616    assert(_section_end[n], "must be initialized");
617    return _section_end[n];
618  }
619
620  // The address points to the affected displacement part of the instruction.
621  // For RISC, this is just the whole instruction.
622  // For Intel, this is an unaligned 32-bit word.
623
624  // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
625  #define EACH_TYPE(name)                               \
626  inline name##_Relocation* name##_reloc();
627  APPLY_TO_RELOCATIONS(EACH_TYPE)
628  #undef EACH_TYPE
629  // generic relocation accessor; switches on type to call the above
630  Relocation* reloc();
631
632  // CodeBlob's have relocation indexes for faster random access:
633  static int locs_and_index_size(int code_size, int locs_size);
634  // Store an index into [dest_start+dest_count..dest_end).
635  // At dest_start[0..dest_count] is the actual relocation information.
636  // Everything else up to dest_end is free space for the index.
637  static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end);
638
639#ifndef PRODUCT
640 public:
641  void print();
642  void print_current();
643#endif
644};
645
646
647// A Relocation is a flyweight object allocated within a RelocationHolder.
648// It represents the relocation data of relocation record.
649// So, the RelocIterator unpacks relocInfos into Relocations.
650
651class Relocation VALUE_OBJ_CLASS_SPEC {
652  friend class RelocationHolder;
653  friend class RelocIterator;
654
655 private:
656  static void guarantee_size();
657
658  // When a relocation has been created by a RelocIterator,
659  // this field is non-null.  It allows the relocation to know
660  // its context, such as the address to which it applies.
661  RelocIterator* _binding;
662
663 protected:
664  RelocIterator* binding() const {
665    assert(_binding != NULL, "must be bound");
666    return _binding;
667  }
668  void set_binding(RelocIterator* b) {
669    assert(_binding == NULL, "must be unbound");
670    _binding = b;
671    assert(_binding != NULL, "must now be bound");
672  }
673
674  Relocation() {
675    _binding = NULL;
676  }
677
678  static RelocationHolder newHolder() {
679    return RelocationHolder();
680  }
681
682 public:
683  void* operator new(size_t size, const RelocationHolder& holder) throw() {
684    if (size > sizeof(holder._relocbuf)) guarantee_size();
685    assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
686    return holder.reloc();
687  }
688
689  // make a generic relocation for a given type (if possible)
690  static RelocationHolder spec_simple(relocInfo::relocType rtype);
691
692  // here is the type-specific hook which writes relocation data:
693  virtual void pack_data_to(CodeSection* dest) { }
694
695  // here is the type-specific hook which reads (unpacks) relocation data:
696  virtual void unpack_data() {
697    assert(datalen()==0 || type()==relocInfo::none, "no data here");
698  }
699
700  static bool is_reloc_index(intptr_t index) {
701    return 0 < index && index < os::vm_page_size();
702  }
703
704 protected:
705  // Helper functions for pack_data_to() and unpack_data().
706
707  // Most of the compression logic is confined here.
708  // (The "immediate data" mechanism of relocInfo works independently
709  // of this stuff, and acts to further compress most 1-word data prefixes.)
710
711  // A variable-width int is encoded as a short if it will fit in 16 bits.
712  // The decoder looks at datalen to decide whether to unpack short or jint.
713  // Most relocation records are quite simple, containing at most two ints.
714
715  static bool is_short(jint x) { return x == (short)x; }
716  static short* add_short(short* p, int x)  { *p++ = x; return p; }
717  static short* add_jint (short* p, jint x) {
718    *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
719    return p;
720  }
721  static short* add_var_int(short* p, jint x) {   // add a variable-width int
722    if (is_short(x))  p = add_short(p, x);
723    else              p = add_jint (p, x);
724    return p;
725  }
726
727  static short* pack_1_int_to(short* p, jint x0) {
728    // Format is one of:  [] [x] [Xx]
729    if (x0 != 0)  p = add_var_int(p, x0);
730    return p;
731  }
732  int unpack_1_int() {
733    assert(datalen() <= 2, "too much data");
734    return relocInfo::jint_data_at(0, data(), datalen());
735  }
736
737  // With two ints, the short form is used only if both ints are short.
738  short* pack_2_ints_to(short* p, jint x0, jint x1) {
739    // Format is one of:  [] [x y?] [Xx Y?y]
740    if (x0 == 0 && x1 == 0) {
741      // no halfwords needed to store zeroes
742    } else if (is_short(x0) && is_short(x1)) {
743      // 1-2 halfwords needed to store shorts
744      p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
745    } else {
746      // 3-4 halfwords needed to store jints
747      p = add_jint(p, x0);             p = add_var_int(p, x1);
748    }
749    return p;
750  }
751  void unpack_2_ints(jint& x0, jint& x1) {
752    int    dlen = datalen();
753    short* dp  = data();
754    if (dlen <= 2) {
755      x0 = relocInfo::short_data_at(0, dp, dlen);
756      x1 = relocInfo::short_data_at(1, dp, dlen);
757    } else {
758      assert(dlen <= 4, "too much data");
759      x0 = relocInfo::jint_data_at(0, dp, dlen);
760      x1 = relocInfo::jint_data_at(2, dp, dlen);
761    }
762  }
763
764 protected:
765  // platform-dependent utilities for decoding and patching instructions
766  void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
767  void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
768  address    pd_call_destination     (address orig_addr = NULL);
769  void       pd_set_call_destination (address x);
770
771  // this extracts the address of an address in the code stream instead of the reloc data
772  address* pd_address_in_code       ();
773
774  // this extracts an address from the code stream instead of the reloc data
775  address  pd_get_address_from_code ();
776
777  // these convert from byte offsets, to scaled offsets, to addresses
778  static jint scaled_offset(address x, address base) {
779    int byte_offset = x - base;
780    int offset = -byte_offset / relocInfo::addr_unit();
781    assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
782    return offset;
783  }
784  static jint scaled_offset_null_special(address x, address base) {
785    // Some relocations treat offset=0 as meaning NULL.
786    // Handle this extra convention carefully.
787    if (x == NULL)  return 0;
788    assert(x != base, "offset must not be zero");
789    return scaled_offset(x, base);
790  }
791  static address address_from_scaled_offset(jint offset, address base) {
792    int byte_offset = -( offset * relocInfo::addr_unit() );
793    return base + byte_offset;
794  }
795
796  // these convert between indexes and addresses in the runtime system
797  static int32_t runtime_address_to_index(address runtime_address);
798  static address index_to_runtime_address(int32_t index);
799
800  // helpers for mapping between old and new addresses after a move or resize
801  address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
802  address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
803  void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
804
805 public:
806  // accessors which only make sense for a bound Relocation
807  address  addr()         const { return binding()->addr(); }
808  nmethod* code()         const { return binding()->code(); }
809  bool     addr_in_const() const { return binding()->addr_in_const(); }
810 protected:
811  short*   data()         const { return binding()->data(); }
812  int      datalen()      const { return binding()->datalen(); }
813  int      format()       const { return binding()->format(); }
814
815 public:
816  virtual relocInfo::relocType type()            { return relocInfo::none; }
817
818  // is it a call instruction?
819  virtual bool is_call()                         { return false; }
820
821  // is it a data movement instruction?
822  virtual bool is_data()                         { return false; }
823
824  // some relocations can compute their own values
825  virtual address  value();
826
827  // all relocations are able to reassert their values
828  virtual void set_value(address x);
829
830  virtual void clear_inline_cache()              { }
831
832  // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
833  // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
834  // probably a reasonable assumption, since empty caches simplifies code reloacation.
835  virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
836
837  void print();
838};
839
840
841// certain inlines must be deferred until class Relocation is defined:
842
843inline RelocationHolder::RelocationHolder() {
844  // initialize the vtbl, just to keep things type-safe
845  new(*this) Relocation();
846}
847
848
849inline RelocationHolder::RelocationHolder(Relocation* r) {
850  // wordwise copy from r (ok if it copies garbage after r)
851  for (int i = 0; i < _relocbuf_size; i++) {
852    _relocbuf[i] = ((void**)r)[i];
853  }
854}
855
856
857relocInfo::relocType RelocationHolder::type() const {
858  return reloc()->type();
859}
860
861// A DataRelocation always points at a memory or load-constant instruction..
862// It is absolute on most machines, and the constant is split on RISCs.
863// The specific subtypes are oop, external_word, and internal_word.
864// By convention, the "value" does not include a separately reckoned "offset".
865class DataRelocation : public Relocation {
866 public:
867  bool          is_data()                      { return true; }
868
869  // both target and offset must be computed somehow from relocation data
870  virtual int    offset()                      { return 0; }
871  address         value()                      = 0;
872  void        set_value(address x)             { set_value(x, offset()); }
873  void        set_value(address x, intptr_t o) {
874    if (addr_in_const())
875      *(address*)addr() = x;
876    else
877      pd_set_data_value(x, o);
878  }
879  void        verify_value(address x) {
880    if (addr_in_const())
881      assert(*(address*)addr() == x, "must agree");
882    else
883      pd_verify_data_value(x, offset());
884  }
885
886  // The "o" (displacement) argument is relevant only to split relocations
887  // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
888  // can encode more than 32 bits between them.  This allows compilers to
889  // share set-hi instructions between addresses that differ by a small
890  // offset (e.g., different static variables in the same class).
891  // On such machines, the "x" argument to set_value on all set-lo
892  // instructions must be the same as the "x" argument for the
893  // corresponding set-hi instructions.  The "o" arguments for the
894  // set-hi instructions are ignored, and must not affect the high-half
895  // immediate constant.  The "o" arguments for the set-lo instructions are
896  // added into the low-half immediate constant, and must not overflow it.
897};
898
899// A CallRelocation always points at a call instruction.
900// It is PC-relative on most machines.
901class CallRelocation : public Relocation {
902 public:
903  bool is_call() { return true; }
904
905  address  destination()                    { return pd_call_destination(); }
906  void     set_destination(address x); // pd_set_call_destination
907
908  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
909  address  value()                          { return destination();  }
910  void     set_value(address x)             { set_destination(x); }
911};
912
913class oop_Relocation : public DataRelocation {
914  relocInfo::relocType type() { return relocInfo::oop_type; }
915
916 public:
917  // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
918  // an oop in the CodeBlob's oop pool
919  static RelocationHolder spec(int oop_index, int offset = 0) {
920    assert(oop_index > 0, "must be a pool-resident oop");
921    RelocationHolder rh = newHolder();
922    new(rh) oop_Relocation(oop_index, offset);
923    return rh;
924  }
925  // an oop in the instruction stream
926  static RelocationHolder spec_for_immediate() {
927    const int oop_index = 0;
928    const int offset    = 0;    // if you want an offset, use the oop pool
929    RelocationHolder rh = newHolder();
930    new(rh) oop_Relocation(oop_index, offset);
931    return rh;
932  }
933
934 private:
935  jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
936  jint _offset;                     // byte offset to apply to the oop itself
937
938  oop_Relocation(int oop_index, int offset) {
939    _oop_index = oop_index; _offset = offset;
940  }
941
942  friend class RelocIterator;
943  oop_Relocation() { }
944
945 public:
946  int oop_index() { return _oop_index; }
947  int offset()    { return _offset; }
948
949  // data is packed in "2_ints" format:  [i o] or [Ii Oo]
950  void pack_data_to(CodeSection* dest);
951  void unpack_data();
952
953  void fix_oop_relocation();        // reasserts oop value
954
955  void verify_oop_relocation();
956
957  address value()  { return (address) *oop_addr(); }
958
959  bool oop_is_immediate()  { return oop_index() == 0; }
960
961  oop* oop_addr();                  // addr or &pool[jint_data]
962  oop  oop_value();                 // *oop_addr
963  // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
964};
965
966
967// copy of oop_Relocation for now but may delete stuff in both/either
968class metadata_Relocation : public DataRelocation {
969  relocInfo::relocType type() { return relocInfo::metadata_type; }
970
971 public:
972  // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
973  // an metadata in the CodeBlob's metadata pool
974  static RelocationHolder spec(int metadata_index, int offset = 0) {
975    assert(metadata_index > 0, "must be a pool-resident metadata");
976    RelocationHolder rh = newHolder();
977    new(rh) metadata_Relocation(metadata_index, offset);
978    return rh;
979  }
980  // an metadata in the instruction stream
981  static RelocationHolder spec_for_immediate() {
982    const int metadata_index = 0;
983    const int offset    = 0;    // if you want an offset, use the metadata pool
984    RelocationHolder rh = newHolder();
985    new(rh) metadata_Relocation(metadata_index, offset);
986    return rh;
987  }
988
989 private:
990  jint _metadata_index;            // if > 0, index into nmethod::metadata_at
991  jint _offset;                     // byte offset to apply to the metadata itself
992
993  metadata_Relocation(int metadata_index, int offset) {
994    _metadata_index = metadata_index; _offset = offset;
995  }
996
997  friend class RelocIterator;
998  metadata_Relocation() { }
999
1000  // Fixes a Metadata pointer in the code. Most platforms embeds the
1001  // Metadata pointer in the code at compile time so this is empty
1002  // for them.
1003  void pd_fix_value(address x);
1004
1005 public:
1006  int metadata_index() { return _metadata_index; }
1007  int offset()    { return _offset; }
1008
1009  // data is packed in "2_ints" format:  [i o] or [Ii Oo]
1010  void pack_data_to(CodeSection* dest);
1011  void unpack_data();
1012
1013  void fix_metadata_relocation();        // reasserts metadata value
1014
1015  void verify_metadata_relocation();
1016
1017  address value()  { return (address) *metadata_addr(); }
1018
1019  bool metadata_is_immediate()  { return metadata_index() == 0; }
1020
1021  Metadata**   metadata_addr();                  // addr or &pool[jint_data]
1022  Metadata*    metadata_value();                 // *metadata_addr
1023  // Note:  metadata_value transparently converts Universe::non_metadata_word to NULL.
1024};
1025
1026
1027class virtual_call_Relocation : public CallRelocation {
1028  relocInfo::relocType type() { return relocInfo::virtual_call_type; }
1029
1030 public:
1031  // "cached_value" points to the first associated set-oop.
1032  // The oop_limit helps find the last associated set-oop.
1033  // (See comments at the top of this file.)
1034  static RelocationHolder spec(address cached_value) {
1035    RelocationHolder rh = newHolder();
1036    new(rh) virtual_call_Relocation(cached_value);
1037    return rh;
1038  }
1039
1040  virtual_call_Relocation(address cached_value) {
1041    _cached_value = cached_value;
1042    assert(cached_value != NULL, "first oop address must be specified");
1043  }
1044
1045 private:
1046  address _cached_value;               // location of set-value instruction
1047
1048  friend class RelocIterator;
1049  virtual_call_Relocation() { }
1050
1051
1052 public:
1053  address cached_value();
1054
1055  // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
1056  // oop_limit is set to 0 if the limit falls somewhere within the call.
1057  // When unpacking, a zero oop_limit is taken to refer to the end of the call.
1058  // (This has the effect of bringing in the call's delay slot on SPARC.)
1059  void pack_data_to(CodeSection* dest);
1060  void unpack_data();
1061
1062  void clear_inline_cache();
1063};
1064
1065
1066class opt_virtual_call_Relocation : public CallRelocation {
1067  relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
1068
1069 public:
1070  static RelocationHolder spec() {
1071    RelocationHolder rh = newHolder();
1072    new(rh) opt_virtual_call_Relocation();
1073    return rh;
1074  }
1075
1076 private:
1077  friend class RelocIterator;
1078  opt_virtual_call_Relocation() { }
1079
1080 public:
1081  void clear_inline_cache();
1082
1083  // find the matching static_stub
1084  address static_stub();
1085};
1086
1087
1088class static_call_Relocation : public CallRelocation {
1089  relocInfo::relocType type() { return relocInfo::static_call_type; }
1090
1091 public:
1092  static RelocationHolder spec() {
1093    RelocationHolder rh = newHolder();
1094    new(rh) static_call_Relocation();
1095    return rh;
1096  }
1097
1098 private:
1099  friend class RelocIterator;
1100  static_call_Relocation() { }
1101
1102 public:
1103  void clear_inline_cache();
1104
1105  // find the matching static_stub
1106  address static_stub();
1107};
1108
1109class static_stub_Relocation : public Relocation {
1110  relocInfo::relocType type() { return relocInfo::static_stub_type; }
1111
1112 public:
1113  static RelocationHolder spec(address static_call) {
1114    RelocationHolder rh = newHolder();
1115    new(rh) static_stub_Relocation(static_call);
1116    return rh;
1117  }
1118
1119 private:
1120  address _static_call;             // location of corresponding static_call
1121
1122  static_stub_Relocation(address static_call) {
1123    _static_call = static_call;
1124  }
1125
1126  friend class RelocIterator;
1127  static_stub_Relocation() { }
1128
1129 public:
1130  void clear_inline_cache();
1131
1132  address static_call() { return _static_call; }
1133
1134  // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1135  void pack_data_to(CodeSection* dest);
1136  void unpack_data();
1137};
1138
1139class runtime_call_Relocation : public CallRelocation {
1140  relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1141
1142 public:
1143  static RelocationHolder spec() {
1144    RelocationHolder rh = newHolder();
1145    new(rh) runtime_call_Relocation();
1146    return rh;
1147  }
1148
1149 private:
1150  friend class RelocIterator;
1151  runtime_call_Relocation() { }
1152
1153 public:
1154};
1155
1156// Trampoline Relocations.
1157// A trampoline allows to encode a small branch in the code, even if there
1158// is the chance that this branch can not reach all possible code locations.
1159// If the relocation finds that a branch is too far for the instruction
1160// in the code, it can patch it to jump to the trampoline where is
1161// sufficient space for a far branch. Needed on PPC.
1162class trampoline_stub_Relocation : public Relocation {
1163  relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
1164
1165 public:
1166  static RelocationHolder spec(address static_call) {
1167    RelocationHolder rh = newHolder();
1168    return (new (rh) trampoline_stub_Relocation(static_call));
1169  }
1170
1171 private:
1172  address _owner;    // Address of the NativeCall that owns the trampoline.
1173
1174  trampoline_stub_Relocation(address owner) {
1175    _owner = owner;
1176  }
1177
1178  friend class RelocIterator;
1179  trampoline_stub_Relocation() { }
1180
1181 public:
1182
1183  // Return the address of the NativeCall that owns the trampoline.
1184  address owner() { return _owner; }
1185
1186  void pack_data_to(CodeSection * dest);
1187  void unpack_data();
1188
1189  // Find the trampoline stub for a call.
1190  static address get_trampoline_for(address call, nmethod* code);
1191};
1192
1193class external_word_Relocation : public DataRelocation {
1194  relocInfo::relocType type() { return relocInfo::external_word_type; }
1195
1196 public:
1197  static RelocationHolder spec(address target) {
1198    assert(target != NULL, "must not be null");
1199    RelocationHolder rh = newHolder();
1200    new(rh) external_word_Relocation(target);
1201    return rh;
1202  }
1203
1204  // Use this one where all 32/64 bits of the target live in the code stream.
1205  // The target must be an intptr_t, and must be absolute (not relative).
1206  static RelocationHolder spec_for_immediate() {
1207    RelocationHolder rh = newHolder();
1208    new(rh) external_word_Relocation(NULL);
1209    return rh;
1210  }
1211
1212  // Some address looking values aren't safe to treat as relocations
1213  // and should just be treated as constants.
1214  static bool can_be_relocated(address target) {
1215    return target != NULL && !is_reloc_index((intptr_t)target);
1216  }
1217
1218 private:
1219  address _target;                  // address in runtime
1220
1221  external_word_Relocation(address target) {
1222    _target = target;
1223  }
1224
1225  friend class RelocIterator;
1226  external_word_Relocation() { }
1227
1228 public:
1229  // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1230  // The function runtime_address_to_index is used to turn full addresses
1231  // to short indexes, if they are pre-registered by the stub mechanism.
1232  // If the "a" value is 0 (i.e., _target is NULL), the address is stored
1233  // in the code stream.  See external_word_Relocation::target().
1234  void pack_data_to(CodeSection* dest);
1235  void unpack_data();
1236
1237  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1238  address  target();        // if _target==NULL, fetch addr from code stream
1239  address  value()          { return target(); }
1240};
1241
1242class internal_word_Relocation : public DataRelocation {
1243  relocInfo::relocType type() { return relocInfo::internal_word_type; }
1244
1245 public:
1246  static RelocationHolder spec(address target) {
1247    assert(target != NULL, "must not be null");
1248    RelocationHolder rh = newHolder();
1249    new(rh) internal_word_Relocation(target);
1250    return rh;
1251  }
1252
1253  // use this one where all the bits of the target can fit in the code stream:
1254  static RelocationHolder spec_for_immediate() {
1255    RelocationHolder rh = newHolder();
1256    new(rh) internal_word_Relocation(NULL);
1257    return rh;
1258  }
1259
1260  internal_word_Relocation(address target) {
1261    _target  = target;
1262    _section = -1;  // self-relative
1263  }
1264
1265 protected:
1266  address _target;                  // address in CodeBlob
1267  int     _section;                 // section providing base address, if any
1268
1269  friend class RelocIterator;
1270  internal_word_Relocation() { }
1271
1272  // bit-width of LSB field in packed offset, if section >= 0
1273  enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1274
1275 public:
1276  // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1277  // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1278  // in the code stream.  See internal_word_Relocation::target().
1279  // If _section is not -1, it is appended to the low bits of the offset.
1280  void pack_data_to(CodeSection* dest);
1281  void unpack_data();
1282
1283  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1284  address  target();        // if _target==NULL, fetch addr from code stream
1285  int      section()        { return _section;   }
1286  address  value()          { return target();   }
1287};
1288
1289class section_word_Relocation : public internal_word_Relocation {
1290  relocInfo::relocType type() { return relocInfo::section_word_type; }
1291
1292 public:
1293  static RelocationHolder spec(address target, int section) {
1294    RelocationHolder rh = newHolder();
1295    new(rh) section_word_Relocation(target, section);
1296    return rh;
1297  }
1298
1299  section_word_Relocation(address target, int section) {
1300    assert(target != NULL, "must not be null");
1301    assert(section >= 0, "must be a valid section");
1302    _target  = target;
1303    _section = section;
1304  }
1305
1306  //void pack_data_to -- inherited
1307  void unpack_data();
1308
1309 private:
1310  friend class RelocIterator;
1311  section_word_Relocation() { }
1312};
1313
1314
1315class poll_Relocation : public Relocation {
1316  bool          is_data()                      { return true; }
1317  relocInfo::relocType type() { return relocInfo::poll_type; }
1318  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1319};
1320
1321class poll_return_Relocation : public Relocation {
1322  bool          is_data()                      { return true; }
1323  relocInfo::relocType type() { return relocInfo::poll_return_type; }
1324  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1325};
1326
1327// We know all the xxx_Relocation classes, so now we can define these:
1328#define EACH_CASE(name)                                         \
1329inline name##_Relocation* RelocIterator::name##_reloc() {       \
1330  assert(type() == relocInfo::name##_type, "type must agree");  \
1331  /* The purpose of the placed "new" is to re-use the same */   \
1332  /* stack storage for each new iteration. */                   \
1333  name##_Relocation* r = new(_rh) name##_Relocation();          \
1334  r->set_binding(this);                                         \
1335  r->name##_Relocation::unpack_data();                          \
1336  return r;                                                     \
1337}
1338APPLY_TO_RELOCATIONS(EACH_CASE);
1339#undef EACH_CASE
1340
1341inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) {
1342  initialize(nm, begin, limit);
1343}
1344
1345#endif // SHARE_VM_CODE_RELOCINFO_HPP
1346