1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_CODE_RELOCINFO_HPP
26#define SHARE_VM_CODE_RELOCINFO_HPP
27
28#include "memory/allocation.hpp"
29#include "runtime/os.hpp"
30#include "utilities/macros.hpp"
31
32class nmethod;
33class CompiledMethod;
34class Metadata;
35class NativeMovConstReg;
36
37// Types in this file:
38//    relocInfo
39//      One element of an array of halfwords encoding compressed relocations.
40//      Also, the source of relocation types (relocInfo::oop_type, ...).
41//    Relocation
42//      A flyweight object representing a single relocation.
43//      It is fully unpacked from the compressed relocation array.
44//    metadata_Relocation, ... (subclasses of Relocation)
45//      The location of some type-specific operations (metadata_addr, ...).
46//      Also, the source of relocation specs (metadata_Relocation::spec, ...).
47//    oop_Relocation, ... (subclasses of Relocation)
48//      oops in the code stream (strings, class loaders)
49//      Also, the source of relocation specs (oop_Relocation::spec, ...).
50//    RelocationHolder
51//      A ValueObj type which acts as a union holding a Relocation object.
52//      Represents a relocation spec passed into a CodeBuffer during assembly.
53//    RelocIterator
54//      A StackObj which iterates over the relocations associated with
55//      a range of code addresses.  Can be used to operate a copy of code.
56//    BoundRelocation
57//      An _internal_ type shared by packers and unpackers of relocations.
58//      It pastes together a RelocationHolder with some pointers into
59//      code and relocInfo streams.
60
61
62// Notes on relocType:
63//
64// These hold enough information to read or write a value embedded in
65// the instructions of an CodeBlob.  They're used to update:
66//
67//   1) embedded oops     (isOop()          == true)
68//   2) inline caches     (isIC()           == true)
69//   3) runtime calls     (isRuntimeCall()  == true)
70//   4) internal word ref (isInternalWord() == true)
71//   5) external word ref (isExternalWord() == true)
72//
73// when objects move (GC) or if code moves (compacting the code heap).
74// They are also used to patch the code (if a call site must change)
75//
76// A relocInfo is represented in 16 bits:
77//   4 bits indicating the relocation type
78//  12 bits indicating the offset from the previous relocInfo address
79//
80// The offsets accumulate along the relocInfo stream to encode the
81// address within the CodeBlob, which is named RelocIterator::addr().
82// The address of a particular relocInfo always points to the first
83// byte of the relevant instruction (and not to any of its subfields
84// or embedded immediate constants).
85//
86// The offset value is scaled appropriately for the target machine.
87// (See relocInfo_<arch>.hpp for the offset scaling.)
88//
89// On some machines, there may also be a "format" field which may provide
90// additional information about the format of the instruction stream
91// at the corresponding code address.  The format value is usually zero.
92// Any machine (such as Intel) whose instructions can sometimes contain
93// more than one relocatable constant needs format codes to distinguish
94// which operand goes with a given relocation.
95//
96// If the target machine needs N format bits, the offset has 12-N bits,
97// the format is encoded between the offset and the type, and the
98// relocInfo_<arch>.hpp file has manifest constants for the format codes.
99//
100// If the type is "data_prefix_tag" then the offset bits are further encoded,
101// and in fact represent not a code-stream offset but some inline data.
102// The data takes the form of a counted sequence of halfwords, which
103// precedes the actual relocation record.  (Clients never see it directly.)
104// The interpetation of this extra data depends on the relocation type.
105//
106// On machines that have 32-bit immediate fields, there is usually
107// little need for relocation "prefix" data, because the instruction stream
108// is a perfectly reasonable place to store the value.  On machines in
109// which 32-bit values must be "split" across instructions, the relocation
110// data is the "true" specification of the value, which is then applied
111// to some field of the instruction (22 or 13 bits, on SPARC).
112//
113// Whenever the location of the CodeBlob changes, any PC-relative
114// relocations, and any internal_word_type relocations, must be reapplied.
115// After the GC runs, oop_type relocations must be reapplied.
116//
117//
118// Here are meanings of the types:
119//
120// relocInfo::none -- a filler record
121//   Value:  none
122//   Instruction: The corresponding code address is ignored
123//   Data:  Any data prefix and format code are ignored
124//   (This means that any relocInfo can be disabled by setting
125//   its type to none.  See relocInfo::remove.)
126//
127// relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data
128//   Value:  an oop, or else the address (handle) of an oop
129//   Instruction types: memory (load), set (load address)
130//   Data:  []       an oop stored in 4 bytes of instruction
131//          [n]      n is the index of an oop in the CodeBlob's oop pool
132//          [[N]n l] and l is a byte offset to be applied to the oop
133//          [Nn Ll]  both index and offset may be 32 bits if necessary
134//   Here is a special hack, used only by the old compiler:
135//          [[N]n 00] the value is the __address__ of the nth oop in the pool
136//   (Note that the offset allows optimal references to class variables.)
137//
138// relocInfo::internal_word_type -- an address within the same CodeBlob
139// relocInfo::section_word_type -- same, but can refer to another section
140//   Value:  an address in the CodeBlob's code or constants section
141//   Instruction types: memory (load), set (load address)
142//   Data:  []     stored in 4 bytes of instruction
143//          [[L]l] a relative offset (see [About Offsets] below)
144//   In the case of section_word_type, the offset is relative to a section
145//   base address, and the section number (e.g., SECT_INSTS) is encoded
146//   into the low two bits of the offset L.
147//
148// relocInfo::external_word_type -- a fixed address in the runtime system
149//   Value:  an address
150//   Instruction types: memory (load), set (load address)
151//   Data:  []   stored in 4 bytes of instruction
152//          [n]  the index of a "well-known" stub (usual case on RISC)
153//          [Ll] a 32-bit address
154//
155// relocInfo::runtime_call_type -- a fixed subroutine in the runtime system
156//   Value:  an address
157//   Instruction types: PC-relative call (or a PC-relative branch)
158//   Data:  []   stored in 4 bytes of instruction
159//
160// relocInfo::static_call_type -- a static call
161//   Value:  an CodeBlob, a stub, or a fixup routine
162//   Instruction types: a call
163//   Data:  []
164//   The identity of the callee is extracted from debugging information.
165//   //%note reloc_3
166//
167// relocInfo::virtual_call_type -- a virtual call site (which includes an inline
168//                                 cache)
169//   Value:  an CodeBlob, a stub, the interpreter, or a fixup routine
170//   Instruction types: a call, plus some associated set-oop instructions
171//   Data:  []       the associated set-oops are adjacent to the call
172//          [n]      n is a relative offset to the first set-oop
173//          [[N]n l] and l is a limit within which the set-oops occur
174//          [Nn Ll]  both n and l may be 32 bits if necessary
175//   The identity of the callee is extracted from debugging information.
176//
177// relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound
178//
179//    Same info as a static_call_type. We use a special type, so the handling of
180//    virtuals and statics are separated.
181//
182//
183//   The offset n points to the first set-oop.  (See [About Offsets] below.)
184//   In turn, the set-oop instruction specifies or contains an oop cell devoted
185//   exclusively to the IC call, which can be patched along with the call.
186//
187//   The locations of any other set-oops are found by searching the relocation
188//   information starting at the first set-oop, and continuing until all
189//   relocations up through l have been inspected.  The value l is another
190//   relative offset.  (Both n and l are relative to the call's first byte.)
191//
192//   The limit l of the search is exclusive.  However, if it points within
193//   the call (e.g., offset zero), it is adjusted to point after the call and
194//   any associated machine-specific delay slot.
195//
196//   Since the offsets could be as wide as 32-bits, these conventions
197//   put no restrictions whatever upon code reorganization.
198//
199//   The compiler is responsible for ensuring that transition from a clean
200//   state to a monomorphic compiled state is MP-safe.  This implies that
201//   the system must respond well to intermediate states where a random
202//   subset of the set-oops has been correctly from the clean state
203//   upon entry to the VEP of the compiled method.  In the case of a
204//   machine (Intel) with a single set-oop instruction, the 32-bit
205//   immediate field must not straddle a unit of memory coherence.
206//   //%note reloc_3
207//
208// relocInfo::static_stub_type -- an extra stub for each static_call_type
209//   Value:  none
210//   Instruction types: a virtual call:  { set_oop; jump; }
211//   Data:  [[N]n]  the offset of the associated static_call reloc
212//   This stub becomes the target of a static call which must be upgraded
213//   to a virtual call (because the callee is interpreted).
214//   See [About Offsets] below.
215//   //%note reloc_2
216//
217// relocInfo::poll_[return_]type -- a safepoint poll
218//   Value:  none
219//   Instruction types: memory load or test
220//   Data:  none
221//
222// For example:
223//
224//   INSTRUCTIONS                        RELOC: TYPE    PREFIX DATA
225//   ------------                               ----    -----------
226// sethi      %hi(myObject),  R               oop_type [n(myObject)]
227// ld      [R+%lo(myObject)+fldOffset], R2    oop_type [n(myObject) fldOffset]
228// add R2, 1, R2
229// st  R2, [R+%lo(myObject)+fldOffset]        oop_type [n(myObject) fldOffset]
230//%note reloc_1
231//
232// This uses 4 instruction words, 8 relocation halfwords,
233// and an entry (which is sharable) in the CodeBlob's oop pool,
234// for a total of 36 bytes.
235//
236// Note that the compiler is responsible for ensuring the "fldOffset" when
237// added to "%lo(myObject)" does not overflow the immediate fields of the
238// memory instructions.
239//
240//
241// [About Offsets] Relative offsets are supplied to this module as
242// positive byte offsets, but they may be internally stored scaled
243// and/or negated, depending on what is most compact for the target
244// system.  Since the object pointed to by the offset typically
245// precedes the relocation address, it is profitable to store
246// these negative offsets as positive numbers, but this decision
247// is internal to the relocation information abstractions.
248//
249
250class Relocation;
251class CodeBuffer;
252class CodeSection;
253class RelocIterator;
254
255class relocInfo VALUE_OBJ_CLASS_SPEC {
256  friend class RelocIterator;
257 public:
258  enum relocType {
259    none                    =  0, // Used when no relocation should be generated
260    oop_type                =  1, // embedded oop
261    virtual_call_type       =  2, // a standard inline cache call for a virtual send
262    opt_virtual_call_type   =  3, // a virtual call that has been statically bound (i.e., no IC cache)
263    static_call_type        =  4, // a static send
264    static_stub_type        =  5, // stub-entry for static send  (takes care of interpreter case)
265    runtime_call_type       =  6, // call to fixed external routine
266    external_word_type      =  7, // reference to fixed external address
267    internal_word_type      =  8, // reference within the current code blob
268    section_word_type       =  9, // internal, but a cross-section reference
269    poll_type               = 10, // polling instruction for safepoints
270    poll_return_type        = 11, // polling instruction for safepoints at return
271    metadata_type           = 12, // metadata that used to be oops
272    trampoline_stub_type    = 13, // stub-entry for trampoline
273    runtime_call_w_cp_type  = 14, // Runtime call which may load its target from the constant pool
274    data_prefix_tag         = 15, // tag for a prefix (carries data arguments)
275    type_mask               = 15  // A mask which selects only the above values
276  };
277
278 protected:
279  unsigned short _value;
280
281  enum RawBitsToken { RAW_BITS };
282  relocInfo(relocType type, RawBitsToken ignore, int bits)
283    : _value((type << nontype_width) + bits) { }
284
285  relocInfo(relocType type, RawBitsToken ignore, int off, int f)
286    : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { }
287
288 public:
289  // constructor
290  relocInfo(relocType type, int offset, int format = 0)
291#ifndef ASSERT
292  {
293    (*this) = relocInfo(type, RAW_BITS, offset, format);
294  }
295#else
296  // Put a bunch of assertions out-of-line.
297  ;
298#endif
299
300  #define APPLY_TO_RELOCATIONS(visitor) \
301    visitor(oop) \
302    visitor(metadata) \
303    visitor(virtual_call) \
304    visitor(opt_virtual_call) \
305    visitor(static_call) \
306    visitor(static_stub) \
307    visitor(runtime_call) \
308    visitor(runtime_call_w_cp) \
309    visitor(external_word) \
310    visitor(internal_word) \
311    visitor(poll) \
312    visitor(poll_return) \
313    visitor(section_word) \
314    visitor(trampoline_stub) \
315
316
317 public:
318  enum {
319    value_width             = sizeof(unsigned short) * BitsPerByte,
320    type_width              = 4,   // == log2(type_mask+1)
321    nontype_width           = value_width - type_width,
322    datalen_width           = nontype_width-1,
323    datalen_tag             = 1 << datalen_width,  // or-ed into _value
324    datalen_limit           = 1 << datalen_width,
325    datalen_mask            = (1 << datalen_width)-1
326  };
327
328  // accessors
329 public:
330  relocType  type()       const { return (relocType)((unsigned)_value >> nontype_width); }
331  int  format()           const { return format_mask==0? 0: format_mask &
332                                         ((unsigned)_value >> offset_width); }
333  int  addr_offset()      const { assert(!is_prefix(), "must have offset");
334                                  return (_value & offset_mask)*offset_unit; }
335
336 protected:
337  const short* data()     const { assert(is_datalen(), "must have data");
338                                  return (const short*)(this + 1); }
339  int          datalen()  const { assert(is_datalen(), "must have data");
340                                  return (_value & datalen_mask); }
341  int         immediate() const { assert(is_immediate(), "must have immed");
342                                  return (_value & datalen_mask); }
343 public:
344  static int addr_unit()        { return offset_unit; }
345  static int offset_limit()     { return (1 << offset_width) * offset_unit; }
346
347  void set_type(relocType type);
348  void set_format(int format);
349
350  void remove() { set_type(none); }
351
352 protected:
353  bool is_none()                const { return type() == none; }
354  bool is_prefix()              const { return type() == data_prefix_tag; }
355  bool is_datalen()             const { assert(is_prefix(), "must be prefix");
356                                        return (_value & datalen_tag) != 0; }
357  bool is_immediate()           const { assert(is_prefix(), "must be prefix");
358                                        return (_value & datalen_tag) == 0; }
359
360 public:
361  // Occasionally records of type relocInfo::none will appear in the stream.
362  // We do not bother to filter these out, but clients should ignore them.
363  // These records serve as "filler" in three ways:
364  //  - to skip large spans of unrelocated code (this is rare)
365  //  - to pad out the relocInfo array to the required oop alignment
366  //  - to disable old relocation information which is no longer applicable
367
368  inline friend relocInfo filler_relocInfo();
369
370  // Every non-prefix relocation may be preceded by at most one prefix,
371  // which supplies 1 or more halfwords of associated data.  Conventionally,
372  // an int is represented by 0, 1, or 2 halfwords, depending on how
373  // many bits are required to represent the value.  (In addition,
374  // if the sole halfword is a 10-bit unsigned number, it is made
375  // "immediate" in the prefix header word itself.  This optimization
376  // is invisible outside this module.)
377
378  inline friend relocInfo prefix_relocInfo(int datalen);
379
380 protected:
381  // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value
382  static relocInfo immediate_relocInfo(int data0) {
383    assert(fits_into_immediate(data0), "data0 in limits");
384    return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0);
385  }
386  static bool fits_into_immediate(int data0) {
387    return (data0 >= 0 && data0 < datalen_limit);
388  }
389
390 public:
391  // Support routines for compilers.
392
393  // This routine takes an infant relocInfo (unprefixed) and
394  // edits in its prefix, if any.  It also updates dest.locs_end.
395  void initialize(CodeSection* dest, Relocation* reloc);
396
397  // This routine updates a prefix and returns the limit pointer.
398  // It tries to compress the prefix from 32 to 16 bits, and if
399  // successful returns a reduced "prefix_limit" pointer.
400  relocInfo* finish_prefix(short* prefix_limit);
401
402  // bit-packers for the data array:
403
404  // As it happens, the bytes within the shorts are ordered natively,
405  // but the shorts within the word are ordered big-endian.
406  // This is an arbitrary choice, made this way mainly to ease debugging.
407  static int data0_from_int(jint x)         { return x >> value_width; }
408  static int data1_from_int(jint x)         { return (short)x; }
409  static jint jint_from_data(short* data) {
410    return (data[0] << value_width) + (unsigned short)data[1];
411  }
412
413  static jint short_data_at(int n, short* data, int datalen) {
414    return datalen > n ? data[n] : 0;
415  }
416
417  static jint jint_data_at(int n, short* data, int datalen) {
418    return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen);
419  }
420
421  // Update methods for relocation information
422  // (since code is dynamically patched, we also need to dynamically update the relocation info)
423  // Both methods takes old_type, so it is able to performe sanity checks on the information removed.
424  static void change_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type, relocType new_type);
425  static void remove_reloc_info_for_address(RelocIterator *itr, address pc, relocType old_type);
426
427  // Machine dependent stuff
428#include CPU_HEADER(relocInfo)
429
430 protected:
431  // Derived constant, based on format_width which is PD:
432  enum {
433    offset_width       = nontype_width - format_width,
434    offset_mask        = (1<<offset_width) - 1,
435    format_mask        = (1<<format_width) - 1
436  };
437 public:
438  enum {
439#ifdef _LP64
440    // for use in format
441    // format_width must be at least 1 on _LP64
442    narrow_oop_in_const = 1,
443#endif
444    // Conservatively large estimate of maximum length (in shorts)
445    // of any relocation record.
446    // Extended format is length prefix, data words, and tag/offset suffix.
447    length_limit       = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1,
448    have_format        = format_width > 0
449  };
450};
451
452#define FORWARD_DECLARE_EACH_CLASS(name)              \
453class name##_Relocation;
454APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS)
455#undef FORWARD_DECLARE_EACH_CLASS
456
457
458
459inline relocInfo filler_relocInfo() {
460  return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit);
461}
462
463inline relocInfo prefix_relocInfo(int datalen = 0) {
464  assert(relocInfo::fits_into_immediate(datalen), "datalen in limits");
465  return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen);
466}
467
468
469// Holder for flyweight relocation objects.
470// Although the flyweight subclasses are of varying sizes,
471// the holder is "one size fits all".
472class RelocationHolder VALUE_OBJ_CLASS_SPEC {
473  friend class Relocation;
474  friend class CodeSection;
475
476 private:
477  // this preallocated memory must accommodate all subclasses of Relocation
478  // (this number is assertion-checked in Relocation::operator new)
479  enum { _relocbuf_size = 5 };
480  void* _relocbuf[ _relocbuf_size ];
481
482 public:
483  Relocation* reloc() const { return (Relocation*) &_relocbuf[0]; }
484  inline relocInfo::relocType type() const;
485
486  // Add a constant offset to a relocation.  Helper for class Address.
487  RelocationHolder plus(int offset) const;
488
489  inline RelocationHolder();                // initializes type to none
490
491  inline RelocationHolder(Relocation* r);   // make a copy
492
493  static const RelocationHolder none;
494};
495
496// A RelocIterator iterates through the relocation information of a CodeBlob.
497// It is a variable BoundRelocation which is able to take on successive
498// values as it is advanced through a code stream.
499// Usage:
500//   RelocIterator iter(nm);
501//   while (iter.next()) {
502//     iter.reloc()->some_operation();
503//   }
504// or:
505//   RelocIterator iter(nm);
506//   while (iter.next()) {
507//     switch (iter.type()) {
508//      case relocInfo::oop_type          :
509//      case relocInfo::ic_type           :
510//      case relocInfo::prim_type         :
511//      case relocInfo::uncommon_type     :
512//      case relocInfo::runtime_call_type :
513//      case relocInfo::internal_word_type:
514//      case relocInfo::external_word_type:
515//      ...
516//     }
517//   }
518
519class RelocIterator : public StackObj {
520  enum { SECT_LIMIT = 3 };  // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor
521  friend class Relocation;
522  friend class relocInfo;       // for change_reloc_info_for_address only
523  typedef relocInfo::relocType relocType;
524
525 private:
526  address         _limit;   // stop producing relocations after this _addr
527  relocInfo*      _current; // the current relocation information
528  relocInfo*      _end;     // end marker; we're done iterating when _current == _end
529  CompiledMethod* _code;    // compiled method containing _addr
530  address         _addr;    // instruction to which the relocation applies
531  short           _databuf; // spare buffer for compressed data
532  short*          _data;    // pointer to the relocation's data
533  short           _datalen; // number of halfwords in _data
534  char            _format;  // position within the instruction
535
536  // Base addresses needed to compute targets of section_word_type relocs.
537  address _section_start[SECT_LIMIT];
538  address _section_end  [SECT_LIMIT];
539
540  void set_has_current(bool b) {
541    _datalen = !b ? -1 : 0;
542    debug_only(_data = NULL);
543  }
544  void set_current(relocInfo& ri) {
545    _current = &ri;
546    set_has_current(true);
547  }
548
549  RelocationHolder _rh; // where the current relocation is allocated
550
551  relocInfo* current() const { assert(has_current(), "must have current");
552                               return _current; }
553
554  void set_limits(address begin, address limit);
555
556  void advance_over_prefix();    // helper method
557
558  void initialize_misc();
559
560  void initialize(CompiledMethod* nm, address begin, address limit);
561
562  RelocIterator() { initialize_misc(); }
563
564 public:
565  // constructor
566  RelocIterator(CompiledMethod* nm, address begin = NULL, address limit = NULL);
567  RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL);
568
569  // get next reloc info, return !eos
570  bool next() {
571    _current++;
572    assert(_current <= _end, "must not overrun relocInfo");
573    if (_current == _end) {
574      set_has_current(false);
575      return false;
576    }
577    set_has_current(true);
578
579    if (_current->is_prefix()) {
580      advance_over_prefix();
581      assert(!current()->is_prefix(), "only one prefix at a time");
582    }
583
584    _addr += _current->addr_offset();
585
586    if (_limit != NULL && _addr >= _limit) {
587      set_has_current(false);
588      return false;
589    }
590
591    if (relocInfo::have_format)  _format = current()->format();
592    return true;
593  }
594
595  // accessors
596  address      limit()        const { return _limit; }
597  void     set_limit(address x);
598  relocType    type()         const { return current()->type(); }
599  int          format()       const { return (relocInfo::have_format) ? current()->format() : 0; }
600  address      addr()         const { return _addr; }
601  CompiledMethod*     code()  const { return _code; }
602  nmethod*     code_as_nmethod() const;
603  short*       data()         const { return _data; }
604  int          datalen()      const { return _datalen; }
605  bool     has_current()      const { return _datalen >= 0; }
606
607  void       set_addr(address addr) { _addr = addr; }
608  bool   addr_in_const()      const;
609
610  address section_start(int n) const {
611    assert(_section_start[n], "must be initialized");
612    return _section_start[n];
613  }
614  address section_end(int n) const {
615    assert(_section_end[n], "must be initialized");
616    return _section_end[n];
617  }
618
619  // The address points to the affected displacement part of the instruction.
620  // For RISC, this is just the whole instruction.
621  // For Intel, this is an unaligned 32-bit word.
622
623  // type-specific relocation accessors:  oop_Relocation* oop_reloc(), etc.
624  #define EACH_TYPE(name)                               \
625  inline name##_Relocation* name##_reloc();
626  APPLY_TO_RELOCATIONS(EACH_TYPE)
627  #undef EACH_TYPE
628  // generic relocation accessor; switches on type to call the above
629  Relocation* reloc();
630
631#ifndef PRODUCT
632 public:
633  void print();
634  void print_current();
635#endif
636};
637
638
639// A Relocation is a flyweight object allocated within a RelocationHolder.
640// It represents the relocation data of relocation record.
641// So, the RelocIterator unpacks relocInfos into Relocations.
642
643class Relocation VALUE_OBJ_CLASS_SPEC {
644  friend class RelocationHolder;
645  friend class RelocIterator;
646
647 private:
648  static void guarantee_size();
649
650  // When a relocation has been created by a RelocIterator,
651  // this field is non-null.  It allows the relocation to know
652  // its context, such as the address to which it applies.
653  RelocIterator* _binding;
654
655 protected:
656  RelocIterator* binding() const {
657    assert(_binding != NULL, "must be bound");
658    return _binding;
659  }
660  void set_binding(RelocIterator* b) {
661    assert(_binding == NULL, "must be unbound");
662    _binding = b;
663    assert(_binding != NULL, "must now be bound");
664  }
665
666  Relocation() {
667    _binding = NULL;
668  }
669
670  static RelocationHolder newHolder() {
671    return RelocationHolder();
672  }
673
674 public:
675  void* operator new(size_t size, const RelocationHolder& holder) throw() {
676    if (size > sizeof(holder._relocbuf)) guarantee_size();
677    assert((void* const *)holder.reloc() == &holder._relocbuf[0], "ptrs must agree");
678    return holder.reloc();
679  }
680
681  // make a generic relocation for a given type (if possible)
682  static RelocationHolder spec_simple(relocInfo::relocType rtype);
683
684  // here is the type-specific hook which writes relocation data:
685  virtual void pack_data_to(CodeSection* dest) { }
686
687  // here is the type-specific hook which reads (unpacks) relocation data:
688  virtual void unpack_data() {
689    assert(datalen()==0 || type()==relocInfo::none, "no data here");
690  }
691
692 protected:
693  // Helper functions for pack_data_to() and unpack_data().
694
695  // Most of the compression logic is confined here.
696  // (The "immediate data" mechanism of relocInfo works independently
697  // of this stuff, and acts to further compress most 1-word data prefixes.)
698
699  // A variable-width int is encoded as a short if it will fit in 16 bits.
700  // The decoder looks at datalen to decide whether to unpack short or jint.
701  // Most relocation records are quite simple, containing at most two ints.
702
703  static bool is_short(jint x) { return x == (short)x; }
704  static short* add_short(short* p, int x)  { *p++ = x; return p; }
705  static short* add_jint (short* p, jint x) {
706    *p++ = relocInfo::data0_from_int(x); *p++ = relocInfo::data1_from_int(x);
707    return p;
708  }
709  static short* add_var_int(short* p, jint x) {   // add a variable-width int
710    if (is_short(x))  p = add_short(p, x);
711    else              p = add_jint (p, x);
712    return p;
713  }
714
715  static short* pack_1_int_to(short* p, jint x0) {
716    // Format is one of:  [] [x] [Xx]
717    if (x0 != 0)  p = add_var_int(p, x0);
718    return p;
719  }
720  int unpack_1_int() {
721    assert(datalen() <= 2, "too much data");
722    return relocInfo::jint_data_at(0, data(), datalen());
723  }
724
725  // With two ints, the short form is used only if both ints are short.
726  short* pack_2_ints_to(short* p, jint x0, jint x1) {
727    // Format is one of:  [] [x y?] [Xx Y?y]
728    if (x0 == 0 && x1 == 0) {
729      // no halfwords needed to store zeroes
730    } else if (is_short(x0) && is_short(x1)) {
731      // 1-2 halfwords needed to store shorts
732      p = add_short(p, x0); if (x1!=0) p = add_short(p, x1);
733    } else {
734      // 3-4 halfwords needed to store jints
735      p = add_jint(p, x0);             p = add_var_int(p, x1);
736    }
737    return p;
738  }
739  void unpack_2_ints(jint& x0, jint& x1) {
740    int    dlen = datalen();
741    short* dp  = data();
742    if (dlen <= 2) {
743      x0 = relocInfo::short_data_at(0, dp, dlen);
744      x1 = relocInfo::short_data_at(1, dp, dlen);
745    } else {
746      assert(dlen <= 4, "too much data");
747      x0 = relocInfo::jint_data_at(0, dp, dlen);
748      x1 = relocInfo::jint_data_at(2, dp, dlen);
749    }
750  }
751
752 protected:
753  // platform-independent utility for patching constant section
754  void       const_set_data_value    (address x);
755  void       const_verify_data_value (address x);
756  // platform-dependent utilities for decoding and patching instructions
757  void       pd_set_data_value       (address x, intptr_t off, bool verify_only = false); // a set or mem-ref
758  void       pd_verify_data_value    (address x, intptr_t off) { pd_set_data_value(x, off, true); }
759  address    pd_call_destination     (address orig_addr = NULL);
760  void       pd_set_call_destination (address x);
761
762  // this extracts the address of an address in the code stream instead of the reloc data
763  address* pd_address_in_code       ();
764
765  // this extracts an address from the code stream instead of the reloc data
766  address  pd_get_address_from_code ();
767
768  // these convert from byte offsets, to scaled offsets, to addresses
769  static jint scaled_offset(address x, address base) {
770    int byte_offset = x - base;
771    int offset = -byte_offset / relocInfo::addr_unit();
772    assert(address_from_scaled_offset(offset, base) == x, "just checkin'");
773    return offset;
774  }
775  static jint scaled_offset_null_special(address x, address base) {
776    // Some relocations treat offset=0 as meaning NULL.
777    // Handle this extra convention carefully.
778    if (x == NULL)  return 0;
779    assert(x != base, "offset must not be zero");
780    return scaled_offset(x, base);
781  }
782  static address address_from_scaled_offset(jint offset, address base) {
783    int byte_offset = -( offset * relocInfo::addr_unit() );
784    return base + byte_offset;
785  }
786
787  // helpers for mapping between old and new addresses after a move or resize
788  address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest);
789  address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest);
790  void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false);
791
792 public:
793  // accessors which only make sense for a bound Relocation
794  address         addr()            const { return binding()->addr(); }
795  CompiledMethod* code()            const { return binding()->code(); }
796  nmethod*        code_as_nmethod() const { return binding()->code_as_nmethod(); }
797  bool            addr_in_const()   const { return binding()->addr_in_const(); }
798 protected:
799  short*   data()         const { return binding()->data(); }
800  int      datalen()      const { return binding()->datalen(); }
801  int      format()       const { return binding()->format(); }
802
803 public:
804  virtual relocInfo::relocType type()            { return relocInfo::none; }
805
806  // is it a call instruction?
807  virtual bool is_call()                         { return false; }
808
809  // is it a data movement instruction?
810  virtual bool is_data()                         { return false; }
811
812  // some relocations can compute their own values
813  virtual address  value();
814
815  // all relocations are able to reassert their values
816  virtual void set_value(address x);
817
818  virtual void clear_inline_cache()              { }
819
820  // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and
821  // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is
822  // probably a reasonable assumption, since empty caches simplifies code reloacation.
823  virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { }
824};
825
826
827// certain inlines must be deferred until class Relocation is defined:
828
829inline RelocationHolder::RelocationHolder() {
830  // initialize the vtbl, just to keep things type-safe
831  new(*this) Relocation();
832}
833
834
835inline RelocationHolder::RelocationHolder(Relocation* r) {
836  // wordwise copy from r (ok if it copies garbage after r)
837  for (int i = 0; i < _relocbuf_size; i++) {
838    _relocbuf[i] = ((void**)r)[i];
839  }
840}
841
842
843relocInfo::relocType RelocationHolder::type() const {
844  return reloc()->type();
845}
846
847// A DataRelocation always points at a memory or load-constant instruction..
848// It is absolute on most machines, and the constant is split on RISCs.
849// The specific subtypes are oop, external_word, and internal_word.
850// By convention, the "value" does not include a separately reckoned "offset".
851class DataRelocation : public Relocation {
852 public:
853  bool          is_data()                      { return true; }
854
855  // both target and offset must be computed somehow from relocation data
856  virtual int    offset()                      { return 0; }
857  address         value()                      = 0;
858  void        set_value(address x)             { set_value(x, offset()); }
859  void        set_value(address x, intptr_t o) {
860    if (addr_in_const())
861      const_set_data_value(x);
862    else
863      pd_set_data_value(x, o);
864  }
865  void        verify_value(address x) {
866    if (addr_in_const())
867      const_verify_data_value(x);
868    else
869      pd_verify_data_value(x, offset());
870  }
871
872  // The "o" (displacement) argument is relevant only to split relocations
873  // on RISC machines.  In some CPUs (SPARC), the set-hi and set-lo ins'ns
874  // can encode more than 32 bits between them.  This allows compilers to
875  // share set-hi instructions between addresses that differ by a small
876  // offset (e.g., different static variables in the same class).
877  // On such machines, the "x" argument to set_value on all set-lo
878  // instructions must be the same as the "x" argument for the
879  // corresponding set-hi instructions.  The "o" arguments for the
880  // set-hi instructions are ignored, and must not affect the high-half
881  // immediate constant.  The "o" arguments for the set-lo instructions are
882  // added into the low-half immediate constant, and must not overflow it.
883};
884
885// A CallRelocation always points at a call instruction.
886// It is PC-relative on most machines.
887class CallRelocation : public Relocation {
888 public:
889  bool is_call() { return true; }
890
891  address  destination()                    { return pd_call_destination(); }
892  void     set_destination(address x); // pd_set_call_destination
893
894  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
895  address  value()                          { return destination();  }
896  void     set_value(address x)             { set_destination(x); }
897};
898
899class oop_Relocation : public DataRelocation {
900  relocInfo::relocType type() { return relocInfo::oop_type; }
901
902 public:
903  // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
904  // an oop in the CodeBlob's oop pool
905  static RelocationHolder spec(int oop_index, int offset = 0) {
906    assert(oop_index > 0, "must be a pool-resident oop");
907    RelocationHolder rh = newHolder();
908    new(rh) oop_Relocation(oop_index, offset);
909    return rh;
910  }
911  // an oop in the instruction stream
912  static RelocationHolder spec_for_immediate() {
913    const int oop_index = 0;
914    const int offset    = 0;    // if you want an offset, use the oop pool
915    RelocationHolder rh = newHolder();
916    new(rh) oop_Relocation(oop_index, offset);
917    return rh;
918  }
919
920 private:
921  jint _oop_index;                  // if > 0, index into CodeBlob::oop_at
922  jint _offset;                     // byte offset to apply to the oop itself
923
924  oop_Relocation(int oop_index, int offset) {
925    _oop_index = oop_index; _offset = offset;
926  }
927
928  friend class RelocIterator;
929  oop_Relocation() { }
930
931 public:
932  int oop_index() { return _oop_index; }
933  int offset()    { return _offset; }
934
935  // data is packed in "2_ints" format:  [i o] or [Ii Oo]
936  void pack_data_to(CodeSection* dest);
937  void unpack_data();
938
939  void fix_oop_relocation();        // reasserts oop value
940
941  void verify_oop_relocation();
942
943  address value()  { return (address) *oop_addr(); }
944
945  bool oop_is_immediate()  { return oop_index() == 0; }
946
947  oop* oop_addr();                  // addr or &pool[jint_data]
948  oop  oop_value();                 // *oop_addr
949  // Note:  oop_value transparently converts Universe::non_oop_word to NULL.
950};
951
952
953// copy of oop_Relocation for now but may delete stuff in both/either
954class metadata_Relocation : public DataRelocation {
955  relocInfo::relocType type() { return relocInfo::metadata_type; }
956
957 public:
958  // encode in one of these formats:  [] [n] [n l] [Nn l] [Nn Ll]
959  // an metadata in the CodeBlob's metadata pool
960  static RelocationHolder spec(int metadata_index, int offset = 0) {
961    assert(metadata_index > 0, "must be a pool-resident metadata");
962    RelocationHolder rh = newHolder();
963    new(rh) metadata_Relocation(metadata_index, offset);
964    return rh;
965  }
966  // an metadata in the instruction stream
967  static RelocationHolder spec_for_immediate() {
968    const int metadata_index = 0;
969    const int offset    = 0;    // if you want an offset, use the metadata pool
970    RelocationHolder rh = newHolder();
971    new(rh) metadata_Relocation(metadata_index, offset);
972    return rh;
973  }
974
975 private:
976  jint _metadata_index;            // if > 0, index into nmethod::metadata_at
977  jint _offset;                     // byte offset to apply to the metadata itself
978
979  metadata_Relocation(int metadata_index, int offset) {
980    _metadata_index = metadata_index; _offset = offset;
981  }
982
983  friend class RelocIterator;
984  metadata_Relocation() { }
985
986  // Fixes a Metadata pointer in the code. Most platforms embeds the
987  // Metadata pointer in the code at compile time so this is empty
988  // for them.
989  void pd_fix_value(address x);
990
991 public:
992  int metadata_index() { return _metadata_index; }
993  int offset()    { return _offset; }
994
995  // data is packed in "2_ints" format:  [i o] or [Ii Oo]
996  void pack_data_to(CodeSection* dest);
997  void unpack_data();
998
999  void fix_metadata_relocation();        // reasserts metadata value
1000
1001  void verify_metadata_relocation();
1002
1003  address value()  { return (address) *metadata_addr(); }
1004
1005  bool metadata_is_immediate()  { return metadata_index() == 0; }
1006
1007  Metadata**   metadata_addr();                  // addr or &pool[jint_data]
1008  Metadata*    metadata_value();                 // *metadata_addr
1009  // Note:  metadata_value transparently converts Universe::non_metadata_word to NULL.
1010};
1011
1012
1013class virtual_call_Relocation : public CallRelocation {
1014  relocInfo::relocType type() { return relocInfo::virtual_call_type; }
1015
1016 public:
1017  // "cached_value" points to the first associated set-oop.
1018  // The oop_limit helps find the last associated set-oop.
1019  // (See comments at the top of this file.)
1020  static RelocationHolder spec(address cached_value, jint method_index = 0) {
1021    RelocationHolder rh = newHolder();
1022    new(rh) virtual_call_Relocation(cached_value, method_index);
1023    return rh;
1024  }
1025
1026 private:
1027  address _cached_value; // location of set-value instruction
1028  jint    _method_index; // resolved method for a Java call
1029
1030  virtual_call_Relocation(address cached_value, int method_index) {
1031    _cached_value = cached_value;
1032    _method_index = method_index;
1033    assert(cached_value != NULL, "first oop address must be specified");
1034  }
1035
1036  friend class RelocIterator;
1037  virtual_call_Relocation() { }
1038
1039 public:
1040  address cached_value();
1041
1042  int     method_index() { return _method_index; }
1043  Method* method_value();
1044
1045  // data is packed as scaled offsets in "2_ints" format:  [f l] or [Ff Ll]
1046  // oop_limit is set to 0 if the limit falls somewhere within the call.
1047  // When unpacking, a zero oop_limit is taken to refer to the end of the call.
1048  // (This has the effect of bringing in the call's delay slot on SPARC.)
1049  void pack_data_to(CodeSection* dest);
1050  void unpack_data();
1051
1052  void clear_inline_cache();
1053};
1054
1055
1056class opt_virtual_call_Relocation : public CallRelocation {
1057  relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; }
1058
1059 public:
1060  static RelocationHolder spec(int method_index = 0) {
1061    RelocationHolder rh = newHolder();
1062    new(rh) opt_virtual_call_Relocation(method_index);
1063    return rh;
1064  }
1065
1066 private:
1067  jint _method_index; // resolved method for a Java call
1068
1069  opt_virtual_call_Relocation(int method_index) {
1070    _method_index = method_index;
1071  }
1072
1073  friend class RelocIterator;
1074  opt_virtual_call_Relocation() {}
1075
1076 public:
1077  int     method_index() { return _method_index; }
1078  Method* method_value();
1079
1080  void pack_data_to(CodeSection* dest);
1081  void unpack_data();
1082
1083  void clear_inline_cache();
1084
1085  // find the matching static_stub
1086  address static_stub(bool is_aot);
1087};
1088
1089
1090class static_call_Relocation : public CallRelocation {
1091  relocInfo::relocType type() { return relocInfo::static_call_type; }
1092
1093 public:
1094  static RelocationHolder spec(int method_index = 0) {
1095    RelocationHolder rh = newHolder();
1096    new(rh) static_call_Relocation(method_index);
1097    return rh;
1098  }
1099
1100 private:
1101  jint _method_index; // resolved method for a Java call
1102
1103  static_call_Relocation(int method_index) {
1104    _method_index = method_index;
1105  }
1106
1107  friend class RelocIterator;
1108  static_call_Relocation() {}
1109
1110 public:
1111  int     method_index() { return _method_index; }
1112  Method* method_value();
1113
1114  void pack_data_to(CodeSection* dest);
1115  void unpack_data();
1116
1117  void clear_inline_cache();
1118
1119  // find the matching static_stub
1120  address static_stub(bool is_aot);
1121};
1122
1123class static_stub_Relocation : public Relocation {
1124  relocInfo::relocType type() { return relocInfo::static_stub_type; }
1125
1126 public:
1127  static RelocationHolder spec(address static_call, bool is_aot = false) {
1128    RelocationHolder rh = newHolder();
1129    new(rh) static_stub_Relocation(static_call, is_aot);
1130    return rh;
1131  }
1132
1133 private:
1134  address _static_call;  // location of corresponding static_call
1135  bool _is_aot;          // trampoline to aot code
1136
1137  static_stub_Relocation(address static_call, bool is_aot) {
1138    _static_call = static_call;
1139    _is_aot = is_aot;
1140  }
1141
1142  friend class RelocIterator;
1143  static_stub_Relocation() { }
1144
1145 public:
1146  void clear_inline_cache();
1147
1148  address static_call() { return _static_call; }
1149  bool is_aot() { return _is_aot; }
1150
1151  // data is packed as a scaled offset in "1_int" format:  [c] or [Cc]
1152  void pack_data_to(CodeSection* dest);
1153  void unpack_data();
1154};
1155
1156class runtime_call_Relocation : public CallRelocation {
1157  relocInfo::relocType type() { return relocInfo::runtime_call_type; }
1158
1159 public:
1160  static RelocationHolder spec() {
1161    RelocationHolder rh = newHolder();
1162    new(rh) runtime_call_Relocation();
1163    return rh;
1164  }
1165
1166 private:
1167  friend class RelocIterator;
1168  runtime_call_Relocation() { }
1169
1170 public:
1171};
1172
1173
1174class runtime_call_w_cp_Relocation : public CallRelocation {
1175  relocInfo::relocType type() { return relocInfo::runtime_call_w_cp_type; }
1176
1177 public:
1178  static RelocationHolder spec() {
1179    RelocationHolder rh = newHolder();
1180    new(rh) runtime_call_w_cp_Relocation();
1181    return rh;
1182  }
1183
1184 private:
1185  friend class RelocIterator;
1186  runtime_call_w_cp_Relocation() { _offset = -4; /* <0 = invalid */ }
1187  // On z/Architecture, runtime calls are either a sequence
1188  // of two instructions (load destination of call from constant pool + do call)
1189  // or a pc-relative call. The pc-relative call is faster, but it can only
1190  // be used if the destination of the call is not too far away.
1191  // In order to be able to patch a pc-relative call back into one using
1192  // the constant pool, we have to remember the location of the call's destination
1193  // in the constant pool.
1194  int _offset;
1195
1196 public:
1197  void set_constant_pool_offset(int offset) { _offset = offset; }
1198  int get_constant_pool_offset() { return _offset; }
1199  void pack_data_to(CodeSection * dest);
1200  void unpack_data();
1201};
1202
1203// Trampoline Relocations.
1204// A trampoline allows to encode a small branch in the code, even if there
1205// is the chance that this branch can not reach all possible code locations.
1206// If the relocation finds that a branch is too far for the instruction
1207// in the code, it can patch it to jump to the trampoline where is
1208// sufficient space for a far branch. Needed on PPC.
1209class trampoline_stub_Relocation : public Relocation {
1210  relocInfo::relocType type() { return relocInfo::trampoline_stub_type; }
1211
1212 public:
1213  static RelocationHolder spec(address static_call) {
1214    RelocationHolder rh = newHolder();
1215    return (new (rh) trampoline_stub_Relocation(static_call));
1216  }
1217
1218 private:
1219  address _owner;    // Address of the NativeCall that owns the trampoline.
1220
1221  trampoline_stub_Relocation(address owner) {
1222    _owner = owner;
1223  }
1224
1225  friend class RelocIterator;
1226  trampoline_stub_Relocation() { }
1227
1228 public:
1229
1230  // Return the address of the NativeCall that owns the trampoline.
1231  address owner() { return _owner; }
1232
1233  void pack_data_to(CodeSection * dest);
1234  void unpack_data();
1235
1236  // Find the trampoline stub for a call.
1237  static address get_trampoline_for(address call, nmethod* code);
1238};
1239
1240class external_word_Relocation : public DataRelocation {
1241  relocInfo::relocType type() { return relocInfo::external_word_type; }
1242
1243 public:
1244  static RelocationHolder spec(address target) {
1245    assert(target != NULL, "must not be null");
1246    RelocationHolder rh = newHolder();
1247    new(rh) external_word_Relocation(target);
1248    return rh;
1249  }
1250
1251  // Use this one where all 32/64 bits of the target live in the code stream.
1252  // The target must be an intptr_t, and must be absolute (not relative).
1253  static RelocationHolder spec_for_immediate() {
1254    RelocationHolder rh = newHolder();
1255    new(rh) external_word_Relocation(NULL);
1256    return rh;
1257  }
1258
1259  // Some address looking values aren't safe to treat as relocations
1260  // and should just be treated as constants.
1261  static bool can_be_relocated(address target) {
1262    assert(target == NULL || (uintptr_t)target >= (uintptr_t)os::vm_page_size(), INTPTR_FORMAT, (intptr_t)target);
1263    return target != NULL;
1264  }
1265
1266 private:
1267  address _target;                  // address in runtime
1268
1269  external_word_Relocation(address target) {
1270    _target = target;
1271  }
1272
1273  friend class RelocIterator;
1274  external_word_Relocation() { }
1275
1276 public:
1277  // data is packed as a well-known address in "1_int" format:  [a] or [Aa]
1278  // The function runtime_address_to_index is used to turn full addresses
1279  // to short indexes, if they are pre-registered by the stub mechanism.
1280  // If the "a" value is 0 (i.e., _target is NULL), the address is stored
1281  // in the code stream.  See external_word_Relocation::target().
1282  void pack_data_to(CodeSection* dest);
1283  void unpack_data();
1284
1285  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1286  address  target();        // if _target==NULL, fetch addr from code stream
1287  address  value()          { return target(); }
1288};
1289
1290class internal_word_Relocation : public DataRelocation {
1291  relocInfo::relocType type() { return relocInfo::internal_word_type; }
1292
1293 public:
1294  static RelocationHolder spec(address target) {
1295    assert(target != NULL, "must not be null");
1296    RelocationHolder rh = newHolder();
1297    new(rh) internal_word_Relocation(target);
1298    return rh;
1299  }
1300
1301  // use this one where all the bits of the target can fit in the code stream:
1302  static RelocationHolder spec_for_immediate() {
1303    RelocationHolder rh = newHolder();
1304    new(rh) internal_word_Relocation(NULL);
1305    return rh;
1306  }
1307
1308  internal_word_Relocation(address target) {
1309    _target  = target;
1310    _section = -1;  // self-relative
1311  }
1312
1313 protected:
1314  address _target;                  // address in CodeBlob
1315  int     _section;                 // section providing base address, if any
1316
1317  friend class RelocIterator;
1318  internal_word_Relocation() { }
1319
1320  // bit-width of LSB field in packed offset, if section >= 0
1321  enum { section_width = 2 }; // must equal CodeBuffer::sect_bits
1322
1323 public:
1324  // data is packed as a scaled offset in "1_int" format:  [o] or [Oo]
1325  // If the "o" value is 0 (i.e., _target is NULL), the offset is stored
1326  // in the code stream.  See internal_word_Relocation::target().
1327  // If _section is not -1, it is appended to the low bits of the offset.
1328  void pack_data_to(CodeSection* dest);
1329  void unpack_data();
1330
1331  void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1332  address  target();        // if _target==NULL, fetch addr from code stream
1333  int      section()        { return _section;   }
1334  address  value()          { return target();   }
1335};
1336
1337class section_word_Relocation : public internal_word_Relocation {
1338  relocInfo::relocType type() { return relocInfo::section_word_type; }
1339
1340 public:
1341  static RelocationHolder spec(address target, int section) {
1342    RelocationHolder rh = newHolder();
1343    new(rh) section_word_Relocation(target, section);
1344    return rh;
1345  }
1346
1347  section_word_Relocation(address target, int section) {
1348    assert(target != NULL, "must not be null");
1349    assert(section >= 0, "must be a valid section");
1350    _target  = target;
1351    _section = section;
1352  }
1353
1354  //void pack_data_to -- inherited
1355  void unpack_data();
1356
1357 private:
1358  friend class RelocIterator;
1359  section_word_Relocation() { }
1360};
1361
1362
1363class poll_Relocation : public Relocation {
1364  bool          is_data()                      { return true; }
1365  relocInfo::relocType type() { return relocInfo::poll_type; }
1366  void     fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest);
1367};
1368
1369class poll_return_Relocation : public poll_Relocation {
1370  relocInfo::relocType type() { return relocInfo::poll_return_type; }
1371};
1372
1373// We know all the xxx_Relocation classes, so now we can define these:
1374#define EACH_CASE(name)                                         \
1375inline name##_Relocation* RelocIterator::name##_reloc() {       \
1376  assert(type() == relocInfo::name##_type, "type must agree");  \
1377  /* The purpose of the placed "new" is to re-use the same */   \
1378  /* stack storage for each new iteration. */                   \
1379  name##_Relocation* r = new(_rh) name##_Relocation();          \
1380  r->set_binding(this);                                         \
1381  r->name##_Relocation::unpack_data();                          \
1382  return r;                                                     \
1383}
1384APPLY_TO_RELOCATIONS(EACH_CASE);
1385#undef EACH_CASE
1386
1387inline RelocIterator::RelocIterator(CompiledMethod* nm, address begin, address limit) {
1388  initialize(nm, begin, limit);
1389}
1390
1391#endif // SHARE_VM_CODE_RELOCINFO_HPP
1392